
CGI2015 manuscript No.
(will be inserted by the editor)

Using Half-Precision Floating-Point Numbers for Storing
Bounding Volume Hierarchies

Matias Koskela, Timo Viitanen, Pekka Jääskeläinen, Jarmo Takala &

Ken Cameron

Abstract Bounding volume hierarchies, which are

commonly used to speed up ray tracing, are heavily

accessed during ray traversal. Reducing the memory

footprint for the bounding volume hierarchies leads to a

better cache hit ratio and, therefore, faster ray tracing.

This paper examines an approach of using 16-bit half-

precision floating-point numbers to store bounding vol-

ume hierarchy inner nodes. Compared to prior work on

BVH node compression, which uses integers, floats are

interesting because of their dynamic range. Compared

to single-precision, half-precision inner nodes have half

memory footprint and, therefore, they save an average

of 1.7% total power. This comes with the small conver-

sion cost overhead, average of 2.5% more ray-box inter-

section tests and average of 15% more ray-triangle inter-

section tests. If half floats are used hierarchically, rather

than simply storing world coordinates as halfs, roughly
the same accuracy is achieved as with single-precision.

This eliminates the additional intersection tests, but it

requires additional computations to obtain the world

coordinates during traversal.

Keywords Ray tracing · Half-precision floating-point ·
Bounding volume hierarchy

1 Introduction

Historically, ray tracing has been widely used only for

off-line rendering, but there is now active exploration

M. Koskela, T. Viitanen, P. Jääskeläinen, J. Takala
Department of Pervasive Computing,
Tampere University of Technology, Finland
E-mail: firstname.lastname@tut.fi, timo.2.viitanen@tut.fi

K. Cameron
Rational Circus, Bristol, United Kingdom
E-mail: ken@kencameron.net

Fig. 1 The Buddha’s hand far away from origin of the scene.
Images from left to right: rendered scene, and workloads for
the single-precision BVH, half-precision BVH, and hierarchi-
cal half-precision BVH. This is a difficult case for the world
coordinate half-precision BVH, but the hierarchical version is
indistinguishable from single-precision.

of its real-time application. Modern ray tracing makes

use of acceleration data structures, such as kd-trees and

Bounding Volume Hierarchies (BVH), which reduce the

number of intersection tests required to find the closest

intersecting triangle in a 3D scene.

The BVH usually stores Axis Aligned Bounding

Boxes (AABB) in a tree like structure. Rays traverse

the structure in a recursive manner by testing whether

they intersect a child’s bounding box or not. Many mod-

ern ray tracers have BVHs with a high branching factor

and use SIMD instructions to compute multiple inter-

section tests in parallel; this is called Multi Bounding

Volume Hierarchy (MBVH) [4]. Both BVHs and MB-

VHs can be constructed based on Surface Area Heuris-

tics (SAH) [8]. This means that changes on data types

and the scene might change the tree significantly.

Ray tracing is often a memory bound operation.

BVHs have a large memory footprint. The optimal BVH

node count is around half the number of triangles in the

scene [9]. BVH memory requirement might seem small

compared to the memory requirements of the triangles.

However, BVH memory is the most frequently accessed

area during the traversal. This means that it is more



2 Matias Koskela, Timo Viitanen, Pekka Jääskeläinen, Jarmo Takala & Ken Cameron

Fig. 2 Test scenes and the number of triangles and point lights in them from left to right: shinny Bunny(7K; 1), Sibenik
(75K; 1), Sponza(262K; 2), Teapot inside Sponza(278K; 2), Conference (331K; 1), Dragon (871K; 1), Buddha inside Conference
(1 419K; 1) and Buddha far from camera inside Conference (1 419K; 1).

beneficial for cache hit ratio, if the size of the BVH is

reduced.

In this paper, we examine the trade-offs in half-

precision floating-point format to store BVHs. This de-

creases the amount of bytes required to store each in-

ner node, but more inaccurate AABBs may lead BVH

traversal to examine subtrees unnecessarily, increasing

the number of ray-AABB and ray-triangle tests per-

formed. We also investigate a hierarchical storage for-

mat which eliminates most unnecessary tests, but re-

quires extra computation for decompression. Figure 1

demonstrates these concepts.

2 Related Work

BVH Data can be compressed by inferring half of the

child AABB coordinates from the parent AABB [5].

This format is less applicable to MBVHs since the same

number of parent AABB coordinates is shared between

an increased number of child AABBs.

Several other compression ideas that work with

MBVHs has been proposed. In an extreme solution only

two bits are stored in a BVH node [3]. Compression to 8

or 4 -bit integers has also been proposed [9]. The accu-

racy of the lower levels of the BVH can be increased by

making the system hierarchical. However, this kind of

compression is always a trade-off between compression

ratio, quality of decompressed data and computation

overhead needed for decompression.

