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Abstract—In recent years, several studies have established a
relationship between mammographic parenchymal patterns and
breast cancer risk. However, there is a lack of publicly available
data and software for objective comparison and clinical valida-
tion. This paper presents an open and adaptable implementation
(OpenBreast v1.0) of a fully-automatic computerized framework
for mammographic image analysis for breast cancer risk assess-
ment. OpenBreast implements mammographic image analysis in
four stages: breast segmentation, detection of region-of-interests,
feature extraction and risk scoring. For each stage, we provide
implementations of several state-of-the-art methods. The pipeline
is tested on a set of 305 full-field digital mammography images
corresponding to 84 patients (51 cases and 49 controls) from the
breast cancer digital repository (BCDR). OpenBreast achieves a
competitive AUC of 0.846 in breast cancer risk assessment. In
addition, used jointly with widely accepted risk factors such as
patient age and breast density, mammographic image analysis
using OpenBreast shows a statistically significant improvement
in performance with an AUC of 0.876 (p<0.001). Our framework
will be made publicly available and it is easy to incorporate new
methods.

Index Terms—mammography, breast cancer, risk assessment,
parenchymal analysis, texture analysis

I. INTRODUCTION

Breast cancer is one of the leading causes of cancer deaths

in women worldwide [1]. The identification of patients at

high risk of developing breast cancer is of key importance to

improve timely detection and prognosis of the disease. For this

reason, substantial research efforts are devoted to the develop-

ment of effective risk assessment methods based on different

sources, such as genetic biomarkers, risk models, and image

analysis [2]. Among existing strategies for risk assessment, we

are particularly interested in the analysis of mammography

images due to their wide adoption for screening programs

worldwide, relatively low cost compared to alternative imaging

modalities, and use as one of the primary screening tools.

In this scope, the computerized analysis of mammography

images has been widely studied for risk assessment. In the last

decades, substantial experimental evidence have been found

that consistently attributes texture patterns a significant role in

breast cancer risk [3].

In the literature, researchers have investigated different

tasks related to analysis of mammography images. In general,

computerized mammographic analysis can be divided into four

stages: i) breast segmentation, ii) region-of-interest detection,

iii) feature extraction, and iv) risk scoring. Unfortunately, in

the community there is no consensus about the best algorithms

for each stage or how the analysis should be performed. One

of the main challenges in this regard is reproducibility, which

refers to the difficulty in replication of any prior art by inde-

pendent researchers different from the original authors. This

could be explained by the complexity of current computer-

based approaches and the need for tuning method-specific

parameters. It is clear that the difficulties in replication and

extensive, independent validation are an important obstacle

for reaching consensus and eventual adoption into clinical

practice.

In order to tackle the aforementioned reproducibility prob-

lem, we present an open protocol and framework for breast

cancer risk assessment using mammography images. Specifi-

cally, we implement and evaluate a set of state-of-the-art meth-

ods for each processing stage in breast cancer risk assessment

based on parenchymal patterns. For evaluation, we compare

different feature extraction methods and breast sampling strate-

gies on a set of 305 full-field digital mammography images

corresponding to 84 patients from the breast cancer digital

repository (BCDR) [4]. In addition, we conduct experiments

including established risk factors, such as patient age and

breast density, showing that the incorporation of the best

method combination produces a statistically significant im-

provement in performance with an AUC of 0.876 (p<0.001).

The main contribution of this work is the development of

an open framework - OpenBreast v1.0 - for breast cancer

risk assessment from mammography images. Combined with

a publicly available data (BCDR in our case) OpenBreast

facilitates fair comparisons and reproducible research. In ad-

dition, the technical contributions of our work are two-fold:

firstly, we implemented state-of-the-art methods for each stage

of mammography image analysis. Secondly, we performed

an experimental comparison to determine the ROI-detection

strategies and feature extraction methods that yield the best

performance. In order to foster the development of novel

methods and facilitate their evaluation for adoption into clin-

ical practice, all the developed tools will be made publicly

available.



II. COMPUTERIZED ANALYSIS OF MAMMOGRAPHY

IMAGES

This section presents the general processing pipeline and

main methods for computerized analysis of mammography

images. As illustrated in Fig. 1, the four main steps for

mammographic image analysis are breast segmentation, region

of interest (ROI) detection, feature extraction and risk scoring.

This section briefly the main steps of the pipeline. Implemen-

tation details can be found in the supplemental material1.

A. Breast segmentation

Breast segmentation is aimed at the detection of the breast

region. Depending on the view and type of mammography

image, there are several tasks associated to breast detection:

background detection, chest wall detection and nipple detec-

tion.

