
Tauray: A Scalable Real-Time Open-Source Path Tracer for Stereo
and Light Field Displays

Julius Ikkala

julius.ikkala@tuni.fi

Tampere University

Tampere, Finland

Markku Mäkitalo

markku.makitalo@tuni.fi

Tampere University

Tampere, Finland

Tuomas Lauttia

tuomas.lauttia@tuni.fi

Tampere University

Tampere, Finland

Erwan Leria

erwan.leria@tuni.fi

Tampere University

Tampere, Finland

Pekka Jääskeläinen

pekka.jaaskelainen@tuni.fi

Tampere University

Tampere, Finland

Figure 1: A simple scene including the “Stanford Bunny”, rendered with Tauray in real-time on an RTX 3090, shown from two
different angles on the Looking Glass Portrait light field display. Left pair: denoised path tracing at ~50 ms per frame. Right
pair: DDISH-GI [Ikkala et al. 2021] at ~15 ms per frame.

ABSTRACT
Light field displays represent yet another step in continually in-

creasing pixel counts. Rendering realistic real-time 3D content for

them with ray tracing-based methods is a major challenge even

accounting for recent hardware acceleration features, as renderers

have to scale to tens to hundreds of distinct viewpoints.

To this end, we contribute an open-source, cross-platform real-

time 3D renderer called Tauray. The primary focus of Tauray is in

using photorealistic path tracing techniques to generate real-time

content for multi-view displays, such as VR headsets and light field

displays; this aspect is generally overlooked in existing renderers.

Ray tracing hardware acceleration aswell asmulti-GPU rendering is

supported. We compare Tauray to other open source real-time path

tracers, like Lighthouse 2, and show that it can meet or significantly

exceed their performance.

CCS CONCEPTS
• Computing methodologies → Real-time simulation; Ray
tracing; Image-based rendering;Mixed / augmented reality;
Virtual reality.

KEYWORDS
Computer graphics, Real-time, Path tracing, Multi-view, Light field

1 INTRODUCTION
We introduce an open-source, cross-platform real-time 3D render-

ing tool called Tauray. Tauray focuses on using ray tracing tech-

niques for generating real-time content for multi-view displays,

such as VR headsets and light field displays. It includes multiple

different renderingmodes, such as forward path tracing and DDISH-

GI [Ikkala et al. 2021], and supports using multiple GPUs.

Even though some existing renderers do support rendering on

multiple GPUs, their focus tends to be on increasing the total

throughput, leveraging alternate frame rendering or focusing on

high-spp dynamically scheduled tiled rendering. Tauray’s multi-

GPU support instead aims to minimize latency and only splits the

workload in ways that also benefit low-spp rendering and do not

introduce additional latency beyond necessary memory transfers.

Figure 1 shows Tauray rendering a scene in real-time on a light

field display (Looking Glass portrait). The left photograph pair

shows 1 spp path tracing with 5 light bounces denoised with SVGF,

running at around ~50 ms per frame. The right-side pair shows

DDISH-GI with an 8 × 8 × 8 probe volume, with 256 8-bounce rays

per probe, running at ~15 ms per frame. Both sides are rendering

64 different views at 512 × 683.

This work was supported by European Union’s Horizon 2020 research and innovation

programme under Grant Agreement No 871738 (CPSoSaware) and in part by the

Academy of Finland under Grant 325530.

https://doi.org/10.1145/3550340.3564225

https://orcid.org/0000-0002-5373-3190
https://orcid.org/0000-0001-8164-0031
https://orcid.org/0000-0001-5707-8544
https://doi.org/10.1145/3550340.3564225


Ikkala et al.

While there are already several open-source rendering tools

available (a comparison table is included in supplementary ma-

terial), the novelty of Tauray is in its unique combination of the

following features:

• Open-source code. (https://github.com/vga-group/tauray)

• Hardware-accelerated path tracing.

• Multi-GPU support for real-time rendering.

• Real-time light field & virtual reality (VR) display output.

2 IMPLEMENTATION
Tauray uses the Vulkan API for rendering. Many Vulkan extensions

are used in Tauray, but none of them are vendor-specific. These

choices keep Tauray from being locked to just one GPU vendor

or operating system. Tauray runs on both Linux and Windows

operating systems, though multi-GPU support is limited to Linux.

