
Real-time Stereoscopic Image-parallel Path Tracing
Erwan Leria, Markku Mäkitalo, Pekka Jääskeläinen
Tampere University, Finland
erwan.leria[at]tuni.fi

Abstract
Spatial reprojection can be utilized to lower the computa-

tional complexity of stereoscopic path tracing and reach real-time
requirements. However it adds dependencies in the pipeline. We
perform the handling of data dependencies through a task sched-
uler framework that embeds workload and dependency informa-
tion at each stage of the pipeline. We propose a novel image-
parallel stereoscopic path tracing pipeline, parallelizing the spa-
tial reprojection stage, the hole-filling stage and post-processing
algorithms (denoising, tonemapping) to multiple GPUs. Dis-
tributing the workload of the spatial reprojection stage to each
GPU allows to locally detect the holes in the images, which are
caused by non-reprojected pixels. For the spatial reprojection,
denoising and hole-filling stages, we have respectively a speedup
of ×2.75, ×4.2 and ×2.89 per GPU on animated scenes. Over-
all, our pipeline shows a speedup of ×2.25 compared to the open
source state-of-the-art path tracer Tauray which only parallelizes
path tracing.

Introduction
Stereoscopic rendering is a technique used for providing

depth cues as used for virtual reality (VR) applications. In short,
a 3D scene is rendered from two different viewpoints, one for
each eye, mimicking the natural binocular vision. However, this
increases the rendering workload compared to monoscopic appli-
cations, thus presenting additional challenges for real-time appli-
cations.

The critical flicker frequency (CFF) describes the frequency
at which a flickering light stimulus is perceived as continuous
rather than flickering. For real-time graphics, this is the frequency
at which an image or a set of images should be rendered and dis-
played. In VR applications, below this frequency, a head-mounted
display (HMD) user can be subject to cybersickness symptoms.
In this work, we base the real-time constraint on the generally re-
ported range for the human CFF 50–90 Hz, thus fixing the time
budget to render a stereo frame between 11 and 20 milliseconds.

Path tracing is easily parallelizable and allow to generate
photorealistic synthetic images. It simulates automatically global
illumination effects. On the contrary, for rasterization, complex
illumination effects (i.e, caustics, refraction, self reflection, etc)
are trickier to handle. Moreover in video games, static lighting
is usually baked into textures which restrains using the same tex-
tures for different views. However, the workload of path tracing is
significantly too high for a single GPU in order to remain within
the range of the human CFF or above and sustaining high quality
at native display resolution [11, 5].

For VR, there is a significant overlap in the field of view
of both eyes, so the computational workload can be reduced by
reprojecting redundant computed pixels from one view to an-

other. This is a widely used technique in real-time stereoscopic
and multi-view applications [3]. The major issue is the com-
putational cost to achieve a good trade-off between quality and
performance. Distributing the workload to multiple GPUs can
reduce the rendering time. However, in terms of data locality,
some neighbouring pixels may be stored in different GPUs, com-
plicating post-processing algorithms that require spatial informa-
tion such as spatial reprojection or denoising.

This involves cautious workload management, where the
amount of pixels to be processed by a GPU (either for one or
two views) differs depending on the stage that is executed: fewer
pixels are processed before spatial reprojection.

In this paper, we propose a novel image-parallel stereoscopic
path tracing pipeline, where the spatial reprojection of pixels is
used to efficiently exploit inter-view correlations; the spatial re-
projection stage, the hole-filling stage and post-processing algo-
rithms (denoising, tonemapping) are parallelized across multiple
GPUs within a single node of four GPUs. Pipeline dependencies
are managed through a task scheduling framework in which are
embedded dependencies and workload distribution information.
This pipeline has a data-dependence awareness to schedule the
pipeline stages to minimize data movements. In order to adapt to
dynamic content, we also propose an adaptive control loop which
tunes rendering parameters on-the-fly to adjust the quality with
respect to real-time constraints.

