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Figure 1: Workflow of our proposed multi-GPU light field path tracing pipeline. A light field is given as input to a light field
subdivision algorithm. The light field gets subdivided into as many sets as there are GPUs (in this case three, visualized with
red, green, and blue). For each set, we find a local source view that is marked to be path traced, hence ending up with multiple
sources equal to the number of GPUs. The other views (targets) will further receive pixels from their local source once it is
path traced. These dependencies are passed to the rendering pipeline. The rendering pipeline schedules the command buffer
submission to the GPUs. GPUs first path trace the source views. The sources are then used to reconstruct the rest of the light
field using spatial reprojection and hole-filling.

ABSTRACT
Path tracing combined with multiview displays enables progress
towards achieving ultrarealistic virtual reality. However, multiview
displays based on light field technology impose a heavy work-
load for real-time graphics due to the large number of views to
be rendered. In order to achieve low latency performance, com-
putational effort can be reduced by path tracing only some views
(source views), and synthesizing the remaining views (target views)
through spatial reprojection, which reuses path traced pixels from
source views to target views. Deciding the number of source views
with respect to the computational resources is not trivial, since spa-
tial reprojection introduces dependencies in the otherwise trivially
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parallel rendering pipeline and path tracing multiple source views
increases the computation time.

In this paper, we demonstrate how to reach near-perfect linear
multi-GPU scalability through a coarse-grained distribution of the
light field path tracing workload. Our multi-source method path
traces a single source view per GPU, which helps decreasing the
number of dependencies. Reducing dependencies reduces the over-
head of image transfers and G-Buffers rasterization used for spatial
reprojection. In a node of 4× RTX A6000 GPUs, given 4 source
views, we reach a light field rendering frequency of 3–19 Hz, which
corresponds to interactive rate. On four test scenes, we outperform
state-of-the-art multi-GPU light field path tracing pipelines, achiev-
ing a speedup of 1.65× up to 4.63× for 1D light fields of dimension
100 × 1, each view having a resolution of 768 × 432, and 1.51× up
to 3.39× for 2D stereo near-eye light fields of size 12 × 6 (left eye:
6 × 6 views and right eye: 6 × 6 views), 1024 × 1024 per view.
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1 INTRODUCTION
Physically-based rendering techniques [39], such as path tracing,
are ubiquitously used for producing photorealistic computer gen-
erated content, since rasterization-based techniques are unable to
provide a high level of photorealism without a significant amount
of manual effort and pre-computation [10]. Path tracing approx-
imates a solution of the rendering equation [16] through Monte
Carlo integration [7]. Due to the stochastic nature of the process,
individual samples are highly noisy, and typically thousands of
samples (i.e., traced paths) per pixel are needed to reduce the noise
to an imperceptible level. However, even with modern high-end
GPUs capable of hardware-accelerated ray tracing, only a handful
of paths per pixel can be traced in real time on a single GPU. This
forces practical rendering applications under real-time constraints
to supplement path tracing with complementary techniques, such
as noise filtering, and the reuse of existing samples through spa-
tiotemporal reprojection, to increase the quality.

In order to produce immersive and photorealistic 3D content for
light field (LF) displays, we need to render the scene from dozens
or even hundreds of viewpoints. This dramatically increases the
amount of computation needed for real-time rendering. Using mul-
tiple GPUs becomes necessary to process this amount of data in
real-time. On one hand, since the views are typically highly corre-
lated (i.e., they share redundant pixels), computational effort can be
reduced by spatially reprojecting existing pixels from path traced
views (source view) to target views. However, deciding the num-
ber of source views with respect to the computational resources
is not trivial: path tracing source views involves a much heavier
computational cost than synthesizing views using spatial repro-
jection. On the other hand, spatial reprojection introduces data
dependencies in the pipeline between the views, restricting par-
allel efficiency. Moreover, not all pixels can be reprojected due to,
e.g., view disparity and disocclusions. The disparity is the distance
of pixel coordinates of the corresponding points in a source and
a target image. Another path tracing stage after the reprojection
is required to fill the holes formed by missing pixels. Due to this
tradeoff, it becomes essential to group the source and target views
onto each available GPU in a way that minimizes the dependencies,
the number of missing pixels after reprojection, and the overhead
of manipulating image and transfer buffers. The existing literature
is missing fundamental methods for selecting multiple sources in a
LF for target view synthesis, which motivates our work.

In this paper, we improve upon prior works, addressing deficien-
cies caused by large data dependencies and fine-grained workload
distribution across multiple GPUs for LF path tracing applications
that target real-time scenarios, using spatial reprojection for target
view synthesis. Our contributions are as follows:

• We demonstrate that trading additional computation against
fewer dependencies drastically improves performance and
scalability in the LF rendering pipeline on a single node.
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Figure 2: Two-plane parameterization 𝐿(𝑠, 𝑡, 𝑢, 𝑣) of a light
field. The plane (𝑠, 𝑡) contains the view (pinhole camera) sam-
pling positions. Light rays originate from a view on the (𝑠, 𝑡)
plane and follow a direction sampled on the (𝑢, 𝑣) plane. The
resulting rendered image is represented on the (𝑢, 𝑣) plane.

