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Abstract

The regulated rewriting mechanism is one of the most efficient methods to
augment the Chomsky hierarchy with a large variety of language classes that
lay within it. In this paper we investigate the derivation process in regulated
rewriting grammars such as matrix grammars, random context grammars, and
programmed grammars by studying their Szilard languages. We prove that
Szilard languages associated with unrestricted derivations in these grammars
can be recognized in logarithmic time and space by indexing alternating Turing
machines. Hence, these classes of Szilard languages belong to the UE∗ -uniform
NC1 class [41]. In general, leftmost Szilard languages of regulated rewriting
grammars can be recognized in logarithmic space and square logarithmic time.
Hence, these classes of languages belong to the NC2 class [41].

1 Introduction

When we consider a formal grammar one of the very first tasks is to study the
derivation mechanism of the system in question. Once derivation properties have
been settled on, we can go further by studying closure properties, decidability prop-
erties, or the computational power of that generative device. One of the most
important tools to investigate the derivation mechanism in formal language theory,
is the Szilard language. If labels are associated with productions in one-to-one cor-
respondence, then each terminal derivation can be expressed as a word over the set
of labels, such that labels in this word are concatenated in the same order they have
been used during the derivation. Informally, the Szilard language associated with a
generative device is the set of all words obtained in this way.

The concept of Szilard language has been first introduced for Chomsky gram-
mars, under the name of “label language”, “associate language”, or “derivation
language”, in [20], [35], [37], and [44]. Roots of Szilard languages come from [2]
and [43]. The notion has been extended afterwards for several other generative de-
vices, such as pure context-free grammars [31] and regulated rewriting grammars
[14], [16], [36], and [43]. If restrictions are imposed on the derivation order then par-
ticular classes of Szilard languages, such as leftmost Szilard languages [28], canonical
label languages [6], depth-first and breadth-first Szilard languages [30] are obtained.
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Hierarchies and closure properties of Szilard languages associated with (pure)
context-free grammars are considered in [37], [44], [31], [32], and [33]. Szilard lan-
guages of (pure) context-free grammars are very weak in closure properties. They
are not closed under union, concatenation, homomorphism and inverse homomor-
phism, Kleene +, or intersection with regular languages. Hence, none of them form
even a trio family1 of languages. In [43] it is proved that the closure of Szilard
languages of context-free grammars under the intersection with regular languages
equals the family of derivation languages associated with context-free matrix gram-
mars. Another characterization of context-free matrix languages by means of Szilard
languages is provided in [11]. There exists a proper hierarchy of Szilard languages of
pure context-free grammars with respect to the degree of grammars [31]. There exits
also a proper hierarchy of Szilard languages of context-free grammars with respect
to a certain homomorphism [32].

Decidability properties of Szilard languages associated with context-free gram-
mars are investigated in [25], [27], [32], [35], and [37]. The emptiness, finiteness, and
equivalence problems are decidable for these languages [37]. The inclusion problem
for leftmost Szilard languages is decidable [27], [35], and for unrestricted Szilard lan-
guages it is NP-complete [32]. The fitting problem [25] and the left fitting problem
[26], i.e., whether a given leftmost Szilard language is in the family of Szilard lan-
guages, are decidable, too. Several operations on Szilard languages and semilinearity
properties of these languages are studied in [21] and [29], respectively.

Time and space bounds of a Turing machine or multicounter machine to recognize
Szilard languages associated with Chomsky grammars, are presented in [38] and
[24]. In [38] it is proved that (leftmost) Szilard languages of context-free grammars
can be recognized by a linear bounded2 (realtime) multicounter machine. Since
each realtime multicounter machine can be simulated by a deterministic off-line3

Turing machine with logarithmic space, in terms of the length of the input string
[19], it follows that the classes of Szilard languages and (leftmost) Szilard languages
associated with context-free grammars are contained4 in DSPACE(log n). In [9]
we strengthened this result by proving that the above classes of Szilard languages
can be accepted by an indexing alternating Turing machine (henceforth indexing
ATM) in logarithmic time and space. Since the class of languages recognizable by
an indexing ATM in logarithmic time equals the UE∗-uniform NC1 class [41], we
obtain that the above classes of Szilard languages are strictly contained in NC1, i.e.,
the class of Boolean functions computable by polynomial size Boolean circuits, with
depth O(log n) and constant fan-in [46].