Background
Spatial reprojection takes pixels in a source image and re-

projects them into a target image [1]. Both of these images are
associated with a different viewpoint (i.e., left and right eye for
stereoscopic HMDs). However, in stereoscopic path tracing, due
to occlusions and disparity between the two viewpoints, some el-
ements in the scene are visible for one eye but not for the other.
Moreover, from one view to another, reprojection may not be
possible because of the angle between the views not matching
the reflection angle of some visible surfaces, since the associated
BRDFs in the target view would differ from the BRDFs in the
source view. This results in missing pixels in the target image that
are not visible in the source image (see Fig. 1, first image with
missing pixels). When reprojection is not possible, discarded pix-
els are left without any value, ending up being holes in the image.
These holes simply represent missing information, which must be
reconstructed after the spatial reprojection stage. This reconstruc-
tion stage is termed hole-filling, also known as image in-painting
in the realm of image processing.

Prior works related to spatial reprojection [3, 14, 15, 8] are
focusing on single GPU utilization. In this paper, we consider
multi-GPU rendering and the relative distribution of the workload,
including the real-time constraint as well.

Image-parallel (or sort-first) rendering [7] groups the differ-
ent rendering techniques related to image (or screen) space subdi-
vision. The image is divided into smaller regions, where the size
of a region ranges from a single fine-grained pixel to a coarse tile
[2, 16, 17]. As set out by the sort-first approach, our pipeline con-
siders that the geometry of the scene fits entirely in the memory
of each GPU; this is called scene data replication, as opposed to
scene data distribution of the data-parallel (or sort-last) approach.

Related work
OO-VR [16] considers rasterization-based VR rendering for

multi-GPU systems. Although they decompose the image into
disjoint regions, the constraint of rasterization is that the trian-
gles (primitives of the scene) have to be distributed among the
GPUs in order to balance the workload such that each region only
contains the triangle visible in the view frustum of that region,
which becomes data-parallel rendering. In their work, each GPU
renders the same region of the viewport in the left and right im-
ages. To reduce the computational cost of VR rendering, they
rasterize the texture of triangles visible from the left and the right
eye in one pass, instead of rendering them twice. However, their
rasterization-based work does not consider photorealistic render-
ing, where different types of surfaces can cause view-dependent
effects due to, e.g., reflections.

The work on real-time cluster path tracing proposed by Xie
et al. [17] is the closest work to ours, since they consider at least
path tracing in a single node and over a cluster using an image-
parallel pipeline. However, they do not consider the stereo or
multiview case, thus not addressing the problem of dependencies
with spatial reprojection and parallel denoising.

Path tracing is also used in Tauray, a state-of-the-art open-
source path tracer optimized for stereo and multi-view rendering
proposed by Ikkala et al. [4]. In Tauray, the distribution of path
traced pixels increases the GPU utilization and the balance be-
tween GPUs, but the pipeline stages after path tracing, such as
denoising, are done only on the primary (or master) GPU. Tau-
ray achieves ∼ 1.65 Hz for a single view at 32 spp in a ×2 RTX
2080 Ti GPUs setup for a scene composed of roughly 2.7M trian-
gles.

Stereo image-parallel pipeline

Figure 1: Visual breakdown of the main stages of the pipeline for
the right eye image. Missing pixels from reprojection are encoded
in blue, green, magenta, red, each color corresponding to the GPU
in which they are residing.

In this section we present our proposed approach for stereo-
scopic image-parallel path tracing. We discuss the challenges and

Figure 2: Illustration of the stages of the proposed pipeline in
sequential order of command buffer submission

theoretical limitations.

Pipeline overview
Our image-parallel pipeline is composed of 10 stages as de-

picted in Fig. 2. Basically, one view is path traced (stage: #2), and
then the rendered pixels are reprojected into the second view (#3,
#4). The pixels that could not be reprojected are then filled with
path tracing (#5). After these rendering stages, post-processing
algorithms are applied (#6, #8), and the image regions are sent to
the primary GPU (#9) and pushed to the swapchain (#11).

