Liliana Cojocaru and Erkki Mikinen

On the Complexity of Szilard languages of
Regulated Grammars

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

D-2010-12

TAMPERE 2010

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCES

SERIES OF PUBLICATIONS D — NET PUBLICATIONS
D-2010-12, OCTOBER 2010

Liliana Cojocaru and Erkki Mikinen

On the Complexity of Szilard languages of
Regulated Grammars

DEPARTMENT OF COMPUTER SCIENCES
FIN-33014 UNIVERSITY OF TAMPERE

ISBN 978-951-44-8278-6
ISSN 1795-4274

On the Complexity of Szilard Languages of Regulated

Grammars
Liliana Cojocaru Erkki Makinen
University of Tampere University of Tampere
Department of Computer Sciences Department of Computer Sciences
Tampere, Finland Tampere, Finland
cslicoQuta.fi em@cs.uta.fi
Abstract

The regulated rewriting mechanism is one of the most efficient methods to
augment the Chomsky hierarchy with a large variety of language classes that
lay within it. In this paper we investigate the derivation process in regulated
rewriting grammars such as matriz grammars, random context grammars, and
programmed grammars by studying their Szilard languages. We prove that
Szilard languages associated with unrestricted derivations in these grammars
can be recognized in logarithmic time and space by indexing alternating Turing
machines. Hence, these classes of Szilard languages belong to the Ug»-uniform
NC! class [41]. In general, leftmost Szilard languages of regulated rewriting
grammars can be recognized in logarithmic space and square logarithmic time.
Hence, these classes of languages belong to the N'C? class [41].

1 Introduction

When we consider a formal grammar one of the very first tasks is to study the
derivation mechanism of the system in question. Once derivation properties have
been settled on, we can go further by studying closure properties, decidability prop-
erties, or the computational power of that generative device. One of the most
important tools to investigate the derivation mechanism in formal language theory,
is the Szilard language. If labels are associated with productions in one-to-one cor-
respondence, then each terminal derivation can be expressed as a word over the set
of labels, such that labels in this word are concatenated in the same order they have
been used during the derivation. Informally, the Szilard language associated with a
generative device is the set of all words obtained in this way.

The concept of Szilard language has been first introduced for Chomsky gram-
mars, under the name of “label language”, “associate language”, or “derivation
language”, in [20], [35], [37], and [44]. Roots of Szilard languages come from [2]
and [43]. The notion has been extended afterwards for several other generative de-
vices, such as pure context-free grammars [31] and regulated rewriting grammars
[14], [16], [36], and [43]. If restrictions are imposed on the derivation order then par-
ticular classes of Szilard languages, such as leftmost Szilard languages [28], canonical
label languages [6], depth-first and breadth-first Szilard languages [30] are obtained.

Hierarchies and closure properties of Szilard languages associated with (pure)
context-free grammars are considered in [37], [44], [31], [32], and [33]. Szilard lan-
guages of (pure) context-free grammars are very weak in closure properties. They
are not closed under union, concatenation, homomorphism and inverse homomor-
phism, Kleene +, or intersection with regular languages. Hence, none of them form
even a trio family' of languages. In [43] it is proved that the closure of Szilard
languages of context-free grammars under the intersection with regular languages
equals the family of derivation languages associated with context-free matrix gram-
mars. Another characterization of context-free matrix languages by means of Szilard
languages is provided in [11]. There exists a proper hierarchy of Szilard languages of
pure context-free grammars with respect to the degree of grammars [31]. There exits
also a proper hierarchy of Szilard languages of context-free grammars with respect
to a certain homomorphism [32].

Decidability properties of Szilard languages associated with context-free gram-
mars are investigated in [25], [27], [32], [35], and [37]. The emptiness, finiteness, and
equivalence problems are decidable for these languages [37]. The inclusion problem
for leftmost Szilard languages is decidable [27], [35], and for unrestricted Szilard lan-
guages it is NP-complete [32]. The fitting problem [25] and the left fitting problem
[26], i.e., whether a given leftmost Szilard language is in the family of Szilard lan-
guages, are decidable, too. Several operations on Szilard languages and semilinearity
properties of these languages are studied in [21] and [29], respectively.

Time and space bounds of a Turing machine or multicounter machine to recognize
Szilard languages associated with Chomsky grammars, are presented in [38] and
[24]. In [38] it is proved that (leftmost) Szilard languages of context-free grammars
can be recognized by a linear bounded? (realtime) multicounter machine. Since
each realtime multicounter machine can be simulated by a deterministic off-line3
Turing machine with logarithmic space, in terms of the length of the input string
[19], it follows that the classes of Szilard languages and (leftmost) Szilard languages
associated with context-free grammars are contained* in DSPACE(logn). In [9]
we strengthened this result by proving that the above classes of Szilard languages
can be accepted by an indexing alternating Turing machine (henceforth indexing
ATM) in logarithmic time and space. Since the class of languages recognizable by
an indexing ATM in logarithmic time equals the Ugs-uniform N'C! class [41], we
obtain that the above classes of Szilard languages are strictly contained in N'C!, i.e.,
the class of Boolean functions computable by polynomial size Boolean circuits, with
depth O(logn) and constant fan-in [46].

Characterizations of (leftmost) Szilard languages of context-free and phrase-

LA family of languages is called trio if it is closed under A-free homomorphism, inverse homo-
morphism, and intersection with regular languages.

2A multicounter machine is linear bounded if it works in realtime, i.e., there exists a constant k
such that during the computation the contents of each counter is less than k|w|, where |w| is the
length of the input string.

3An off-line Turing machine is a Turing machine equipped with a read-only input tape and a
read-write working tape. It is allowed to shift both heads on both directions, and it works similar
to a Turing machine.

“DSPACE(log n), or the L class, is the class of languages recognizable by an off-line deterministic
Turing machine using logarithmic space.

structure (unrestricted) grammars in terms of Turing machine resources are pro-
vided in [24]. It is proved that logn is the optimal space bound for an on-line> de-
terministic Turing machine to recognize (leftmost) Szilard languages of context-free
grammars. It is also an optimal bound for an off-line deterministic Turing machine
to recognize leftmost Szilard languages of phrase-structure grammars. However, the
optimal bound for an on-line deterministic Turing machine to recognize leftmost
Szilard languages of context-free and phrase-structure grammars is n, where n is
the length of the input word. Since leftmost Szilard languages of phrase-structure
grammars are off-line recognizable by a deterministic Turing machine that uses only
logarithmic space, in terms of the input string, leftmost Szilard languages of phrase-
structure grammars are included in DSPACE(logn). In [9] we proved that the class
of leftmost Szilard languages of phrase-structure grammars is strictly included in
NC! under the Ug«-uniformity restriction.

Regulated grammars are formal grammars composed of Chomsky rules for which
the derivation mechanism obeys several filters and controlling constraints that allow
or prohibit the use of the rules during the generative process. For formal definitions
and results concerning grammars with regulated rewriting the reader is referred to
[14]. In this paper we deal with three types of rewriting mechanisms provided by
matrix grammars, random context grammars, and programmed grammars. These
grammars are equivalent concerning their generative power [14], but they are in-
teresting because each of them uses totally different regulating restrictions in the
derivation mechanism that provide good structures to handle a large variety of prob-
lems in formal languages, computational linguistics, programming languages, and
even graph theory.

This work is dedicated to the complexity of Szilard languages associated with
these three types of regulated grammars. The main aim is to relate the correspond-
ing classes of Szilard languages to parallel complexity classes, such as ALOGTIME,
NC', and NC?, where ALOGTIME is the class of languages recognizable by an
indexing ATM in logn time [4], [7]. Approaching Szilard languages to low complex-
ity classes, such as NC' and AC?, is the most natural way to relate these classes
to circuit complexity classes [46], and thus bringing new insights in finding fast par-
allel algorithms to recognize classes of languages generated by the above regulated
mechanisms. Based on the method used in [9] we prove that unrestricted Szilard
languages associated with matrix, programmed, and random context grammars are
contained in the Ug+-uniform N'C! class. In general, leftmost Szilard languages of
regulated rewriting grammars can be recognized in logarithmic space and square
logarithmic time. Hence, these classes of leftmost Szilard languages belong to the
NC? class [41].

The paper is structured as follows. In Section 2 we introduce the main notions
concerning Chomsky grammars and the Chomsky hierarchy. We also present several
complexity results of (leftmost) Szilard languages associated with context-free and
phrase-structure grammars. In Section 3 we present complexity results for Szilard
languages associated with matrix grammars. Section 4 is dedicated to the complexity
of Szilard languages of random context grammars, while in Section 5 we investigate

5An on-line Turing machine is an off-line Turing machine with the restriction that the input
head cannot be shifted to the left.

the complexity of Szilard languages associated with programmed grammars. We
conclude in Section 6 with some remarks on Szilard languages of regulated grammars
with context-sensitive and phrase-structure rules.

2 Chomsky Grammars and Szilard Languages - Prereq-
uisites

Chomsky grammars [8] have played a crucial role in the field of theoretical computer
science, especially in formal languages and programming languages. In this section
we introduce the main notions and notations that concern Chomsky grammars and
the Chomsky hierarchy. We briefly present several complexity results that concern
Szilard languages associated with Chomsky grammars. We assume the reader to be
familiar with the basic notions of formal language theory [34], [43].

Let X be a finite nonempty alphabet. We denote by A the empty string, by |z|,
the number of occurrences of the letter a in the string =, and by |z| the length of
x € X*. We denote by | X| the cardinality of the set X.

Definition 1 A phrase-structure (PS) or Chomsky grammar (CG) is a quadruple
G = (N,T,P,S), where N and T, N NT = (), are finite sets of nonterminals and
terminals, respectively. S € N — T is the aziom, and P is a finite set of rules of the
forma — g, a € (NUT)*N(NUT)" and 5 € (NUT)*.

In the sequel for any phrase-structure rule p of the form o« — 3, a and S are
called the left-hand side and the right-hand side of p, respectively. If § € T™, then
p is called terminal rule. Otherwise, p is called non-terminal rule. If g = A, then p
is called erasing rule.

Definition 2 Let G = (N, T, P, S) be a phrase-structure grammar (PSG) and let
x,y € (NUT)*. We say that = directly derives y, written as x =¢ vy, if there exist
ar,ag, o, 8 € (N UT)*, such that z = aqaag, y = a1faz, and o — f € P. We
denote by =, the reflexive and transitive closure of =-. The language generated by
G is defined as L(G) = {w|w € T*, S = w}.

Definition 3 Let G = (N, T, P, S) be a PSG.

1. If no restrictions are imposed on rules in P then G is also called recursively-
enumerable or unrestricted (type () grammar.

2. If each rule in P is of the form aAy — af~v, where A € N, a,v € (NUT)*,
B € (NUT)T, then G is a context-sensitive (type 1) grammar. Moreover, G
may contain the rule S — A, assuming that S does not occur on the right-hand
side of any rule in P.

3. If each rule in P is of the form a — 3, |a| < |B|, then G is a monotonous (type
1) grammar. Moreover, the grammar may contain the rule S — A, assuming
that S does not occur on the right-hand side of any rule in P.

4. If each rule in P is of the form a« — 8, a € N and 8 € (N UT)*, then G is a
context-free (type 2) grammar.

5. If each rule in P is of the form a — 8, « € N and § € T* UT*N, then G is a
reqular (type 3) grammar.

Note that, the definitions of a type 1 grammar provided at items 2 and 3 are
equivalent, in the sense that the grammars generate the same class of languages.
We denote by REG, CFG, CSG, and PSG the set of all regular (type 3), context-
free (type 2), context-sensitive or monotonous (type 1), and phrase-structure (type
0) grammars, respectively. The classes of languages generated by REGs, CFGs,
CSGs, and PSGs are denoted by REGL, CFL, CSL, and PSL, respectively. The
class PSL equals the class of recursively enumerable languages, also denoted by
RE. Between these classes of languages the next inclusions (Chomsky hierarchy)
hold REGL Cc CFL Cc CSL C RE.

If rules in a CG are uniquely labeled, then each terminal derivation® in the
grammar can be expressed as a unique word over the set of all labels. Informally,
the Szilard (control) word associated with a terminal derivation in a CG, is obtained
by concatenating the labels of components in the same order they have been used
during the derivation. The Szilard language associated with a CG is the set of all
words obtained in this way. In the sequel, for the sake of simplicity, we use the same
notation both for a rule and the label associated with it.

Definition 4 Let G = (N, T, S, P) be a CG, P = {p1, p2, ..., pr.} the set of produc-
tions, L(G) the language generated by G, and w a word in L(G). The Szilard word
of w associated with the derivation D: S = wg =, w1 =yp,, ... =p, Ws = W I8
defined as Szp(w) = piypiy---Pi., Pi; € P, 1 < j < s. The Szilard language of G is
Sz(G) = {Szp(w)|w € L(G), D is a derivation of w}.

Definition 5 Let G = (N, T, S, P) be a CG. A terminal derivation D: S = wy =i,
Wi =p,, - =, Ws =W is a leftmost derivation of w, if for each 1 < j <'s, wj_1 =
Uj-10jVj-1 =p;. uj—18jvj-1 = wj, uj—1 € T*, where p;; is the rule a; — 3; in P.
The leftmost Szilard language of a grammar G is Sz (G) = {Szp(w)|w € L(G), D
is a leftmost derivation of w}.

Consider SZ(X) = {Sz(G)|G is an X-grammar} and SZL(X) = {Sz5:(G)|G is
an X-grammar}, the classes of Szilard languages and leftmost Szilard languages as-
sociated with X-grammars, where X € {REG,CF,CS, PS}. It is well known that
SZ(REG) C REGL, SZ(CF) and CFL are incomparable, SZ(PS) C CSL and
SZL(PS) C CFL. Concerning the time and space of Turing machines recognizing
Szilard languages, the best upper bounds known so far are SZ(PS) C NTIM E(n?),
SZ(CF) C DSPACE(logn), and SZL(PS) C DSPACE(logn) [24], [38].

An indexing ATM [7] is an alternating Turing machine that is allowed to write
any binary number on a special tape, called index tape. This number is interpreted
as an address of a location on the input tape. With 4, written in binary on the index

SThat is a derivation that leads to a word in the language.

tape, the machine can read the symbol placed on the i cell of the input tape. Using
universal states to relate different branches on the computation, an indexing ATM
can read an input string of length n, in O(logn) time. For the formal definition and
complexity results on ATMs the reader is referred to [4], [7], and [41].

The next results concerning the Szilard languages of CFGs, CSGs, and PSGs are
provided in [9)].

Theorem 1 FEach language L € X, X € {SZ(CF),SZL(CF),SZL(CS),SZL(PS)}
can be recognized by an indexing ATM in O (logn) time and space.

As a consequence of Theorem 1 and the properties of ATMs [41], we have
Theorem 2 SZ(CF),SZL(CF),SZL(CS),SZL(PS) c NC' C DSPACE(logn).

Due to the weak restrictions imposed on the types of rules and derivation mech-
anism, the Chomsky hierarchy is a sparse hierarchy. However, if restrictions are
imposed on rules and on the classical derivation mechanism in CGs, this hierarchy
can be substantially augmented with a rich variety of language classes. A possibility
to achieve this goal is to make use of regulated rewriting mechanisms which con-
sists of several filtering and controlling constraints imposed on derivations. These
constraints may allow or forbid some derivations to develop, by generating terminal
strings. For formal definitions and results concerning the large variety of regulated
rewriting mechanisms the reader is referred to [12], [14], and [15].

In the sequel we only deal with matriz grammars, random context grammars, and
programmed grammars. We describe the derivation mechanism for these regulated
rewriting grammars and we present new results concerning the complexity of the
corresponding Szilard languages.

3 Szilard Languages of Matrix Grammars

Matrix grammars (MGs) are regulated rewriting grammars in which rules are grouped
into matrices. A matrix can be applied if all its rules can be applied one by one
according to the order they occur in the matrix sequence. In the case of MGs with
appearance checking a rule in a matrix can be passed over if its left-hand side does
not occur in the sentential form and the rule belongs to a special set of rules defined
within the MG. MGs with context-free rules have been first defined in [1] in order
to increase the generative power of CFGs. The definition has been extended for
the case of phrase-structure rules in [14]. The generative power of these devices has
been studied in [12], [14], and [15]. Formally, a MG is defined as follows.

3.1 Matrix Grammars - Prerequisites

Definition 6 A matriz grammar with appearance checking (MG?°) is a quintuple
G = (N,T,S,M,F) where S is the axiom, N and T, N NT = (), are finite sets
of nonterminals and terminals, respectively, M = {my, ma, ...,my} is a finite set of
finite sequences of rules of the form m; = (Pm; 1, Pm; 2, -+ P k.), where each Pmy i
is an unrestricted rule over NUT, 1 <14 < k:mj, k:mj >1,1<j<k,and F is a subset

of the rules occurring in the elements of M, i.e., F' C {pmj’r\l <ji<k1<r< km].}.
A matriz grammar without appearance checking has F = ().

Note that, if all rules in M are phrase-structure (PS), context-sensitive (CS),
context-free (CF), or regular (REG) rules then G is a PS, CS, CF, or REG matrix
grammar, respectively.

Definition 7 Let G = (N, T,S,M,F) be a MG and V = N UT. We say that
x € VT directly derives y € V* in appearance checking mode by application of a
rule p of the foom o« — 3, a € (NUT)*N(NUT)* and g € (N UT)*, denoted by
T :>gc y, if one of the following conditions holds i. x= x1axs and y= x18x2, or ii.
rule o — [is not applicable to x, i.e., « is not a substring of x, p € F, and = = y.

Note that, if rule p in Definition 7 satisfies condition 7., then we say that p is
effectively applied. For the case of MGs without appearance checking only condition
i. has to be checked, and then instead of z =) y the notation x = y is used.

Definition 8 Let G = (N,T,S,M,F) be a MG (or a MG if F = ()) and V =
NUT. For mj = (Pm;,1,Pm;.2s - Pmj ko)s Km; > 1, 1 < j <k, and z,y € V*, we
define a derivation step in G, denoted as z =pn,; y, by © = xg #Z;jﬂl 1 =>]“Dfnj’2
T2 :,\gfnjﬁ égfnj’kmj Thy, = Y (and by z = xg =pmy1 TL Zp o L2 pp s
:ij,kmj Thyp, =Y if ' =0). The language L(G) generated by G is defined as
the set of all words w € T such that there is a derivation D : S =my, Y1 =my,

Y2 =my, ...ﬁquw,lgjigk,lgigq.

If we denote by L(M,X) and L(M,X,ac) the class of languages generated
by MGs and MGs with appearance checking, respectively, with X-rules”, X &
{REG,CF,CF — \,CS, PS}, then the following inclusions hold [12], [14], [15].

1. CFL C L(M,CF — \) C L(M,CF — \,ac) C CSL C L(M,CF,ac) = RE,
2. CFLC L(M,CF —\) C L(M,CF) C L(M,CF,ac) = RE,
3. L(M,X)=L(M,X,ac) = XL, X € {REG,CS, PS}.

Since rules in a MG are arranged into matrices, and rules inside each matrix are
applied in a predefined order, for the case of MGs it is more convenient to associate
labels with matrices than with rules. In this manner each terminal derivation in
a MG can be expressed as a word over the set of labels associated in one-to-one
correspondence with matrices in the grammar, such that labels are concatenated in
the same order they have been used during the derivation. Informally, the Szilard
language associated with a MG is the set of all words obtained in this way. In the
sequel, for the sake of simplicity, we use the same notation both for a matrix and
the label associated with it. Formally, we have

Definition 9 Let G = (N,T,S, M, F) be a MG, M = {mq,ma,...,my} the set of
matrices of G, L(G) the language generated by G, and w € L(G). The Szilard word
of w associated with the derivation D: S =, 41 =m,, Y2 =m, - =m,, win G is
defined as Szp(w) = mj;mi,...m4,, mi; € M, for some ¢ > 1,1 <i; <k, 1<j<gq.
The Szilard language of G is Sz(G) = {Szp(w)|w € L(G), D is a derivation of w}.

