

Interactive Multi-GPU Light Field Path Tracing Using Multi-Source Spatial Reprojection

Erwan Leria¹, Markku Mäkitalo¹, Pekka Jääskeläinen¹, Mårten Sjöström², Tingting Zhang²

¹Tampere University, Finland

²Mid Sweden University, Sweden

(erwan.leria@tuni.fi)

Introduction

Light field displays

Boomerang video of retinal image at different accommodation depth passing through a numerical **near-eye** light field display

Picture of the San Miguel scene in a **multiscopic** display (Looking Glass 32")

Light fields

Light field 2-plane parameterization L(s, t, u, v)

Light fields

• Collection of multiple views (pinhole cameras)

Light field 2-plane parameterization L(s, t, u, v)

Reducing compational cost

• Spatial reprojection of redundant pixels between views (Adelson, 1993)

Reducing compational cost

- Spatial reprojection of redundant pixels between views (Adelson, 1993)
- **Disocclusions** → Hidden parts of objects (in the source) cannot be reprojected
 - Disocclusion pixels are **discarded** in the target

Tampere University

Discarded pixels

- Depends on:
 - Number of sources

Discarded pixels

- Depends on:
 - Number of sources

		M	liddle D	iscard %	%		
1	3.27	2.68	2.09	1.64	1.87	2.2	- 4
2	2.64	2.02	1.41	0.93	1.19	1.56	- 3.5 - 3
3	2.27	1.6	0.95		0.65	1.04	- 2.5
4	2.83	2.2	1.55	1.01	1.29	1.65	- 2
5	3.62	2.99	2.37	1.87	2.11	2.45	- 1
6	4.3	3.7	3.1	2.63	2.84	3.16	- 0.5
	1	2	3	4	5	6	0

Heatmap the ratio of discarded pixels in a 6x6 light fields at some position in the Sponza scene (Mäkitalo 2023)

Discarded pixels

• Depends on:

Location of the sources

	Middle Discard %									
1	3.27	2.68	2.09	1.64	1.87	2.2		4		
2	2.64	2.02	1.41	0.93	1.19	1.56		3.5		
3	2.27	1.6	0.95		0.65	1.04		2.5		
4	2.83	2.2	1.55	1.01	1.29	1.65		2		
5	3.62	2.99	2.37	1.87	2.11	2.45		-1		
6	4.3	3.7	3.1	2.63	2.84	3.16		0.5		
	1	2	3	4	5	6		0		

Heatmap the ratio of discarded pixels in a 6x6 light fields in the Sponza scene (Mäkitalo 2023)

Problem

- Photorealistic light field rendering:
 - Large number of pixels to process

- Light field displays:
 - 50—90 Hz refresh rate = Number of light fields needed per second
- Discarded pixels must be rendered
- Need for high computing power: Multiple GPUs

Multi-source spatial reprojection pipeline

1. Form sets of views from a light field

- 1. Form sets of views from a light field (1 set per GPU)
- 2. Find the central view in each set

- 1. Form sets of views from a light field
- 2. Find a medoid (central view) in each set
- 3. Send dependencies to the pipeline

- 1. Form sets of views from a light field
- 2. Find a medoid (central view) in each set
- 3. Send dependencies to the pipeline
- 4. Create and schedule work to GPUs

- 1. Form sets of views from a light field
- 2. Find a medoid (central view) in each set
- 3. Send dependencies to the pipeline
- 4. Create and schedule work to GPUs
- 5. Render

Less dependencies, more efficiency

- Workload distribution in prior works
- •Example: a 3x3 light field and 3 GPUS (A, B and C)

A,B,C	A,B,C	A,B,C
A,B,C	A,B,C	A,B,C
A,B,C	A,B,C	A,B,C

Less dependencies, more efficiency

- Workload distribution in our approach
- •Example: a 3x3 light field and 3 GPUS (A, B and C)

A,B,C	A,B,C	A,B,C
A,B,C	A,B,C	A,B,C
A,B,C	A,B,C	A,B,C

Less dependencies, more efficiency

- The central view in each set is selected as the source
- •1 source per set

A,B,C	A,B,C	A,B,C
A,B,C	A,B,C	A,B,C
A,B,C	A,B,C	A,B,C

Single socket multi-GPU node

 4 RTX A6000 GPUs

(Topological map of the node)