For the sake of simplicity, in the rest of this paper we con-
sider that spatial reprojection is done from the left-eye view to
the right-eye view. First, our image-parallel renderer requires an
image-space decomposition algorithm. Since eyes are separated
horizontally by a constant distance (interpupillary distance), miss-
ing pixels are more likely to appear along horizontal directions.
The shuffled strips pattern [2], used by default in Tauray lim-
its the overall rendering speed when we consider dependencies
between pixels for algorithms such as spatial reprojection, hole-
filling and denoising. Indeed, using smaller non-contiguous path
traced regions per image and per GPU increases the rate of dis-
carded pixels. In other words, a pixel in the left view cannot reach
its reprojected position in the right view if this position belongs
to another GPU’s memory. In order to cover the largest amount
of future discarded pixels for each GPU, we choose to decompose
the viewport of each view into N rectangular regions, each cover-
ing the entire width of the viewport. They are each assigned to a
GPU, such as done in OO-VR [16], N being the number of GPUs.
Having large pixel regions minimizes the amount of missing pix-
els and favors pixel operations that consider spatial coherence of
pixels. However, this makes the balance of the path tracing work-
load uneven. The complexity of path tracing each pixel varies
depending on the surfaces a ray encounters. In this work we do
not consider load balancing between GPUs, since we want to im-
prove data locality and to have a fixed amount of pixels processed
by each GPU during the pipeline execution.

Task scheduling framework
The role of the task scheduling framework is to help the ren-

derer to take decisions regarding the distribution of the workload
and dependencies. In the same way as in the hierarchical struc-
ture of the distributed framebuffer (DFB) [12], we define a GPU
which is the owner of the left and right views. In the DFB, screen
regions are assigned in a round robin fashion, which we do as well
in our pipeline.

For each GPU, the task scheduler keeps track of the work-
load ratio that the GPU has for each view. The workload ratio is a
value between 0 and 1, which allows to parameterize the amount
of pixels that must be processed by each GPU [6, 2]. For each
stage, we construct a pair pi of workload ratios per GPU i, the
values of the pair correspond to the ratio of left and the right eye.

Once all workload ratios are set, the GPU commands are buffered
at each stage.

A problem is that the two views are already allocated in the
memory of the GPUs, however when the source must be path
traced, the target view must be ignored at this stage. This means
that for a GPU in a node of 4 GPUs, the workload ratio wi, j
per GPU i and per view j during the path tracing stage (#2) is
pi = {0.25,0.0}, where wi,0 = 0.25 is one fourth of the left view
and wi,1 = 0.0 is used to ignore the right view. After spatial re-
projection, only the right view has to be path traced to fill the
holes (#5), with reprojected pixel being discarded in this pass, so
pi = {0.0,0.25}. In the case of denoising and tonemapping (#6
and #8), both left and right image regions must be processed by
their associated GPU, leading to have pi = {0.25,0.25}. This al-
lows to handle the change in the amount of pixels to process from
one view to another and from one stage to another.

Regarding dependencies between GPUs, to define which
GPU has to send its image regions to which GPU, we build a
non-binary tree, where each node of the tree represents a GPU
embedding its workload ratio information. The position of the in-
coming image regions from the child nodes to the image of the
parent (owner) node is retrieved from the assignment order of the
image-space decomposition algorithm, which is a simple round
robin assignment of rectangular regions in our pipeline. All trans-
fers are executed from the deepest layer to the root node. The
dependency tree of our pipeline has only two layers: the owner
(root node) and its child nodes.

Control loop
To force the rendering time to be in the 11−−20 ms range,

we use a control loop. The control loop adjusts the number of
samples per pixel, the number of bounces and the number of iter-
ations for the SVGF denoiser [9]. As soon as the rendering time
gets outside of the interval 11−−20 ms, the control loop will ad-
just the parameters such that the rendering time will be predicted
to be within the interval for a given parameter. As soon as the
predicted rendering time ϒ̂ reaches the interval I, the algorithm
is stopped. We assume the rendering time to evolve linearly in
proportion to the parameters, except for the rendering frequency,
which follows the tendency of an inverse function.