"By C'F — \-rule we denote a non-erasing context free rule, i.e., a rule of the form o — 3, where
a€N,Be(NUT) .

We denote by SZM(X) and SZM(X) the classes of Szilard languages associ-
ated with matrix grammars and matrix grammars with appearance checking with
X rules, X € {CF,CS, PS}, respectively.

Note that with respect to matrices, MGs are nondeterministic devices. At each
step of derivation the grammar nondeterministically chooses which matrix is applied,
if this can be applied. Once a matrix becomes active, it works deterministically, in
the sense that the order in which the rules are applied is predefined by their order
in the matrix sequence. However, the order in which multiple occurrences of a
nonterminal in a sentential form are rewritten, is still nondeterministically chosen.
A possibility to reduce the high nondeterminism in MGs is to impose an order on
which nonterminals occurring in a sentential form can be rewritten. As in the case
of CGs, the most significant is the leftmost derivation order [13], [14], [18], [42]. In
this paper we focus only on three types of leftmost derivation, defined in [14] for
MGs with context-free rules, as follows.

Definition 10 Let G = (N, T, S, M, F) be a MG. A derivation in G is called

e leftmost-1 if each rule used in the derivation rewrites the leftmost nonterminal
occurring in the current sentential form,

o [eftmost-2 if at each step of derivation the leftmost occurrence of a nonterminal
which can be rewritten (by first rules of matrices that can be effectively applied,
with no restrictions on the other rules) is rewritten,

e leftmost-3 if each rule used in the derivation rewrites the leftmost occurrence
of its left-hand side in the current sentential form.

Note that, the above definition is universally applicable for regulated rewriting
grammars such as random context or programmed grammars.

In terms of matrices, for the case of leftmost-1 derivation, in MGs without ap-
pearance checking, each rule in the sequence that defines a matrix must rewrite the
leftmost nonterminal occurring in the current sentential form (otherwise the ma-
trix cannot be applied in the leftmost-1 derivation manner). In the case of MGs
with appearance checking, if a certain rule of a matrix cannot rewrite the leftmost
nonterminal, because the nonterminal rewritten by the rule does not occur in the
sentential form, then the rule is passed over if it belongs to F'. Otherwise, i.e., the
nonterminal rewritten by the rule occurs in the sentential form, but this is not the
leftmost nonterminal in the sentential form, then the rule, hence the matrix, cannot
be applied in the leftmost-1 derivation manner.

A matrix is applicable in leftmost-2 derivation manner if the first rule in the
matrix sequence rewrites the leftmost nonterminal that can be rewritten by a matrix.
Hence, a matrix m; can be applied in leftmost-2 derivation manner, if the first rule
of m; (that can be effectively applied, for the case of appearance checking) rewrites
the first occurrence of a nonterminal X, and no other matrix m; exists such that
the first rule in mj (that can be effectively applied) rewrites a nonterminal X',
where X’ occurs before X in the sentential form on which m; is applied. No other
restrictions are imposed on the other rules of m;.

A matrix is applicable in leftmost-3 derivation manner if each rule of the matrix
rewrites the leftmost occurrence of its left-hand side occurring in the sentential form.
If a certain rule in the matrix sequence cannot rewrite the leftmost occurrence of its
left-hand side (because this does not occur in the sentential form) then the rule is
passed over if this belongs to F'.

Szilard languages associated with leftmost-i, i € {1,2, 3}, derivations are defined
in the same way as in Definition 9, with the specification that D is a leftmost-:
derivation of w. We denote by SZML;(X) and SZM L$“(X) the classes of leftmost-
i, 1 € {1,2,3}, Szilard languages associated with MGs and MGs with appearance
checking with X rules, X € {CF,CS, PS}, respectively.

Henceforth, in any reference to a MG G = (N,T,A;, M, F), A; is considered
to be the axiom, N = {Aj, Ag, ..., Ay, } the ordered finite set of nonterminals, and
M = {mi,mg,...,my} the ordered finite set of labels associated with matrices in M.
Each matrix m;, 1 < j <k, is a sequence of the form m; = (py; 1, Pm; 2, s P o),
km; > 1. Unless otherwise specified (see Chapter 6), each pp,», 1 < 7 < kyy,, is
a context-free rule of the form Qe = Bm].,r, O, € N and ij,r e (NUT)*.
If ﬁmj,r € T*, then Pmjr 18 called a terminal rule. Otherwise, Pmyr 18 called a
non-terminal rule.

We define the net effect of rule py; -, 1 <1 < ki, with respect to nonterminal
A; € N, 1 <1 <m, by the difference del (pmj,r) = |ﬁmj,r|Al - ’O‘mj,r’Al-

If G'is a MG without appearance checking, then the net effect of matrix m; with

respect to nonterminal 4; € N, 1 <1 < m, is the sum sy4,(m;) = Ef:{del (Pmjr)-
To each matrix m; we associate a vector V(m;) € Z™ defined by V(m;) = (54, (m;),
54,(m;), ..., 54,,(m;)). Depending on the context, the value of V' (m;) taken at the
I*" place, 1 <1< m, i.e., Vi(m;), is also denoted by Va,(m;) = s4,(m;).

If G is a MG with appearance checking, then a policy of a matrix m; € M,
denoted by K?, is a choice of m; of using, during the derivation, a certain sub-
sequence of matrix m; obtained by dropping out some rules that occur in the
same time in m; and F. Hence, if the policy E? is defined by the subsequence

q q

m; = (pmjvl’pmj72’“'7pmj7£$nj) of my, then rules in m; occur in the same order

they occur in m;. The net effect of matrix m;, with respect to policy E? and

q
the nonterminal A4; € N, is defined by s, (E?) = Zfi’idel (Pm;,r). To each policy
Zg, identified by the sequence m?, we associate a vector V(E;I») € Z™ defined by
V(K;I-) = (s4 (E;Z),SAQ(E;I-), ...,sAm(Z?)). The value of V(E;I») taken at the I'* place,
1 <1< m, is denoted by Vi(£) = Va,(£]) = sa,(£).

3.2 On the Complexity of Unrestricted Szilard Languages

In this section we focus on Szilard languages of MGs with CF rules, with or without
appearance checking. The case of Szilard languages of MGs with CS and PS rules is
briefly discussed in Section 6. For Szilard languages associated with MGs without
appearance checking and CF rules we have the next result.

Theorem 3 FEach language L € SZM(CF') can be recognized by an indexing ATM
in O(logn) time and space (SZM(CF) C ALOGTIME).

Proof. Let G = (N,T,A1, M, F) be an arbitrary context-free MG, with F' = {).
Consider an indexing ATM A composed of an input tape that stores an input word,
n € M*, of length n, n = n112...n,, an index tape to read the input symbols, and a
(read-write) working tape, divided into three tracks. The first track is of a fixed and
finite dimension and, at the beginning of computation, it stores the Parikh vector
of the axiom V9 ie., V = V£1 =1 and WO = VRZ =0, V(m;), and the net effects
dfa,(pm,) of all rules in my, 1 < j <k, 1 <r < ky,, 1 <1< m. The other two
tracks are initially empty.

Level 1 (Existential) In an existential state A guesses the length of 7 and verifies
the correctness of this guess, i.e., writes on the index tape n, and checks whether
the nt" cell of the input tape contains a terminal symbol and the cell n + 1 contains
no symbol. The correct value of n is recorded in binary on the second track of the
working tape. The first and second tracks are parted by a double bar symbol (]]).
The end of the second track (and the beginning of the third track) is market by
another symbol ||.

Level 2 (Universal) A spawns n universal processes p;, 1 <1i < n.

e On the first process A reads n1 = (py,,1, 0,2 "'7p7]1:kn1)7 and it checks whether
ap, 1 = Ay and sdfa, ., = Vgn o TP dfay o () 21,1 <7 <k — 1, L,
whether the nonterminal oy, r41 rewritten by the (r + 1)*" rule of 1, exists in the
sentential form generated up to the 7" step of derivation in 7;. Process g1 returns

1 if these conditions hold. Otherwise, g1 returns 0.

e For each p;, 2 < i <n—1, A counts the number of occurrences of each matrix
m; € M,1<j <k, in 7 = mno..mi_1. Let us consider that each m; occurs in

(i) of ng) times 0< cg-l) < i —1. Then, for each 1 <[< m, A computes 352 =
VO + Z —1 c Vl(m]) i.e., the number of occurrences of each A; in the sentential
form upon Whlch n; is applied. Consider 7; = (pp,,1,Pn; 2 ...,p%kni) and oy, 1 = Ay,
1 < ¢ < m. A checks whether 5(21_ = 55,21,71 > 1, i.e., whether the matrix 7; can
start the computation. For each 1 < r < k,, — 1, A checks whether® sdfa%T b=
sg,)”,rﬂ + 3i=1 dfay, i1 (Ppiy) = 1, iee., whether the rules py, ,, 2 < r < k;,, can be
applied in the same order they occur in 7;. Process p;, 2 < i < n — 1, returns 1 if
these conditions hold. Otherwise, gp; returns 0.

(n)

e The last process g,, counts the number c; of occurrences of each m;, 1 < j < k, in

™ = .. nn 1, and computes the sums s%) = VIO+Z§:1 cgn)‘/}(;) and s (" out) _
VO + Z Vl(n]) + Vi(nn), 1 <1 < m. Consider 7, = (pnmlapnn,%'-'vpnmkni)v
and oy, 1 = Aqn, 1 < ¢, < m. Process p, returns 1, if sg?n > 1, sdfa,, .1 =
sir) + > dfann,r+1(p7]n:l) > 1, for each 1 < r < k,, —1, and s%’om} =0, for

Qnp,r+1

each 1 <[< m. Otherwise, g, returns 0.
Each of the above processes uses the third track of the working tape for auxiliary

computations, i.e., to record in binary the elements c() 2<i<n,1<j5<k, and

(@)

Xy rtl

Q)

8Here s is actually the sum S4, where ay, r+1 is the I*" nonterminal in N.

10

to compute the sums s%?, 2 <1i<n, sdf%i’rﬂ, 1<r<k,;—-1,1<1i<n,and

(n,out)

sy, 1< I < m. The input 7 is accepted if all p;, 1 < i < n, return 1. If at least
one of the above processes returns 0, then 7 is rejected.

The counting procedure used by each process p;, 1 < i < n, is a function in the
Ug+-uniform NC'. The same observation holds for the summation of a constant
number of vectors or multiplication of an integer of at most logn bits with a binary
constant. Hence, all the above operations can be performed by an ATM in logn
time and space. The out-degree of the computation tree at this level is n. By using
a divide and conquer procedure the computation tree can be converted into a binary
tree of height at most logn. Consequently, the whole algorithm requires O(logn)
time and space.]

Corollary 1 SZM(CF) C NC.

Proof. The claim is a direct consequence of Theorem 3 and results in [41]. The
inclusion is strict since there exists L = {p"|n > 0} € NC' — SZM(CF). O

Corollary 2 SZM(CF) Cc DSPACE(logn).
Proof. SZM(CF)C NC! C DSPACE(logn). O

Let G be a context-free MG with appearance checking. When reading a symbol
ni, 1 < i < n, as in the proof of Theorem 3, an indexing ATM A cannot deduce
which of the rules in F' have been previously applied or not. By using a simulation
a of MGs by off-line Turing machines (henceforth TMs) we have the next result.

Theorem 4 Each language L € SZM®(CF) can be recognized by an off-line de-
terministic Turing machine in O(logn) space and O(nlogn) time (SZM*(CF) C
DSPACE(logn)).

Proof. Let G = (N,T, A1, M, F) be a context-free MG with appearance checking.
Denote by P = {ps,, ey, .., P, } the ordered set of productions in M, where £, is
the unique label associated with the ¢** production in P, and each pe, is a rule of
the form oy, — By, with ap, € N, B, € (N UT)*, that may belong to one or
more matrices. Let B be an off-line deterministic Turing machine (with stationary
positions) composed of an input tape that stores an input word n € M* n =
M72---Mn, of length n, and a (read-write) working tape. For each rule py,, B records
on the working tape, the ¢, symbol, the left-hand side of py, (i.e., the nonterminal
ay,), and the net effects of rule py , with respect to each nonterminal 4; € N.
Besides, any rule in P N F' is marked on the working tape by a symbol §. In this
way each production in m; has associated a unique label /., and m; can be seen as
a sequence of productions of the form p,,, whose characteristics, i.e., the rule’s left-
hand side, the net effects with respect to each nonterminal in N, and the f symbol,
can be read from the working tape. In order to be readable all these characteristics
are separated by a special symbol. Since each matrix is a finite sequence of rules, and
the net effect of a rule, with respect to a certain nonterminal in NV, does not depend

11

on the length of the input string, to record the rules’ characteristics B requires a
constant amount of time and space (regarding the length of input).

At the beginning of the computation the working tape is empty. From an initial
state qo, in stationary positions, i.e., by reading no symbol, B records (in constant
time) the characteristics of all rules in P. At the right-hand side of these character-
istics B books m blocks, each of which is composed of O(logn) cells. These blocks
are used to record, in binary, the Parikh vectors associated with sentential forms.
We refer to these blocks as Parikh blocks. For the moment, B uses the first cell of
each Parikh block to record the Parikh vector V' of the axiom, i.e., V{ = VXI =1
and VlO = Vol =0, 2 <[< m. The net effects of the rules in P and the Parikh
blocks are each separated by a L symbol. Denote by ¢. the state reached at the end
of this procedure. Then B continues with the next procedures.

By, ji: B searches for the very first rule py, j; in m1 = (Pyy, 15 P25 s Pk,)
such that p;, ;, rewrites the axiom. This can be done by letting B when reading
N1, pass from state g. to state gy, 1, and from state ¢,, ; (in stationary positions) to
state gy, j+1, 1 < j < j1 — 1, and checking for each rule p,, ;, when entering in gy, ;,
whether Ay # ay,, ; and py, ; € F (so that p,, ; can be skipped), 1 < j < j; —1, and
whether Ay = ay), j,, when entering in state gy, j,. Suppose that rule p,, ;, with the
above properties, is labeled by £s,, i.e., py, j, = pe, - B adds the net effect of rule
Ply, s with respect to nonterminal A4; to the value provided by V,°, for any 1 <1 < m.

Hence, B computes the sums sdf m’h) =V + df4,(pe,,). For each 1 <1 <m, the

I Parikh block used to record Vl is now used to record sdfﬁgl 9 i binary.
By, ,j»: B searches for the very first rule p,), ;, in 71, that can be applied after rule
P g1 = pe,, - This can be done by letting 55, in stationary positions, pass form state

qn,j to state g, jy1, 1 <J < jg — 1, and checking for each rule p,, ;, when entering

771 Jl

in the state gy, j, whether sdfa = 0 and p,, ; € F (ie., py; can be skipped,

J1 < j < jo—1), and whether sd 771’]1 > 1, when entering in state ¢, j,. Suppose

Any .52

that rule py, j,, with the above properties, is labeled by {z,, i.e., py, j, = ps,,- B
)

adds the net effect of rule py_, with respect to nonterminal A;, to sdf (n1.31) g

z9)

any 1 <1 < m. Hence, B computes the sums sdf (m.f2) sdf(m’]1 + df 4, (pm,]é) =
Vl +df 4, (pgz1)+dfa, (pgz). The space used to record sdf (1:31) s now used to record
sdfgl’ﬁ) in binary, for any 1 <1 < m.

Suppose that up to the r*" step of derivation in appearance checking in 71, B
has found a subsequence (py, j,, Pni.jos --s Prrj,r) Of 71, composed of rules that can be
effectively applied and that the sentential form obtained at the 7" step of derivation
in 71 contains sdfgl“’m VO +3°7_1 dfa,(py, j;) nonterminals 4;, 1 < 1 < m. The

binary value of sdf 4, (1) , 1 <1< m, can be found on the [** Parikh block.
By, jri: B searches for the very first rule py, j ., in 771, that can be applied after
rule py, j.. This can be done by letting B, in stationary positions, to pass form

state g, ; to state q;, ji1, jr < J < jry1 — 1, and checking for each rule py, ;, when

entering in state ¢, ;, whether sdfs 171 ’]T)

whether sdf{"“") > 1. Then B computes sdfgl’jrﬂ) = sdfﬁgl’j’") + df 4, (D1 jy11)-

Any,Gr g1

=0and pqa, ; €F, jr <j <jrt1—1, and

12

The space used to record sdfﬁgl’j’”) is now used to record (in binary) sdff(gl’j“’l),
1<l <m.
B continues in this way until a subsequence 6%1 = (Py1,j1> Pt o e Py 5) of n1,
1

is found such that the rules in £ can be effectively applied one after the other in
the order they occur in £] , and all rules in 7, that do not occur in] are skipped
because they cannot be effectively applied according to Definition 7. If jgm #* ki,
then B continues to check, by passing from state g, ; to ¢y, j+1, jf?n <j<ky—1,
whether rule p,, ; can be passed over because «;), ; does not occur in the sentential
form obtained at the j* step of derivation, in appearance checking, in ;. If no such
a subsequence of n; can be found, then 7 is rejected.

Suppose that all rules in 77; can be applied in appearance checking, and at the
end of the checking procedures described above, B reaches the state Ok, - From
state qn, k,, ; B enters in state gy, 1, by reading 12 = (Pp,,1, Po.2, ooy Do ey), and from
state gy, j, B passes to state ¢, j+1, j1 < j < ky, — 1, by checking, in stationary
positions, whether all rules in 72 can be applied in appearance checking. This can
be done by consecutively applying procedures of type By, j,, 1 <7 < £l , where (],
= (Pna,j1s Pra.jos ~--7pn27j§%) is a subsequence of 1o composed of rules that can be

effectively applied duringzthe derivation inside 72. The Parikh vector of the sentential
form obtained after the application of matrix 7o, in appearance checking, is recorded
on the m Parikh blocks. B proceeds in the same manner for each matrix n;, 3 <7 < n.

The input is accepted if, for each n;, a policy £} = (Prisjrs> Prs o '-'vpnzngg,_) of n;
can be found, such that all rules in £} can be effectively applied, while rules inlm that
are not in £ are skipped according to Definition 7. Besides, for the last matrix 7;, in
the last state gy, x, , B also checks whether the Parikh vector of the last sentential

form contains no nonterminal, i.e., whether sdf4, = V;°+ 37, Ziig“l dfa,(pn, 4,) = 0,
forany 1 <1 <m.

As MGs work sequentially, the length of each sentential form is linearly bounded
by the length of the input. Hence, O(logn) cells are enough in order to record,
in binary, the number of occurrences of each nonterminal A; in a sentential form.
Therefore, the space used by B is O(logn). Each time reading an input symbol, B
visits O(logn) cells in the working tape, and the constant number of auxiliary oper-
ations with binary numbers (performed at each step of derivation) require O(logn)
time. Hence, B performs the whole computation in O(nlogn) time. a

Corollary 3 SZM*(CF) Cc DSPACE(logn).