Tauray records command buffers and assigns descriptor sets

only at the start of the program or when models are dynamically

added to or removed from the scene; this reduces CPU overhead and

provides the GPU drivers more opportunity for optimization. This

approach is not optimal for rasterization-based rendering, because

it prevents per-frame culling of drawcalls. Since ray tracing-based

methods do not issue draw calls for individual scene objects but

rather one command to start tracing rays, there is no need to modify

the contents of command buffers for each frame.

Scenes are specified using Khronos’ glTF 2.0 format. Keeping

shading complexity low is crucial for ray tracing performance [Dunn

2019], so we keep our material model simple by limiting it to the

core metallic-roughness workflow in glTF, plus transmission for

transparent objects. Specifically, Tauray currently uses the isotropic

GGX/Trowbridge-Reitz [Trowbridge and Reitz 1975; Walter et al.

2007] BSDF and Lambertian diffuse BRDF. Additionally, spherical

lights with a radius and directional lights with non-zero angu-

lar diameter are supported through a custom plugin that extends

Blender’s glTF exporter.

2.1 Rendering modes
While Tauray supports many rendering modes for debugging, data-

set generation and comparison purposes, its primary focus is on

methods aiming for photorealism: a forward path tracer and DDISH-

GI [Ikkala et al. 2021] are available. Both methods use the cross-

vendor Vulkan extensions VK_KHR_ray_tracing_pipeline and

VK_KHR_acceleration_structure for ray tracing.

The forward path tracer supports Next Event Estimation, Hash-

based Owen scrambling [Burley 2020] and Russian Roulette sam-

pling [Arvo and Kirk 1990; Kahn 1955]. SVGF [Schied et al. 2017]

and BMFR [Koskela et al. 2019] are available for real-time denois-

ing. Box and Blackman–Harris filters are available for primary ray

sampling, in order to achieve anti-aliasing. Temporal Anti-Aliasing

[Karis 2014] is also supported.

The DDISH-GI renderer supports locally rendered or streamed

spherical harmonics probes. Both the client-side renderer and the

probe server are available in Tauray. The streaming mode uses

ZeroMQ [Hintjens 2013] and is resilient to poor bandwidth, high

network latency and unstable connections. This method is well

suited for light field rendering, because the probes can be reused

for all views. The ray tracingworkload is independent of the number

VkDevice
GPU 1

VkDevice
GPU 0

VkBuffer VkBufferHost-allocated
shared buffer

VkSemaphore VkSemaphore

POSIX FD or
Win32 handle

Write

Signal after write
is completed

Exported to Imported from

Wait until write
completed

Read

Figure 2: Diagram of the cross-GPU memory transfer as
implemented in Tauray. Resources tied to the secondary GPU
are marked with the green color, while the resources of the
primary GPU are in purple. Host process resources are in red.
When more than two GPUs are used, all non-primary GPUs
form a similar pair with the primary GPU.

of views and pixels, and multi-view rendering scales practically as

well as plain rasterization does.

2.2 Multi-GPU rendering
Multi-GPU rendering is implemented so that devices from different

Vulkan device groups can co-operate. Since there is currently no

DMA extension that enjoys cross-vendor support, we pass the GPU-

to-GPU memory transfers through host memory. This memory

transfer is done in a way that avoids synchronizing the host pro-

cess with the GPUs, as shown in Figure 2. We exploit two Vulkan

extensions that are typically used for cross-API interoperation:

VK_KHR_external_memory_host and VK_KHR_external_semaphore.
We use the external memory extension to create buffers with the

same host-providedmemory access for both GPUs taking part in the

memory transfer. Then, we issue commands to write the transferred

data from the sender GPU to this host buffer. Once that transfer is

finished, we can issue a read command on the corresponding buffer

on the other GPU. Because regular Vulkan semaphores do not work

across devices, external semaphores are used to synchronize the

read after writing on another GPU. During this process, while the

OS and GPU driver on the host CPU most likely are involved, the

host process (Tauray) itself does not need to synchronize with the

GPUs for this memory transfer.