For a parameter p with a value xp, we get the execution time
of all the stages sp that depends on this parameter:

T (∪sp) = ∑T (sp) . (1)

By injecting Eq. 1 into the following equation we predict
how long it takes to execute one unit up of this parameter:

T (up) =
T (∪sp)

xp
, (2)

with T () representing a function returning the execution time
of its input. In practice, T (sp) is directly obtained from the ren-
derer.

We predict the execution time of the pipeline by recalculat-
ing the execution time of the stages influenced by the parameter
p. Note that the predicted time of path tracing parameters de-
pends on the path tracing stage and also the hole-filling stage in

our pipeline, hence the emphasis on the notation ∪sp in that case.
If the rendering time must be adjusted to improve the quality, the
value xp of the parameter p is increased, otherwise it is decreased.
The new parameter x̂p is used to determine if the newly calculated
rendering time ϒ̂ is above or below a fixed bound τ , τ being either
11 ms or 20 ms. Within the interval [11,20], the parameters are
not modified. For each parameter we fix an upper limit lu or a
lower limit ll to restrain the control loop from over-tuning a pa-
rameter that would not increase the quality up to some point; in
practice, we set these limits empirically.

Implementation details
In this section we discuss the implementa-

tion details of our approach. We implemented our
pipeline inside Tauray [4] (from the git commit hash
4cdf4c4765e97a983ca4fe804f9a80ff5df86c76).

The implementation of spatial reprojection is based on ras-
terized G-buffers containing information such as world positions,
material and normals of the visible surfaces. The time to gener-
ate G-buffers increases for large scenes containing a lot of tri-
angles, eventually it becomes a limiting factor in our pipeline
in terms of workload distribution. Since we employ an image-
parallel approach, we replicate the scene into each GPU, which
means each GPU has identical data-space (i.e, scene primitives).
Therefore, the image-space of a GPU cannot force rasterization-
based computation to process triangles only visible in its asso-
ciated region view frustums, because triangles are tied to data-
space which we do not partition according to the image-space.
This leads to an identical G-buffer rasterization time for all the
GPUs. Employing a hybrid approach between sort-first (image-
parallel) and sort-last (data-parallel) for multi-GPU rasterization-
based computation makes sense when rendering itself is based
on rasterization, as done in [16]. However, in our case, since
we use path tracing, mixing our image-parallel pipeline with a
data-parallel approach would completely change the intrinsic de-
sign of our pipeline architecture. This would eventually make G-
buffer rasterization quicker, but it would also involve additional
inter-GPU communications to transition rays between different
data domains [13, 18], which we want to avoid in order to keep a
low latency. In spatial reprojection we discard pixels whose pri-
mary rays hit glossy/specular surfaces. Therefore, we choose to
reproject only diffuse surfaces.

In the baseline, the Tauray path tracer, the stages are exe-
cuted as follows: #0, #1, #2, #9, #10 #3, #4, #5, #6, #7, #8. The
images are put into the swapchain directly during the tonemap-
ping stage, and therefore blitting the images to the swapchain
(#11) is not part of its pipeline. In Tauray, stages from #3 to #8
are only executed on the primary GPU. In contrast, in our pro-
posed pipeline, only stages #10 and #11 could not be parallelized
on multiple GPUs.

For denoising, we use the SVGF algorithm [9] in order to
provide a fair comparison to the Tauray baseline, which already
implements single-GPU denoising with SVGF. However, multi-
GPU denoising requires special consideration due to seam arti-
facts at the GPU region boundaries, hence the optional bilateral
seam filtering in our pipeline.

The image buffers of the swapchain are located on the pri-
mary GPU (#11), which involves a final transfer from the sec-
ondary GPUs, to the primary GPU, which is the main bottleneck.