• We show that assigning tasks to GPUs at a coarse-grained
level (on a per-view basis) reduces the amount of dependen-
cies compared to prior works, which decreases the overhead
of stages that rely on simultaneous buffer manipulation, such
as G-Buffers rasterization and image transfers.

• In the context of multi-GPU LF path tracing, we show our
multi-source method for finding multiple source views in
view sampling space, which consists in reducing the problem
into multiple instances of the Single Source Weber Problem
(SWP). In the SWP, the goal is to find the best location for
a facility to reduce the overall travel distance to a set of
predetermined locations in a Euclidean plane.

• We provide a fully end-to-end pipeline for LF path tracing
on a single node, achieving near-perfect linear scalability.

2 BACKGROUND AND RELATEDWORK
2.1 Light field displays
For the purpose of this paper, we consider glasses-free multiscopic
light field displays and near-eye light field displays [24]. Usually,
the term holography is wrongly used as an all-purpose word to
describe LF displays. Indeed, holographic displays are based on
wave optics, whereas LF displays are based on geometrical optics,
considering light as rays. Lately, holographic and LF displays are
being investigated and studied in the literature, because they allow
to mitigate the vergence-accommodation conflict (VAC) [20], by
providing correct depth cues to the eyes [14, 33]. They also provide
parallax viewing effect [19, 36, 44].

Glasses-free multiscopic LF displays allow viewers to observe
a scene from various angles, thus experiencing a parallax effect.
However, these multiscopic displays suffer from a spatio-angular
resolution tradeoff. A low spatial resolution restrains the distance
at which a viewer can perceive high-frequency details, however it
increases the angular range of viewing. Near-eye LF displays [24]
further push the boundaries of Augmented Reality (AR) and Virtual
Reality (VR) headsets, releasing the users from visual fatigue and
headache caused by the VAC.

LF displays must be given a LF as input in order for a viewer to
enjoy their full potential. LFs can be represented by a two-plane
parameterization: one plane describes the position of pinhole cam-
eras (i.e., views) from which light rays originate, and the other
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plane describes the direction of the rays, as shown in Figure 2. LFs
can be captured physically with a camera, or synthetically through
rendering. Usually, the irradiance of the LF is represented as a flat
grid of elemental images. Each elemental image corresponds to the
irradiance of a view (see Figure 1) for a given resolution.

2.2 Light field reconstruction
LFs are commonly reconstructed from a set of source views, i.e., the
views rendered (or captured) prior to the reconstruction. They are
also called input or reference views in Image-Based Rendering (IBR).

In real-time graphics, spatial reprojection (or spatial reuse) is a
reconstruction technique that is commonly used to save computa-
tion time in order to reach low-latency performance, especially in
the case of stereo rendering [1, 3, 26, 29, 30, 48]. Spatial reprojection
considers rendered pixels in a source view and reprojects them to
a target view, as depicted in Figure 1. This reprojection process is
computationally cheaper than tracing light paths for pixels in the
target views. The issue of multiview spatial reprojection is that not
all the pixels can be reprojected. It is either due to disocclusions
or due to the type of reflected surfaces. Non-reprojected pixels
produce holes in the target image, so they need to be filled in a
separate stage after the reprojection pass.

2.3 Selecting the source views
Deciding the number of source views and their positions is not
straightforward and depends on the application and the targeted
results. For real-time rendering, Mäkitalo et al. [29] show that path
tracing a single source view seems sufficient to achieve real-time
performance on a single GPU. Although they show that having
more source views reduces the percentage of missing pixels af-
ter reprojection, this increases the overall rendering time due to
the large overhead of path tracing the additional source views on
a single GPU. We tackle the problem in a more general setting,
where source views are picked to be path traced and reprojected
on multiple GPUs.

Hansen et al. [13] use rasterization to render LFs for a head-
mounted display. They only rasterize the four corner viewpoints,
and synthesize the rest of the 15 × 8 grid of viewpoints through
reprojection, reaching ∼5 frames per second. However, it is difficult
to fill in the non-reprojected pixels with their method, whereas
with path tracing such cases are easy to handle.

In IBR, especially for LF reconstruction methods based on neural
networks, the source views are manually selected [11, 12, 17, 49].
The lack of established method to select the source views leads to
unpredictable tendency in terms of computation. For example, in
[49], we observe that the proposed neural network is slightly better
in terms of computation with 5 source views rather than 9, whereas
they show as a comparison that [17] performs better with 9 source
views rather than 5.

2.4 Parallel rendering
There are two main parallel rendering schemes for multi-compute
devices (i.e., CPUs or GPUs) and/or multi-node rendering: sort-first
and sort-last [34]; some methods also employ a hybrid combination
of these two schemes.