Characterizations of (leftmost) Szilard languages of context-free and phrase-

1A family of languages is called trio if it is closed under λ-free homomorphism, inverse homo-
morphism, and intersection with regular languages.

2A multicounter machine is linear bounded if it works in realtime, i.e., there exists a constant k
such that during the computation the contents of each counter is less than k|w|, where |w| is the
length of the input string.

3An off-line Turing machine is a Turing machine equipped with a read-only input tape and a
read-write working tape. It is allowed to shift both heads on both directions, and it works similar
to a Turing machine.

4DSPACE(logn), or the L class, is the class of languages recognizable by an off-line deterministic
Turing machine using logarithmic space.
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structure (unrestricted) grammars in terms of Turing machine resources are pro-
vided in [24]. It is proved that log n is the optimal space bound for an on-line5 de-
terministic Turing machine to recognize (leftmost) Szilard languages of context-free
grammars. It is also an optimal bound for an off-line deterministic Turing machine
to recognize leftmost Szilard languages of phrase-structure grammars. However, the
optimal bound for an on-line deterministic Turing machine to recognize leftmost
Szilard languages of context-free and phrase-structure grammars is n, where n is
the length of the input word. Since leftmost Szilard languages of phrase-structure
grammars are off-line recognizable by a deterministic Turing machine that uses only
logarithmic space, in terms of the input string, leftmost Szilard languages of phrase-
structure grammars are included in DSPACE(log n). In [9] we proved that the class
of leftmost Szilard languages of phrase-structure grammars is strictly included in
NC1 under the UE∗-uniformity restriction.

Regulated grammars are formal grammars composed of Chomsky rules for which
the derivation mechanism obeys several filters and controlling constraints that allow
or prohibit the use of the rules during the generative process. For formal definitions
and results concerning grammars with regulated rewriting the reader is referred to
[14]. In this paper we deal with three types of rewriting mechanisms provided by
matrix grammars, random context grammars, and programmed grammars. These
grammars are equivalent concerning their generative power [14], but they are in-
teresting because each of them uses totally different regulating restrictions in the
derivation mechanism that provide good structures to handle a large variety of prob-
lems in formal languages, computational linguistics, programming languages, and
even graph theory.

This work is dedicated to the complexity of Szilard languages associated with
these three types of regulated grammars. The main aim is to relate the correspond-
ing classes of Szilard languages to parallel complexity classes, such as ALOGTIME,
NC1, and NC2, where ALOGTIME is the class of languages recognizable by an
indexing ATM in log n time [4], [7]. Approaching Szilard languages to low complex-
ity classes, such as NC1 and NC2, is the most natural way to relate these classes
to circuit complexity classes [46], and thus bringing new insights in finding fast par-
allel algorithms to recognize classes of languages generated by the above regulated
mechanisms. Based on the method used in [9] we prove that unrestricted Szilard
languages associated with matrix, programmed, and random context grammars are
contained in the UE∗-uniform NC1 class. In general, leftmost Szilard languages of
regulated rewriting grammars can be recognized in logarithmic space and square
logarithmic time. Hence, these classes of leftmost Szilard languages belong to the
NC2 class [41].

The paper is structured as follows. In Section 2 we introduce the main notions
concerning Chomsky grammars and the Chomsky hierarchy. We also present several
complexity results of (leftmost) Szilard languages associated with context-free and
phrase-structure grammars. In Section 3 we present complexity results for Szilard
languages associated with matrix grammars. Section 4 is dedicated to the complexity
of Szilard languages of random context grammars, while in Section 5 we investigate

5An on-line Turing machine is an off-line Turing machine with the restriction that the input
head cannot be shifted to the left.
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the complexity of Szilard languages associated with programmed grammars. We
conclude in Section 6 with some remarks on Szilard languages of regulated grammars
with context-sensitive and phrase-structure rules.