The ray tracing workload of each view is split between every

GPU taking part in rendering. Tauray provides a way to fairly

easily program new workload splitting methods; a scanline-based

approach is included as an example, which is adequate for when

the GPUs have matching performance. Due to our low-latency real-

time aim, splitting the workload by alternate frame rendering (AFR)

is not considered, as it does not reduce latency beyond a single

GPU [Monfort and Grossman 2009]. Certain short tasks, such as

scene data refreshes (typically in the order of 0.1 ms in total) and

acceleration structure updates are duplicated on each GPU. This is

done when transferring their results would incur greater latency

or there is no guarantee of data compatibility between the GPUs.

2.3 Stereo & light field rendering
Both stereo and light field rendering use the same rendering ar-

chitecture for multi-view rendering. Views are stored in an image

array instead of separate images. This lets all viewport-related

https://github.com/vga-group/tauray


Tauray

GPU 1

Skinning +
animation update

Path trace pixels
assigned to this GPU

Transfer rendered
pixels to GPU 0

Scene data update

GPU 0

Skinning +
animation update

Receive pixels
from GPU 1

Stitch pixels from all
GPUs into full image

Denoising

Tonemap

Rasterize G-Buffer
(one pass per maximum

number of views
hardware can rasterize

simultaneously)

Scene data update

Meshes &
other scene

data

Image array of
locally rendered
pixels per view

Path trace pixels
assigned to this GPU

Meshes &
other scene

data

Image array of
locally rendered
pixels per view

Image array of
pixels from

GPU 1

Full image array

Display

Normal, depth,
albedo, etc.
framebuffers

Idle
(size not proportional

to actual time)

Figure 3: Typical multi-view, multi-GPU rendering pipeline
diagram of Tauray; the details can change depending on pa-
rameters. The “G-Buffer” needed by many post-processing
steps (like denoising) is rasterized on the primary output
GPU in Tauray whenever possible. In our case, rendering
the G-Buffer separately on the primary GPU is generally
marginally faster than distributing it to multiple GPUs.

rendering stages of Tauray operate on multiple views in a single

pass, which minimizes the overhead involved with launching and

synchronizing shaders. Rasterization-based render passes are ac-

celerated for multi-view rendering using the VK_KHR_multiview
extension. Compute and ray tracing render passes operate on all

views in one pass. In an example 128-view case, doing this allows

the path tracing renderer to roughly halve the total frametime and

go from about 90% GPU utilization to 99–100% utilization. Figure 3

shows an overview of the multi-view rendering pipeline in Tauray.

As an alternative for brute-force rendering of all viewports, Tau-

ray also has a simple, real-time capable spatial reprojection im-

plementation for quickly generating more viewports from only a

few rendered viewports, though it does not fill in the disocclusions

intelligently yet.

VR is supported with the OpenXR API. As an example platform

for real-time light field rendering, Tauray also supports rendering

to the Looking Glass light field displays [Looking Glass Factory, Inc.

2022]. Content for arbitrary multi-view displays can be generated

with offline rendering by setting up a grid of cameras. Spatial and

temporal reprojection modes are also available, enabling the reuse

of samples across different views and frames.

3 COMPARISON TO RELATEDWORK
We compare Tauray to three other renderers: Falcor, Lighthouse 2,

and Blender (Cycles). The first two renderers were chosen, because

they are also open-source renderers with similar real-time path

tracing capabilities. Blender is used for offline rendering comparison

due to its availability and high-quality Cycles renderer.

Performance is measured in three scenes: Sponza [The Khronos

Group 2018] (~260k triangles), Emerald Square [Hull et al. 2017]

(~2.7 million triangles) and Breakfast room [McGuire 2017] (~270k

Table 1: Online (real-time) rendering performance of the
renderers.