In image-parallel rendering, the image space is typically subdi-
vided by splitting an image along the horizontal and/or the vertical
axis[35], leading to rectangular shaped image subregions. A fine-
grained subdivision (i.e., small image subregions) increases the
scaling efficiency, but reduces data locality and coherent memory
access. This occurs when rays from different subregions or pointing
to different objects are run in the same thread group in a GPU. This
leads to thread starvation which is caused byMemory Data Stalling.
Vasiou et al. [41] show this behavior for secondary rays, which
exhibit less coherent memory access compared to camera rays.

Antwerpen et al. [4] propose to split the image space into short
strips of pixels distributed across the GPUs. They achieve a high
scaling efficiency for more than 20 processors, outperforming the
tile and scanline subdivisions, for a single view. Xie et al. [50]
demonstrate a real-time path tracer in a GPU-cluster for a single
view, using 30 samples per pixel and denoising. They perform per-
pixel image space subdivision, their method requires using an even
number of GPUs per node. Ikkala et al. [15] introduce Tauray, a
high-performance real-time image-parallel path tracer that sup-
ports rendering stereoscopic and LF content on multiple GPUs
in real time. While their framework supports spatio-temporal re-
projection and denoising, these stages are executed only on the
primary GPU, limiting the full parallelization on multiple GPUs for
LF rendering. Leria et al. [26] propose an image-parallel pipeline for
real-time stereo path tracing, reusing pixels from one eye to another
on multiple GPUs. They improve upon [15] by parallelizing both
the reprojection and denoising stages, achieving a rendering fre-
quency of 120 Hz on 4× RTX A6000 GPUs. They do not address the
multiview case. Therefore, in their work, the problem of deciding
the number and the location of the source views is not addressed.

Rendering large scenes or volumes falls under the sort-last (data-
parallel) approach, for which in recent works, the focus has been
on improving data space partitioning [52] of the scene and/or the
scheduling of rays through the different data subdomains [38, 43].

In this work, we establish our scope of study with the image-
parallel approach. This approach allows us to get a control over
the distribution of the views to the GPUs. Many previous works
render multiview images using distributed and parallel computa-
tional resources [9, 21, 22, 27, 46]. However, they do not address
the implications between dependencies and scalability caused by
the multiview reconstruction process.

3 MULTI-SOURCE SPATIAL REPROJECTION
Spatial reprojection involves additional data dependency to the
otherwise parallel path tracing pipeline from a source pixel to its
target point. Previous works in real-time graphics consider only
a single source view, in order to minimize the initial path tracing
overhead, but in the process worsen the critical path of computation.
In our approach, we improve data locality and data dependency by
subdividing the LF into sets, each having its independently path
traced source view. This way, each set is assigned to a separate GPU,
enabling fully independent execution at the cost of path tracing
overhead due to additional path traced source views. In this section,
we explain our approach for selecting multiple source views from
a LF.
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Figure 3: Illustration of a light field subdivided into three sets
(red, green, and blue). The views (squared cells) are assigned
to a set in a round-robin fashion. Each set is then associated
with a GPU.

3.1 Light field subdivision
We identify two key problems in subdividing a light field: Deciding
the number of source views, and building dependencies from a
source to some targets. To consider the number of sources, which
are fully path traced, one must consider the available computing
resources. In our pipeline, we assume a single node composed of 𝑁
GPUs, and we want to render𝑀 views. When denoising subregions
of a view split to multiple GPUs, seam artifacts appear between
stitched subregions [26]. Thus, we do not consider the case where
𝑁 > 𝑀 , which would force each view to be split into multiple
subregions of pixels.

We group views into disjoint sets of views. We decide that each
set has a single source view. Each set is then later assigned to a GPU.
It is up to the implementation to decide the strategy for assigning
some views into a set. Once a set is assigned to a GPU, we then
begin to look for the source.

Unlike prior works, we do not arbitrarily select the sources in
the LF plane. We automatize the selection process. Since we are
searching for a single source within a set, we would like to select
the most central view within the set. As explained by Okutomi
et al. [37], when two views are spatially close to each other, the
range of disparity is minimized. Thus, a lower disparity allows to
reproject more pixels. This is shown for different LF configurations
in [29]. We define the central view as the view that is spatially min-
imizing the distance to all the other views in its set. When forming
a polygon with the coordinates of the views from the same set, the
polygon may have a non-convex shape in the LF plane. This de-
pends on the assignment algorithm. Therefore, for a set, computing
the arithmetic median or the arithmetic mean from the coordinates
of the views fails to provide sufficient accuracy to determine the
central view. Indeed, the given point could lie outside the bound-
aries of the non-convex shape. Instead, the optimal solution is to
identify the medoid.

Finding sets of views and their corresponding medoids in a sin-
gle algorithm can be achieved through the Partitioning Around
Medoid (PAM) algorithm [18], where the medoid of each partition
is recomputed at each insertion of a new element in its partition.
However, PAM does not guarantee that views are assigned as evenly
as possible, which in our approach, is handled by an assignment
algorithm that does not compute the medoid, allowing different
assignment strategies to control the workload distribution. Using a
method such as PAM does not allow for this degree of freedom.