Proof. The strict inclusion of SZM®*(CF) in DSPACE(logn) follows, e.g., from
the existence of the language L= {p"|n > 0} DSPACE(logn) — SZM®*(CF). O

3.3 On the Complexity of Leftmost Szilard Languages

MGs are highly nondeterministic rewriting systems. First, due to the nondeter-
ministic manner in which nonterminals can be rewritten, and second, due to the
appearance checking restrictions on which rules in a matrix can be passed over. The
second type of nondeterminism can be avoided by omitting the appearance checking

13

mode. The first type of nondeterminism can be reduced by imposing an order on
the manner in which nonterminals are rewritten, similar to leftmost derivations in
CGs. As in the case of CGs, the leftmost derivation order leads to more interesting
results. In this section we focus on the complexity of Szilard languages associated
with leftmost-i derivations introduced in [14], i € {1, 2,3}, (Definition 10). However,
results provided for these three types of derivations can be generalized for several
other leftmost derivations introduced in [13], [18], or [42]. Hence, proofs in this sub-
section can be considered as “prototypes” for a large variety of complexity results
concerning several types of leftmost Szilard languages. For the case of leftmost-1
Szilard languages we have

Theorem 5 FEach language L € SZML(CF) can be recognized by an indexing
ATM in O(logn) time and space.

Proof. Let G = (N, T, Ay, M, F) be a MG with CF rules and without appearance
checking, working in the leftmost-1 derivation manner. Consider an indexing ATM
A having a similar configuration as the machine used in the proof of Theorem 3, and
let n € M*, n = m11m2...m, be an input word of length n. In order to guess the length
of i, A proceeds with the procedure described at Level 1 (Existential), Theorem 3.
Then A spawns (Level 2) n universal processes p;, 1 < i < n.

e On the first process A reads 71, where n1 = (py, 1, P12, ...,pm,km), and it checks
whether ay, 1 = Ay and sdfa, ., = Vi + 301 Hagy iy (Pp) 21,1 <17 <

Any,r41

ky, — 1, i.e., whether the nonterminal o), ,41 rewritten by the (r + 1) rule of 7,
exists in the sentential form generated up to the 7 step of derivation performed
by n1. Then A checks whether rules in 7; can be applied in a leftmost-1 derivation
manner. In order to check this property, from right-to-left in n;, A checks whether
each rule py, », 2 < r < k;;,, can rewrite the first nonterminal occurring on the
right-hand side of the previous rule py), ,—1, if this is a non-terminal rule. If p,, 1
is a terminal rule, then A searches backward in n; for the non-terminal rule that
produces the nonterminal rewritten by rule py, .. In this respect A existentially
guesses (Level 3) an integer s (finite in this case) such that the rule p,, ; is a non-
terminal rule. A counts the number of rules existing in 7; between rule p,, s and
rule py, , (excluding p,, »). Suppose that this number is s,, i.e., s, = r —s. Then,
A counts the number of nonterminals that each rule existing between p,, ;41 and
P ,r—1 has on its right-hand side. Suppose that this number is s,. For s, and s,
A checks whether the (s, — s,)" nonterminal existing on the right-hand side of rule
Pn,s equals the nonterminal rewritten by rule p,, ., i.e., oy, ,.

If p,, s is the right rule that produces in the sentential form the nonterminal
rewritten by rule p;, ., and this is the 7" nonterminal occurring on the right-hand
side of rule p, s, then for the case of leftmost-1 derivation order, the following
relation must hold 7 + s, = s,. This is because each nonterminal produced in the
sentential form by rules used in a leftmost-1 derivation manner, between p;, ; and
Py (including nonterminals existing up to the 7" nonterminal on the right hand
side of py, s), must be fully rewritten by these rules. The nonterminals existing
in the sentential form before p,, , is applied will be rewritten only after the new
nonterminals produced between p,, s and p;, , are fully rewritten.

14

However, guessing an integer s that satisfies the above condition is not sufficient,
since between p;), 1 and p,, ,, there may exist several rules p;, s with this property.
This may happen for instance, when the right-hand side of p,, s has the length
greater than s, — s, and all nonterminals on the right-hand side of p,, s, are equal
with ay, . In order to eliminate those rules p,, s that does not produce the real
nonterminal rewritten by py), ., for each s found at Level 3, A universally branches
(Level 4) all rules used between p,, s and py, ». On each branch that takes the rule
Py 1> 8 <1 <r, A checks whether

1. ay, ;1 equals oy, r,

2. if ay, » is the 7" nonterminal occurring on the right-hand side of rules p, s,
54 is the number of nonterminals produced between rules p,, 11 and p;, ;—1, and
5, = | — s is the number of rules used between rule p,, , and p,, ; (excluding rule
Pn1,1), then the following condition holds 7 + 5, = 5.,

3. the number of nonterminals oy, , rewritten between rules p;, s and p,, ;1 are
equal with the number of nonterminals «, , produced between these rules, up to
the 7" nonterminal occurring on the right-hand side of Pn1,s (excluding the th
nonterminal).

On each universal branch A returns 0 if conditions 1 — 3 hold, which means that
the 7' nonterminal occurring on the right-hand side of rule Dni,s 1S not the real
nonterminal rewritten by p;, ,. Hence, the existential branch that guessed s, must
be canceled. Otherwise, A returns 1. If all universal branches spawned for p,, s
at Level 4, return 1, then the rule p,, ; is the rule that produce the nonterminal
rewritten by p;, s in leftmost-1 derivation manner. In this case g returns 1.

e For each p;, 2 < i < n, A proceeds as follows. A counts the number of
occurrences of each matrix m;, 1 < 7 < k, in n® = mne..mi—1. Suppose that

this number is c§i), 0 < c§i) < 4 —1. Then, for each 1 <1 < m, A computes the

values sl(i) =V + Z§:1 c§i)1/l(mj), i.e., A computes the number sl(i) of occurrences
of nonterminal A; in the sentential form upon which 7; is applied. Consider 7; =
(Pyi,15 Pni 2, "'>pm,kni) and oy, 1 = Ag;, 1 < ¢ < m. Then A checks whether sg) =

(4)

Sof,,i,l > 1, i.e., whether the matrix 7; can start the computation. For each 1 <
r < ky, — 1, A checks whether? 8dfo, i1 = s + 211 ey, oia (P 0) > 1, Le,

Qi r41
whether the rules py, ., 2<r<k,,, can be applie:i in the same order they occur in 7;.

Then, A checks whether rules in 7; can be applied in a leftmost-1 derivation
manner. In this respect, A checks, from right-to-left in the sequence 7; = (py, 1,
D25 oo pm,kni)7 whether each rule py, ,, 2 < r < k), rewrites the first nonterminal
occurring on the right-hand side of the previous rule p,, ,_1, if this is not a terminal
rule. If p,, ,_1 is a terminal rule, then A first searches backward in 7;, as in @,
for an integer s such that rule p;, s produces in the sentential form the nonterminal
rewritten by p,,,. If no rule with this property can be found in 7;, A searches
backward in Y = nymy...n;_1 for a matrix 1, such that there exists a non-terminal
rule in 7, that produces the nonterminal rewritten by py, ;.

In this order, A spawns ¢ — 1 existential branches (Level 3), and each branch

9Note that s @ I

a1 nonterminal occurring in
V(mj)

is actually the sum s,’ where o), r+1 is the

15

takes the matrix n,, 1 < v < i — 1. Suppose that 7, is defined by the sequence
(Pry,1> P25 -+ Py ke,)- A checks whether there exists a non-terminal rule py, s,
1< s < ky,, in n,, such that p,, s produces the nonterminal rewritten by p;), . This
is performed as follows.

Denote by s, the number of rules used in the derivation process between rule p,, s
of matrix n, and rule p,, ,—1 of matrix 7; (including rules p,, and p,, »—1). Suppose
that ¢ of these rules (without counting the rule p,, 5) are non-terminal. Denote by s,
the total number of nonterminals produced by the ¢ non-terminal rules used between
Pn;,s+1 and py, 1. Then, as in process g1, A checks whether oy, , is the (s, — sq)th
nonterminal occurring on the right-hand side of rule p,, 5. Note that s,, ¢, and s,
can be computed by A through a trivial counting and summation procedure.

Each existential branch spawned at Level 3, is labeled by 1 if there exists a rule
Pn,,r With the above properties. For each existential branch at Level 3, labeled by 1,
A checks whether the 7" nonterminal occurring in 3, s is indeed the nonterminal
auy, » Tewritten by rule py, ., i.e., no other rule used between rule p,, ; of matrix o
and rule py, , of matrix 7; rewrites the 7" nonterminal ay, r, occurring in £, . In
this respect A universally branches (Level 4) all symbols occurring between 7,41
and 7;—1. There are v — ¢ — 1 such branches. On each branch holding a matrix 7,
defined by (py,,1, 0,25 s Pk,)» © < I < i, A settles on a non-terminal rule py, s,
1 <5< ky,, and it checks whether

1. ay, 5 equals oy, 1,

2. if ayy, - is the 7" nonterminal occurring on the right-hand side of rule Pro,rs Sq 18
the number of nonterminals produced between rules p,, s+1 and py, 5-1, and 3, is the
number of rules used between p,, s and p,, s (excluding rule p,, 5), then 7 + 5, = 5,,

3. the number of nonterminals a, , rewritten between rules p,, s and py, -1 is
equal to the number of nonterminals o, , produced between these rules, up to the
7" nonterminal occurring on the right-hand side of rule Pn,,s (excluding the th
nonterminal).

Besides, for p,, as in Theorem 3, A checks whether at the end of the application
of matrix 7, the sentential form contains no nonterminal, i.e., whether condition

4. sl(n’am) = 0, where sl(n’om) =V + Z?zl cg-n)Vl(nj) + Vi(nn), 1 <1 < m, holds.

On each universal branch (at Level 4) A returns 0 if conditions 1 — 3 hold.
Otherwise, it returns 1. If all universal branches spawned for the value s at Level 4
return 1, then rule p,, , (found at Level 3) is the rule that produces the nonterminal
rewritten by py, , in the leftmost-1 derivation manner. Then the existential branch
spawned at Level 3, corresponding to this s value, will be labeled by 1.

Each process g;, 2 <i < n — 1 returns 1 if there exists a non-terminal rule p,, s
in 7, with the above properties. Otherwise, g; returns 0. If conditions 1 — 4 hold,
©n, returns 1. Otherwise, it returns 0.

Note that, for each p;, 1 < i < n, A does not have to check whether matrices
1, and 7; can be applied in a leftmost-1 derivation manner. Nor even if they can
be applied, according to the definition of a derivation step in a MG. If n, and
do not satisfy these requirements, then the wrong logical value returned by p; is
“corrected” by the 0 value returned by processes g, or g, since all these processes
are universally considered.

As in Theorem 3, each of the above processes uses the third track of the working

16

tape for auxiliary computations, i.e., to record in binary the elements cy), 2 <11 <n,
1 < j <k, and to compute the sums 51(1)7 2 <i<n, sdfanwﬂ, 1<r <k, —1,

1 <i<n,and sl(n’out), 1 <1< m. It is easy to estimate that A performs the whole
computation in logarithmic time and space. O

Corollary 4 SZML,(CF) c NC'.
Corollary 5 SZML,(CF) C DSPACE(logn).

The algorithm described in the proof of Theorem 5 cannot be applied for the case
of leftmost-1 Szilard languages with appearance checking. The explanation is that,
in the proof of Theorem 5, for any matrix n;, 2 < i < n, A has to guess a policy of a
matrix 7, that contains a non-terminal rule that produces the nonterminal rewritten
by rule p,, . of n;. However, even if process g, returns the true value, which means
that at its turn g, can be applied in a leftmost-1 derivation manner on the substring
n11n2.--NMy—1, the process p; cannot “see” with which policy 7, works in a leftmost-1
derivation manner, since all branches (or processes) spawned at the same level of
the computation tree of A are independent on each other. Hence, the policy of
©, that provides the non-terminal rule that produces the nonterminal rewritten by
Pni,r, May not work in leftmost-1 derivation manner upon 1192...m,—1. That is why,
for the case of leftmost-1 derivations in matrix grammars with appearance checking
another algorithm should be applied.

In the sequel, we focus on the letfmost-i, i € {1, 2, 3}, derivation procedures and
we describe an ATM that recognizes letfmost-i, i € {1,2,3}, Szilard languages in
logarithmnic space and square logarithmnic time.

In order to simulate letfmost derivations in matrix grammars and to check
whether a given word n € M*, n = mna...n,, belongs to the SZML(CF) class,
i € {1,2,3}, for each matrix 7;, 1 < i < n, the ATM must have information concern-
ing the order in which the first occurrence of each nonterminal A; € N, 1 <[< m,
occurs in the sentential form at any step of derivation. This can be obtained either
by sequentially reproducing the derivation up to the i step on which 7; is applied,
or by letting the ATM to guess the possible order in which the first occurrences of
nonterminals in N occur in the sentential form on which 7; is applied. Then the
ATM has to check whether the guessed order is correct, in the sense that 7; can be
applied in letfmost-i, i € {1,2,3}, derivation manner on the sentential form built
upon this order and whether the computation leads to a terminal derivation. In
order to describe the way in which the parallel procedure works we introduce the
notion of ranging vector. A ranging vector associated with a matrix m;, 1 < j <k,
or a policy of this matrix, provides the order in which first occurrences of nontermi-
nals in IV occur in the sentential form obtained after m; has been applied at that
step of derivation.

Definition 11 Let G = (N, T, A1, M, F') be a MG with appearance checking, where

M = {mq,ma,...,my} is the ordered finite set of matrices, N = {A1, Ao, ..., A, } the

ordered finite set of nonterminals, and SFj¢ the sentential form obtained after matrix
J

mj, 1 < j < k, with policy E?, has been applied at a certain step of derivation in G.

17

The ranging vector associated with the sentential form SFy« and policy E?, denoted!®
J
by S(£3), is a vector in N defined as
0, if A; € N does not occur in SFp, i.e., |[SFpula, =0,
J J

ay _
S l(fj) - if the first occurrence of A; in SFjq is the i element in the
J

2

order of first occurrences of nonterminals from N in SFj.
J

Note that, if matrix mj with policy E?,, is applied in the Szilard word before
matrix m; with the policy 6‘}, then the ranging vector S (6?) can be nondeterminis-
tically computed knowing the ranging vector S (E?,), for all leftmost-i, i € {1,2,3},
derivation cases.

Example 1 Let S(K;I.,) = (3,0,2,1,0) € N be the ranging vector associated with

the sentential form obtained after the policy E;I., of matrix mj; has been applied at

a certain step of derivation, i.e., SFy = AyX4A3X34A1X34, X4 € ({A4} UT)*,

X34, X34 € ({A3, A4} UT)* (such tlriat [SEy)|a, = 1). If 6;1- is identified by the

sequence m] (Ay — tAs, Az — Ag), t € T, fchen if mg rewrites the first occurrence

of A4 in SF@ql and the second occurrence of Ag, then the sentential form obtained
J

after E;I- has been applied, in the leftmost-2 derivation manner, may look like

] SFéq = tAs A4 X1 A3A5 X3 4A1X374, X4 € ({A4} UT)*, X374,X374 S ({Ag,A4} U
T)*, ie., S(t9) = (5,4,3,2,1),

] SFZQ = tA5A4X4A3X4A1A2X374, X4,X4 € ({A4}UT)*, X374 € ({Ag,A4}UT)*,
ie., S(eq) (4,5,3,2,1),

° SFEQ =tA5A3A4 X4 A X3 4A1X3’4, Xy € ({A4} UT)*, X3’4,X374 € ({Ag,A4} U
T)*, ie., S(£9) = (5,4,2,3,1), or like

. SFZq = tA5A3A2X3A1A4X374, X3 € ({Ag} U T)*, X374 S ({A3,A4} U T)*, 1.e
S(Eq) (4,3,2,5,1).

Thus the sentential form SFy« depends on the second occurrence of A3 and Ay
J
in SF, ¢a,- Note that, for the case of leftmost-2 derivations, if say, the first rule in E?
J

rewrites As, then K? is eligible to be applied in leftmost-2 derivation manner if and
only if there is no other policy of m; and no other matrix, distinct of m;, for which
the first rule in the matrix sequence rewrites A4. The same observations hold when
erasing rules are applied.

For instance, if €q is identified by the sequence mj (Ag > N\ A3 —t), te T,

then if mj rewrites the first occurrence of Ay in SFya and the second occurrence
3’

of Az in SFéq , then the sentential form obtained after Eq has been applied, in the

leftmost-2 derlvatlon manner, may look like

101¢ ¢9 is not yet “decided” or F' = (), then instead of S(£]) the notation S(m;) is used.

18

SFZq = Ay X4 A3t X3 4A1X3’4, Xy € ({A4} U T)*, X3’4, X3’4 € ({Ag, A4} U T)*,
e, S(07) = (3,0,2,1,0),

SFeq = A4X4A3X4A1tX374, X4,X4 S ({A4}UT)*, X3’4 S ({Ag, A4}UT)*, 1.e
S(eh) = (3,0,2,1,0),

SFZq = A3 A4 X4t X3 4A1X374, X, € ({A4} U T)*, X374,X374 € ({Ag,A4} U T)*,
ie., S(Eq) (3,0,1,2,0), or like

Sng = A3tX3A1A4X374, X3 € ({As} U T)*, X374 € ({Ag,A4} UT)*, 1.e
S(eh) = (2,0,1,3,0),

depending on the second occurrence of A3 and A4 in SF, o,

If the matrix m; with the policy Eq defined by the sequence m] = (A4 —
tAs, A3 — Ag), is applied in the leftmost 3 derivation manner on SF’, then after
rewriting the nonterminal Ay, K;z must rewrite only the first occurrence of Az in SE”.
Hence, there are fewer possibilities than in the case of leftmost-2 derivation manner,
to build the ranging vector associated with SFK;;.

In this case, by applying £} defined by m] = (A4 — tAs5, A3 — Ag), on SFypu =
_ _ j
A4X4A3X374A1X374, X, € ({A4} UT)*, X374,X374 € ({Ag,A4} UT)*, we may obtain

° SFeq = tA5 A4 X1 A5 A3 X3 4A1X3,4, X4 € ({A4} UT)*, X3,4,X374 € ({Ag,A4} U
T)*, ie., S(f9) = (5,3,4,2,1),

] SFZq = tA5A2A3X3A4X3 4A1X3 4 X3 € ({A3} UT)*, X374,X374 S ({Ag,A4} U
T)*, ie., S(t7) = (5,2,3,4,1), 0

L] SFZQ = tA5A2A4X4A3X3 4A1X3 4, i.e. S(gq) (5,2,4 3 1)

For the leftmost 1 derivation case matrix m; with the policy E?, defined by the
sequence m = (A4 — tAs5, A3 — Ay), cannot be applied, since there is no possibility
to obtain a new sentential form such that Az, rewritten by the second rule, to be the
leftmost nonterminal occurring in it. Matrix m; with the policy 63-, defined by the
sequence (A4 — A, Ag — t), t € T* can be applied on SFZG_{I = A4X4A3X374A1X374,

J

X, € ({A4} U T)*, X374,X374 € ({Ag, A4} U T)*, if and only if X, = A.

In the sequel we briefly describe an ATM A that checks whether an input word
n € M*, n = mna...n,, belongs to SZML{(CF), i € {1,2,3}. First A guesses
an n-tuple ® = (S(m),S2),...,S(n,)), where each S(n,) is the ranging vector
associated with the matrix 7,, 1 < v < n. There may exist O(c") such n-tuples
of ranging vectors, where ¢ is a constant that depends on the number of vectors
in N™ that can be built upon the set {0,1,...,m}. For instance, if we have the
information that a certain sentential form has only m — s distinct nonterminals,
then there are (m — s+ 1)™ guesses that may provide the ranging vector associated
with this sentential form. Hence, ¢ = O(X"5 (m — s + 1)™). According to this

19

observation, A spawns O(c") existential branches, each of them holding an n-tuple
of type R. A branch will be labeled by 1 if each vector in R, ie., ®, = S(n,),
1 < v < n—1, provides'' a possible order of first occurrences of nonterminals in
N in the sentential form on which 7, ends the v** step of derivation, the matrix
Nv+1 can be applied upon S(n,) in the leftmost-i, i € {1,2,3}, derivation manner,
and whether the derivation performed in the leftmost-i manner by using all ranging
vectors in R, leads to a word in the language.