2 Chomsky Grammars and Szilard Languages - Prereq-
uisites

Chomsky grammars [8] have played a crucial role in the field of theoretical computer
science, especially in formal languages and programming languages. In this section
we introduce the main notions and notations that concern Chomsky grammars and
the Chomsky hierarchy. We briefly present several complexity results that concern
Szilard languages associated with Chomsky grammars. We assume the reader to be
familiar with the basic notions of formal language theory [34], [43].

Let X be a finite nonempty alphabet. We denote by λ the empty string, by |x|a
the number of occurrences of the letter a in the string x, and by |x| the length of
x ∈ X∗. We denote by |X| the cardinality of the set X.

Definition 1 A phrase-structure (PS) or Chomsky grammar (CG) is a quadruple
G = (N,T, P, S), where N and T , N ∩ T = ∅, are finite sets of nonterminals and
terminals, respectively. S ∈ N − T is the axiom, and P is a finite set of rules of the
form α→ β, α ∈ (N ∪ T )∗N(N ∪ T )∗ and β ∈ (N ∪ T )∗.

In the sequel for any phrase-structure rule p of the form α → β, α and β are
called the left-hand side and the right-hand side of p, respectively. If β ∈ T ∗, then
p is called terminal rule. Otherwise, p is called non-terminal rule. If β = λ, then p
is called erasing rule.

Definition 2 Let G = (N,T, P, S) be a phrase-structure grammar (PSG) and let
x, y ∈ (N ∪ T )∗. We say that x directly derives y, written as x⇒G y, if there exist
α1, α2, α, β ∈ (N ∪ T )∗, such that x = α1αα2, y = α1βα2, and α → β ∈ P . We
denote by ⇒∗G the reflexive and transitive closure of ⇒. The language generated by
G is defined as L(G) = {w|w ∈ T ∗, S ⇒∗G w}.

Definition 3 Let G = (N,T, P, S) be a PSG.

1. If no restrictions are imposed on rules in P then G is also called recursively-
enumerable or unrestricted (type 0) grammar.

2. If each rule in P is of the form αAγ → αβγ, where A ∈ N , α, γ ∈ (N ∪ T )∗,
β ∈ (N ∪ T )+, then G is a context-sensitive (type 1) grammar. Moreover, G
may contain the rule S → λ, assuming that S does not occur on the right-hand
side of any rule in P .

3. If each rule in P is of the form α→ β, |α| ≤ |β|, then G is a monotonous (type
1) grammar. Moreover, the grammar may contain the rule S → λ, assuming
that S does not occur on the right-hand side of any rule in P .
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4. If each rule in P is of the form α → β, α ∈ N and β ∈ (N ∪ T )∗, then G is a
context-free (type 2) grammar.

5. If each rule in P is of the form α→ β, α ∈ N and β ∈ T ∗ ∪ T ∗N , then G is a
regular (type 3) grammar.

Note that, the definitions of a type 1 grammar provided at items 2 and 3 are
equivalent, in the sense that the grammars generate the same class of languages.
We denote by REG, CFG, CSG, and PSG the set of all regular (type 3), context-
free (type 2), context-sensitive or monotonous (type 1), and phrase-structure (type
0) grammars, respectively. The classes of languages generated by REGs, CFGs,
CSGs, and PSGs are denoted by REGL, CFL, CSL, and PSL, respectively. The
class PSL equals the class of recursively enumerable languages, also denoted by
RE. Between these classes of languages the next inclusions (Chomsky hierarchy)
hold REGL ⊂ CFL ⊂ CSL ⊂ RE.