Machine (504GE	l total)																		
Package L#0																			
NUMANode L	#0 P#0 (252GE	3)																	
L3 (32MB) L3 (32MB)										Cal L3 (32MB) 32 32 PCI 01:00.0 3.9							3,9	PCI 18:00.0]
L2 (512KB)	L2 (512KB)		L2 (512KB)	L2 (512KB)	L2 (512KB)		L2 (512KB)		L2 (512KB)	L2 (512KB)	6x total	L2 (512KB)			Net enp1s0f0np0			Block nvme0n1 7452 GB	
L1d (32KB)	L1d (32KB)]	L1d (32KB)	L1d (32KB)	L1d (32KB)]	L1d (32KB)		L1d (32KB)	L1d (32KB)		L1d (32KB)		[OpenFabrics mlx5_0	Ļ	ا س		40 0000
L1i (32KB)	L1i (32KB)]	L1i (32KB)	L1i (32KB)	L1i (32KB)]	L1i (32KB)		L1i (32KB)	L1i (32KB)		L1i (32KB)		32	PCI 01:00.1				CoProc openci0d0
Core L#0	Core L#1]	Core L#S	Core L#6	Core L#7		Core L#11		Core L#42	Core L#43		Core L#47			Net enpls0flnp1				84 compute units 47 GB
PU L#0 P#0	PUL#1 P#1		PU L#S P#5	PU L#6 P#6	PU L#7 P#7		PU L#11 P#11		PU L#42 P#42	PU L#43 P#43		PU L#47 P#47		l	OpenFabrics mlx5_1			32 32 4	.0 4.0 PCI 33:00.0
		1				J		1											CoProc openci0d1
																			47 GB
																		32 32 4	.0 4.0 PCI 36:00.0
																			CoProc openci0d2
																			47 GB
																		4	4.0 PCI 37:00.0
																			CoProc openci0d3 84 compute units
																			47 GB
																		32 32 PC	3c:00.0
													32	32	PCI 55:00.0 3.9 3	1,9 PCI	6b:00.0		
																Ne	et enp10	7s0f0	
															1	8,9 PCI	6b:00.1		
																Ne	et enp10	7s0f1	
															0.2	0.2	PCI	6d.00.0	

 Tauray: open-source multi-GPU stereo and light field path tracer
 C++ / Vulkan
 https://github.com/vgagroup/tauray

4 scenes:

- 1) Bistro Exterior (reference image)
- 2) Sponza (reference image)
- 3) San Miguel (Left: Numerical near-eye light field display model, Right: Looking Glass display 32")
- 4) Eternal Valley FPS (Left: Missing pixels -pink- in our pipeline, Right: in prior work –green, red, blue and pink)

- Two light fields configuration
 - 1. Multiscopic 100x1 (1 dimension horizontal): 100 views
 - 2. NELF 12x6 (2 dimensions): 72 views (36 views per eye)

Results

Execution time performance per scene

- Speedup factor:
 - x1.51 up to x4.63
- Outperforms prior pipelines
- Light field rendering frequency: **3 up to 19Hz**

GPU utilization

• Proposed pipeline: High GPU utilization (99-100%)

Scaling

- Proposed pipeline: 1 source view per GPU
 - Near perfect linear scaling when increasing the number of GPUs

Scalability Performance per Source Views (Multiscopic)

Eternal Valley FPS - 360 frames

Conclusions

- Importance of dependency to scalability tradeoff
- Automatic selection of source views for multi-GPU platforms
- Interactive framerates (less than 30Hz) but not real-time (50 90 Hz)

Interactive Multi-GPU Light Field Path **Tracing Using Multi-Source Spatial** Reprojection

Thanks for listening!

Acknowledgements

- U. Gudelek, K. Akbar, J. Käpylä, J. Solanti, U. Akpinar
- Centre for Immersive Visual Technologies (Tampere University)
- Anonymous reviewers

Virtual reality and Graphics Architectures (tuni.fi/vga/), **Tampere University (Finland)** Email: first.last@tuni.fi

Erwan Leria (Presenter)

Markku Mäkitalo

Pekka Jääskeläinen

Realistic 3D. Mid Sweden University (Sweden) Email: first.last@miun.se

Mårten Sjöström

Tingting Zhang

Mittuniversitetet MID SWEDEN UNIVERSITY

This work was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 956770 (Plenoptima)