On each existential branch, A proceeds with an universal and existential level
as follows. A spawns n universal processes p;, 1 < i < n. On each process A
spawns a polynomial number of existential branches, each of them holding a possible
configuration of policies used by matrices occurring in the input word up to the
matrix 7;, and computes the net effect according to this configuration. A guesses
a policy (] and, based on this net effect, checks whether matrix n; with the policy
1. can be applied, in the leftmost-i, i € {1, 2, 3}, derivation manner, on the current
sentential form for which the order of first occurrences of nonterminals in N is
provided by the vector S(n;—1) in ®. Then A checks whether S(7;) is a ranging
vector on which £ may complete the it" step of derivation, in leftmost-i, i € {1,2,3},
derivation manner.

Recall that the policy £I can be applied, in leftmost-1 derivation manner on
the ranging vector S(n;—1) if the first rule in £ rewrites the nonterminal A; for
which Sj(n;-1) = 1, and each rule in £} rewrites the leftmost nonterminal occurring
in the sentential form built according to the information provided by S(n;—1) after
applying the first rule in £7 .

The policy ¢} can be applied, in leftmost-2 derivation manner on the ranging
vector S(n;—1) if there exists an index [, 1 <1 < m, such that the first rule of ﬁ%i
rewrites A; and there is no matrix m;, m; # n;, and no policy E;Inj of mj, 1 <j <k,
such that the first rule in 7, rewrites a nonterminal Ay with Sy(ni—1) < Si(ni—1)-

For the case of leftmost-3 derivation manner A does not have to check the above
leftmost-2 condition, since the first rule of the policy /] is allowed to rewrite the first
occurrence of its left-hand side, i.e., A;, even if there exist several other matrices for
which the left-hand side of the first rule, say A;, may be placed in the sentential form
before Ay, i.e., Sy(ni-1) < Si(ni-1). Hence, for the leftmost-3 derivation case £} can
be applied if the first rule in ¢} rewrites any nonterminal A; for which Sy(n;—1) # 0.

Then A checks whether S(n;) is a ranging vector on which 1. may complete the
ith step of derivation, in leftmost-i, i € {1,2, 3}, derivation manner.

Note that the ranging vector S(n;—1) does not provide complete information
concerning the shape of the sentential form obtained after the application of matrix
ni—1, since S(m;—1) provides only the order of the first occurrences of each nonter-
minal in N. Hence, the position of the second, third, and so on, occurrence of a
nonterminal must be considered according to the order provided by S(n;—1).

To verify whether S(n;) is a possible ranging vector on which £l may complete
the " step of derivation, A builds all possible ranging vectors that can be computed
starting from S(7;—1) in the leftmost-i, i € {1,2,3}, derivation manner. Then A
checks whether S(7;) is one of the ranging vectors computed in this way.

118 (n,) must be the null vector.

20

Each process p; returns 1 if there exists at least one configuration of policies
used by matrices occurring in the input word up to the matrix 7;, and at least one
policy €] of n;, that satisfies the above leftmost-i, i € {1, 2, 3}, requirements.

If all processes 1;, 1 < i < n, return 1 then R is a correct guess and the existential
branch holding this tuple is labeled by 1. The input is accepted if there exists at
least one existential branch, holding an n tuple R, labeled by 1. Otherwise, the
input is rejected.

Note that guesses yielded by different branches at a certain level of the computa-
tion tree of an ATM are independent on each other. If the ranging vectors composing
R are separately guessed by each process g;, 1 < i < n — 1, then A cannot check
whether the policy ¢ that works in a leftmost-i, i € {1,2, 3}, derivation manner on
the ranging vector S(n;—1) yields the same ranging vector for which the policy e
is guessed by process @;+1 to work in a leftmost-i, i € {1,2, 3}, derivation manner
on the ranging vector S(n;). Therefore, A has to guess from the very beginning an
n-tuple R of ranging vectors associated with each matrix in 7 and to universally
check the correctness of this guess through the processes p;. In other words, the
whole n-tuple £ must be seen by all the universal processes p;, 1 <1i < n.

It is easy to observe that the first level of the computation tree associated with
A can be "unfolded”, by using a divide and conquer procedure, into a computation
tree of height O(log ¢™) = O(n) in which each node has the out-degree 2. To record
the R vector A needs O(n) space. Hence, this algorithm cannot be related to the
parallel complexity classes NC! and NC2. In order to improve the linear time and
space resources to logarithmic (the logarithmic uniformity assumptions required by
the NC classes) we divide the input string of length n, into (logn)°8™ substrings
of length logn, and apply the above algorithm for each substring. Briefly, the new
algorithm works as follows.

The ATM A performs a number of logn “iterated” divisions, where n is the
length of the input word. Dividing n by [logn] we obtain!? a quotient Q1 and a
remainder Ry, i.e., n = Q1 [logn]+ Ry, where 0 < R; < logn. Dividing the quotient
Q1 by [logn] we obtain a new quotient Q)2 and a remainder Ry, i.e., n = (Q2 [logn]+
Ry) [logn] + Ry, with 0 < Ry < logn. We continue this procedure until the resulted
quotient can be no longer divided by [logn|. Suppose that @) is this quotient, then
n = ((...((Qe [logn] + Ry) [logn] + Ry_1) [logn] + ...) [logn| + R2) [logn] + Ry, with
1 <@ < [logn] and 0 < R; < [logn], I € {1,2,...,¢}. It is easy to prove that
¢ < logn.

A guesses an Ri-tuple of ranging vectors associated with the first R; matrices
occurring in 1 = m172...n, and checks, similar as in the algorithm described above,
whether the substring 7;72...ng, is valid, according to the leftmost-i, i € {1, 2,3},
derivation procedure. Then A guesses a [logn]-tuple of ranging vectors associated
with matrices placed at the [logn] cutting points in 7 obtained by dividing the
interval [R; + 1...n] into [logn] intervals of length @;. A continues with this routine
for each interval of length ()1 as follows.

A checks, in parallel, whether the first Ry matrices in each @Q-interval forms
a valid substring of a leftmost-i, i € {1,2,3}, Szilard word. Then, in parallel for

12By [a] we denote the largest integer not greater than a, where a is a real number.

21

each Q-interval, A guesses another [log n]-tuple of ranging vectors associated with
matrices placed at the [logn] cutting points in 1 obtained by dividing each interval
of length Q1 — Ry into [log n] intervals of length Q2. This procedure is repeated until
intervals of length @y < logn are obtained. At this point, A checks whether the
substring of i corresponding to the Qg-intervals, are valid according to the leftmost-
i, i € {1,2,3}, derivation order. It can be proved that all cutting points are right
edges of these intervals. If correct ranging vectors can be found for all intervals and
all cutting points, then 7 is a correct leftmost-i, i € {1,2, 3}, Szilard word.

On the other hand, the division operation is a function in the N'C' class'3 [5].
Since A performs a number of logn divisions, the computation tree associated with
A has at least logn levels. At each level A needs O(logc8™) = O(logn) time to
check the correctness of a substring of length at most logn, O(log n) time to perform
the division operation, and O(logn) space (which is reused at each level) to record
the ranging vectors. Hence, the above algorithm requires log? n time and log n space.
More precisely, we have

Theorem 6 Each language L € SZML{(CF), i € {1,2,3}, can be recognized by
an indexing ATM in O (log?n) time and O (logn) space.

Proof. We prove the claim for the leftmost-2 derivation. For the leftmost-1 and
leftmost-3 cases the proof is almost the same. Let G = (N, T, A1, M, F) be a MG
with appearance checking, and A an indexing ATM with a similar configuration as
in the proof of Theorem 3. Let n € M*, n = nin2...nn, be an input word of length
n. To guess the length of 7, A proceeds with the Level 1 (Ezistential), Theorem 3.

Level 2 (FEzistential) Consider the quotient ()1 and the remainder R; of the divi-
sion of n by [logn], where 0 < Ry < [logn]. A spawns O(c°8™) existential branches,
each branch holding an R;-tuple of ranging vectors Rr, = (S(n1), S(n2), ..., S(nRr,)),
where'* ¢ = O(X™ 5 (m — s +1)™) and S(n,) is the ranging vector associated with
matrix n,, 1 < v < R;. Then A checks whether all vectors in Rp, are correct,
according to the leftmost-2 derivation order. This can be done in O(logn) space
and O(logn) parallel time through Levels 3-4.

Levels 3-4 (Universal-Ezistential) A spawns (Level 3) R; universal processes pq()Rl),
1<v<R;.

e On gagRl) A checks whether there exists a policy for 77 that can be applied in

leftmost-2 derivation manner on the axiom A; and ends this step of derivation with
(F1)

the ranging vector S(n;). Process p; '’ returns 1 if these conditions hold.
e On each p&Rl), 2 < v < Ry, A counts the number of occurrences of each ma-
trix mj € M, 1 < 35 <k, in n® = mno..my_1. Suppose that each m; occurs

V) times, 0 < V) < v—1, in n®. A guesses k tuples of integers

15 4() _
J J ¢

j =

131t is actually a function in the logspace-uniform 7C° class [22].

4The constant ¢ depends on the number of vectors in N™ that can be built upon the set
{0,1,...,m}. Here and throughout the paper, ¢ = O(::11(m — s+ 1)™). At page 20 we have
explained the manner in which this constant can be computed.

5Here and throughout this proof, by using an abuse of notation, we denote by c¢; = |m; N F|,

22

(cgf}l),c‘gg),...,cgv;cj_l,cﬁvgej), where cﬁf}q) with 0 < cg-f)q) < cgv) and 2(2121 cgf)q) = cﬁv),

represents the number of times the policy 63 of matrix m;, 1 < ¢ < 2%, can be
bo2%
used when m; is activated on 7(*). Then A spawns (Level 4) j\f”%l):(’)(RlEJ:1)
(v)
(,‘7
On each branch, A computes sl(v) =V + Z?Zl 2:]1 cgf)q)Vl(E?), 1 <1 < m. Suppose
that 7, is a matrix with 2% policies, where ¢,, = |1, N F'|, and that each policy e
1 < g < 2%, is identified by the sequence m¢ =(pj 1, P} o,) pf] e), 1<r<¢gl,
s vy DRSS v

[y — F| <&l < |ny|. Then A computes sdj’agw+1 = 3((;;) . +> -1 dfaZv,T+1(pg7v,l)’
1<r< §gv — 1, and it checks whether

existential branches, each of which holds k tuples ¢;’ (one tuple for each matrix).

Nv,T

L. ngq) 1 > 1, i, py, ; can be applied on) = mna..n-1,
N,
2. sdf,a - >1,1<r<¢g —1,ie, rules of policy £] can be applied one by
Nu,T

one in the order defined by the sequence m] .

3. S(m,_1) is a possible ranging vector with which 7,_; ends the (v — 1) step

of derivation, i.e., Si(n,—1) = 0, if sl(v) = 0, and Si(ny—1) > 0, if Sl(v) > 0,

1 <1 < m. Then A checks whether policy £} of 1,, can be applied on S(7,-1)

in the leftmost-2 derivation manner, i.e., there exists an index [, 1 <[< m,
such that pgwl, the first rule in m{ , rewrites Ay, i.e., Sj(n,-1) # 0, and there is
no matrix mj, m; # 1,, and no policy E‘;’nj of m;, such that the first rule in 6%],
rewrites a nonterminal Ay with Sy (n,-1) < S;(7y—1). Then A verifies whether
S(ny) is a possible ranging vector on which £} ends the vt step of derivation in
leftmost-2 manner. Note that S(n,) can be (nondeterministically) computed
knowing the rules of the policy £] ~applied in leftmost-2 derivation manner on
S(ny—1) (Example 1).

Each @Rl), 2 < v < Ry, returns 1 if there exist at least one tgv)—tuple and at
least one policy £ = of n,, that satisfy the above leftmost-2 requirements. If each

g)?(,Rl), 1 <wv < Ry, returns 1 then Rp, is a correct guess and the existential branch

holding the [logn]-tuple, spawned at Level 2, is labeled by 1.

Level 5 (Ezistential) Let Q2 be the quotient and Ry the remainder of @1 divided
by [logn], 0 < Ry < [logn]. A spawns O(c°8") existential branches, each of them
holding a 2 [log n]-tuple of ranging vectors R%, = (S(ngr,), S(MR,+Ry), S(MR1+Q1)5
S(an+Q1+R2)7 sy S(anJr([log n]fl)Ql)a S(nR1+([log n]fl)Q1+R2))7 where S(an) is the
ranging vector belonging to the R g, -tuple found correct at Levels 3-4, and each S(n;)
is a guessed ranging vector associated with matrix 7;, j € {R1 + Ra, R1 + Q1, R1 +
Q1+ Ro, R1+2Q1, ..., R1 + ([log n] — 1)@1, R+ ([lOg TL] — 1)@1 + Ry, Ry + [lOg ’I’L] Ql}
Because Rp, is not useful anymore, the space used by A to record Rp, is allocated
now to record R4, .

i.e., the number of rules existing in the same time in m; and F. Then each matrix m;, 1 < j <k,
may have (SJ) + (ij) + ..+ (zj) = 2% policies. Namely, there exist (8’) choices of using no rule
from m; N F, (i’) choices of passing over only one rule from m; N F, (;’) choices of passing over
two rules from m; N F, and so on.

23

Level 6 (Universal) On each existential branch from Level 5, A spawns [logn]

universal processes pl(lQl), 0 <i; < [logn] — 1. Each process pngl) takes the interval
[R1+i1Q1...R1+11Q1+ R2], and checks whether the ranging vectors S(ng, +4,¢,) and
SR +i1Q1+Rs)» 1 < 11 < [logn] —1, provide a correct order in which the leftmost-2

derivation can be performed between matrices ng,+i,Q, and ngr,+i,Q,+r,- Besides

SR +i1Q.) and S(MR,+i,01+R,), €ach pEQl) also keeps, from the previous level, the

ranging vector S(ng, 4@, +1)Q,)- In this way each S(ng,+i,q,), 1 < i1 < [logn] — 1,
(Q1)

guessed at Level 5, is redirected to only one process, i.e., to ©; 7y

Level 7 (Existential) For each process pngl), 0 < i1 < [logn]—1, A spawns O(cl°s")
existential branches (guesses), each branch holding an (R + 1)-tuple of ranging

vectors Rp, = (S(nR1+i1Q1)7 S(nR1+i1Q1+1>v L S(nR1+i1Q1+R2—1)a S(nR1+i1Q1+R2))'
Then A checks whether all vectors in R, are correct according to the leftmost-

2 derivation requirements. This can be done, for each process p(Ql) 1 <4 <
[logn] — 1, in O(logn) time and space, through Levels 8-9 as follows.

Levels 8-9 (Universal-Ezistential) For each branch spawned at Level 7, i.e., for
each 0 < 7; < [logn] — 1, A spawns Ry universal processes p(2) 1 <wv < Rsy.
On each pg,), A checks whether each substring ngr, 44,0, MR +41Q141---NR1+i1Q1+v
is correct according to the leftmost-2 derivation requirements, and whether each
ranging vector in Rp, is correct. This is performed as follows. For each p(2)
1 < v < Ry, A counts the number of occurrences of each matrix m; € M, 1 < j < k,
in n(ih“) = MN2.--NR,+i,Q14v—1- Denote by z;; = Ry + i1Q1. Suppose that each
m; occurs c§ 1Y) times, 0 < cg-il’v) <z, +v—1,in p{®¥) Then A guesses a
tg“’ v) (i1,0) ~ (i1,0) (i1,v) (i1,v) (i1,v)

-tuple of integers of the form (cj 175 Ca" s e Cioty gy ot), where Ciq
with 0 < c(“’ v < c(”’v) and Zq e j;’v) = cyl’), represents the number of times
the policy Eg of matrlx mj, 1 < g < 29, can be used when m; is activated on

. P koo
n@v). A spawns (Level 9) N(F2) = = O(c; (in0) 2317) = (’)(nzj=12 ") existential

branches, each of which holds k tuples t(By) , 1 <7 < k. On each existential branch,
A computes the sums sl(il’v) = ZJ 1Zq e gZ;’U)Vl(ﬁg), 1 <1 < m. Suppose that

Cng,
i1t policies, where Cray 40 = Mz, +v N F[, and that each

Nz;,+v 1S & matrix with 2

policy Eq ,1<qg< 287'”1'1”, is identified by the sequence mf e = (p?7 ol
i1 i, o

q _ q
p7790i1+1“27) 7p"7ml+v7§711 +v) where |77LB,'1+U F‘ < 577%' +v < ’n$i1+v|'

. 11,V
A computes the net effect of each rulein m{ ., . i.e., sdf,q — 5 4) +
Tiy T Ny oot anmi1+v,r+1

Sy df e (p?hiﬁvvl)’ 1<r< fgwiﬁv — 1, and it checks Whether

ng:i1+vﬂ”+1

1. s(v) >1,1ie., pfh_ ol the first rule of ¢4 can be applied on n(1:?),
i1)

Na;, +v’
'”zll +v 3!

2. Sdfq

779011 471

applied one by one in the order deﬁned by the sequence m? o Furthermore,
1

>1,1<r< §m v 1, i.e., rules of policy K%M' ., can be
iy

24

A checks the following leftmost-2 conditions:

3. S (nxilﬂ,l) is a possible ranging vector with which matrix Nai, +v—1 ends the
(x5, +v — 1) step of derivation, i.e., S1(Nz;, +0-1) = 0, if Sl(zl,’l)) = 0, and
(15, +0-1) > 0, if s > 0,1 <1 < m. The policy “. .,
applied on S(n; 4v—1) in a leftmost-2 manner, i.e., A checks whether there
exists an [, 1 <1 < m, such that p‘fh_ RT the first rule of £} rewrites A;

i1)
and there is no matrix m;, m; # Nz, +v, and no policy K;Inj of mj, such that the
first rule in E;fn]_ rewrites a nonterminal Ay with Sl/(nxilJrvfl) < Sl(nzilJrv,l),
S1(Nw;,+v—1) # 0. Then A checks whether S(n;, +v) is a possible ranging

of 7, +v, can be

2 +v?

vector on which £}~ ends the (w; + v)" step of derivation. Note that
2y

S(Nz;,+v) can be nondeterministically computed knowing S(ny,; +v—1) and the
rules composing £ .
1

Each @(,RQ)

(ilvv)
t

, 1 < v < Ry, is said partially correct if there exist at least one
-tuple (guessed at Level 9) and at least one policy £}
i1

conditions 1 — 3. If @RQ) is not partially correct, it is labeled by 0. Note that, at

this moment we cannot decide whether pg‘%) can be labeled by 1, since we do not
know whether S(n,) is valid, i.e., whether matrix 7,, indeed ends the zth step of
derivation with the ranging vector S (77:61-1), and whether Nz;, can be applied in the
leftmost-2 derivation manner upon the ranging vector S(1;, —1) (which is not yet

guessed!®). The logical value of each @(]RQ) will be decided at the end of computation,

when it will be known whether S(ng,1i,@,) is a valid ranging vector with respect

to the matrices that compose the subword ng, (i, —1)Q, MR +i1Q,—1- A partially

correct process png) is labeled by a symbol ¢. If all processes pijz) are labeled by

o, then the existential branch holding the Rp,-tuple, provided at Level 7, is labeled
by ¢o. Otherwise, this branch is labeled by 0. A process p(Ql), yielded at Level 6,

i1
will be labeled by ¢ if there exists at least one existential branch labeled by ¢ at
(Q1)

11

., Of Nz, 4o, that satisfy

Level 7. Otherwise, p returns 0.