Views assigned to GPU0

Target viewSource view
(Medoid)

Figure 4: Illustration of the position of the medoid in the red
set. Themedoid (source view) is represented by a squared cell
filled with solid red color. The target views are represented
with squared cells filled with a crosshatch pattern.

In a set of views, finding a single source view that minimizes the
Euclidean distances to all the other views in a plane is an instance
of the Single source Weber Problem (SWP) [45]. In each set, the
medoid is approximated by selecting the closest viewpoint to the
geometric median. We employ the Weiszfeld algorithm [47] to find
the geometric median of each set; this algorithm is commonly used
to solve the SWP [8]. When each medoid is found, it becomes the
source view for its respective set, and the remaining views of the
set become the target views.

3.2 Multiview rendering dependency
We want to reduce the dependencies caused by spatial reprojection
in order to reduce buffer read/write overhead. The number of buffers
per GPU depends on the number of source and target views that
are used for reprojection.

We break down the combinatorial complexity of dependence
when using spatial reprojection and multiple views and multiple
GPUs as follows. Given a two plane parameterization 𝐿(𝑠, 𝑡, 𝑢, 𝑣)
of a LF, consider two views 𝐴 and 𝐵 located on the (𝑠, 𝑡) plane.
Let 𝑝𝑎 be some pixel in view 𝐴 and 𝑝𝑏 be some pixel in view 𝐵,
both located on the (𝑢, 𝑣) plane. When spatial reprojection is called
between pixels 𝑝𝑎 and 𝑝𝑏 , this implies that 𝑝𝑏 depends on 𝑝𝑎 that
we denote as 𝛿 (𝑝𝑎, 𝑝𝑏 ), or more simply 𝛿 (𝐴, 𝐵) since reprojection
is applied from one view to another. This means that 𝐴 contains
the source data of 𝐵. This implies that the pixels in 𝐴 and the ones
in 𝐵 can not be computed in parallel because of their dependency.

Note that if there are𝑀 views and 𝑘 sources, there can be at most
𝑘 · (𝑀 − 𝑘) 𝛿-dependencies between views. If 𝑁 GPUs are working
on one 𝑛𝑡ℎ of each view, then, the number of dependencies goes up
to 𝑁 · 𝑘 · (𝑀 − 𝑘). The implementation of the spatial reprojection
algorithm decides the conditions for whether to reproject a pixel
or not. This means that for each dependency 𝛿 (𝑎, 𝑏), reprojection
may not occur, but the dependencies remain until the feasibility
of reprojection is determined. In our approach, we encapsulate
inter-view dependencies within a set of views. We avoid spreading
dependencies from all source views to all target views, as opposed
to the work done in [15, 26]. This way, each view is confined within
a single set and thus to a single GPU.
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(a) Example of the light field distribution
used in [15].
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(b) Example of the fine-grained light field
distribution used in [26].
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(c) Example of the coarse-grained light
field distribution used in our proposed
method.

Figure 5: We illustrate three different light field workload distribution schemes. The colors depict the data locality of the
views, each color corresponding to a GPU (red, green, and blue). Solid colors depict the source views, colored crosshatched
pattern depicts the target views. When a view is split across the 3 GPUs, it is divided into three regions. a) On the left, workload
distribution scheme as used in [15], resulting in a fine-grained distribution of the path traced source views. The target views
are handled on the primary GPU (red - GPU0). b) In the middle, light field subdivision based on a fine-grained distribution of
source views and target views to the GPUs [26]. In (a) and (b), 4 source views (corner views) are path traced. c) On the right, we
show the proposed coarse-grained distribution scheme.

𝑣1

𝑣0
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𝑣5

𝑣2

𝑣3

(a) Ikkala et al. [15]
𝐷 = 𝑘 · (𝑀 − 𝑘 )

𝑣1

𝑣0

𝑣4

𝑣5

𝑣2

𝑣3

(b) Leria et al. [26]
𝐷 = 𝑘 · (𝑀 − 𝑘 ) · 𝑁

𝑣1

𝑣0

𝑣4

𝑣5

𝑣2

𝑣3

(c) Proposed
𝑚 = 𝑀

𝑁
, 𝐷 = 𝑀 − 𝑁

Figure 6: Inter-view data dependency graph during the spa-
tial reprojection stage between 2 source views and 4 target
viewswith 2GPUs (M = 6,N = 2, k = 2). The views 𝑣2 and 𝑣3 are
source views. The target views are 𝑣0, 𝑣1, 𝑣4 and 𝑣5. The color
encoding illustrates the locality of the views (squared nodes)
and the dependencies of the targets (arcs): red forGPU0, green
for GPU1, black for both – similarly to the source views in
Figure 5a and Figure 5b. Consider that black arcs and squared
cells are equivalent to red and green colors being overlapped.
The number of dependencies 𝐷 is given for each pipeline.