For transfers between GPUs, we do not use peer-to-peer Di-
rect Memory Access (DMA) nor NVLink technology; this is not
utilized in Tauray either. This is due to Vulkan drivers limitations
on Linux (at least at the time of the experiments). We perform
transfers in the following order: images are first copied from a
GPU to the host, then sent to the primary GPU from the host.
Direct peer-to-peer access would theoretically halve the transfer
timings, bypassing the copy to/from the host. In our pipeline
the tonemap stage #8 is not tied to the Vulkan swapchain, unlike
Tauray. Therefore, to reduce the time of data transfers from sec-
ondary GPUs to the primary GPU, we output the images from the
tonemap stage into a buffer that has an R8G8B8A8 UNORM format.
Image regions are then copied to their right place in the owner’s
image buffer which is also an R8G8B8A8 UNORM buffer.

Experimental setup
In our experiments, we use a server composed of 4× RTX

A6000 GPUs 48 GB GDDR6, PCI-E 4.0 ×16. Our stereo images
have each an HD resolution (1280×720 per eye). The interpupil-
lary distance between the right and left eye is fixed to 62 millime-
ters. Unless specified otherwise, in each of our experiments we
use 1 spp and 6 bounces.

For the purposes of this paper, we also implemented a hole-
filling stage into Tauray, as it did not yet provide such a feature at
the time of this writing.

Multi-GPU performance

Tauray Proposed

Pipeline stages Execution time (ms)
0. Skinning 0.003 0.08

1. Scene update 0.09 0.09
2. Path tracing 3.45 3.07

3. G-buffer rasterization 2.19∗ 2.61
4. Spatial reprojection 0.11∗ 0.04

5. Hole-filling 3.38∗ 1.17
6. Denoising 3.65∗ 0.87

7. Record previous buffer 0.45∗ 0.53
8. Tonemapping 0.07∗ 0.03

9. Transfer to primary GPU (S+R) 1.05+0.60∗ 0.26+0.29∗

10. Stitching image regions 0.07∗ 0.03∗

11. Blit images to the swapchain n/a 0.12∗

GPU utilization (%)
Averaged utilization per GPU 99∗ | 53 94∗ | 97

Table 1: Per-stage timings for the two rendering pipelines aver-
aged over four RTX A6000 GPUs and averaged over 500 stereo-
frames (resolution: 2×1280×720) with San Miguel (no anima-
tion). The asterisk (*) indicates values measured on the primary
GPU. The separator | separates values related to the primary GPU
only and values related to the four GPUs. S stands for Send and R
for Receive.

Scene San Miguel Sponza Bistro Ext.

Pipeline Execution time (s)
Tauray 1.59 1.93 3.26

Proposed 0.87 0.69 1.54

Table 2: Per-scene global rendering makespan over a sequence
of successive stereo-images. San Miguel has 104 frames with
animated camera motion, and both Sponza and Bistro Exterior
have 100 frames with a static camera.

The different execution times in Tab. 1 represent the time

it takes for a GPU (on average) to execute a stage for the San
Miguel scene. The sum of all of the stages is not necessarily the
total rendering time since some stages can overlap, especially data
transfers.

By executing spatial reprojection on multiple GPUs, we see
that stages such as hole-filling and denoising are drastically faster,
respectively by a factor ×2.89 and ×4.2 due to the workload be-
ing parallelized. A limitation of the hole-filling(#5) stage is warp
divergence, which restrains full performance gain when multiple
GPUs are used. Since discarded pixels are not spatially close to
each other in image-space, this results in some threads of the same
warp not being fed with enough work while others are working.
This causes warp divergence to occur, implying incoherent mem-
ory access.