Sponza 1 spp 4 spp 8 spp

Tauray 8.66 ms 31.8 ms 62.9 ms

Tauray (dual-GPU) 7.58 ms 19.1 ms 35.3 ms
Falcor 12.9 ms 67.8 ms 131 ms

Lighthouse 2 11.5 ms 38.7 ms 73.7 ms

Lighthouse 2 (dual-GPU) 23.7 ms 61.3 ms 106 ms

Emerald Square 1 spp 4 spp 8 spp

Tauray 37.0 ms 145 ms 292 ms

Tauray (dual-GPU) 21.9 ms 77.6 ms 153 ms
Falcor 72.1 ms 357 ms 718 ms

Lighthouse 2 DNF DNF DNF

Lighthouse 2 (dual-GPU) DNF DNF DNF

Breakfast room 1 spp 4 spp 8 spp

Tauray 4.86 ms 15.6 ms 30.3 ms

Tauray (dual-GPU) 5.33 ms 10.6 ms 17.7 ms
Falcor 8.05 ms 47.7 ms 95.4 ms

Lighthouse 2 5.29 ms 16.9 ms 32.0 ms

Lighthouse 2 (dual-GPU) 16.2 ms 32.9 ms 52.2 ms

triangles). All scenes are lit by one punctual directional light. This

choice was limited by each renderer having somewhat different

feature sets, and this was the lowest common denominator for an

identical lighting setup.

All benchmarks in Tables 1 and 2 aremeasuredwhen path tracing

at 1920 × 1080 with 2 ray bounces (effectively 3, as all compared

renderers implement next event estimation). Because the renderers

do not provide identical denoising schemes, denoising is disabled.

RTX 2080 Ti GPUs are used for the measurements. For all renderers,

the timing measurements were full frame times as measured on the

CPU. For Table 1, performance is averaged over 5 separate runs of

50 frames each. For Table 2, performance is averaged over 10 runs.

Lighthouse 2 was modified to do two light bounces instead of

just one. Furthermore, the offline rendering benchmarks are done

by using accumulation of 8 spp frames due to higher per-frame spp

counts causing Lighthouse 2 to run out of memory on our setup.

In both online and offline cases, Tauray is consistently as fast or

faster than the compared renderers. The dual-GPU setup in Light-

house 2 seemed to be poorly supported: GPU utilization was low,

30–40% on both GPUs and its self-reported “frametime overhead”

is in the order of ten milliseconds. Unfortunately, CUDA runs out

of memory with Lighthouse 2 while loading the Emerald Square

scene.

Figure 4 shows howTauray scales lineary to path tracingmultiple

views simultaneously for real-time light field rendering. These

measurements are done on a single RTX 2080 Ti. The Looking

Glass Portrait is used as the output light field display, so timings

include compositing the views into the format the display expects.

Other than resolution and view count, settings are the same as

earlier.

Themulti-view rendering overhead depends greatly on the scene:

at 128 views, Emerald Square and Sponza were about 26–29% slower



Ikkala et al.

Table 2: Offline rendering performance of the renderers.

Sponza 32 spp 256 spp 1024 spp 4096 spp

Tauray 0.239 s 1.94 s 7.95 s 32.5 s

Tauray (dual-GPU) 0.140 s 1.06 s 4.36 s 17.7 s
Falcor 0.514 s 4.28 s 17.8 s 69.7 s

Lighthouse 2 0.331 s 2.44 s 9.61 s 38.9 s

Lighthouse 2 (dual-GPU) 0.413 s 3.32 s 13.4 s 53.5 s

Blender 3.2.2 3.42 s 15.2 s 55.6 s 217s

Blender 3.2.2 (dual-GPU) 2.87 s 8.67 s 29.0 s 111 s

Emerald Square 32 spp 256 spp 1024 spp 4096 spp

Tauray 1.13 s 9.19 s 37.5 s 152 s

Tauray (dual-GPU) 0.607s 4.91 s 20.2 s 83.5 s
Falcor 3.10 s 22.7 s 90.3 s 347 s

Lighthouse 2 DNF DNF DNF DNF

Lighthouse 2 (dual-GPU) DNF DNF DNF DNF

Blender 3.2.2 10.5 s 43.2 s 155 s 601 s

Blender 3.2.2 (dual-GPU) 9.34 s 26.2 s 84.6 s 319 s

Breakfast room 32 spp 256 spp 1024 spp 4096 spp

Tauray 0.126 s 0.923 s 3.78 s 15.6 s

Tauray (dual-GPU) 0.077 s 0.498 s 2.05 s 8.64 s
Falcor 0.368 s 2.94 s 11.9 s 47.7 s

Lighthouse 2 0.125 s 0.961 s 3.92 s 15.6 s

Lighthouse 2 (dual-GPU) 0.192 s 1.53 s 6.36 s 30.2 s

Blender 3.2.2 2.76 s 14.9 s 56.6 s 223 s

Blender 3.2.2 (dual-GPU) 2.14 s 8.84 s 31.8 s 123 s

124681216 24 32 48 64 96 128

0

40

80

120

160

200

Sponza

124681216 24 32 48 64 96 128

0

200

400

600

800

Emerald Square

124681216 24 32 48 64 96 128

0

20

40

60

80

Breakfast Room

Figure 4: Path tracing performance (vertical axis, in ms) as a
function of viewport count (horizontal axis) in each scene.
The blue line represents performance with multiple views
(512 × 512 each), while the red line represents single-view
performance with an equivalent total number of pixels.

to render than the single-view equivalent with the same total num-

ber of pixels, while this same metric for the Breakfast room scene

is only around 4%.