If rules in a CG are uniquely labeled, then each terminal derivation6 in the
grammar can be expressed as a unique word over the set of all labels. Informally,
the Szilard (control) word associated with a terminal derivation in a CG, is obtained
by concatenating the labels of components in the same order they have been used
during the derivation. The Szilard language associated with a CG is the set of all
words obtained in this way. In the sequel, for the sake of simplicity, we use the same
notation both for a rule and the label associated with it.

Definition 4 Let G = (N,T, S, P ) be a CG, P = {p1, p2, ..., pk} the set of produc-
tions, L(G) the language generated by G, and w a word in L(G). The Szilard word
of w associated with the derivation D: S = w0 ⇒pi1

w1 ⇒pi2
... ⇒pis ws = w is

defined as SzD(w) = pi1pi2 ...pis , pij ∈ P , 1 ≤ j ≤ s. The Szilard language of G is
Sz(G) = {SzD(w)|w ∈ L(G), D is a derivation of w}.

Definition 5 Let G = (N,T, S, P ) be a CG. A terminal derivation D: S = w0 ⇒pi1
w1 ⇒pi2

...⇒pis ws = w is a leftmost derivation of w, if for each 1 ≤ j ≤ s, wj−1 =
uj−1αjvj−1 ⇒pij

uj−1βjvj−1 = wj , uj−1 ∈ T ∗, where pij is the rule αj → βj in P .

The leftmost Szilard language of a grammar G is Szleft(G) = {SzD(w)|w ∈ L(G), D
is a leftmost derivation of w}.

Consider SZ(X) = {Sz(G)|G is an X-grammar} and SZL(X) = {Szleft(G)|G is
an X-grammar}, the classes of Szilard languages and leftmost Szilard languages as-
sociated with X-grammars, where X ∈ {REG,CF,CS, PS}. It is well known that
SZ(REG) ⊂ REGL, SZ(CF ) and CFL are incomparable, SZ(PS) ⊂ CSL and
SZL(PS) ⊂ CFL. Concerning the time and space of Turing machines recognizing
Szilard languages, the best upper bounds known so far are SZ(PS) ⊆ NTIME(n2),
SZ(CF ) ⊆ DSPACE(log n), and SZL(PS) ⊆ DSPACE(log n) [24], [38].

An indexing ATM [7] is an alternating Turing machine that is allowed to write
any binary number on a special tape, called index tape. This number is interpreted
as an address of a location on the input tape. With i, written in binary on the index

6That is a derivation that leads to a word in the language.
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tape, the machine can read the symbol placed on the ith cell of the input tape. Using
universal states to relate different branches on the computation, an indexing ATM
can read an input string of length n, in O(log n) time. For the formal definition and
complexity results on ATMs the reader is referred to [4], [7], and [41].

The next results concerning the Szilard languages of CFGs, CSGs, and PSGs are
provided in [9].

Theorem 1 Each language L ∈ X, X ∈ {SZ(CF ), SZL(CF ), SZL(CS), SZL(PS)}
can be recognized by an indexing ATM in O(log n) time and space.

As a consequence of Theorem 1 and the properties of ATMs [41], we have

Theorem 2 SZ(CF ), SZL(CF ), SZL(CS), SZL(PS) ⊂ NC1 ⊆ DSPACE(log n).

Due to the weak restrictions imposed on the types of rules and derivation mech-
anism, the Chomsky hierarchy is a sparse hierarchy. However, if restrictions are
imposed on rules and on the classical derivation mechanism in CGs, this hierarchy
can be substantially augmented with a rich variety of language classes. A possibility
to achieve this goal is to make use of regulated rewriting mechanisms which con-
sists of several filtering and controlling constraints imposed on derivations. These
constraints may allow or forbid some derivations to develop, by generating terminal
strings. For formal definitions and results concerning the large variety of regulated
rewriting mechanisms the reader is referred to [12], [14], and [15].