The aim of the first task, background detection, is separating

the air region of the mammogram from the rest of the

image. In this work, we implemented two different methods

for two types of mammography images. For full-field digital

mammography (FFDM) images, we implemented the method

proposed in [5]. In that work, background is detected by sim-

ply thresholding the input image based on the highest mode of

the intensity histogram. Due to image noise and image artifacts

that arise during the scanning process, thresholding methods

do not perform well with digitized screen-film mammography

(SFM) images. Therefore, for SFM images we implemented

the statistical method proposed by Liu et al. [6]. Briefly, pixel

intensities in the image are treated as a random variable and

the Anderson-Darling test is utilized to identify pixels in the

foreground and background regions.

For the detection of the chest wall (both in FFDM and SFM

images) as well as for detecting scanning artifacts in SFM

images, we have utilized a Hough-based line detector [7]. The

line detector works by first applying an edge detector to the

input image. Subsequently, each edge pixel is represented into

a parametric Hough accumulator space. Lines are detected as

local maxima of the space histogram. Finally, the nipple is

detected as the furthers contour point from the chest wall [8].

B. ROI-detection

After successful detection of the main anatomical land-

marks of the breast (breast contour, chest wall and nipple)

in Section II-A, the aim of ROI-detection is to detect specific

regions inside the breast for subsequent feature extraction. The

most straightforward approach is to utilize the whole breast

region [9]. In this case, the output of the breast segmentation is

directly utilized without further post-processing. Alternatively,

feature extraction can be performed within specific regions

inside the breast. For instance, several researchers have uti-

lized manually-selected ROIs in the region behind the nipple,

namely the retroareolar (RA) region [10]. However, the need

for manual annotations or user interaction poses important

limitations in terms of reproducibility and scalability of image

1https://sites.google.com/view/cvia/openbreast

analysis methods. In order to avoid the need for manual

interaction, four fully-automated ROI-detection methods were

implemented for this work (see Fig. 2): full-breast [9] (Full),

largest square within the breast [11] (SQ), RA region [8] (RA),

and multiple ROI’s following a lattice-based sampling [12]

(Multi).

C. Feature extraction

The aim of feature extraction is to describe the visual

texture patterns in the ROI in terms of quantitative, repro-

ducible measurements. In the case of mammography breast

images the most popular types of features are typically those

used in texture analysis in computer vision. According to

their working principles, the feature extraction methods for

mammography images can be classified into five main groups:

statistical features (STA), gray-level co-occurrence features

(GLC), gray-level run-length features (GLR), gradient-based

features (GRA) and spatial-frequency analysis (SFA).

Statistical features aim to describe the properties of the

histogram of gray-level pixel intensities. The motivation be-

hind these methods is that, since pixel intensities in the

mammogram are related to the radio-density of the breast

tissue, statistical properties of the intensity histogram may

be associated with cancer risk. In the literature of breast

cancer risk assessment statistical features have been widely

utilized mainly due to their simplicity, fast computation and

good performance. Gray-level co-occurrence features aim to

describe the statistical distribution of co-occurring image in-

tensities at given pixel distances and orientations [8], [11],

[12]. These features are usually computed from the gray-level

co-occurrence matrix, as proposed by [14]. Gray-level run-

length features aim to describe the length and distribution

of consecutive gray-level values in the image (run-lengths).

Gradient-based features estimate the change of pixel intensities

in the horizontal and vertical directions of the image. This

is often measured by the computation of low-order statistical

moments on the magnitude of the image gradient [8]. Fi-

nally, Spatial-frequency analysis aims at the computation of

descriptors based on texture properties in the spatial domain,

frequency domain or both. In the first case, spatial-domain

features can be computed from linear filters. In the second

case, frequency-domain features are used to describe the

frequency content of the input image and are often computed

directly from the Fourier spectrum [10], [12]. In the third case,

image analysis in both the spatial and frequency domain is

either performed implicitly by applying feature extraction at

multiple scales, or explicitly by means of filter banks, e.g.

Gabor filters or Wavelet transform [8], [10].

Since feature extraction is the most essential stage in

our pipeline, we implemented 32 different feature extraction

methods including all of the aforementioned categories. A

detailed description of each method, as well as their utilization

in previous works related to mammography image analysis can

be found in the supplemental material.
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Fig. 1: Computerized risk assessment. In the first step, breast segmentation, the breast foreground region is segmented and

pixel intensities are standardized. In the second step, ROI detection, a region of interest within the breast is identified for

subsequent analysis. In the third step, feature extraction algorithms are applied to describe mammographic texture patterns.

In the final step, a risk score r (x-axis) is used to determine the level of risk associated to the input image. The violin plots

shown in red and green correspond to the scores of the high- and low-risk groups, respectively.