4 CONCLUSIONS
We introduced a scalable cross-platform real-time 3D rendering

tool called Tauray. To our knowledge, it is the first open-source

hardware-accelerated path tracer optimized for real-time rendering

on light field and stereo displays. We demonstrated the optimized

and scalable performance of Tauray: In both online and offline

cases, Tauray’s speed consistently matches or exceeds all compared

renderers (Blender, Lighthouse 2, Falcor) and GPU setups. Tauray

also scales efficiently for rendering multi-view content for VR and

light field displays, roughly linearly with the number of views.

REFERENCES
James Arvo and David Kirk. 1990. Particle transport and image synthesis. In Proc. 17th

Annual Conference on Computer Graphics and Interactive Techniques.
Brent Burley. 2020. Practical hash-based Owen scrambling. Journal of Computer

Graphics Techniques (JCGT) 10, 4 (2020).
Alex Dunn. 2019. Tips and Tricks: Ray Tracing Best Practices. https://developer.nvidia.

com/blog/rtx-best-practices/. Accessed: 2022-03-29.

Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. O’Reilly Media, Inc.

Nicholas Hull, Kate Anderson, and Nir Benty. 2017. NVIDIA Emerald Square, Open

Research Content Archive (ORCA). http://developer.nvidia.com/orca/nvidia-

emerald-square

Julius Ikkala, Petrus Kivi, Joel Alanko, Markku Mäkitalo, and Pekka Jääskeläinen.

2021. DDISH-GI: Dynamic Distributed Spherical Harmonics Global Illumination.

In Computer Graphics International Conference. Springer.
Herman Kahn. 1955. Use of different Monte Carlo sampling techniques. Rand Corpora-

tion.

Brian Karis. 2014. High-quality temporal supersampling. Advances in Real-Time
Rendering in Games, SIGGRAPH Courses 1, 10.1145 (2014).

Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo Viitanen,

Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise multi-order

feature regression for real-time path-tracing reconstruction. ACM Trans. Graph. 38,
5 (2019).

Looking Glass Factory, Inc. 2022. Product Overview. https://lookingglassfactory.com/

product/overview. Accessed: 2022-04-04.

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data

Jordi Roca Monfort and Mark Grossman. 2009. Scaling of 3D game engine workloads

on modern multi-GPU systems. Proceedings of the Conference on High Performance
Graphics 2009 (2009).

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R Alla

Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and

Marco Salvi. 2017. Spatiotemporal variance-guided filtering: real-time reconstruc-

tion for path-traced global illumination. In Proceedings of High Performance Graph-
ics.

The Khronos Group. 2018. glTF Sample Models. https://github.com/KhronosGroup/

glTF-Sample-Models/tree/master/2.0/Sponza Accessed: 2022-06-07.

TS Trowbridge and Karl P Reitz. 1975. Average irregularity representation of a rough

surface for ray reflection. JOSA 65, 5 (1975).

Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007.

Microfacet Models for Refraction through Rough Surfaces. Rendering techniques
2007 (2007).

https://developer.nvidia.com/blog/rtx-best-practices/
https://developer.nvidia.com/blog/rtx-best-practices/
http://developer.nvidia.com/orca/nvidia-emerald-square
http://developer.nvidia.com/orca/nvidia-emerald-square
https://lookingglassfactory.com/product/overview
https://lookingglassfactory.com/product/overview
https://casual-effects.com/data
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/Sponza
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/Sponza

	Abstract
	1 Introduction
	2 Implementation
	2.1 Rendering modes
	2.2 Multi-GPU rendering
	2.3 Stereo & light field rendering

	3 Comparison to Related Work
	4 Conclusions
	References