In our pipeline, the spatial reprojection stage has at most 𝑘𝑠 ·
(𝑚 −𝑘𝑠 ) dependencies per GPU, with 𝑘𝑠 the number of sources per
set (see Figure 5c). We choose the number of sources to be equal
to the number of GPUs, that is, 𝑘 = 𝑁 , so 1 source per set. Indeed,
when 𝑁 converges towards𝑀 , we want to reach linear scalability,
rendering only a single view per GPU when 𝑁 = 𝑀 . We define
the size of a set𝑚 to be equal to one 𝑛𝑡ℎ of the entire LF, which
gives the following number of dependencies between source and

target views: 𝐷 = (𝑘𝑠 · (𝑚 − 𝑘𝑠 )) · 𝑁 = (𝑀
𝑁

− 1) · 𝑁 = M − N, with
𝑚 = 𝑀/𝑁 and 𝑘𝑠 = 1. As shown in Figure 6, when 𝑘 = 𝑁 , our
multi-source method shows fewer dependencies compared to the
other pipelines.

3.3 Pipeline
On each GPU, our rendering pipeline has four main sections: path
tracing, LF reconstruction, post-processing and transfers. In the
first section, each GPU path traces a single source view. In the
second section, GPUs reproject the path traced pixels from the
source view to some target views, and then use path tracing to fill
the non-reprojected pixels. In the third section, algorithms such
as denoising or tonemapping are applied. Finally, all the views are
sent to the primary GPU.

In order to discard pixels that are not reprojectable, the spatial
reprojection algorithm uses information from the G-Buffers (nor-
mals, material, world positions). Denoising also uses information
provided by the current G-Buffers, and by the G-Buffers from the
previous frame as well. In our pipeline, a GPU rasterizes the G-
Buffers for each view it is associated to. The dependency pattern
is pipeline dependent (see Figure 6), and therefore known before
the command buffers are submitted to the GPUs. This allows us
to schedule computation at each stage of the pipeline based on
the views to process. Determining the view indices of the sources
and the targets depends on the assignment algorithm. These view
indices and the dependencies are used to schedule computation.

4 EVALUATION
We implemented our solution into Tauray [15], an open source
stereo and LF real-time path tracer based on Vulkan. Our proposed
multi-source method for multi-GPU LF path tracing is evaluated
on the basis of runtime performance and scalability benefits.
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(a) (b) (c) (d) (e) (f)

Figure 7: Example views of our 4 test scenes. a) 4096 spp Bistro Exterior [28]. b) 4096 spp Sponza © Crytek [32]. c) 1 spp denoised
retinal image of San Miguel © Guillermo M. Leal Llaguno [32]: the retinal image of the left eye, using the NELF display model
described in [12]. The focus of the eye is set at 35 cm: the chair in the foreground appears sharp, the rest of the image is affected
by the defocus blur. d) Example of our Multiscopic setup with San Miguel 1 spp denoised on the Looking Glass Display (LKG)
32". e) 1 spp Eternal Valley FPS [2, 51], with our pipeline: the image shows pixels reprojected by a single GPU and from a single
source, the missing pixels are marked with the dark pink color, f) same image for the pipeline described in [26]: 4 GPUs are
reprojecting pixels in the same view, the missing pixels are encoded with a color corresponding to their GPU region (red, green,
blue, dark pink). The exposure of the images has been increased for better visibility. The resolution of the views is 1024 × 1024,
except for (d), where the views displayed have a resolution of 768 × 432 each.

4.1 Experimental setup
Our computing platform for the experiments is a single node com-
posed of 4× RTX A6000 48 GB GPUs on a PCIe 4.0 16GT/s. Our
platform does not have NVLink, which would further reduce the
latency for GPU-to-GPU transfers, reaching a peak bandwidth of 20
GB/s up to 40 GB/s. For path tracing, we use 1 spp and a maximum
ray depth of 6. Our spatial reprojection algorithm reprojects only
diffuse surfaces. We denoise each viewport using Spatiotemporal
Variance-Guided Filtering [40].

4.1.1 Scenes. We are using four scenes (see Figure 7): Bistro Ex-
terior (13𝑀 triangles), Sponza (262𝑘 triangles), San Miguel (4.9𝑀
triangles), Eternal Valley FPS (251𝑘 triangles). We modified the
Bistro Exterior scene such that it contains more triangles to in-
crease the workload during G-Buffers rasterization: we replaced
the tree in the courtyard by a tree composed of ∼10M triangles,
mostly located in the leaves. The Bistro Exterior scene has slightly
moving objects. The Eternal Valley FPS scene contains skeletal an-
imations for multiple characters, and it has dynamic First-Person
Shooter-like camera movements, with the total animation length of
the camera movement being 360 frames. For this reason, we set up
the runs for all scenes to last for 360 frames.