In this paper the BVH is compressed to 16-bit

half-precision floating-point numbers with and with-

out the hierarchical format. Compared to integer’s uni-

form interval quantization points, we expect floating-

point numbers’ dynamic range to work better with

the teapot-in-a-stadium problem. In addition, recent

CPUs and GPUs provide hardware-accelerated in-

structions for at least conversions between single and

half-precision float [1,2,7,10]. Despite the available

instruction-set support, to the best of our knowledge,

the use of half-precision has not been systematically

studied yet for storing AABBs in BVHs.

3 Inner nodes as Half-precision Floats

In a typical BVH implementation, every inner node

stores the AABBs’ upper and lower bounds of its ev-

ery child in six single-precision floats. In addition, an

integer pointer to each child node is needed, resulting

in a total memory footprint of 7 × 4 = 28 bytes per

AABB. This may be padded to 32 bytes per child in

order to improve the cache access pattern. If those six

values are stored with half-precision floats; BVH inner

nodes would use 12 bytes for the bounding volume and

4 bytes for the child pointer. This means 16 bytes in

total, which is already cache line friendly without any

padding. For example, in a MBVH4, the size of an inner

node would halve from 128 bytes to 64 bytes

Half floats can be used as plain world coordinates

just like single floats are used. If halfs are too inaccurate

as plain world coordinates they can be used hierarchi-

cally. This can be done by setting half’s minimum value

(-65504) to be equal to the parent AABB’s lower bound

Plower and half’s maximum (65505) value to be equal

to the parent AABB’s upper bound Pupper.

Algorithm 1 Decompression of hierarchical data.

float32 HierToWorldCoord(v, Plower, Pupper)
value← convertTo32Bitfloat(v)−Hmin

Prange ← Pupper − Plower

return Prange × (value÷Hrange) + Plower

Basic idea for decompressing the hierarchical encod-

ing can be seen in Algorithm 1. In the algorithm, input

v is in the compressed data type and all other values

are in single-precision floats. The algorithm first con-

verts value to range from 0.0 to 1.0. This is done with

the minimum Hmin value and the range Hrange of the

data type. The result is then used for deciding a point

from parent’s lower limit to parent’s upper limit.

With both, plain world coordinates and hierarchi-

cal encoding, the quantization to half-precision causes

errors in the bounding volumes, which leads to visible

holes in the model. Holes occur when the size of the



Using Half-Precision Floating-Point Numbers for Storing Bounding Volume Hierarchies 3

Table 1 The number of ray-AABB and ray-triangle tests in a whole frame with BVHs stored in single (F32), half (F16),
hierarchical half (F16 H), 16-bit integer (I16), hierarchical 16-bit integer (I16 H) and hierarchical 8-bit integer (I8 H) precisions.

AABB tests (K) Triangle tests (K)
Model F32 F16 F16 H I16 I16 H I8 H F32 F16 F16 H I16 I16 H I8 H
Bunny 22452 1.2% 0.1% 0.1% 0.0% -4.2% 3668 33% 0.0% 14% 0.0% 2.2%

Sibenik 58352 1.6% 2.0% 2.1% 0.3% -1.1% 8847 12% 2.8% 9.9% 0.5% 5.5%
Sponza 129148 0.9% 0.3% 0.4% 0.0% -0.1% 26841 9.9% 0.6% 7.1% 0.0% 7.3%
Teapot 114071 1.7% 1.7% 3.3% 1.5% 3.4% 21814 5.1% 0.0% 15% 0.0% 2.8%
Confer. 23251 5.9% 3.2% 5.2% 0.7% 5.8% 6130 31% 6.7% 28% 1.0% 20%
Dragon 43012 5.4% -0.1% 0.1% 0.0% 2.1% 9983 16% 0.2% 1.4% 0.2% -1.2%
Buddha 46749 4.1% 2.5% 5.1% 1.6% -1.3% 12192 21% 7.4% 25% 5.4% 11%
FarBud. 30006 6.5% 5.3% 5.9% 1.8% 6.0% 9035 24% 14% 21% 0.5% 21%
average 58380 2.5% 1.5% 2.4% 0.7% 1.2% 12314 15% 3.0% 14% 0.8% 7.6%

bounding volume is shrunk so that it does not actu-

ally cover all of its children’s geometry. The ray tracer

needs to make sure that every upper bound of a bound-

ing volume is rounded towards positive infinity and ev-

ery lower bound is rounded towards negative infinity.