Suppose that we have run the algorithm up to the (¢ — 1) “iterated” division of
n by [logn], i.e., we know the quotient Qy_1 and the remainder Ry_1 of Qy_o divided
by [logn], i.e., Qv—2 = Qs—1 [logn]+Rs_1. More precisely, Qy—2 = Q¢—1 [logn]+Ry_1
and n = ((...((Qe_1 logn]+ Ry_1) [log n] + Re_») log] +...) log n] + Ry) [log n] + R,
with Qg—1 > [logn], 0 < R; < [logn], l € {1,2,....,£ — 1}, and ¢ < [logn].

Level 5(¢ — 1) (Euxistential) Consider the quotient @)y and the remainder Ry
of Qy_1 divided by [logn], 0 < Qu, Ry, < [logn|. Since Qy_2, Ry_o and Ry_4
are no more needed, the space used to record them is now used to record @
and Ry, still keeping QQy—1. Denote by z;, , = Zf;llRl + Zf;f 11Q;. For each

165(77@1.1 —1) will be guessed at the last level of the computation tree associated with A, when all
the remainders of the “iterated” division of n by [logn] will be spent, and when ngr,4i;Q,—1 will
actually be the last matrix occurring in the suffix of ng, 4 (i, —1)Q,---NR1+i1Q,—1 of length Q¢, the
last quotient of the “iterated” division.

25

existential branch labeled by o at Level 5 — 8, A spawns O(c!°8") existential
branches (guesses), each of which holds a 2[log n]-tuple of ranging vectors R, =
(5(77:::1[72)) S(nx¢£72+Rz)7 5(77331-[72+Q471)a S(nmiziil-szrl—Rg)v ey S(naziz_Q—i—([log n]—l)Qg_1)7
S(n%i?+([1Ogn]_1)Q471+Rl)), such that S(Uzig,2) is the ranging vector belonging to
the tuple ®g, , found correct at Level 5¢ —8. Because $g,_, is no more needed, the
space used by A to record g, , is allocated now to record the tuple %ﬁ;{e. Then A
proceeds with the Level 5¢ — 4, similar to Levels 6, 11, ..., 5¢ — 9.

Level 5¢ — 4 (Universal) On each existential branch spawned at Level 5(¢ — 1),
A spawns [logn| universal processes p(Q[_l), 0 < ip—q < [logn] — 1. Denote by

ip_1
Ty, = f;ll R, +Zf;11 W@ = xi, 5 +i—1Qr—1, 0 < iy—; < [logn|—1. Each process

g)l(-%l’l) takes the interval [x;, ,...z;, , + Re], and checks whether the ranging vectors

(guessed at Level 5(¢ — 1)) S(ns,,) and S(ne,, +r,), 0 < i¢—1 < [logn] — 1, pro-
vides a correct order in which the leftmost-2 derivation can be performed between
(Qe-1)
! i -1
keeps, from the previous level, the ranging vector S (17%_2“,-5_1“)@2_1). Then A
continues with Level 5¢ — 3, similar to Levels 7, 12, ..., 5/ — 8.

matrices 1), ~and 7y, g, Besides S(ng,,) and S(ns,, +r,), each p , also

Level 5¢ — 3 (Euistential) For each process p(Qz’l), 0 < idpq < [logn]—1, A

io—1
spawns O(cl°8™) existential branches, each branch holding an (R, + 1)-tuple Rg, =
(S(ai,)s SNy, +1)s s Sy, +Re—1), S (N, +R,)) of ranging vectors. Then A
checks whether all vectors in Rtg, are correct. This can be done, for each process

pgﬁel’l), 0 <ipq < [logn] — 1, in O(logn) time and space, through Levels 5¢ — 2

(Universal) and 5¢ — 1 (Existential) similar to Levels 3-4, 89, ..., (5¢ — 7)-(5¢ — 6).

Levels (5(—2)-(5¢—1) (Universal-Existential) For each existential branch spawned

at Level 5¢ — 3, A spawns R, universal processes @Rf), 1 <wv < Ry. On each @Rf),
k k

1 < v < Ry, A spawns N = O((z;,_, + v)zj:l2 j) = (’)(nzj:12 j) existential
branches, each of which holds a possible configuration of policies used by matrices
occurring in n(-1v) = MN2-Na;, | +v—1, and computes the net effect according to

this configuration. A guesses a policy £} ., and, based on the net effect com-
i—1

puted before, checks whether Nas, ,+v with the policy e;{z_[4o can be applied, in
leftmost-2 derivation manner, on the sentential form having the associated ranging
vector S(nxieilﬂ,l) in Rg,. Then A checks whether S(nme,ﬁv) in Ng, is a possi-

ble ranging vector on which E%W ends the (2, , +v)!" step of derivation. Note

71+U
that S (n%_lﬂ) can be nondeterministically computed, knowing the ranging vector
S (nwizilﬂ,l) and the sequence of rules that defines £} .

Fig_q
Each process p&R’“’), 1 < v < Ry, that satisfies the above conditions is partially
correct, and it is labeled by ¢. Otherwise, p&RZ) is labeled by 0. If all pz(,Re) are

labeled by o, then the existential branch holding the tuple Rg,, provided at Level
5¢ — 3, is labeled by ¢. Otherwise, this branch is labeled by 0. The process p(Q"’l),

ig—1

yielded at Level 5¢ — 4, will be labeled by ¢ if there exists at least one existential
branch labeled by ¢ at Level 5¢ — 3. Otherwise, p(-Ql’l) is labeled by 0.

-1

26

At this level the only substrings of n left unchecked are those substrings that cor-
responds to intervals Ig, , = [Zf;ll Ry + Zf;% 3qQr + iy—1Qe—1 + Ry... Zf;ll R; +
SI20Qr 4 (e + DQoi] = [wi,_, +i0-1Qe1 + Rewwiy_, + (ip—1 + 1)Qe—1),
0 <4 <logn]—1,1<1</¢—1, and besides the cutting points P}’ = >;"; R; +
Zl“:_ll 3Qr + (tu +1)Qu, 1 <u < ¢ —1. On each interval of type Ig, ,, A proceeds
with Level 5¢.

Level 5¢ (Ezistential) Each interval Ig, , can be divided into [logn| subintervals
of length 1 < Q < [logn]. Hence, A spawns O(c'°¢") existential branches each of
which holds a [log n]-tuple of ranging vectors Rf), = (S<nxi€—l—~?Ré)’ S(Nai, +R, +Qe?7
ceey S(%q_l+R4+([logn]—1)Q4))a where S(n%iﬁp%) is the ranging vector found valid
at Level 5¢ — 3.

Level 5/+ 1 (Universal) For each existential branch spawned at Level 5¢, A spawns
[log n] universal processes p(Qé), 0 <iy < [logn] —1. Each @(QZ) takes an interval of

g ip
length Qg of the form [S3{_) Ri+>1=1 i1Q+i¢Qp... S—y Ri+ 3121 71Qi+ (i +1)Qy).
Denote by w;, :Zle Ry +Zlé;11 0@ + 10Qp, 0< iy < [logn] — 1. For each interval
(i @ip+1], A checks whether the substring 7z, ... 1s,,.,, 0 < i¢ < [logn] — 1, is
valid according to the leftmost-2 derivation order.

Level 5¢ + 2 (Ewistential) For each @[Qe), 0 < iy < [logn] — 1, A spawns O(c'°8")
existential branches, each branch holding an (Q¢ + 1)-tuple of ranging vectors Rqg,=
(S(Mai,), S(Nayy4+1)s s SNy, +Qo—1), S(Nay,11)). In each Rg,-tuple the first vector
S (77581',3) and the last vector S (Th‘ie +1) have been guessed at Level 5/. They are rang-
ing vectors associated with matrices placed in cutting points, i.e., end points of
intervals of length at most logn. They are also overlapping points of two consec-
utive intervals of type [x;,...z;,+1]. Hence, each ranging vector S (77%) is checked
two times. Once if it is a valid vector on which Na;,+1 Can be applied in leftmost-2
derivation manner, and twice if by applying Na;, ON the sentential form built by
using the ranging vector S (nw_l) a sentential form with the ranging vector S (77”%)
is obtained.

As all intervals of type [x;,...z;,+1] are universally checked, the tuple §RCQZ spawned
at Level 54 is labeled by 1, if all ranging vectors S (nmie) and all vectors composing R,

are correct. To check whether all ranging vectors in ¥, are correct, for each process

pl(-[Ql), 0 <iy < [logn]—1, A follows the same procedure, that requires O(logn) time

and space, described at Levels 5¢ — 2 (Universal) and 5¢ — 1 (Existential).
For the last substring of length @y in n, i.e., the suffix of i) of length @), of the form
(Qe)
TSy B30 (o nl =)@+ (lognl~1)Qe 1Y), Ri+ 31 (log nl~1)Qu+log njQ,” 7 Fllogn)—1
A must check whether the matrix nzlezl Rt 32 (llog m]— 1)@+ log nl Qe = 1, ends the
computation. This can be checked as in process g,, Theorem 3.

Each cutting point P} = Y/ R + Z}‘:_ll 1Qr + (iy + 1)@, can be equiva-
lently rewritten as Zl“;rll Ry + Y12 uQr + [logn] Qu+1, due to the equality @, =
[logn] Qus+1 + Ry+1, for any } < wu < ¢ — 1. Furthermore, E}lel R+ YL, 4Q +
log n] Qu+1 is equal with 3" Ri+ Ry yo+301 1 61Qi+([log n]—1)Qu1-+[log n] Quy2,
due to the equality Qui1 = [logn| Qui2 + Ryto, for any 1 <u < ¢ —2. By applying

27

this transformation k times, where k = £ —u, each P;* can be equivalently rewritten
as Y0 R+ Ruta + oo+ Rupr + 10 0Qu + (logn] — 1)(Quept + v + Quis—1) +
[log n] Qu+k, where u + k = ¢. In this way each P}, yielded at Level 5u by the

%u+1—tuple, 1 <u < /-1, is in fact the end point of an interval of the form

[(Siey B+ X021 Qu + i0Qe- Simy B+ X021 Q1+ (i + 1)Qe] = [wi,..i, 4], for
which 0 <i4; <[logn] —1,1<1</¢-1, i, = [logn] — 1. Hence, the decision on the

correctness of each ranging vector S(nzrz1 Ry ile+(iu+1)Qu) = S(npy) will be
actually taken by a process of type p[(lgé)n]—l'
Since the validity of each cutting point is decided by a process of type p[(gé)n]_l,

the logical value returned by this process is ”propagated” up to the level of the
computation tree that has spawned the corresponding cutting point, and thus each ¢
symbol receives a logical value. The input is accepted, if going up in the computation
tree, with all ¢’s changed into logical values, the root of the tree is labeled by 1.
The Rg,, R, , Rq,, and RE),-tuples of ranging vectors, 1 < h < £, the sequences
mi, the vectors V(£%), 1 < j < k, and auxiliary net effects computed by A during
the algorithm, are stored by using O(logn) space. It is easy to observe that A has
O(logn) levels. Since at each level A spawns either O(n¢) or O(c!°8") existential
branches, where c is a constant (independent of the length of the input), each level
is thus convertible into a binary tree with O(logn) levels. Moreover, at each Level
5h, 1 < h < ¢, A performs a division operation, which requires O(logn) time and
space. Consequently, A performs the whole computation in O(log?n) parallel time
and O(logn) space. O

Corollary 6 Fach language L € SZML;(CF), i € {1,2,3}, can be recognized by
an indexing ATM in O (logn) space and O(log®n) time.

Proof. The proof is similar to the proof provided for Theorem 6. The main differ-
ence is that at each Level 5h 4+ 4, 0 < h < /¢, A does not have to spawn N (Brt1) —
e

O(R;; +1_1) existential branches in order to guess the t;lh’v)—tuples of integers that
provide the number of times each policy of m; can be used in the substring n(iﬁ’”),
for each matrix m;, 1 < j < k. However, this does not decrease the time resources
needed, since A has to perform logn division operations, each of which requiring
O(logn) time and space. Hence, the parallel time is still O(log?n). O

Corollary 7 SZML,(CF)USZML(CF) C NC?, i€ {1,2,3}.

Corollary 8 SZML;(CF)USZML{(CF) c DSPACE(log*n), i € {1,2,3}.

4 Szilard Languages of Random Context Grammars

Random Context Grammars (RCGs) are regulated rewriting grammars in which the
application of a rule is enabled by the existence in the current sentential form of
some nonterminals that provide the context under which the rule in question can be
applied. These nonterminals are listed by the so called permitting context of that
rule. The use of a rule may be disabled by the existence, in the current sentential

28

form, of some nonterminals that provide the forbidden context under which the
rule in question cannot be applied. These nonterminals are listed by the so called
forbidding context of that rule.

RCGs with context-free rules have been first introduced in [47] to cover the
gap existing between the classes CFLs and CSLs. A generalization of RCGs for
phrase-structure rules can be found in [14]. The generative capacity and several
descriptional properties of RCGs can be found in [10], [12], [14], [17], [47], and [48].

4.1 Random Context Grammars - Prerequisites

Definition 12 A random context grammar (RCG) is a quadruple G = (N, T, S, P)
where S is the axiom, N and T, N NT = (), are finite sets of nonterminals and
terminals, respectively. P is a finite set of triplets (random context rules) of the
form r = (p,, Qr, Ry), where p, : a, — [, is a phrase structure rule over NUT, i.e.,
ar € (NUT)*N(NUT)* and 5, € (NUT)*, Q, and R, are subsets of N, called
the permitting and forbidding context of r, respectively. If R, = (), for any r € P,
then G is a permitting RCG. If Q, = (), for any r € P, then G is a forbidding RCG.

A permitting RCG is a RCG without appearance checking, i.e., R, = () for any
r € P. If there exists at least one r € P such that R, # (), then G is a RCG with
appearance checking (henceforth RCG?¢). If @, = () for any r € P, then G is called
forbidding RCG. If all rules p, are phrase-structure (PS), context-sensitive (CS),
context-free (CF), or regular (REG) rules then G is a PS, CS, CF, or REG random
context grammar.

Definition 13 Let G = (N, T, S, P) be a RCG or a RCG*, and V = NUT. The
language L(G) generated by G is defined as the set of all words w € T* for which

there exists a derivation D: S = wy Sy, W1 =y, W2 =py o =, Wy = W,
. / !
S Z 17 Where Tij = (aij — /Biquij7Rij)7 1 S J S S — 17 wj—l = wj_laijwj—la
/ ! / /! . 3
w; = wj_y fi;wj_y for some wj_y, wj_y € V¥, such that i. all symbols in Q;; occur

: / " ..) : / "
in w;_jwj_y, and ii. no symbol of R;; occurs in wj_yw;_;.

Denote by L(RC, X) and L(RC, X, ac) the class of languages generated by RCGs
without appearance checking and RCGs with appearance checking, respectively,
with X-rules, X € {REG,CF,CF — \,CS, PS}, then L(RC, X,ac) = L(M, X, ac),
L(RC,Y)=L(M,Y),Y €e {REG,CS,PS}, L(RC,CF) C L(M,CF), L(RC,CF —
A) C L(M,CF — \) [12], [14]. Hence
1. CFL C L(RC,CF — \) C L(RC,CF — \jac) C CSL C L(RC,CF,ac) = RE,

2. CFL C L(RC,CF — \) C L(RC,CF) C L(RC,CF,ac) = RE,
3. L(RC,X)=L(RC,X,ac) = XL, X € {REG,CS, PS}.

Let G = (N,T,S,P) be a RCG. If labels are associated with triplets!” r =
(p,Q, R) € P, in one-to-one correspondence, then the Szilard language associated
with a RCG is defined as follows.

"For the sake of simplicity, we use the same notation both for a triple and the label associated
with it.

29

Definition 14 Let G = (N, T, S, P) be a RCG, P = {r1,ra,...,7} the set of pro-
ductions, L(G) the language generated by G, and w a word in L(G). The Szilard
word of w associated with the derivation D: S = wy =y, W1 =y, W2 =y o =y,

ws = w, s > 1, is defined as Szp(w) = 14y 7iy...75,, 1i; € P, 1 < j <'s. The Szz'larsd
language of G is Sz(G) = {Szp(w)|w € L(G), D is a terminal derivation of w}.

Denote by SZRC(X) and SZRC(X) the classes of Szilard languages associated
with RCGs without appearance checking and RCGs with appearance checking and
X rules, X € {CF,CS, PS}, respectively.

Definition 10 is applicable also for leftmost-i, i € {1,2,3}, derivations in RCGs
with CF rules [14]. In terms of triplets r = (p,, Qr, R;) € P, where p, is a CF rule of
the form o, — Bp,, ap, € N, By, € (NUT)*, and Q, and R, are the permitting and
forbidding context of r, respectively, these derivations can be explained as follows.

A production r = (p,, @y, R,) € P can be applied in leftmost-1 derivation man-
ner if p, rewrites the leftmost nonterminal occurring in the sentential form, as long
as the sentential form on which r is applied contains all nonterminals in @), and no
nonterminal in R,.

A production r = (p,,@,, R,) € P can be applied in leftmost-2 derivation man-
ner if the rule p, rewrites the leftmost nonterminal that can be rewritten by any
rule in P eligible to be applied on the current sentential form, in the sense that if
any other rule ' = (p,v,Q,s, R,) € P can be applied, because the sentential form
contains all nonterminals in @), and no nonterminal in R,s, then the nonterminal
rewritten by 7’ follows in the sentential form the nonterminal rewritten by r.

A production r = (p,, @y, R,) € P can be applied in leftmost-3 derivation man-
ner if the rule p, rewrites the leftmost nonterminal that can be rewritten by r, as
long as the sentential form on which r is applied contains all nonterminals in @, and
no nonterminal in R,.

Szilard languages associated with leftmost-i, ¢ € {1,2,3}, derivations can be
defined in the same way as in Definition 14, with the specification that D is a
leftmost-i derivation of w. We denote by SZRCL;(X) and SZRCL{“(X) the classes
of leftmost-i, i € {1,2,3}, Szilard languages associated with RCGs and RCGs with
appearance checking with X rules, X € {CF,CS, PS}, respectively.

Let G = (N,T, P, A1) be an arbitrary RCG with CF rules, where A; is the
axiom, N = {4, Ag, ..., A;,} and P = {ry,re,...,7} are the finite sets of ordered
nonterminals and labels associated in one-to-one correspondence, respectively. For
each production r = (p,, @y, R,) € P, where p, is a rewriting rule of the form
ap, = Pp., ap. € N, and , € (N UT)*, its net effect during the derivation
D with respect to each nonterminal 4; € N, 1 <[< m, is given by dfa,(p,) =
|Bp, |4, — |op, |4, To each rule r we associate a vector V(1) € Z™ defined by V(r) =
(dfa,(pr), df a5 (Pr), ...y df a,, (pr)), where Z is the set of integers. The value of V(r)
taken at the I** place, 1 <1 < m, is denoted by Vj(r).

4.2 On the Complexity of Unrestricted Szilard Languages

Theorem 7 FEach language L € SZRC(CF) U SZRC*(CF) can be recognized
by an indexing ATM in O(logn) time and space (SZRC(CF)U SZRC*(CF) C
ALOGTIME).