4.1.2 Light field setup. We choose two different configurations
for the LFs that we render for the experiments; the configurations
correspond to practical LF displays:

Multiscopic. Multiscopic will refer to a 1D LF composed of 100
views that are arranged for horizontal parallax effect. Considering
a display panel of resolution 7680 × 4320 (8K), we divide it into 100
views, each having a resolution of 768 × 432. Figure 7d shows an
example of the San Miguel scene displayed on a multiscopic display.

Near-Eye Light Field (NELF). NELF will refer to a 2D LF com-
posed of 72 views, with 6 × 6 views for each eye. The 6 × 6 blocks
are separated by a distance of 6.2 centimeters, corresponding to
the interpupillary distance. Each view has a resolution 1024 × 1024.
This resolution corresponds to the resolution of some liquid crys-
tal on silicon spatial light modulators (SLMs). SLMs are used for

microdisplay systems, such as near-eye displays or microscopes,
due to their high speed for updating the light intensity and their
compact form factor [25].

In the two LF setups, neighboring views are spaced by 1 mil-
limeter because we want to keep a low disparity to benefit from
reprojection and avoid the views at extremities to end up outside
the scene boundaries.

4.1.3 Comparison baselines. Our comparison baselines are two
works from the literature, both based on Tauray [15, 26]. The work
done in [26] addresses the stereo case, we extended it, such that it
suits the multiview case. For our solution, we use a round-robin
assignment to distribute the views to their set. Finding the source
views is not automatized for the baselines, they are selected manu-
ally: when the number of source views is odd, the sources are in
the center of the LF, otherwise they are in the corners.

To prevent any confusion, we use the term rendering frequency
(Hz) to indicate the frequency at which a LF is rendered, and we
use elemental images per second (ei/s) to describe the number of
elemental images rendered in one second.

4.2 Pipeline stages
The timing results for each stage of the proposed pipeline are given
in Table 1. Stages are enumerated by order of command buffer sub-
mission to the GPUs, although some stages may overlap, especially
stages 8 and 9: the current G-Buffers are recorded for the next frame,
during transfers. For the hole-filling stage (5), we observe that [26]
has a better rendering time than our proposed solution by a factor
×1.09, this is due to the fact that more sources benefit more targets.
However, the counterpart is that our proposed solution has much
fewer dependencies, involving fewer buffers, which is showcased
by the improved execution time of the G-Buffers rasterization stage
(3) and the transfers to the primary GPU (9), respectively, by a fac-
tor ×4.11 and around ×1.8. In the pipeline of [15], only the source
views are path traced and transferred to the primary GPU, while
in [26] and in our proposed solution, sources and targets are both
transferred. As a general indication, for the NELF setup, G-Buffers
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Execution time (ms)
Pipeline stages [15] [26] Proposed

0. Skinning 0.01 0.08 0.038
1. Scene update 0.3 0.08 0.47
2. Path tracing 65.01∗ 9.28 9.84

3. G-Buffers rasterization 166.67∗ 147.36 35.85
4. Spatial reprojection 1.44∗ 1.42 0.91

5. Hole-filling 355.06∗ 69.62 75.67
6. Denoising 67.32∗ 14.32 17.50

7. Tonemapping 0.07∗ 0.39 0.32
8. Record previous buffer 7.65∗ 21.70 20.65

9. Transfer to primary GPU 1.43 + 0.21 21.45 + 5.03 13.18+1.27
10. Stitching image regions 0.09∗ n/a n/a

11. Blit images to the swapchain n/a 3.16∗ 2.72*

Table 1: Averaged timings per stage inmilliseconds for Bistro
Exterior over 360 frames with the Multiscopic setup. The
transfers show first the timing to send, plus the timing to
receive data. Recording previous buffers (8) occurs during
the transfer of images (9). The asterisk (*) indicates stages
that are run only on the primary GPU, which is defined by
the design of the pipeline.

rasterization accounts for 14% up to 27% of the rendering time,
depending on the scene. The hole-filling stage accounts for 13% up
to 51%.

4.3 Execution time
We provide an overview of the average rendering time per frame
with the 4 test scenes in Table 2. We see that our proposed solution
consistently outperforms the baselines. For the Multiscopic setup,
we report a speedup of ×1.66 up to ×4.63 and for the NELF setup, a
speedup of ×1.51 up to ×3.39. We notice that the size of the scene
has an impact on the overall computing time.

In Table 3, we show the performance of the hole-filling stage. For
the Multiscopic setup, we notice that our pipeline does not beat the
pipeline of [26] on the 4 test scenes. However, it remains acceptable
compared to [15]. This difference in terms of performance is more
noticeable for the NELF setup. The dependencies caused by spatial
reprojection in [26] implies that 𝑘 sources reproject their pixels
to 𝑀 − 𝑘 targets and thus reduce the number of missing pixels,
whereas in our pipeline, only a single source reprojects its pixels to
𝑀/𝑁 targets.