In the sequel we only deal with matrix grammars, random context grammars, and
programmed grammars. We describe the derivation mechanism for these regulated
rewriting grammars and we present new results concerning the complexity of the
corresponding Szilard languages.

3 Szilard Languages of Matrix Grammars

Matrix grammars (MGs) are regulated rewriting grammars in which rules are grouped
into matrices. A matrix can be applied if all its rules can be applied one by one
according to the order they occur in the matrix sequence. In the case of MGs with
appearance checking a rule in a matrix can be passed over if its left-hand side does
not occur in the sentential form and the rule belongs to a special set of rules defined
within the MG. MGs with context-free rules have been first defined in [1] in order
to increase the generative power of CFGs. The definition has been extended for
the case of phrase-structure rules in [14]. The generative power of these devices has
been studied in [12], [14], and [15]. Formally, a MG is defined as follows.

3.1 Matrix Grammars - Prerequisites

Definition 6 A matrix grammar with appearance checking (MGac) is a quintuple
G = (N,T, S,M,F ) where S is the axiom, N and T , N ∩ T = ∅, are finite sets
of nonterminals and terminals, respectively, M = {m1,m2, ...,mk} is a finite set of
finite sequences of rules of the form mj = (pmj ,1, pmj ,2, ..., pmj ,kmj ), where each pmj ,i
is an unrestricted rule over N∪T , 1 ≤ i ≤ kmj , kmj ≥ 1, 1 ≤ j ≤ k, and F is a subset
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of the rules occurring in the elements of M , i.e., F ⊆ {pmj ,r|1 ≤ j ≤ k, 1 ≤ r ≤ kmj}.
A matrix grammar without appearance checking has F = ∅.

Note that, if all rules in M are phrase-structure (PS), context-sensitive (CS),
context-free (CF), or regular (REG) rules then G is a PS, CS, CF, or REG matrix
grammar, respectively.

Definition 7 Let G = (N,T, S,M,F ) be a MGac and V = N ∪ T . We say that
x ∈ V + directly derives y ∈ V ∗ in appearance checking mode by application of a
rule p of the form α → β, α ∈ (N ∪ T )∗N(N ∪ T )∗ and β ∈ (N ∪ T )∗, denoted by
x ⇒ac

p y, if one of the following conditions holds i. x= x1αx2 and y= x1βx2, or ii.
rule α→ β is not applicable to x, i.e., α is not a substring of x, p ∈ F , and x = y.

Note that, if rule p in Definition 7 satisfies condition i., then we say that p is
effectively applied. For the case of MGs without appearance checking only condition
i. has to be checked, and then instead of x⇒ac

p y the notation x⇒p y is used.

Definition 8 Let G = (N,T, S,M,F ) be a MGac (or a MG if F = ∅) and V =
N ∪ T . For mj = (pmj ,1, pmj ,2, ..., pmj ,kmj ), kmj ≥ 1, 1 ≤ j ≤ k, and x, y ∈ V ∗, we
define a derivation step in G, denoted as x ⇒mj y, by x = x0 ⇒ac

pmj,1
x1 ⇒ac

pmj,2

x2 ⇒ac
pmj,3

... ⇒ac
pmj,kmj

xkmj = y (and by x = x0 ⇒pmj,1
x1 ⇒pmj,2

x2 ⇒pmj,3

... ⇒pmj,kmj
xkmj = y if F = ∅). The language L(G) generated by G is defined as

the set of all words w ∈ T ∗ such that there is a derivation D : S ⇒mj1
y1 ⇒mj2

y2 ⇒mj3
...⇒mjq w, 1 ≤ ji ≤ k, 1 ≤ i ≤ q.

If we denote by L(M,X) and L(M,X, ac) the class of languages generated
by MGs and MGs with appearance checking, respectively, with X-rules7, X ∈
{REG,CF,CF − λ,CS, PS}, then the following inclusions hold [12], [14], [15].
1. CFL ⊂ L(M,CF − λ) ⊂ L(M,CF − λ, ac) ⊂ CSL ⊂ L(M,CF, ac) = RE,
2. CFL ⊂ L(M,CF − λ) ⊆ L(M,CF ) ⊂ L(M,CF, ac) = RE,
3. L(M,X) = L(M,X, ac) = XL, X ∈ {REG,CS, PS}.