30

Proof. We give the proof for the class SZRC*(CF). For the class SZRC(CF)
the proof is simpler. Let G = (N, T, P, A1) be an arbitrary RCG*® with CF rules.
We describe an indexing ATM that decides in logarithmic time and space whether
an input word v = y17y2...7, € P* of length n, belongs to Sz(G). Let A be an
indexing ATM composed of an input tape that stores 7, an index tape, and a
working tape composed of three tracks. Here and throughout this paper, each label
7; corresponds to a triplet in P of the form (p,,, @,, Ry,), where p,, is a CF rule
of the form o, = 3,,, @y, € N, and ,, € (NUT)*, 1 <i < n. At the beginning
of the computation the first track of the working tape of A stores k + 1 vectors,
VO corresponding to the axiom, i.e., V? = 1 and V? =0, 2 < [< m, and V(rj),
1 < j < k. The other two tracks are initially empty.

Level 1 (Ezistential) In an existential state A guesses the length of v, i.e., writes
on the index tape n, and checks whether the n'* cell of the input tape contains a
terminal symbol and the cell n + 1 contains no symbol. The correct value of n is
recorded in binary on the second track of the working tape.

Level 2 (Universal) A spawns n universal processes p;, 1 <1i < n.

e On @1, A checks whether a,, = Ay. Process p; returns 1 if this equality holds.

e For each p;, 2 <7 < n, A counts the number of occurrences of each rule r; € P,
1 <j <k in ,},(z’) = Y17Y2...Vi—1- Suppose that each 'r] occurs cgi) times, 0 <
cgi) <i—1,1in 49, A computes s() = V0 + Z —1 ¢)V(TJ) i.e., the number
of times each nonterminal A;, 1 <[S m, occurs in the sentential form obtained
at the it" step of derivation Besides, for p,, for each 1 < [< m, A computes
s(}l’om) VO + Z)Vl(r]) + Vi(yn). Each g;, 2 <i < n—1, returns 1 if only
one of the COIldlthIlb 1 — 3 holds. Process g, returns 1, if one of the conditions 1 —3
holds, and besides sgzﬁut) =0, foreach 1 <[<m.

1. 3831 > 1, oy, ¢ Qv UR,, sg? > 1, for each X € @Q,,, and sgi) = 0 for each
YeR,,

2. 3831 >2if oy, €Q, — Ry, Sy 5@ > 1, foreachXeQW,X7éa%,ands(z)
for each Y € R,,,

3. s(l) =1lifa, € Ry, — Q~, sg? > 1, for each X € @,,, and sgf) = 0 for each
Y € Ry, Y # ay,.

The computation tree of A has only two levels, in which each node has unbounded
out-degree. By using a divide and conquer algorithm each of these levels can be
converted into a binary tree of height O(logn). All functions used in the algorithm,
such as counting and addition, are in N'C', which is equal to ALOGTIME under the
Ug--uniformity restriction [41]. In order to store, on the third track of the working
tape, the binary value of cg) and to compute in binary 554) and s(n out) , 1 <i<n,
1<j <k, 1<1<m,Aneeds O(logn) space. Hence, for the Whole computation
A uses O(logn) time and space. O

Corollary 9 SZRC(CF)U SZRC*(CF) c NC!.
Corollary 10 SZRC(CF)USZRC*(CF) Cc DSPACE(logn).

31

4.3 On the Complexity of Leftmost Szilard Languages

Theorem 8 FEach language L € SZRCL{(CF) can be recognized by an indexing
ATM in O(logn) time and space (SZRCL{(CF) C ALOGTIME).

Proof. Let G = (N,T,P,A;) be a RCG* with CF rules working in leftmost-1
derivation manner. Consider an indexing ATM A having a similar structure as in
the proof of Theorem 7. Let v = vy1v2...7, € P*, be an input word of length n. In
order to guess the length of v, A proceeds with the procedure described at Level
1- Existential, Theorem 7. Then A spawns (Level 2- Universal) n universal processes
©i, 1 <i <mn, and (briefly) proceeds as follows.

For each p;, 1 <1i <n, A checks as in Theorem 7, whether each triplet -; can be
applied on) = ~4175...7,_1 according to Definition 13. Then A checks whether rule
p~; can be applied in a leftmost-1 derivation manner on 7(i). To do so, A spawns at
most ¢ — 1 existential branches (Level 3- Existential) each branch corresponding to a
label vy, 1 < v < i—1, such that p,, in (p,,,@~,, R,) is a non-terminal rule. Denote
by ¢ the number of non-terminal rules used in v between 7,41 and «;_1 (including
Yot+1 and ~;_1), and by s, the total number of nonterminals produces by these rules,
and let s = i —v — s4. A checks whether a,, is the s nonterminal occurring on the
right-hand side'® of rule p., .

An existential branch spawned at Level 3, is labeled by 1 if p,, satisfies these
properties. For each existential branch labeled by 1 at Level 3, A checks whether
the s nonterminal occurring in B, is indeed the o, nonterminal rewritten by rule
D~;» 1.€., no other rule used between rule p,, of v, and rule p,, of v; rewrites the sth
nonterminal, equal to ., in 3, (for which a relation of type “s + s, = ¢ —v” may
also hold). Hence, A universally branches (Level 4- Universal) all symbols occurring
between rules 7,41 and ;—1. On each branch holding a triplet v, = (p+,, @~,, Ry,),
v <1l <1, A checks whether 1. o, equals a,,

2. s+ 5, = | — v, providing that o, is the s'" nonterminal occurring on the
right-hand side of rule p,, (found at Level 3) and 5, is the number of nonterminals
produced between rules p,, and p-,,

3. the number of nonterminals a,, rewritten between p,, and p,, is equal to the
number of nonterminals o, produced between these rules, up to the st nonterminal
occurring on the right-hand side of rule p,, .

On each universal branch (Level 4) A returns 0 if conditions 1 — 3 hold. Oth-
erwise, it returns 1. Note that, for each p;, 1 < i < n, A does not have to check
whether v, and ~;, can be applied in leftmost-1 derivation manner. This condition is
checked by each of the processes g, and gy, since all of them are universally consid-
ered. It is easy to estimate that A performs the whole computation in logarithmic
time and space. O

181f D+, is the rule that produces the nonterminal rewritten by rule p,,, and this is the sth
nonterminal occurring on the right-hand side of p,,, then for the case of leftmost-1 derivation
order, we must have s + s; = % — v. This is because each nonterminal produced in the sentential
form by rules used in a leftmost-1 derivation manner, between p,, and p-, (including nonterminals
existing up to the s nonterminal on the right-hand side of p.,), must be fully rewritten by these
rules. The nonterminals existing in the sentential form before p,, has been applied, will be rewritten
only after the new nonterminals produced between p,, and p,, are fully rewritten.

32

Corollary 11 SZRCL,(CF)USZRCL$(CF) Cc NC!.
Corollary 12 SZRCL,(CF)USZRCL{*(CF) C DSPACE(logn).

In order to simulate letfmost-i derivations, ¢ € {2,3}, and to check whether
v = 117Y2...7n € P* belongs to SZRCLJ*(CF), for each triplet v;, 1 < i < n, an
ATM must have information concerning the order in which the first occurrence of
each nonterminal A; € N, 1 <1 < m, occurs in the sentential form at any step of
derivation. In this respect we introduce the notion of ranging vector for a RCG.

Definition 15 Let G = (N,T,P,A;) be a RCG* with CF rules, where P =
{r1,r2,...,mi} is the ordered finite set of triplets in P. Let SF,, be the senten-
tial form obtained after the triplet 7; = (pj, @;, R;), 1 < j < k, has been applied at
a certain step of derivation in G. The ranging vector associated with SF,, denoted
by S(r;), 1 < j <k, is a vector in N™ defined as

0, if Aj € N does not occur in SF,, i.e., |[SF;[4, =0,

Si(rj) =4 if the first occurrence of A; in SF;, is the ith element in the
’ order of first occurrences of nonterminals from N in SFTJ..

Depending on the context, the value of S(r;) taken at the I place, 1 <1 < m,
i.e., Si(rj), is also denoted by Sapj (rj) if pj in r; = (p;, Qj, R;j) is a CF rule of the
form oy, — By, and ap, = A;.

Note that, if r; = (pjy,Qj,Rj) is applied in the Szilard word before r; =
(pj, Qj, Rj) then the ranging vector S(r;) can be computed knowing S(rj). This
observation holds for both leftmost-2 and leftmost-3 derivations (Example 2).

Example 2 Consider S(r;) = (3,0,2,1,0) € N® the ranging vector associated with
the sentential form SFTJ_,, obtained after rule r; has been applied, at the ith step of
derivation. Suppose that SFTJ_, contains one occurrence of Aj, three occurrences of
As, and arbitrary number of A4. According to Definition 15, S FT],, looks like S Frj, =
tA4X4A3X374A1X374, where t € T*, X4 € ({A4} UT)*, X3’4,X3’4 € ({A3,A4} UT)*.
If in Ty = (Pijj,Rj)a Dbj is the rule A3 — tA5, Qj = {Ag,A4} and Rj = {A5},
then r; can be applied in leftmost-2 derivation manner after r;, if there is no other
RC rule rj» = (pj»,Qjn, Rjn) € P, such that p;» rewrites Ay, SFTj, contains all
nonterminals in @;» and no nonterminal in R;». Depending on the position of the
second occurrence of As in SFTJ,,, the sentential form obtained after p; has been
applied on SFTJ_/ may look like

° SFTJ;Z tA4X4A5A3X374A1X3J4 or SFj = tA4X4A5X4A3X374A1X374, t e T*,
X4a X4 € ({A4} U T>*7 X3,47X3,4 € ({A37A4} U T)*7 i'e'7 S(rj) - (47 07 37 17 2)7
or like

o SFrj = tA4X4A5X4A1A3X374, or SFrj = tA4X4A5X4A1X4A3X374, t e T*,
Xy, X4,X4 S ({A4}UT)*, X34 € ({Al, As, A4}UT)*, ie., S(Tj) =(3,0,4,1,2).
For the case of leftmost-3 derivation, rule ; can be applied in leftmost-3 manner

after 7;, by rewriting the leftmost occurrence of Az in S(r;/), even if there exist a
RC rule rj» € P able to rewrite Ay.

33

Next we sketch an ATM A that decides whether an input word v = y1792...7n
belongs to SZRCL(CF), i € {2,3}. Let @1 be the quotient, and R; the remainder
of n divided by [logn]. Dividing @1 by [logn| a new quotient Q2 and remainder Ry
are obtained. If this “iterated” division is performed until the resulted quotient,
denoted by @, can be no longer divided by [logn|, then n (written in the base
[logn])is n = ((...((Qe [log n]+ Ry) [log n|+ Ry—_1) [log n]+...) [log n]+ Ra)[log n]+ Ry,
1< Qr<logn, 0 < Ry <logn,le{l,...,0}, and ¢ < logn.

Knowing Rp, A guesses an Ri-tuple of ranging vectors associated with the first
R; triplets (RC rules) occurring in y and checks whether v;17s...vg, is valid, according
to the leftmost-i derivation manner, i € {2,3}. Then A guesses a [logn]-tuple of
ranging vectors associated with triplets placed at the [logn| cutting points in ~
obtained by dividing [R; + 1...n] in [logn| intervals of length (1. A continues with
this routine for each interval of length ()1 as follows. First A checks, in parallel,
whether the first Ry triplets in each Q1-interval forms a valid substring of a leftmost-
i, 1 € {2,3}, Szilard word. Then, in parallel for each Q;-interval, A guesses another
[log n]-tuple of ranging vectors associated with triplets placed at the [logn| cutting
points in v obtained by dividing each interval of length Q1 — Rs into [logn] intervals
of length (J2. This procedure is repeated until intervals of length @y < logn are
obtained. At this point, A checks whether the substrings of v corresponding to
Q-intervals, are valid according to the leftmost-i derivation order, i € {2,3}. It
can be proved that all cutting points are right edges of these intervals. If correct
ranging vectors can be found for all intervals and all cutting points, then ~ is a
correct leftmost-i, ¢ € {2, 3}, Szilard word. Hence, we have

Theorem 9 FEach language L € SZRCL{(CF), i € {2,3}, can be recognized by an
indexing ATM in O (logn) space and O (log?n) time.

Proof. We prove the claim for the leftmost-2 derivation. For the leftmost-3 case the
proof is almost the same. Let G = (N, T, P, A1) be an arbitrary RCG% working in
leftmost-2 derivation manner, and .4 be an indexing ATM with a similar configura-
tion as in the proof of Theorem 7. Let v = v1y2...7, € P*, be an input of length
n. To guess the length of v, A proceeds with the procedure described at Level 1
(Existential), Theorem 7.

Level 2 (Existential) Consider the quotient Q1 and the remainder R; of the divi-
sion of n by [logn], where 0 < Ry < [logn]. A spawns O(c°8™) existential branches,
each branch holding an R;-tuple Rgr, = (S(71),S(72), ..., S(yr,)) of ranging vectors,
where!® ¢ = O(X™(m — s +1)™) and S(v,) is the ranging vector associated with
Yo, 1 <v < Ry. A checks (Levels 3) in O(logn) time and space, whether all vectors
in Rp, are correct, in the sense that S(+,) can be obtained from S(~,_1) by applying
rule 7, in leftmost-2 derivation manner on the sentential form built from S(~,_1).

Level 3 (Universal) A spawns R; universal processes @(,Rl), 1<v<R;.

9The constant ¢ depends on the number of vectors in N™ that can be built upon the set
{0,1,...,m}. If a certain sentential form has only m — s distinct nonterminals, then there are
(m — s+ 1)™ guesses that provide the ranging vector associated with this sentential form. Hence,
here and throughout this proof, ¢ = O E:L:_ll(m — s+ 1)™), see also the explanations at page 22.

34

e Process pgp”) reads v1 = (py,, @+, Ry,) and it checks whether 41 can be applied

on Aj, ie., ay, =Ay, and whether S(v1) is the ranging vector associated with 3, .

Ry)

If these conditions hold, g’ returns 1. Otherwise, it returns 0.

e For each p(1) , 2 <wv < Ry, A counts the number of occurrences of each RC rule
rieP,1<j< k: in (") = 4199...7,—1. Suppose that each rj occurs cgv

70 < cg- ") < 4 — 1. For each 1 < [< m, A computes s(V) — =VP +Z Vl(r])
i.e., the number of times nonterminal A; occurs in the sententlal form obtalned at

the v*" step of derivation. Each p&Rl)

(v)

) times in

, 2 < v < Ry, returns 1 if only one of the

conditions in I}’ and all conditions in Igv) hold.

1. sg”jv >1, o, ¢ Qy, UR,,, sgé)) > 1, for each X € Q,, and s%})) =0
for each Y € R,,,

o) 2. sg?v > 2if ay, € Q, — R, sg?) > 1, for each X € Q,,, X # a,,,

! and sgf) =0 for each Y € R%,

3.5 =1if a,, € Ryy— Qy,, s> 1, for each X € Q,,, and s{) =0
foreachY € R,,, Y # a,,.

1. S(7y,_1) is a possible ranging vector on which ,_1 ends the (v — 1)

step of derivation, i.e., Sj(vy—1) = 0 if sffl) =0, and Si(yp—1) # 0 if
(v)>0 for each 1 <1 < m,

2. for any RC rule r = (p, @, R) € P, p is of the form o, = B, o # ay,,

Iév) that can be applied on v(®) (because it satisfies one of the conditions
of type 1 — 3 in Iy) we have Sy (7v-1) < Sa,(Y0-1), i.e., py, can be
applied in leftmost-2 manner on 4(*) with the ranging vector S(y,_1),

3. S(7) is a possible ranging vector with which ~, ends the v'" step of
derivation, i.e., Sj(7y,) = 0 if Sffl)—l— Vi(yw) = 0, and Sy(,) # 0 if SE:Z)—F
Vi(vy) > 0, for each 1 <1 < m.

(R1)

If all processes g, ', 1 < v < Ry, return 1 then Rp, is a correct guess and the
existential branch holding the [logn]-tuple, spawned at Level 2, is labeled by 1

Level 4 (Existential) Let Q2 be the quotient and Ry the remainder of)1 divided by
[logn], 0 < Ry < [logn]. A spawns O(cl°8™) existential branches, each of which hold-
ing a tuple %%QZ(S(,‘YR])7 S(YRi+Rs) S(7R1+Q1)7 S(’YR1+Q1+R2)7 - S(7R1+([10g n}*DQl)?
S(VYRi+ (llogn]—1)Q:+R.)), Where S(vg,) is the ranging vector belonging to the R;-
tuple found correct at Level 3. Because the tuple R, is not useful anymore, the
space used by A to record Rp, is allocated now to record R, .

Level 5 (Universal) On each existential branch from Level 4, A spawns [log n] uni-
versal processes p(1) , 0 <y < [logn] — 1. Each process p(Ql) takes the interval
[R1 +11Q1...R1 + 21Q1 + Ry], and checks whether the ranging vectors S(vr,+i,Q,)
and S(VYr,+i1Qi+R:), 1 < i1 < [logn] — 1, provide a correct order in which the
leftmost-2 derivation can be performed between g, +i,0, and Yr, +i,Q,+R,. Besides
S(VRi+i10:) and S(YR,+i,Q.1+R.), €ach {p(Ql) also keeps, from the previous level,
the ranging vector S(vg, 4@ +1)Q,)- In thls way each ranging vector S(VYr,+i,01),

35

(Ql)

1 <y < [logn] —1, guessed at Level 4, is redirected to only one process, i.e. s 94,

Denote by z;; = Ry +11Q1, 0 < iy < [logn] — 1.

Level 6 (Euzistential) For each universal process pEIQl), 0 <i < Jlogn]—1, A
spawns O(c'°8") existential branches, each branch holding an (Rg + 1)-tuple of rang-
ing vectors Rr, = (S(Vay,)y S(Vai, +1)s s S(Vai, +Ro—1), S (Y2, + R,))- Then A checks
whether all vectors in g, are correct ranging vectors according to the leftmost-
2 derivation requirements. This can be done, for each process pgf’?l), 0 <4 <

[logn] — 1, in O(logn) time and space, through Level 7 as follows.

Level 7 (Universal) For each existential branch spawned at Level 6, A spawns Ra

universal processes pg, 2) , 1 <v < Ry. On each pv , A checks whether each sub-
String Yo, Ya;, +1---Ya;, +v 18 correct according to the leftmost 2 derivation order. In

(R2)

this respect, for each oy -/, 1 < v < Ro, A counts the number of occurrences of each
RCruler; e P,1<j <k, in A1) = Y1Y2--- Vo, +v—1- Suppose that each r; occurs

cgil’v) times, 0 < c§i1’v) <z, +v—1,in v, For each 1 <1 < m, A computes

s%ll’ V) = =V2+ Z 16 (i1)Vl(r]) i.e., the number of times A; occurs in the sentential

form obtained at the (x“ +v)t step of derivation. Then A checks conditions of type
Igv) and Igv) (Level 3) for the RC rule vz, 4, i.e., instead of v, z;, +v is considered.
Denote by I(il’v) and Igl’v) these conditions.

Each p(RZ) 1 <wv < Ry, is said partially correct if one of the conditions in Igil’v)

and all conditions in Igl’v) hold. If pz(,&) is not partially correct, it is labeled by 0.
(R2)

Note that, at this moment we cannot decide whether @, -’ can be labeled by 1 since
we do not know whether S (”Ymil) is valid, i.e., whether v, indeed ends the x " step
of derivation with the ranging vector S(7z,,), and whether v, can be apphed in the
leftmost-2 derivation manner upon the ranging vector S(vz, —1) (which is not yet

(R2)

guessed??). The logical value of each g, >’ will be decided at the end of computation,
when it will be known whether S(v;,) is a valid ranging vector with respect to
the rules that compose the subword Vg, 1 (i, 1)@, VRi+11Q1—1 = Vas, 1 Vai, —1- A

partially correct process @(,RZ) is labeled by ¢. If all processes pq(JR2) are labeled by

o, then the existential branch holding the tuple Rg,, provided at Level 6, is labeled
by ¢. Otherwise, this branch is labeled by 0. Process p(?l), yielded at Level 5, will

7
be labeled by ¢ if there exists at least one existential branch labeled by ¢ at Level
(Q1)

i returns 0.