We show the reconstruction performance per GPU in Table 4.
First, we notice that the ratio of missing pixels between the views
is uniformly distributed among the GPUs. However, the uniformity
of the execution time of the hole-filling stage per GPU is less stable
for the Multiscopic setup. On the other hand, we notice that for the
NELF setup, the execution time of hole-filling stage is more even.
This is due to the views being more compact in the NELF setup,
compared to the Multiscopic setup, where the distance between
two views can be higher than in the 2D setup. The stability of the
execution time of the hole-filling stage for the NELF setup seems
to also be due to the lower ratio of missing pixels compared to the
Multiscopic setup.

4.4 GPU utilization
Figure 8 shows the GPU utilization of 4 GPUs for 4 source views.
In Figure 8(a), we observe for the pipeline of [15] that the GPU
utilization of the non-primary GPUs is very low. From the collected
data, we estimate that the average percentage of underutilization
is 63%. For Figure 8(b), we can see that for the pipeline of [26]
the utilization per GPU looks to be mostly above 50%; the average
percentage of underutilization is around 15%. For our proposed
solution (Figure 8(c)), we see that the GPU utilization is very high
compared to the baselines. The average percentage of underutiliza-
tion is under 1%, which shows that a constant stream of work is
provided to the GPUs with little idle time.

4.5 Scaling
Figure 9 demonstrates the scalability of our proposed solution
against the baselines for the Multiscopic (a) and the NELF (b) setups.
We observe first that the idea of trading more computation time
to render more sources is efficient for the two baselines. However,
in [15], the primary GPU has to take on the tasks of G-Buffers ras-
terization, spatial reprojection, hole-filling and denoising alone, so
it ends up being overloaded. On the other hand, [26] seems to scale
slightly better, but due to its dependencies it does not scale linearly.
For example, we observe in the Multiscopic setup with 2 sources,
we outperform the baselines with only 2 GPUs, whereas they are
both using 4 GPUs, getting a roughly ×1.77 speedup. Overall, for
the two LF setups, we see that our approach to reduce dependencies
tends towards near-perfect linear scalability.

In Figure 10, we show the performance of our implementation
in terms of scalability when the number of GPUs is fixed and the
number of views increase. For this experiment, the width of a LF
increases from 1×10, up to 10×10. Until 3×10 views, the difference
between 2 and 4 GPUs does not appear to be significant, since the
weight of the workload is not important. When the number of views
becomes larger (> 3 × 10) the rendering pipeline benefits from a
higher number of GPUs since the workload is heavier. By observing
Figure 9 and Figure 10, with respect to Table 2, when increasing the
number of GPUs, we notice that the performance gap is widening
more rapidly for complex scenes (e.g., Eternal Valley FPS) compared
to simpler static scenes (e.g., Sponza).

4.6 Assignment variation
In Table 5, we demonstrate that our solution is, at least, agnostic
to any naïve assignment algorithms for grouping views by set.
We compare the one-to-one Round Robin assignment against the
Contiguous assignment, with each contiguous block containing
𝑀/𝑁 elements. Regardless of whether a LF is 1D or 2D, we consider
the index of the views to be a one-dimensional array. Then we apply
the assignment algorithms on this index array. Although it is not
in the scope of this paper, we observe that the assignment method
to assign views to sets has an impact on the performance. We see
that Round Robin has a speedup factor of ×1.76 for the NELF setup
compared to Contiguous assignment.

4.7 Discussion
Overall, our results show that increasing the number of source
views, at least up to the number of GPUs, improves the overall
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Average rendering time per frame (ms)
Scene Sponza Eternal Valley FPS Bistro exterior San Miguel

LF setup Multiscopic NELF Multiscopic NELF Multiscopic NELF Multiscopic NELF
[15] 154.8 369.3 395.5 525.8 813.1 1081 353.1 516.8
[26] 87.4 242.8 347.3 414.3 370.2 481.2 280.0 323.3

Proposed 52.7 123.6 85.5 155.1 211.3 318.8 110.2 173.1
Table 2: Rendering time per frame using 4 GPUs averaged over 360 frames, for each scene.

Hole-filling (ms)
Scene Sponza Eternal Valley FPS Bistro exterior San Miguel

LF setup Multiscopic NELF Multiscopic NELF Multiscopic NELF Multiscopic NELF
[15] 20.76 26.92 21.35 20.09 355.06 571.13 170.24 175.61
[26] 3.6 7.03 4.21 6.85 69.62 123.91 43.57 40.12

Proposed 8.81 16.43 9.33 20.65 75.67 165.11 52.84 70.77
Table 3: Hole-filling performance per scene and per LF setup. We use 4 GPUs and 4 source views. Timings are averaged over 360
frames

Reconstruction performance per GPU
GPU 0 GPU 1 GPU 2 GPU 3

LF setup Multiscopic NELF Multiscopic NELF Multiscopic NELF Multiscopic NELF
Spatial reprojection (ms) 0.91 1.99 0.91 2.00 0.91 2.99 0.91 2.06
Ratio of missing pixels (%) 48.43 35.74 48.45 35.75 48.47 36.17 48.48 35.92

Hole-filling time (ms) 80.67 165.37 73.73 161.44 73.85 164.93 74.45 168.72
Table 4: Reconstruction performance results of our pipeline per GPU for the Bistro Exterior scene, averaged over 360 frames.
The reconstruction timings are shown for 4 GPUs and 4 source views.
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Figure 8: GPU utilization extracted from a run of 360 frames of the San Miguel scene, static camera, NELF setup. We use 4 GPUs
and 4 source views. The GPU utilization is sampled with nvidia-smi over a duration of 5000 ms. The GPU utilization is recorded
every 5 ms.