Since rules in a MG are arranged into matrices, and rules inside each matrix are
applied in a predefined order, for the case of MGs it is more convenient to associate
labels with matrices than with rules. In this manner each terminal derivation in
a MG can be expressed as a word over the set of labels associated in one-to-one
correspondence with matrices in the grammar, such that labels are concatenated in
the same order they have been used during the derivation. Informally, the Szilard
language associated with a MG is the set of all words obtained in this way. In the
sequel, for the sake of simplicity, we use the same notation both for a matrix and
the label associated with it. Formally, we have

Definition 9 Let G = (N,T, S,M,F ) be a MG, M = {m1,m2, ...,mk} the set of
matrices of G, L(G) the language generated by G, and w ∈ L(G). The Szilard word
of w associated with the derivation D: S ⇒mi1

y1 ⇒mi2
y2 ⇒mi3

...⇒miq w in G is
defined as SzD(w) = mi1mi2 ...miq , mij ∈M , for some q ≥ 1, 1 ≤ ij ≤ k, 1 ≤ j ≤ q.
The Szilard language of G is Sz(G) = {SzD(w)|w ∈ L(G), D is a derivation of w}.

7By CF −λ-rule we denote a non-erasing context free rule, i.e., a rule of the form α→ β, where
α ∈ N , β ∈ (N ∪ T )+.
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We denote by SZM(X) and SZMac(X) the classes of Szilard languages associ-
ated with matrix grammars and matrix grammars with appearance checking with
X rules, X ∈ {CF,CS, PS}, respectively.

Note that with respect to matrices, MGs are nondeterministic devices. At each
step of derivation the grammar nondeterministically chooses which matrix is applied,
if this can be applied. Once a matrix becomes active, it works deterministically, in
the sense that the order in which the rules are applied is predefined by their order
in the matrix sequence. However, the order in which multiple occurrences of a
nonterminal in a sentential form are rewritten, is still nondeterministically chosen.
A possibility to reduce the high nondeterminism in MGs is to impose an order on
which nonterminals occurring in a sentential form can be rewritten. As in the case
of CGs, the most significant is the leftmost derivation order [13], [14], [18], [42]. In
this paper we focus only on three types of leftmost derivation, defined in [14] for
MGs with context-free rules, as follows.

Definition 10 Let G = (N,T, S,M,F ) be a MG. A derivation in G is called

• leftmost-1 if each rule used in the derivation rewrites the leftmost nonterminal
occurring in the current sentential form,

• leftmost-2 if at each step of derivation the leftmost occurrence of a nonterminal
which can be rewritten (by first rules of matrices that can be effectively applied,
with no restrictions on the other rules) is rewritten,

• leftmost-3 if each rule used in the derivation rewrites the leftmost occurrence
of its left-hand side in the current sentential form.

Note that, the above definition is universally applicable for regulated rewriting
grammars such as random context or programmed grammars.

In terms of matrices, for the case of leftmost-1 derivation, in MGs without ap-
pearance checking, each rule in the sequence that defines a matrix must rewrite the
leftmost nonterminal occurring in the current sentential form (otherwise the ma-
trix cannot be applied in the leftmost-1 derivation manner). In the case of MGs
with appearance checking, if a certain rule of a matrix cannot rewrite the leftmost
nonterminal, because the nonterminal rewritten by the rule does not occur in the
sentential form, then the rule is passed over if it belongs to F . Otherwise, i.e., the
nonterminal rewritten by the rule occurs in the sentential form, but this is not the
leftmost nonterminal in the sentential form, then the rule, hence the matrix, cannot
be applied in the leftmost-1 derivation manner.