The rendering time of a full stereo image depends on the
last GPU that completes its work. The difference in the rendering
time between the GPUs is not significant; especially we observe in
Tab. 1 that GPU utilization with the proposed pipeline is very high
on average, showing that there is not so much load imbalance. We
also see that the execution time of the primary GPU on average is
the upper limit of the rendering time caused by additional stages
to be computed on that GPU. We monitored the GPU utilization
with nvidia-smi over 500 frames of a static viewer position and
orientation. In Tab. 2 we report the makespan (including host
time) for our three test scenes (shown in Fig. 3) for a given num-
ber of frames. The makespan is the total duration of time it takes
to complete some tasks. With our pipeline, we reach a rendering
frequency of ∼ 120 Hz for animated San Miguel. We define the
rendering frequency as the frequency at which the renderer can
provide simultaneously the left and the right eye images (stereo
image). We observe, respectively for the San Miguel, Sponza and
Bistro Exterior scenes, a speedup of ×1.83, ×2.80 and ×2.11
compared to Tauray, resulting in a ×2.25 speedup factor on aver-
age.

Xie et. al. [17] reported on a 10× Quadro RTX 8000 GPUs
node, for a single view at 30 spp and 10 bounces and a resolution
of 1280×720, for a scene containing 964k triangles, a rendering
frequency of ∼ 3 Hz. With a scene of approximately 1M triangles
(Bistro exterior) and two views, each at 1280×720 resolution, our
pipeline runs at ∼ 1.85 Hz to render two views, leading to roughly
∼ 3.7 Hz to render a single view on our 4 GPUs setup with 30
spp and 10 bounces which shows that our pipeline is competitive
against other image-parallel pipelines [4, 17], especially for stereo
path tracing.

Control loop
The rendering time of our pipeline with the proposed control

loop is shown in Fig. 4. We observe that after the control loop
tunes the number of samples per pixel, the rendering time remains
between 11 ms and 20 ms. It demonstrates the convergence of our
control heuristic within the CFF range. The fluctuating rendering
time, while within the target range, is caused by the animated
camera motion. The average number of samples per pixel during
the execution of our pipeline with the control loop is 3.94 spp and
the makespan is 1.811 seconds, which corresponds to an average
rendering frequency of ∼ 57 Hz. On the other hand, our pipeline
without the control loop and Tauray both render the scene at 1
spp.

(a) (b) (c)

Figure 3: 4096 spp reference images of the test scenes (right eye): (a) San Miguel © Guillermo M. Leal Llaguno, (b) Sponza © Frank
Meinl - Crytek, (c) Bistro Exterior © Amazon Lumberyard.

Figure 4: Overview of the rendering time and spp of stereo images
of our pipeline with our proposed control loop (green) against
the pipeline without the control loop (orange, constant 1 spp) and
against Tauray (purple, constant 1 spp).

Scene San Miguel Sponza Bistro Ext.

PSNR (no filter) 20.30 21.73 20.89
PSNR (bilateral filter) 19.90 21.71 20.46

PSNR (no seam) 20.83 21.97 21.09

CAMBI (no filter) 0.06 0.05 0.09
CAMBI (bilateral filter) 0.06 0.06 0.09

CAMBI (no seam) 0.07 0.06 0.09

Table 3: Quality metrics for different scenes. PSNR is measured
around seam regions (1280× 8 per seam), and CAMBI is mea-
sured for the whole image. San Miguel has dynamic camera
movement, whereas Sponza and Bistro Exterior are static scenes.

Image quality measurements
To compare the quality of our images, we use the PSNR and

Contrast-Aware Multiscale Banding Index (CAMBI) [10] met-
rics. CAMBI is a no-reference objective metric designed to quan-
tify the annoyance of banding artifacts based on subjective assess-
ments, unlike PSNR which is not correlated to subjective scores.
Seam artifacts are due to a difference of contrast between differ-
ent image regions. This is caused by pixels being denoised with a
loss of spatial information, since their upper or lower neighbours
are not residing in the same GPU. Therefore, we use CAMBI
(through the libvmaf tool) to estimate the negative effects of the
seams between different baselines; lower CAMBI scores indicate
that the artifacts are less annoying.