Assignment method Round Robin Contiguous
LF setup Multiscopic NELF Multiscopic NELF

Average rendering time per frame (ms) 111 173 120 305

Table 5: Performance of Round Robin and Contiguous as-
signment algorithms for the San Miguel scene for a run of
360 frames.

performance of the proposed pipeline, but also of the baselines
used for comparison. When averaging the rendering time per frame
for each scene, we have a speedup of ×3.26 against [26].

We observe in general that there are fewer missing pixels after
the reprojection stage in 2D LFs than in 1D LFs. This is due to

the larger number of adjacent views in 2D. However, in terms of
rendering time, 2D LFs are more demanding. In fact, there are fewer
views in the NELF setup compared to the Multiscopic setup, but
the total amount of pixels in the NELF setup is nearly two times
larger compared to the Multiscopic setup. Some NELF displays are
using time-multiplexing techniques to counter the issue of limited
spatial bandwidth in SLMs [6], with the intent to reach the target
critical flicker frequency (CFF) of the human vision of 90 Hz [31].
However, in this work, we notice that reaching this CFF for LF
displays is currently out of reach for multi-GPU LF path tracing,
using spatial reprojection and with a high number of views. This
demonstrates a discrepancy between the advancement of multiview
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Figure 9: Scalability performance per number of source views.
The rendering time per frame (in ms) on the y-axis is aver-
aged over 360 frames of the Eternal Valley FPS scene. Results
are shown for the Multiscopic (a) and the NELF (b) setups.
Ikkala et al. [15] and Leria et al. [26] are measured with 4
constant GPUs (𝑁 = 4). Our proposed solution is measured
with 1 GPU per source (𝑁 = 𝑘).
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Figure 10: Scalability performance per number of views with
the Sponza scene. The resolution of the LF is indicated on the
x-axis, each view has a 1024 × 1024 resolution. The average
rendering time per frame is indicated on the y-axis in mil-
liseconds. The rendering time is shown for 1 up to 4 GPUs.
The number of source views is equal to the number of GPUs.

displays and the actual state of graphics hardware and techniques
to render photorealistic images at high frequency.

Considering mobility for future AR/VR applications, traditional
wireless stereo AR/VR spatial computing devices offer a more prac-
tical solution for scenarios with lower bandwidth requirements. In
contrast, NELF displays would require a wireless network band-
width of approximately 20.38 GB/s to transfer an uncompressed
12 × 6 × 1024 × 1024 RGB-8bits LF from a remote server at 90 Hz,
which is highly demanding. On a Wi-Fi 8 network [23] with a
bandwidth of 100 Gbps (12.5 GB/s), this would require roughly a
2:1 ratio of compression, which is easily achievable via standard
low-complexity codecs [42]. However, decoding the images on a
single client GPU is a bottleneck for low-latency streaming when
the number of pixels is large (4k resolution and more), as shown
in [5].

This work shows highly promising results, highlighting the bene-
fits of scalable performance in multi-GPU LF path tracing pipelines.
For the NELF setup, we reach a frequency of 3 Hz up to 8 Hz depend-
ing on the scene, respectively 226 ei/s and 582 ei/s. On the other
hand, for the Multiscopic setup, we reach an interactive rendering
frequency of at least ∼4 Hz for heavy scenes like Bistro Exterior,
up to ∼19 Hz for smaller scenes like Sponza. Respectively, these
correspond to 474 ei/s and 1897 ei/s. All setups combined, the com-
parison baselines reach a rendering frequency of 0.9 Hz up to 11 Hz,
and equivalently 66 ei/s up to 1144 ei/s.

5 CONCLUSION
In this paper, we demonstrated an important computational
complexity-to-scalability tradeoff in sample reprojection enhanced
multiview path tracing, with the aim of targeting LF display sce-
narios for horizontal parallax and VAC-free immersive VR. Our
multi-source spatial reprojection approach is agnostic to any as-
signment algorithms. The proposed method restrains the reuse
of pixels based on coarse-grain work assignment, as opposed to
prior works. This reduces data dependencies, decreasing the over-
heads caused by G-Buffers rasterization and image transfers to the
primary GPU.

The implementation of our pipeline outperforms prior works,
showing a significant improvement in the overall rendering time
(1.51–4.63× speedup on 4 GPUs) and in GPU utilization, reaching
over 99% utilization on 4 GPUs. This way, the renderer can reach
near-perfect linear scalability, achieving interactive LF rendering
frequency of 3–19 Hz.
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