6. Otherwise, g,

Suppose that we have run the algorithm up to the (¢ — 1)th “iterated” divi-
sion of n by [logn], i.e., we know the quotient QQy_; and the remainder R;,_; of
Q¢—o divided by [logn]. More precisely, Qs—o2 = Q1 [logn] + Ry—1 and n =
((--((Qe1 logn] + Re_1) [logn] + Re_s) llogn] + ... llog] + Ry) [log n] + Ry, with
Qo1 > [logn], 0 < Ry < [logn], l € {1,2,....,0 — 1}, and ¢ < [logn].

Level 4(¢{—1) (Ewistential) Let Q; be the quotient and R, the remainder of Q1 di-

205(7_%.1 —1) will be guessed at the last level of the computation tree of A, when all the remainders
of the “iterated” division of n by [log n] will be spent, and when Ya;, —1 will be the last rule occurring
in the suffix of length Q of the substring Y, 1 (i, ~1)Q; - VR1+i1Q1—1 = Yas, _1 Vo, —1 Of 7.

36

vided by [logn], 0 < Q, Ry < [logn]. Since Qy—2, Ry—2 and Ry_; are no more needed,
the space used to record them is now used to record @)y and Ry in binary, still keeping
Q¢—1. Denote by z;, , = f;ll R, + Zf;f 1;Q;. For each existential branch labeled
by o at Level 4¢ — 6, A spawns O(c!°8™) existential branches, each branch holding a
2 [IOg n]'tuple iy T (S(ryfr%72)7 8(7277%724-}2()3 S(’Yx1'272+ Qz71)7 S(’Vl"i272+ sz1+R4)7 ceey
S(Vas,_,+(logn)—1)Qe—1)» S Vs, +(llogn]—1)Q,_1+R,))» Where S(yz,,) is the ranging
vector belonging to tuple g, , found correct at Level 4¢ — 5. Because Rg, , is no
more needed the space used to record $g, , is allocated now to record §RCRZ. Then
A proceeds with Level 4¢ — 3, similar to Levels 5,..., 4¢ — 7.

Level 4¢ — 3 (Universal) On each existential branch spawned at Level 4(¢ — 1),

A spawns [logn] universal processes gag%l’l), 0 <ip—1 < [logn]—1. Denote by

Tiy , = f;ll R; —i—Zf;ll WQr = xi, 5 +i—1Qr—1, 0 < i1 < [logn]—1. Each process

@z('%fl) takes the interval [z;, ,...z;, , + Ry|, and checks whether the ranging vectors

(guessed at Level 4({—1)) S(vz,,) and S(Va,, +r,), 0 <idg—1 < [logn]—1, provide
a correct order in which the leftmost-2 derivation can be performed between vz, |
(Qe-1)

ig—1
previous level S ('Yxi[_g +(is_141)Q,_1)- Then A continues with Level 4¢ —2, similar to

Levels 6, ..., 40 — 6.

and vz, 1R, Besides S(yz,,) and S(vs,, +r,), each p , also keeps from the

Level 4¢(—2 (Existential) For each universal process pgiﬂ’l), 0 <ip_q <[logn]—1, A

spawns O(c'°8") existential branches, each branch holding an (R, + 1)-tuple of rang-
ing vectors R, = (S(Va,, ,) S(Vai,_,+1)s s S(Vay, , +Re~1), S(Vay, +R,))- Then A
checks whether all vectors composing g, are correct. This can be done, for each

process pggﬂ’l), 0 <ip_1 < [logn] — 1, in O(logn) time and space, through Level

4¢ — 1 similar to Levels 3, 7, ..., 4/ — 5.

Level 4/ — 1 (Universal) For each existential branch spawned at Level 4¢ — 2, A

spawns Ry universal processes @(,R‘Z), 1 <wv < Ry. On each pgRZ), A checks whether
each substring Vai,_, Vo, +v and each ranging vector in Rp, is correct according

)

to the leftmost-2 derivation order. In this respect A checks conditions of type Igv

and Igv) (Level 3) for the rule Vai, 45 i.e., instead of v, x;, , + v is considered.

Denote by Igié’l’v) and Igz’l’v) these conditions.

Each process pq(,R“), 1 < v < Ry, that satisfies only one of the conditions in

Igie’l’v) and all conditions in Ig“l’v) is partially correct, and it is labeled by o.

Otherwise, pg)Ré) is labeled by 0. If all processes @SRZ) are labeled by ¢, then the

existential branch holding the tuple Rg,, provided at Level 4¢ — 2, is labeled by o.
Otherwise, this branch is labeled by 0. Process p(Qe’l), yielded at Level 4¢ — 1,

1p—
is labeled by ¢ if there exists at least one existentiael i)ranch labeled by ¢ at Level
4¢ — 2. Otherwise, pz(%l‘l) is labeled by 0.

At this level the only substrings of v left unchecked are those substrings that
corresponds to the intervals of the form Ig, , = [Zf;ll R, + Zf;f uQr+1p-1Qu—1 +
R 07 R+ Y21 aQu + (i1 + 1)Q-1], 0 < iy < [logn] =1, 1 <1< £—1, and
besides the cutting points P;* = >7;" R; + Zl“:_ll Qr+ (iy +1)Qy, 1 <u<l—1.

37

On each interval of type I, ,, A proceeds with Level 4/.

Level 4/¢ (Existential) Each interval Ig, , can be divided into [log n] subintervals of
length 1 < Q, <[logn]. Hence, A spawns O(c'°8") existential branches each of which
holds a [lOg n]—tuple %CQ[:(S(’Ymi£71+R4)a S('Vmi£71+R4+Qe)7 ceey S('Vacié_l—&-Rﬁ-([log n}—l)QZ))7
where S (%%714r R,) is the ranging vector found valid at Level 4/ — 1.

Level 4¢+1 (Universal) For each existential branch spawned at Level 4¢, A spawns

[log n] universal processes gol(ZQZ), 0 < iy < [logn] — 1. Each process pz(?e) takes an

interval of length @, of the form [Zle Ry —I—Zf;ll 1Qr+14Qy... Zle R; —I—Zf;l 3Qr+
(i¢ + 1)Q¢]. Denote by xigzzlzzl Ry —i-zlg;% 7@y + 10Qy, 0< iy< [logn] — 1. For each
interval [z;,...x;,41], A checks whether the substring Yai, - Vai, 41 18 valid according
to the leftmost-2 derivation order (Level 4/ + 2).

Level 4¢ + 2 (Ezistential) For each p(Q"), 0 < iy < [logn] — 1, A spawns O(c'°e")

e

existential branches, each branch holding an (Q, + 1)-tuple of ranging vectors R, =
(S(Vai,)s S (Vs +1)s s S (Vi 4+Qo—1)5 S(Vay 41))- In each Rg, the vectors S(vz,,) and
S (%‘ie) have been guessed at Level 4/. They are ranging vectors associated with
triplets placed in cutting points, i.e., edges of intervals of length [logn]. They are
also overlapping points of two consecutive intervals of type [x;,...x;,+1]. Hence,
each ranging vector S ('Yf’fie) is checked two times. Once if it is a valid vector on
which Vai,+1 can be applied in leftmost-2 derivation manner (checked by process

gJEZQ")). Then, if by applying Ya;, on the sentential form built upon the ranging vec-

tor S (fyxi[_l) a sentential form with an associated ranging vector equal to S (’yxiﬁ) is
obtained (which is checked by p(QZ)).

io—1
As all intervals of type [x;,...zj,4+1] are universally checked by processes gal(»eQ’“’),
the tuple R¢,, spawned at Level 4¢ is labeled by 1, if all ranging vectors S (’yg;,-z)

and all vectors in R, are correct. To check whether all ranging vectors in Rq, are

correct, for each process pz(f?e), 0 < iy < [logn] — 1, A follows the same procedure,

that requires O(logn) time and space, described at Levels 3, 7, ..., 4¢ — 1 (Univer-
sals). For the last substring of length Qg in =, i.e., the suffix of v of length @, of
the fo
YL
(Qe)
Pllogn]-1 llog n]—1)Q; +[log n] Q¢
the computation. This is done as for process ¢,, Theorem 7.

R+ 30, (logn]=1)@Qut+(log nl - 1)@~ T30 Rt Y04 ([logm]~1)Qi+{log Qe

must check whether the triplet 'yze P = v, ends
=1 =1

Each cutting point P}* = /L R + Z};—ll 1Q + (iy + 1)Qy can be equiva-
lently rewritten as Y1 Ry 4+ S0, 4;Qp + [logn] Quy1, due to the equality Q, =
[logn] Qu+1 + Ryy1, for any 1 < u < ¢ — 1. Furthermore, Z}‘ill R+ > 4@ +
llog n] Qu+1 is equal with 323! Rj+ Ry o +31 1 41Qi+([log n]—1)Qui1+[log n] Qu-2,
due to the equality Q41 = [logn] Qui2 + Ryto, for any 1 < u < ¢ — 2. By applying
this transformation k times, where k = {—wu, each P} can be equivalently rewritten as
27;11R1+Ru+2+'--+Ru+k+2?:1 ilQl"’([lOg n] _1> (Qu+1+---+Qu+k71)+[10g TL] Qquka
where u + k = /£.

In this way each P, yielded at Level 4u by %i%ww 1 <u< /-1, is in fact

the right edge of an interval of the form [Zle R+ Ef;ll uQr + 14Qy... Zle R +

38

ST Qi+ (ie + 1)Qf) = (w4, 2ip11], for which 0 < < [logn] — 1,1 <1< £ —1,
ip = [logn] — 1. Hence, the decision on the correctness of each ranging vector
S(’yZLI Ry z‘le+(iu+1)Qu) = S('yp;) will be actually taken by a process of type

Plognl 1
ga(f’g é)n}il, the logical value returned by this process is “propagated” up to the level
og the computation tree that has spawned the corresponding cutting point, and thus
each ¢ symbol receives a logical value. The input is accepted, if going up in the
computation tree, with all ¢’s changed into logical values, the root of the tree is
labeled by 1.

The tuples Rg,, Ry, , Ro,, NG,, 1 < 7 < ¢, vectors V(rj), 1 <j <k, and aux-
iliary net effects computed by A during the algorithm, are stored by using O(logn)
space, in a similar manner as in Theorems 7 and 8.

It is easy to observe that A has O(logn) levels. Since at each level A spawns

Since the validity of each cutting point is decided by a process of type

either O(n) or (’)(céogn) existential branches, where ¢; and ¢y are constants, (each
level being thus convertible into a binary tree with O(logn) levels), and at each
Level 4h, 1 < h < ¢, A performs a division operation, which requires O(logn) time
and space [22], A will perform the whole computation in @(log? n) parallel time and
O(logn) space. O

Corollary 13 SZRCL;(CF)USZRCLI(CF) c NC2, i € {2,3).
Corollary 14 SZRCL;(CF)USZRCL}*(CF) Cc DSPACE(log®n), i € {2,3}.

5 Szilard Languages of Programmed Grammars

Programmed grammars (PGs) are regulated rewriting grammars in which the ap-
plication of a rule is conditioned by its occurrence in the so called success field
associated with the rule previously applied in the derivation. If a rule is effectively
applied, in the sense that its left-hand side occurs in the current sentential form, then
the next rule to be used is chosen from its success field. For programmed grammars
working in appearance checking mode, if the left-hand side of a rule (chosen to be
applied) does not occur in the current sentential form then, at the next derivation
step, a rule from its failure field must be used.

Programmed grammars have been introduced in [39] and [40], as a generaliza-
tion of phrase-structure grammars with applications in natural language processing.
This is possible due to the success and failure fields that prescribe an order in
which productions can be used during the derivation. Extended versions of context-
free programmed grammars, namely stochastic context-free programmed grammars,
have been effectively used in pattern recognition [23] and [45]. For more results on
the generative capacity of PGs the reader is referred to [39], [40], [18], [12], [13], and
[14]. From [14] we have the following definitions.

5.1 Programmed Grammars - Prerequisites

Definition 16 A programmed grammar (PG) is a quadruple G = (N, T, S, P) where
S is the axiom, N and T, N NT = (), are finite sets of nonterminals and terminals,

39

respectively. P is a finite set of triplets (programmed grammar rules) of the form
r = (pr,0p,r), where p, is a rewriting rule of the form «, — f,, with «a, €
(NUT)*N(NUT)* and B, € (NUT)*, o, and ¢, are subsets of P, called the
success field and failure field of r, respectively. If ¢, = (), for any r» € P, then G is a
programmed grammar without appearance checking, otherwise G is a programmed
grammar with appearance checking (henceforth PG*°).

If all rules in P are phrase-structure (PS), context-sensitive (CS), context-free
(CF), or regular (REG) rules then G is a PS, CS, CF, or REG programmed grammar,
respectively.

Definition 17 Let G = (N,T,S,P) be a PG or a PG and V. = NUT. The
language L(G) generated by G is defined as the set of all words w € T* such that
there is a derivation D: S = wy =y, W1 =py, W2 =y e =y Ws = W, S > 1, and
for r;; = (pn.j »Ori s <prz.j), where Pri, is a rule of the form a;; — f;;, 1 < j <s—1,
we have either i. w;_1 = wj_ja;;w]_y, wj = w;_,B;;wj_; for some wj_;, w , € V*
and Tijy € Ty O . g does not occur in w;_1, wj—1 = w; and Tijy € Pry, -

Note that, for the case of PGs without appearance checking we have, in Definition
17, Pri, = () for any 7i;, and therefore there is no reason to check condition 1.
Denote by L(P, X) and L(P, X, ac) the class of languages generated by PGs and
PGs with appearance checking, respectively, with X-rules, X € {REG,CF,CF —
A, CS,PS}, then L(M, X) = L(P,X) and L(M, X,ac) = L(P, X, ac) [14]. Hence
1. CFLC L(P,CF — \) C L(P,CF — \jac) C CSL C L(P,CF,ac) = RE,
2. CFLC L(P,CF —\)C L(P,CF) C L(P,CF,ac) = RE,
3. L(P,X)=L(P,X,ac) = XL, X € {REG,CS, PS}.
Let G = (N,T,S,P) be a PG. If labels are associated with triplets?! r =
(p,o,p) € P, in one-to-one correspondence, then the Szilard language associated
with G is defined as follows.

Definition 18 Let G = (N, T, S, P) be a programmed grammar, P = {ry,ra,...,7;}
the set of productions, L(G) the language generated by G, and w a word in L(G).
The Szilard word of w associated with the derivation D: S = wyg =, W1 =,
Wy =y, e =p, Ws = w, s > 1,08 defined as Szp(w) = riyriy..1i,, 1i; € P,
1 < j < s. The Szilard language of G is Sz(G) = {Szp(w)|lw € L(G),D is a
terminal derivation of w}.

Let SZP(X) and SZP%(X) be the classes of Szilard languages associated with
programmed grammars and programmed grammars with appearance checking, re-
spectively, with X rules, X € {CF,CS, PS}.

Definition 10 is applicable also for leftmost-i, i € {1,2,3}, derivations in PGs
with CF rules [14]. In terms of triplets r = (pr, oy, ¢r) € P, where p is a CF rule of
the form a;; — B;;, a;; € N, these derivations can be explained as follows.

For the case of leftmost-1 derivations, after r has been effectively applied in
leftmost-1 manner, the rule from o, that rewrites the leftmost nonterminal occurring

21As in the case of RCGs, for the sake of simplicity, we use the same notation both for a triple
and the label associated with it.

40

in the current sentential form must be applied. If no rule in o, can rewrite the
leftmost nonterminal occurring in the sentential form, then the grammar cannot be
applied in the leftmost-1 derivation manner. If no rule in o, can be applied (because
the left-hand sides of the rules do not occur in the sentential form) then a rule in
oy, where 1’ = (pr, 0,) is an arbitrary rule in o,., must be applied in leftmost-1
manner.

For the case of leftmost-2 derivations, after r» has been effectively applied in
leftmost-2 manner, the rule from o, that rewrites the leftmost nonterminal that can
be rewritten by rules in o, (not necessary the leftmost nonterminal occurring in
the sentential from) must be applied. If no rule in o, can be applied in leftmost-2
manner, then a rule in ¢,., where ' = (p,, 0,7, ¢,s) is an arbitrary rule in o, that
rewrites the leftmost nonterminal that can be rewritten by rules in ./, must be
applied.

For the case of leftmost-3 derivations, after r has been effectively applied in
leftmost-3 manner, a rule from o, that rewrites the leftmost occurrence of its left-
hand side in the current sentential form must be applied. If no rule in o, can be
applied in leftmost-3 manner, then a rule in ¢,., where v = (p/, 0.,) is an
arbitrary rule in o,, must be applied in leftmost-3 manner.

Szilard languages associated with leftmost-i, ¢ € {1,2,3}, derivations can be
defined in the same way as in Definition 18, with the specification that D is a
leftmost-¢ derivation of w.

We denote by SZPL;(X) and SZPL(X) the classes of leftmost-i, i € {1,2, 3},
Szilard languages associated with PGs and PGs with appearance checking with X
rules, X € {C'F,CS, PS}, respectively.

Let G = (N, T, P, A1) be an arbitrary programmed grammar with appearance
checking, where A; is the axiom, N = {A;, A, ..., Ay} and P = {rq1,re,...,7} are
the finite sets of ordered nonterminals and labels, respectively.

For each production r = (p;, 0,) € P, where p, is a rewriting rule of the form
ap, = Bp., ap, € (NUT)*N(N UT)*, and By, € (N UT)*, its net effect during
the derivation D with respect to each nonterminal 4; € N, 1 <[< m, is given
by the difference df4,(pr) = |5p.|a, — |op,|4,- To each rule r we associate a vector
V(r) € Z™ defined by V(r) = (dfa, (pr), dfa,(Pr), ..., df a,, (pr)), where Z is the set
of integers. The value of V(r) taken at the I"* place, 1 <1 < m, is denoted by V;(r).

5.2 On the Complexity of Unrestricted Szilard Languages

In this subsection we focus on unrestricted Szilard languages of PGs with CF rules.
Leftmost Szilard languages are studied in Subsection 5.3. The case of Szilard lan-
guages of PGs with CS and PS rules is briefly discussed in Section 6.

Theorem 10 Each language L € SZP(CF)USZP*(CF) can be recognized by an
indexing ATM in O (logn) time and space (SZP(CF)USZP*(CF) C ALOGTIME).

Proof. We give the proof for the class SZP*(CF). For the class SZP(CF) the
proof is simpler. Let G = (N, T, P, A1) be a PG?* with CF rules, and A an indexing
ATM composed of an input tape that stores an input v = v17vs...7, € P*, an
index tape, and a working tape composed of three tracks. Here and throughout

41

this section, each label ; corresponds to a triplet in P of the form (p.,, 0., ¢+),
where p,, is a CF rule of the form a,, — 3,,, 1 < i < n. At the beginning of the
computation the first track stores k + 1 vectors, V9 corresponding to the axiom, i.e.,
VP =1 and Vl0 =0,2<1<m,and V(r;), 1 <i < k. The other two tracks are
initially empty. In order to guess the length of v, A proceeds with the procedure
described at Level 1 (Ewistential), Theorem 3 or Theorem 7.