Fortunately, at least some of the instruction sets have

native support for different rounding modes [2,7].

Tree construction must use the same precision as

the resulting BVH, in order to ensure the best SAH re-

sult. In order to construct optimal trees for the scene

without any hierarchy in coordinate compression, we

emphasized half-precision floating-point numbers’ bet-

ter precision close to the origin, by centering the co-

ordinates used in the BVH on the camera. Camera-

centered trees perform well in the teapot-in-a-stadium

problem. Centering may be impractical when a tree is

constructed only once and used to render multiple view-

points, but in animated scenes it is asymptotically in-

expensive compared to reconstruction or refitting that

is done on each frame. We also tested other heuristics

for choosing the origin point, but the camera position

seems to work best in the general case.

4 Evaluation

For evaluation we implemented an OpenCL-based ray

tracer which uses Whitted-style ray tracing [12] with

primary, secondary and shadow rays. Scenes in Fig. 2

were rendered with a resolution of 1024 x 1024. The ray

tracer used MBVH4 for testing all 4 children of a inner

node and up to 4 triangles of a leaf node simultaneously.

Both non-hierarchical and hierarchical half-precision

float formats were tested. The results were compared

to the single-precision and the integer representations

with and without hierarchy as proposed by Mahovsky

et al. [9]. The resulting numbers of required ray-AABB

and ray-triangle intersection tests are in Table 1, where

parallel intersection tests are calculated as one test.

As expected, due to the dynamic range, plain halfs

perform better than plain integers with teapot-in-a-

stadium scenes Teapot and Buddha. However, with

other scenes integers perform better, which leads to

about the same average performance for both of them.

With hierarchical encoding, the 16-bit integer’s per-

formance is the best on average, but half-precision floats

performance is only 1.0% worse. The two are so close to

each other that the order is dependent on the targeted

hardware. For example on Intel’s Haswell CPU architec-

ture, converting a vector of eight halfs to eight singles

(VCVTPH2PS) has a latency of 4 cycles and through-

put of 1 per cycle [6]. In contrast, converting eight 16

or 8-bit integers to 32-bit (VPMOVSX) and convert-

ing the 32-bit integers into floats (VCVTDQ2PS) both

have latencies of 3 cycles and throughputs of 1 per cy-

cle [6]. Since halfs can be converted with one-half the

instructions and one-third less total latency, they are

expected to be somewhat faster.

In addition to test counts, we compared power us-

age, by running the ray tracer on the ARM Mali-T628

GPU on Odroid XU3 board. In order to isolate the

interesting part, we disabled the rendering and most

of the shading. On average the memory used 10% less

power, with half-precision than with single-precision. In

addition, the GPU used 1.4% less power, while the rays

per second count increased 0.8%. This results in 1.7%

less power in total, since total power usage is domi-

nated by the GPU usage. In contrast, 16-bit integers’

improvement on average was not measurable. We be-

lieve this is because Mali-T628 is more optimized to

half floats than 16-bit integers.

In order to evaluate memory savings in a practical

renderer, we also implemented half-precision extension

without hierarchy to Intel’s Embree ray tracing kernel

collection [11]. We used a typical structure of a 4-wide

MBVH with a maximum of 4 triangles per leaf node. We

replaced the original 64-bit addresses with 32-bit offsets

so as to fit each node into exactly 64 bytes, however, this

requires some additional computations. The viewpoints

in Figure 2 were rendered with the Embree example

path tracer at 16 samples per pixel. Tracing was per-



4 Matias Koskela, Timo Viitanen, Pekka Jääskeläinen, Jarmo Takala & Ken Cameron

Table 2 Evaluation results with Intel Embree. Memory read-
ings contain the whole BVH including the leaf triangles.

Mem (MB) Speed (Mrays/s) L1 miss (%)
Model F32 F16 F32 F16 F32 F16
Bunny 5.0 -8.0% 7.91 -8.5% 3.29 -12%

Sibenik 5.5 -5.5% 5.46 -7.9% 7.41 -22%
Sponza 18.6 -6.4% 5.26 -7.2% 6.41 -26%
Teapot 19.7 -6.6% 5.10 -6.2% 4.88 -23%
Confer. 23.9 -6.3% 5.65 -5.4% 6.26 -10%
Dragon 65.6 -7.3% 5.31 -6.6% 5.40 -16%
Buddha 106.8 -7.3% 5.12 -9.4% 6.47 -11%
FarBud. 106.9 -7.4% 5.08 -6.8% 6.46 -10%
average 44.0 -6.8% 5.61 -7.2% 5.82 -16%

formed with 4 threads on an Intel Core i7-4500U CPU.