A matrix is applicable in leftmost-2 derivation manner if the first rule in the
matrix sequence rewrites the leftmost nonterminal that can be rewritten by a matrix.
Hence, a matrix mj can be applied in leftmost-2 derivation manner, if the first rule
of mj (that can be effectively applied, for the case of appearance checking) rewrites
the first occurrence of a nonterminal X, and no other matrix mj′ exists such that
the first rule in mj′ (that can be effectively applied) rewrites a nonterminal X ′,
where X ′ occurs before X in the sentential form on which mj is applied. No other
restrictions are imposed on the other rules of mj .

8



A matrix is applicable in leftmost-3 derivation manner if each rule of the matrix
rewrites the leftmost occurrence of its left-hand side occurring in the sentential form.
If a certain rule in the matrix sequence cannot rewrite the leftmost occurrence of its
left-hand side (because this does not occur in the sentential form) then the rule is
passed over if this belongs to F .

Szilard languages associated with leftmost-i, i ∈ {1, 2, 3}, derivations are defined
in the same way as in Definition 9, with the specification that D is a leftmost-i
derivation of w. We denote by SZMLi(X) and SZMLaci (X) the classes of leftmost-
i, i ∈ {1, 2, 3}, Szilard languages associated with MGs and MGs with appearance
checking with X rules, X ∈ {CF,CS, PS}, respectively.

Henceforth, in any reference to a MG G = (N,T,A1,M, F ), A1 is considered
to be the axiom, N = {A1, A2, ..., Am} the ordered finite set of nonterminals, and
M = {m1,m2, ...,mk} the ordered finite set of labels associated with matrices in M .
Each matrix mj , 1 ≤ j ≤ k, is a sequence of the form mj = (pmj ,1, pmj ,2, ..., pmj ,kmj ),

kmj ≥ 1. Unless otherwise specified (see Chapter 6), each pmj ,r, 1 ≤ r ≤ kmj , is
a context-free rule of the form αmj ,r → βmj ,r, αmj ,r ∈ N and βmj ,r ∈ (N ∪ T )∗.
If βmj ,r ∈ T ∗, then pmj ,r is called a terminal rule. Otherwise, pmj ,r is called a
non-terminal rule.

We define the net effect of rule pmj ,r, 1 ≤ r ≤ kmj , with respect to nonterminal
Al ∈ N , 1 ≤ l ≤ m, by the difference dfAl(pmj ,r) = |βmj ,r|Al − |αmj ,r|Al .

If G is a MG without appearance checking, then the net effect of matrix mj with

respect to nonterminal Al ∈ N , 1 ≤ l ≤ m, is the sum sAl(mj) = Σ
kmj
r=1dfAl(pmj ,r).

To each matrix mj we associate a vector V (mj) ∈ Zm defined by V (mj) = (sA1(mj),
sA2(mj), ..., sAm(mj)). Depending on the context, the value of V (mj) taken at the
lth place, 1 ≤ l ≤ m, i.e., Vl(mj), is also denoted by VAl(mj) = sAl(mj).

If G is a MG with appearance checking, then a policy of a matrix mj ∈ M ,
denoted by `qj , is a choice of mj of using, during the derivation, a certain sub-
sequence of matrix mj obtained by dropping out some rules that occur in the
same time in mj and F . Hence, if the policy `qj is defined by the subsequence
mq
j = (pmj ,1, pmj ,2, ..., pmj ,ξqmj

) of mj , then rules in mq
j occur in the same order

they occur in mj . The net effect of matrix mj , with respect to policy `qj and

the nonterminal Al ∈ N , is defined by sAl(`
q
j) = Σ

ξqmj
r=1dfAl(pmj ,r). To each policy

`qj , identified by the sequence mq
j , we associate a vector V (`qj) ∈ Zm defined by

V (`qj) = (sA1(`qj), sA2(`qj), ..., sAm(`qj)). The value of V (`qj) taken at the lth place,
1 ≤ l ≤ m, is denoted by Vl(`

q
j) = VAl(`

q
j) = sAl(`

q
j).