In our work the quality is strongly dictated by the denoiser.
For denoising we use SVGF, with the following parameters σl =
32.0, σz = 128.0, σn = 4.0. In particular, we are interested in
the variation of quality that the denoising may introduce into
our pipeline due to data locality. We use the PSNR to compare
the quality of images containing seam artifacts against two other
baselines: filtered seam artifacts with bilateral filter, and no seam
artifacts (Tauray). The reference images for the PSNR measure-
ments are a 4k spp reference without seam artifacts. Since we are

using 4 GPUs, each rendering a rectangular region in the images,
there are 3 seam artifacts between image regions rendered by dif-
ferent GPUs. These artifacts are denoted as seam 0, seam 1 and
seam 2. Hence, we apply a bilateral filter around the seams, and
evaluate its effect on the perception of these artifacts.

Fig. 5 shows the variation of PSNR around seam artifact re-
gions for the San Miguel animated scene. As expected, the ab-
sence of seam artifacts yields the highest PSNR. On the other
hand, we observe that the use of a bilateral filter does not increase
the PSNR against unfiltered seam artifacts, but rather, the PSNR
values of the unfiltered seam regions seems to slightly dominate
the PSNR values of the bilateral filter. The bilateral filter is ex-
pensive to compute and is therefore applied only around seam
regions. This means that for seam regions with a high contrast
difference and high frequency details, the spatial borders of the
bilateral filter may end up producing seam artifacts on their own
between the filtered and unfiltered regions.

Tab. 3 summarizes the PSNR values around seam regions
and CAMBI values for the entire image for the three test scenes.
The common behaviour of PSNR and CAMBI is that they have
stable values between the evaluated approaches. Even though
Tauray produces images where the seam regions have about 0.2–
0.9 dB higher PSNR values compared to our proposed pipeline,
CAMBI estimates that the subjective visual quality is not signif-
icantly different with the seam artifacts and with the bilateral fil-
ter. This discrepancy suggests that both PSNR and CAMBI may
fail to capture these type of artifacts; a more thorough evaluation
would be required for conclusive results about the seam filtering
approach.

Conclusions
We proposed an image-parallel stereoscopic path tracing

pipeline where spatial reprojection, hole-filling and denoising are
parallelized onto multiple GPUs. In contrast, previous research
works on distributed path tracing that utilize reprojection and de-
noising do not parallelize those stages onto multiple GPUs. We
showed that by parallelizing the workload of spatial reprojection,
the information about the missing pixels can be directly exploited
locally on each GPU, which allows to scale the workload of hole-
filling, denoising and tonemapping to multiple GPUs rather than
having the primary GPU assuming the whole workload while
other GPUs are idle.

Acknowledgment
This work was supported by the European Union’s Hori-

zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 956770, and in part by
the Academy of Finland under Grant 325530 and Grant 351623.

Figure 5: Graph of the PSNR around each seam artifact at each frame.

References
[1] S. J. Adelson and L. F. Hodges. Visible surface ray-tracing of stereo-

scopic images. In Proceedings of the 30th Annual Southeast Re-
gional Conference, ACM-SE 30, New York, NY, USA, 1992. ACM.

[2] D. v. Antwerpen, D. Seibert, and A. Keller. A simple load-balancing
scheme with high scaling efficiency. Ray Tracing Gems, 2019.

[3] L. F. Hodges, S. Adelson, S. J. Adelson, et al. Stereoscopic ray-
tracing. In The Visual Computer. Citeseer, 1993.

[4] J. Ikkala, M. Mäkitalo, T. Lauttia, E. Leria, and P. Jääskeläinen. Tau-
ray: A scalable real-time open-source path tracer for stereo and light
field displays. In SIGGRAPH Asia 2022 Technical Communications,
SA ’22, New York, NY, USA, 2022. ACM.

[5] P. Kelly, Y. O’Donnell, K. Elst, J. Cañada, and E. Hart. Ray Tracing
in Fortnite, pages 791–821. 08 2021.

[6] E. Leria, M. Mäkitalo, J. Ikkala, and P. Jääskeläinen. Dynamic load
balancing for real-time multiview path tracing on multi-GPU archi-
tectures. Virtual Reality & Intelligent Hardware, 09 2022.