Fig. 2: Implemented ROI-detection methods. From left to

right: full breast [9], largest square [11], retro-areolar region

[13], and lattice-based sampling [12]

D. Risk scoring

Given a dataset of training mammography images for which

the risk category is known (i.e., high risk or low risk), the

aim of risk scoring is estimating the level of risk r ∈ [0, 1]
of a test input image, where 0 represents the lowest risk

and 1 is the highest risk. In this work, we use a logistic

regression classifier with stepwise feature selection. Briefly,

stepwise feature selection performs an exhaustive search over

all available features and compares the performance of regres-

sion with and without the feature using t-test [15]. Features

that yield a statistically significant improvement (p < 0.05)

are included in the final model. For ease of interpretation and

reproducibility, OpenBreast includes a visualization toolbox

that shows the risk score of a test image with the probability

density estimate, median and inter-quartile ranges of the scores

of training images (right-hand-side in Fig. 1).

III. PERFORMANCE ANALYSIS

This section presents the results of the performance analysis

using OpenBreast. The main goal is to perform an exten-

sive experimental assessment of the methods implemented

for each stage of the pipeline and analyze their effect on

the overall performance of risk assessment. Our experiments

differ from the previous works on texture-based breast cancer

risk assessment (see [3] for details) in the sense that we

experiment all combinations of the state-of-the-art methods for

each processing stage and are able to find the best combination

as evaluated under the same experimental conditions.

For the experiments, we used a dataset of 305 full-field

digital mammography images from the Breast Cancer Digital

Repository (BCDR [4]) corresponding to 84 patients: 39

cancer cases with clinically-proven malignancies (age 34-78,

median: 60) and 45 healthy controls (age 34-82, median: 61).

Specifically, we utilized sub-sets D01, N01 and N02 which

are the ones that correspond to digital mammograms [4]. The

images comprise both craneo-caudal (CC) and mediolateral

oblique (MLO) views. Further details on the acquisition pro-

tocols and imaging data for this dataset are found in [4].

For the results reported in this work, experiments were

performed following the pipeline shown in Fig. 1: automatic

breast segmentation is followed by ROI detection, feature

extraction and risk scoring, as described in section II. The

whole pipeline with stratified 5-fold cross validation was

repeated independently to evaluate each ROI-detection strategy

with each group of feature extraction algorithms (20 different

combinations). Performance was measured in terms of the area

under the ROC curve (AUC) and differences were assessed

using DeLong’s test. The main results are summarized in Fig.

3. Additional results with the performance of individual fea-

tures and correlation analysis can be found in the supplemental

material.

As shown in Fig. 3a, when all feature extraction methods

are considered, the best results were obtained using a squared

ROI, yielding an AUC of 0.846. However, differences were

only statistically significant when comparing feature extraction

using a squared ROI vs. using multiple ROIs (p = 0.047).

Fig. 3b shows the performance of risk assessment for different

feature extraction strategies. In this case, a squared ROI was

used since this method yielded the best overall performance.

As expected, the best results were obtained when all feature

extraction methods were included. If features from only one

category are considered, then the best performance was ob-
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Fig. 3: Obtained results. (a) AUCs for different ROI-detection methods using all available features. (b) AUC for different

feature extraction methods using squared (SQ) ROI. (c) Performance of risk assessment using clinical data (C), texture analysis

with OpenBreast (T), and texture analysis combined with clinical data (T+C).

tained using statistical features.

The inclusion of clinical data (i.e., patient age and breast

density) yielded an improvement in performance with an

AUC of 0.876 (Fig. 3c). This improvement was statistically

significant compared to risk assessment using clinical data

only (AUC = 0.664, p < 0.001) and texture analysis only

(AUC = 0.846, p = 0.038). This suggests that texture analysis

using OpenBreast has the potential to improve the performance

of risk assessment in clinical practice.

IV. CONCLUSIONS

This paper presented an open computational framework and

protocol for breast cancer risk estimation based on the fully-

automated, computerized analysis of mammography images.

The framework includes four main stages: breast segmentation,

region-of-interest (ROI) detection, feature extraction and risk

scoring. Experiments on a dataset of 84 patients (39 cases

and 45 controls) from the Breast Cancer Digital Repository

confirmed that parenchymal texture analysis can be success-

fully utilized as an imaging biomarker for breast cancer risk

assessment, yielding a maximum AUC of 0.846 when the

analysis is performed in the largest circumscribed square re-

gion withing the breast. Performed experiments also suggested

that parenchymal analysis can be used jointly with clinical

risk factors (breast density and age) yielding a statistically

significant improvement in performance from an AUC = 0.664,

using clinical data only, to an AUC = 0.876 using both clinical

data and computerized texture analysis (p < 0.001).

In order to foster future research and allow for objective

comparison of different approaches in breast cancer risk as-

sessment based on parenchymal analysis, this work will be

released to the public as OpenBreast. Future work will be

aimed at the clinical validation of the OpenBreast toolbox

and its extensions by incorporating novel feature extraction

methods and more data.
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