Polyphonic sound event detection using multi label deep neural networks
Abstract
In this paper, the use of multi label neural networks are proposed for detection of temporally overlapping sound events in realistic environments. Real-life sound recordings typically have many overlapping sound events, making it hard to recognize each event with the standard sound event detection methods. Frame-wise spectral-domain features are used as inputs to train a deep neural network for multi label classification in this work. The model is evaluated with recordings from realistic everyday environments and the obtained overall accuracy is 63.8%. The method is compared against a state-of-the-art method using non-negative matrix factorization as a pre-processing stage and hidden Markov models as a classifier. The proposed method improves the accuracy by 19% percentage points overall.
KeywordsSound event detection; deep neural networks
Research areas- Year:
- 2015
- Book title:
- International Joint Conference on Neural Networks 2015 (IJCNN 2015)