We measured tracing performance and total memory

consumption including both the BVH tree and the leaf

primitives. Moreover, data cache misses were measured

using the Linux perf utility. The results are shown in

Table 2. Half-precision floats reduce memory footprint

by 7% and cache misses by 16% on average. This shows

that, though the triangles take up more memory than

nodes, the nodes receive much more traffic. However,

due to conversion overheads and the additional node

and primitive tests incurred by the non-hierarchical for-

mat, performance was approximately 7% lower than the

baseline. We also experimented with an 8-wide MBVH

which maps better to Intel’s conversion intrinsics, re-

ducing the conversion overhead. This improves perfor-

mance, but not enough to match the baseline.

5 Conclusions

We have shown that when BVHs are stored in half-
precision floating-point instead of single-precision the

amount of memory bandwidth is halved for a ray trac-

ing traversal step. This is not that obvious because also

the pointer to the next inner node needs to be loaded. In

a practical renderer, halving BVH inner nodes’ storage

area reduces L1 cache misses by 16%. We also measured

average of 1.7% total power saving in ray traversal.

The downside is the need for average of 2.5% more

ray-AABB tests and 15% more ray-triangle tests. If

hierarchical encoding of half-precision floats is used,

the average test counts are almost indistinguishable

from single-precision. However, hierarchical encoding

requires more computation during ray traversal. Due

to the dynamic range, halfs perform better than 16-bit

integers with small triangles close to the origin of the

scene. With hierarchical encoding the two are so close

to each other that superiority is determined by the tar-

geted hardware’s speed of converting the data types to

single-precision floats. At least, some hardware is opti-

mized for floating-point operations rather than integers.

In the future, we are interested in storing triangles

and natively calculating intersections in half precision.

Acknowledgement

The authors would like to thank Martin Newell, Anat

Grynberg, Greg Ward, Frank Meinl, Marko Dabrovic

and Stanford 3D Scanning Repository for the test scene

models. In addition, the authors are thankful to their

funding sources: TUT graduate school, Academy of Fin-

land (funding decision 253087), Finnish Funding Agency

for Technology and Innovation (project ”Parallel Accel-

eration 2”, funding decision 40081/14), and ARTEMIS

JU under grant agreement no 641439 (ALMARVI).

References

1. AMD: 1.5 16-bit floating-point data type, 128-bit
SSE5 instruction set (2007). URL http://amd-
dev.wpengine.netdna-cdn.com/wordpress/media/2012/
10/AMD64 128 Bit SSE5 Instrs.pdf. Referenced:
3/24/2015

2. ARM: VCVT (between half-precision and
single-precision floating-point), realview com-
pilation tools assembler guide (2010). URL
http://infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.dui0204j/CJAIIIFC.html. Referenced:
3/24/2015

3. Bauszat, P., Eisemann, M., Magnor, M.A.: The minimal
bounding volume hierarchy. In: VMV, pp. 227–234 (2010)

4. Ernst, M., Greiner, G.: Multi bounding volume hierar-
chies. In: IEEE Symposium on Interactive Ray Tracing,
2008. RT 2008., pp. 35–40 (2008)

5. Fabianowski, B., Dingliana, J.: Compact BVH storage for
ray tracing and photon mapping. In: Proc. of Eurograph-
ics Ireland Workshop, pp. 1–8 (2009)

6. Fog, A.: 4. instruction tables (2014). URL
http://www.agner.org/optimize/instruction tables.pdf.
Referenced: 3/26/2015

7. Konsor, P.: Performance benefits of half precision
floats (2012). URL https://software.intel.com/en-
us/articles/performance-benefits-of-half-precision-floats.
Referenced: 3/26/2015

8. MacDonald, J.D., Booth, K.S.: Heuristics for ray tracing
using space subdivision. The Visual Computer 6(3), 153–
166 (1990)

9. Mahovsky, J., Wyvill, B.: Memory-conserving bounding
volume hierarchies with coherent raytracing. In: Com-
puter Graphics Forum, vol. 25, pp. 173–182. Wiley On-
line Library (2006)

10. NVidia: 3.2.11.1.3. 16-bit floating-point textures,
CUDA toolkit v6.5 documentation (2015). URL
http://docs.nvidia.com/cuda/cuda-c-programming-
guide/#sixteen-bit-floating-point-textures. Referenced:
3/26/2015

11. Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst,
M.: Embree: A kernel framework for efficient CPU ray
tracing. ACM Trans. Graph. 33(4), 143:1–143:8 (2014).
DOI 10.1145/2601097.2601199

12. Whitted, T.: An improved illumination model for shaded
display. Commun. ACM 23(6), 343–349 (1980)