Levels 2-3 (Universal-Ezistential) A spawns n universal processes g;, 1 <i <n
(Level 2). On g A checks whether a,, = A;, while on s, A checks whether
72 € 0v,. For each g;, 3 <7 < n, A counts the number of occurrences of each
ri€ P,1<j<k, in A1) = ~4175...75_9. Suppose that Tj occurs Cgl_l) times in
A=) 0 < 052_1) < i — 2. Since for some occurrences of r; = (p;,0;,¢;) in A1)
p; may be either effectively applied (because its left-hand side «.,; occurs in the
sentential form) or it is a “dummy” rule (because p; cannot be applied), for each

i—1 i— i—
5’) — (c;a 1),c§’d 1)) such

that cgfgl) + cg.f;l) = cg-i_l), where c§ " Y is the number of times rj is effectively
(i-1)

applied up to the (i — 1)“” step of derivation, and c; id is the number of times r; is

1 <j <k, A guesses a pair of arbitrarily large integers ¢

a dummy rule in v~ Since there exist O(n?) guesses, A spawns (’)(%) existential

branches (Level 3). On each existential branch holding a pair t§

the sums 354 D= =Vo+ Z)Vl(r]) 1 <1 <'m, i.e., the number of occurrences

, A computes

of each A; in the sentential form obtained at the (i — 1) step of derivation. Then,
A checks whether one of the following conditions holds:

1. s(Z 1) > 1land~; € 0;-1, i.e., v—1 is effectively applied and the next rule must

be chosen from its success field,

2. s(()f;:)l =0 and v; € ;_1, i.e., y;—1 is a dummy rule and the next rule must be

chosen from its failure field.

Besides, for the last process g, A computes sff oube) S(Xl_l) + dfa,(py,_.) +

df a,(p+,) and SXL outd) ff Yt dfa,(py,), 1 <1 < 'm, and it checks whether one
of the following conditlons holds

1. s(n 1) > 1, %Gan,l,sgg > 1, (noum) =0,1<1l<m,

(n)

2. SOé'yn _O Tn e@n 1, Sa’y > 1 (TLOutd)

=0,1<l<m.

Each process p;, 3 < i < n, returns , if one of the conditions 1 — 2 holds.
Otherwise it returns 0. Finally, v is accepted if all g;, 1 < i < n, return 1, i.e., all
n universal branches are labeled by 1.

Each of the above processes uses the third track of the working tape for auxiliary
computations, i.e., to record in binary the elements c(i_l) c(i_l) and c(l 1)) 3<i<

1 Cia
n,1§j§/~c,andtocomputethesumssg 2 ,3<i<mn,and s, , 1 <1 <m.
The counting procedure used by each process wi, 1 <1 § n is a function in
the Ug«-uniform NC' class. The same observation holds for the summation of a
constant number of vectors or multiplication of an integer of at most logn bits long
with a binary constant. Hence, all the above operations can be performed by an
ATM in logn time and space. The out-degree of the computation tree at this level is

(n out a)

42

n. By using a divide and conquer procedure the computation tree can be converted
into a binary tree of height at most logn. Consequently, for the whole computation
A uses O(logn) time and space. O

Corollary 15 SZP(CF)U SZP*(CF) c NC..
Corollary 16 SZP(CF)USZP*(CF) C DSPACE(logn).

5.3 On the Complexity of Leftmost Szilard Languages

The algorithm described in the proof of Theorem 8 cannot be applied for the case of
leftmost-1 SZLs of PGs with appearance checking. The explanation is that, in the
proof of Theorem 8, even if process g, returns the true value, which means that at its
turn -, can be applied in a leftmost-1 derivation manner on y;7s...7,—1, the process
p; cannot “see” whether v, has been effectively applied in the derivation, or it is
only a dummy rule, since all branches spawned at the same level of the computation
tree of A are independent on each other. Hence, for the case of leftmost-1 derivation
in PGs with appearance checking an algorithm similar to that described in the proof
of Theorem 6 or Theorem 9 must be applied. Using a similar method as for Theorem
5 or Theorem 8 we have

Theorem 11 FEach language L € SZPL1(CF) can be recognized by an indexing
ATM in O(logn) time and space.

Corollary 17 SZPL,(CF) c NC'.
Corollary 18 SZPL(CF) C DSPACE(logn).

In order to simulate derivations of type letfmost-i, i € {1,2,3}, and to check
whether a given word v € P*, v = v172...7, belongs to SZPL¢(CF), as in the
case of RCGs, for each triplet v;, 1 < i < n, the ATM must have information
concerning the order in which the first occurrence of each nonterminal A; € N,
1 <1 < m, occurs in the sentential form at any step of derivation. In this respect we
redefine the notion of a ranging vector for PGs. A ranging vector associated with a
triple ; = (p;,05,¢;) € P, 1 < j <k, provides the order in which first occurrences
of nonterminals in IV occur in the sentential form obtained after r; has been applied
at that step of derivation. Similar to the Definition 15, for the case of PGs we have

Definition 19 Let G = (N,T,S,P) be a PG with appearance checking and CF
rules, where P = {ry,ro,...,7;} is the ordered finite set of triples in P. Let SFy,
be the sentential form obtained after triplet r; = (p;,05,¢;), 1 < j < k, has been
applied at a certain step of derivation in G. The ranging vector associated with
SF,;, denoted by S(r;), 1 < j <k, is a vector in N defined as

0, if A; € N does not occur in SF,, i.e., |[SF.;[a, =0,

Si(ry) =) if the first occurrence of A; in SF;; is the ith element in the
’ order of first occurrences of nonterminals from NV in SFrj.
Note that if ry = (pjy,05,¢;) is applied in the Szilard word before r; =
(pj.oj,¢;) then the ranging vector S(r;) can be computed knowing S(r;). This
observation holds for all leftmost-i, i € {1, 2,3}, derivations.

43

Example 3 Consider the ranging vector S(rj;) = (3,0,2,1,0) € N°, associated
with the sentential form SFT,j, obtained, at a certain step of derivation, after the ap-
phC&tiOH of rule Tty i.e., SFT],, = A4X4A3X3’4A1X3’4, X4 € ({A4}UT)*, X3’4, X3’4 S
({43, A1} UT)".

Ifinr; = (pj, 04, ¥;), pj is the rule A3 — tAs, then r; can be applied in leftmost-
2 derivation manner after r;, if either r; has been effectively applied in leftmost-2
manner, 7; € oy, and no rule in o rewrites Ay, or 7y is a dummy rule (case in
which the shape of the sentential form SFTJ,, is actually borrowed from the very last
PG rule effectively applied before 7;/), r; € ¢j/, and no rule in ¢ rewrites Ay.

The triplet r; = (pj, 0}, ;) can be applied in leftmost-3 derivation manner after
rjr, if either 7, has been effectively applied in leftmost-3 manner, ; € o/, and the
rule p; rewrites the first occurrence of Az in SF; , (even if there may exist rules in
o that rewrites the first occurrence of A4 in SFT],,), or r; is a dummy rule, 7; € @jr,
and the rule p; rewrites the first occurrence of A3 in SFTj,.

Depending on the position of the second occurrence of Az in S Frj,, the sentential
form obtained after p; has been applied on SFTj, may look like

o SF,, = A4XyA5A3X34A1 X134, Xa € ({A4} UT)", X34 € ({43, A4} UT),
X173,4 S ({Al, Ag, A4} U T)*, i.e., S(rj) = (4,0, 3, 1, 2),

o SF, = AyX4As X4 A3X34A1 X134, X4, Xy € ({A}UT)*, X34 € ({A3, Ag} U
T)*, X134 € ({A17A37A4} uT)*, ie., S(Tj) = (4,0, 3, 1,2), or like

o SFrj= Ay X4AsX4A1X1445X1 34, X4, X4 € ({Ad}UT)*, X14 € ({A1, A4} U
T)*, X1’3’4 € ({Al, Ag, A4} U T)*, i.e., S(Tj) = (3, 0,4, 1, 2)

Using a similar method as in the proof of Theorem 6, for MGs, or Theorem 9,
for RCGs, for the case of leftmost-i derivations, i € {1,2,3}, in PGs, we have

Theorem 12 FEach language L € SZPL(CF), i € {1,2,3}, can be recognized by
an indexing ATM in O (logn) space and O (log*n) time.

Corollary 19 SZPL;(CF)USZPL¥¢(CF) C NC?, i€ {1,2,3}.

Corollary 20 SZPL,(CF)USZPL{(CF) c DSPACE(log*n), i € {1,2,3}.

6 Remarks on Szilard Languages of Regulated Rewrit-
ing Grammars with PS Rules

The derivation mechanism in MGs, PGs, or RCGs is quite similar to the derivation
mechanism in Chomsky grammars. In the case of MGs, the only difference is that
productions are grouped into matrices composed of a finite number of rules obeying
a predefined order and some constraints that prohibit the use of some of the rules
composing the matrix sequence. For the case of PGs constraints are imposed by
the success and failure lists that prescribe the rules eligible to be applied at a
certain step of derivation, while for the case or RCGs constraints are provided by
the permitting and forbidding contexts that enable or disable a rule to be applied.

44

These restrictions do increase the generative power of MGs, PGs, or RCGs [14] but
they do not change the complexity of the corresponding Szilard languages.

On the other hand Definition 10 of leftmost-i, i € {1,2,3}, derivations in MGs,
PGs, or RCGs with CF rules, can be naturally generalized for PS rules as follows.

Let G = (N,T,S, M, F) be a MG with PS rules, where M = {mqy,ma,...,my},
each m; is a finite sequence of the form m; = (p;,, pj., ...,pjk(j)), k(7) > 1, and each
rule pj, € mj, 1 <4 < k(j), is of the form ap;. = Bp,. ;. € (NUT)*N(NUT)*,
Bp;, € (NUT)*. Consider Py = {ap, |1 < j < k,1 < i < k(j)} the set of the
left-hand sides of all rules in m;, 1 < j < k.

Consider G = (N, T, S, P) a PG or RCG with PS rules, where P = {ry, 72, ..., 7y}
and each rule p; € P, 1 < j <k, is of the form o, — B),, oy, € (NUT)*N(NUT)*
and 3,, € (NUT)*. Consider P, = {ay,|1 < j < k} the set of the left-hand sides of
all rules in P.

Definition 20 A derivation in G, where G is a MG, PG or RCG is called

e leftmost-1 if each rule used in the derivation rewrites the leftmost substring
« occurring in the current sentential form, such that if aga is a prefix of the
current sentential form, then ag € T* and «a € P,,

e leftmost-2 if at each step of derivation, the leftmost occurrence of o € P, that
can be rewritten is rewritten,

o leftmost-3 if each rule used in the derivation rewrites the leftmost occurrence
of its left-hand side in the current sentential form.

In [9] we proved that the class of leftmost Szilard languages of PS (and particu-
larly of CS) grammars can be recognized in logarithmic time and space by indexing
ATMs. The case of leftmost-1 derivation in MGs, PGs, or RCGs with CF or PS rules
is in fact a generalization of the leftmost derivation in CGs (Defintion 5). Using a
similar method as in [9] it can be proved that Theorems 5, 8, and 11 hold for classes
of leftmost-1 Szilard languages of MGs, PGs, or RCGs (with or without appearance
checking) with CS or PS rules, too. Hence, we have

Theorem 13 Fach L € SZML1(X)USZPLy(X)USZRCL1(X)USZRCLI(X),
X € {CS, PS} can be recognized by an indexing ATM in O (logn) time and space.

Corollary 21 SZMLy(X) U SZPL1(X) U SZRCL.(X) U SZRCL*(X) C NC!,
X € {CS, PS}.

Corollary 22 SZMLy(X)USZPLi(X)USZRCL,(X)USZRCLI(X) C DSPACE
(logn), X € {CS,PS}.

For the moment we have no results concerning the complexity of leftmost-1 Szi-
lard languages of MGs and PGs with appearance checking and PS rules, or leftmost-¢,
i € {2,3}, Szilard languages of MGs, PGs, and RCGs, with or without appearance
checking, and PS rules.

45

References

1]

2]

[11]

[12]

[13]

S. Abrahém, Some Questions of Phrase-Structure Grammars. Computational
Linguistic 4, 61-70, 1965.

E. Altman and R. Banerji, Some Problems of Finite Representability. Informa-
tion and Control, 8, 251-263, 1965.

B.S. Baker, Non-Contezt-Free Grammars Generating Context-Free Languages.
Information and Control, 24, 231-246, 1974.

J.L. Balcazar, J. Diaz, and J. Gabarrd, Structural Complexity. Vol. II. Springer-
Verlag, Berlin-Heidelberg, 1990.

P.W. Beame, S.A. Cook, and H.J. Hoover, Log Depth Circuits for Division and
Related Problems. STAM Journal on Computing, 15(4), 994-1003, 1986.

R.L. Cannon, Notes on Canonical Label Languages. International Journal of
Computer and Information Sciences, 8(2), 141-148, 1979.

A. Chandra, D. Kozen, and L. Stockmeyer, Alternation. Journal of Association
for Computing Machinery, 28(1), 114-133, 1981.

N. Chomsky, Three Models for the Description of Language. IRE Transactions
on Information Theory 2(3), 113-124, 1956.

L. Cojocaru, E. Mikinen, and F.L. Tiplea, Classes of Szilard Languages in NC'.
Proceedings of the 11** International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 299-306, 2009.

A.B. Cremers, H.A. Maurer, and O. Mayer, A Note On Leftmost Restricted
Random Context Grammars. Information Processing Letters, 2(2), 31-33, 1973.

S. Crespi-Reghizzi and D. Mandrioli, Petri Nets and Szilard Languages. Infor-
mation and Control, 33(2), 177-192, 1977.

J. Dassow, Grammars With Regulated Rewriting. Formal Languages and Appli-
cations, C. Martn-Vide, V. Mitrana, and G. Paun Eds., Springer-Verlag Berlin
Heidelberg, 249-274, 2004.

J. Dassow, H. Fernau, and Gh. Paun, On the Leftmost Derivation in Matriz
Grammars. International Journal of Foundations of Computer Science, 10(1),
61-80, 1999.

J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory.
Springer-Verlag Berlin Heidelberg, 1989.

J. Dassow, Gh. Paun, and A. Salomaa, Grammars with Controlled Derivations.
Handbook of Formal Languages, Volume II, Chapter 3, G. Rozenberg and A.
Salomaa Eds., Springer-Verlag Berlin Heidelberg, 101-154, 1997.

46

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Duske, R. Parchmann, and J. Specht, Szilard Languages of 10-Grammars.
Information and Control, 40(3), 319-331, 1979.

S. Ewert and A. P. J. van der Walt, A Pumping Lemma for Random Permitting
Contezt Languages. Theoretical Computer Science, 270(1-2) 959-967, 2002.

H. Fernau, Regulated Grammars under Leftmost Derivation. Grammars, 3(1),
37-62, 2000.

P. Fischer, A. Meyer, and A. Rosenberg, Counter Machines and Counter Lan-
guages. Theory of Computing Systems, 2(3), 265-283, 1968.

A.C. Fleck, An Analysis of Grammars by Their Derivation Sets. Information
and Control, 24, 389-398, 1974.

M. Hopner and M. Opp, Renaming and Erasing in Szilard Languages. Proceed-
ings of the Fourth Colloquium on Automata, Languages and Programming,
ICALP 1977, LNCS 52, 244-257, 1977.

W. Hesse, Division is in uniform TC®. Automata, Languages and Programming
28" International Colloquium, ICALP 2001, LNCS 2076, 104-114, 2001.

T. Huang, K. S. Fu, Stochastic Syntactic Analysis for Programmed Grammars
and Syntactic Pattern Recognition, Computer Graphics and Image Processing,
1(3), 257283, 1972.

Y. Igarashi, The Tape Complexity of Some Classes of Szilard Languages. SITAM
Journal of Computing, 6, 460—466, 1977.

H.P. Kriegel and H.A. Maurer, Formal Translations and the Containment Prob-
lem for Szilard Languages. Automata Theory and Formal Languages 2"¢ GI
Conference Kaiserslautern, LNCS 33, 233-238, 1975.

H.P. Kriegel and Th. Ottmann, Left-Fitting Translations. Automata, Languages
and Programming, LNCS 52, 309-322, 1977.

M. Linna, Two Decidability Results for Deterministic Pushdown Automata.
Mathematical Foundations of Computer Science, LNCS 53, 365-373, 1977.

E. Makinen, On Certain Properties of Left Szilard Languages. Elektronische
Informationsverarbeitung und Kybernetik 19(10/11), 497-501, 1983.

E. Makinen, On Context-Free and Szilard Languages. BIT Numerical Mathe-
matics, 24(2), 164-170, 1984.

E. Méakinen, A Note on Depth-First Derivations. BIT Numerical Mathematics,
25, 1, 293-296, 1985.

E. Makinen, On Szilard Languages of Pure Context-Free Grammars. Elektro-
nische Informationsverarbeitung und Kybernetik EIK (Journal of Information
Processing and Cybernetics), 22(10/11), 527-532, 1986.

47

[32]

[33]

[34]

[38]

[39]

[40]

E. Mékinen, On Homomorphic Images of Szilard Languages. International Jour-
nal of Computer Mathematics, 18(3/4), 239-245, 1986.

E. Mékinen, A Note on the Inclusion Problem for Szilard Languages. Interna-
tional Journal of Computer Mathematics, 21(3/4), 291-295, 1987.

A. Mateescu and A. Salomaa, Aspects of Classical Language Theory. Handbook
of Formal Languages, Volume I, Chapter 4, G. Rozenberg and A. Salomaa Eds.,
Springer-Verlag Berlin Heidelberg, 175-251, 1997.

E. Moriya, Associate Languages and Derivational Complexity of Formal Gram-
mars and Languages. Information and Control, 22(2), 139-162, 1973.

Gh. Paun, On Szilard’s Languages Associated to a Matriz Grammar. Informa-
tion Processing Letters, 8(2), 104-105, 1979.

M. Penttonen, On Derivation Language Corresponding to Context-Free Gram-
mars. Acta Informatica, 3, 285-291, 1974.

M. Penttonen, Szilard Languages Are log n Tape Recognizable. Elektronische
Informationsverarbeitung und Kybernetik EIK, 13(11), 595-602, 1977.

D. J.Rosenkrantz, Programmed Grammars - a New Device for Generating For-
mal Languages. PhD Thesis, Columbia University, New York, 1967.

D. J.Rosenkrantz, Programmed Grammars and Classes of Formal Languages.

Journal of the ACM (JACM), 16(1), 107-131, 1969.

W. Ruzzo, On Uniform Circuit Complezity. Journal of Computer and System
Sciences, 22(3), 365-383, 1981.

A. Salomaa, Matriz Grammars with o Leftmost Restriction. Information and
Control, 20(2), 143-149, 1972.

A. Salomaa, Formal Languages. Academic Press, London-New York, 1973.

E.D. Stotskij, Some Restriction on Derivations in Context-Free Grammars.
Nauchno-Techn. Inform. Ser. 2(7), 35-38, 1967.

P. H. Swain and K. S. Fu, Stochastic Programmed Grammars for Syntactic
Pattern Recognition. Pattern Recognition, 4(1), 83-100, 1972.

H. Vollmer, Introduction to Circuit Complexity A Uniform Approach. Springer-
Verlag Berlin Heidelberg, 1999.

A. P. J. van der Walt, Random Context Languages. Information Processing
Letters, 71, 66-68, 1972.

A. P.J. van der Walt and S. Ewert, A Shrinking Lemma for Random Forbidding
Contezt Languages. Theoretical Computer Science, 237(1-2), 149-158, 2000.

48