[7] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classifi-
cation of parallel rendering. IEEE computer graphics and applica-
tions, 14(4), 1994.

[8] M. J. Mäkitalo, P. E. J. Kivi, and P. O. Jääskeläinen. Systematic eval-
uation of the quality benefits of spatiotemporal sample reprojection
in real-time stereoscopic path tracing. IEEE Access, 8, 2020.

[9] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chai-
tanya, J. Burgess, S. Liu, C. Dachsbacher, A. Lefohn, and M. Salvi.
Spatiotemporal variance-guided filtering: Real-time reconstruction
for path-traced global illumination. In Proceedings of High Perfor-
mance Graphics. 2017.

[10] P. Tandon, M. Afonso, J. Sole, and L. Krasula. CAMBI: Contrast-
aware multiscale banding index. In 2021 Picture Coding Symposium
(PCS). IEEE, 2021.

[11] M. M. Thomas, G. Liktor, C. Peters, S. Kim, K. Vaidyanathan, and
A. G. Forbes. Temporally stable real-time joint neural denoising and
supersampling. Proc. ACM Comput. Graph. Interact. Tech., 5(3), jul
2022.

[12] W. Usher, I. Wald, J. Amstutz, J. Günther, C. Brownlee, and V. Pas-
cucci. Scalable ray tracing using the distributed framebuffer. In
Computer Graphics Forum, volume 38. Wiley Online Library, 2019.

[13] I. Wald, M. Jaroš, and S. Zellmann. Data parallel multi-gpu
path tracing using ray queue cycling. Computer Graphics Forum,
42(8):e14873, 2023.

[14] T. Willberger, C. Musterle, and S. Bergmann. Deferred hybrid path
tracing. Ray Tracing Gems, 2019.

[15] N. Wißmann, M. Mišiak, A. Fuhrmann, and M. E. Latoschik. Accel-
erated stereo rendering with hybrid reprojection-based rasterization
and adaptive ray-tracing. In 2020 IEEE Conference on Virtual Re-
ality and 3D User Interfaces (VR), 2020.

[16] C. Xie, F. Xin, M. Chen, and S. L. Song. OO-VR: NUMA Friendly
Object-Oriented VR Rendering Framework for Future NUMA-
Based Multi-GPU Systems. In Proceedings of the 46th International
Symposium on Computer Architecture, ISCA ’19, New York, NY,
USA, 2019. ACM.

[17] F. Xie, P. Mishchuk, and W. Hunt. Real time cluster path tracing. In
SIGGRAPH Asia 2021 Technical Communications, SA ’21 Techni-
cal Communications, New York, NY, USA, 2021. ACM.

[18] S. Zellmann, N. Morrical, I. Wald, and V. Pascucci. Finding Effi-
cient Spatial Distributions for Massively Instanced 3-d Models. In
S. Frey, J. Huang, and F. Sadlo, editors, Eurographics Symposium on
Parallel Graphics and Visualization. The Eurographics Association,
2020.

Author Biography
Erwan Leria is an early stage researcher that conducts his joint doc-

toral studies between Tampere University and Mid-Sweden University as
part of the Marie Sklodowska-Curie programme on Plenoptic Imaging
(PLENOPTIMA). He works mainly as a doctoral researcher within the
VGA research group at Tampere University. His research topic focuses on
Distributed and Parallel Real-time Multiview Path Tracing for Light Field
displays.

Markku Mäkitalo received the Ph.D. degree in signal processing
from the Tampere University of Technology (TUT) in 2013. He is currently
a Senior Research Fellow at Tampere University. His research interests
include photorealistic real-time rendering, noise filtering and modeling,
and immersive rendering technologies, such as light field rendering.

Pekka Jääskeläinen is an Associate Professor at Tampere University.
He has researched heterogeneous platform customization and program-
ming since the early 2000s. He is also an active contributor to various
heterogeneous parallel platform related open source projects. Related to
his work on implementing challenging real-time applications, he is inter-
ested in next generation distributed architectures for photorealistic real-
time rendering.