3.2 On the Complexity of Unrestricted Szilard Languages

In this section we focus on Szilard languages of MGs with CF rules, with or without
appearance checking. The case of Szilard languages of MGs with CS and PS rules is
briefly discussed in Section 6. For Szilard languages associated with MGs without
appearance checking and CF rules we have the next result.

Theorem 3 Each language L ∈ SZM(CF ) can be recognized by an indexing ATM
in O(log n) time and space (SZM(CF ) ⊆ ALOGTIME).
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Proof. Let G = (N,T,A1,M, F ) be an arbitrary context-free MG, with F = ∅.
Consider an indexing ATM A composed of an input tape that stores an input word,
η ∈ M∗, of length n, η = η1η2...ηn, an index tape to read the input symbols, and a
(read-write) working tape, divided into three tracks. The first track is of a fixed and
finite dimension and, at the beginning of computation, it stores the Parikh vector
of the axiom V 0, i.e., V 0

1 = V 0
A1

= 1 and V 0
l = V 0

Al
= 0, V (mj), and the net effects

dfAl(pmj ,r) of all rules in mj , 1 ≤ j ≤ k, 1 ≤ r ≤ kmj , 1 ≤ l ≤ m. The other two
tracks are initially empty.

Level 1 (Existential) In an existential state A guesses the length of η and verifies
the correctness of this guess, i.e., writes on the index tape n, and checks whether
the nth cell of the input tape contains a terminal symbol and the cell n+ 1 contains
no symbol. The correct value of n is recorded in binary on the second track of the
working tape. The first and second tracks are parted by a double bar symbol (‖).
The end of the second track (and the beginning of the third track) is market by
another symbol ‖.

Level 2 (Universal) A spawns n universal processes ℘i, 1 ≤ i ≤ n.

• On the first process A reads η1 = (pη1,1, pη1,2, ..., pη1,kη1
), and it checks whether

αη1,1 = A1 and sdfαη1,r+1 = V 0
αη1,r+1

+
∑r
l=1 dfαη1,r+1(pη1,l) ≥ 1, 1 ≤ r ≤ kη1 − 1, i.e.,

whether the nonterminal αη1,r+1 rewritten by the (r + 1)th rule of η1, exists in the
sentential form generated up to the rth step of derivation in η1. Process ℘1 returns
1 if these conditions hold. Otherwise, ℘1 returns 0.

• For each ℘i, 2 ≤ i ≤ n − 1, A counts the number of occurrences of each matrix
mj ∈ M , 1 ≤ j ≤ k, in η(i) = η1η2...ηi−1. Let us consider that each mj occurs in

η(i) of c
(i)
j times, 0 ≤ c

(i)
j ≤ i − 1. Then, for each 1 ≤ l ≤ m, A computes s

(i)
Al

=

V 0
l +

∑k
j=1 c

(i)
j Vl(mj), i.e., the number of occurrences of each Al in the sentential

form upon which ηi is applied. Consider ηi = (pηi,1, pηi,2, ..., pηi,kηi ) and αηi,1 = Aqi ,

1 ≤ qi ≤ m. A checks whether s
(i)
Aqi

= s
(i)
αηi,1

≥ 1, i.e., whether the matrix ηi can

start the computation. For each 1 ≤ r ≤ kηi − 1, A checks whether8 sdfαηi,r+1 =

s
(i)
αηi,r+1 +

∑r
l=1 dfαηi,r+1(pηi,l) ≥ 1, i.e., whether the rules pηi,r, 2 ≤ r ≤ kηi , can be

applied in the same order they occur in ηi. Process ℘i, 2 ≤ i ≤ n − 1, returns 1 if
these conditions hold. Otherwise, ℘i returns 0.

• The last process ℘n counts the number c
(n)
j of occurrences of each mj , 1 ≤ j ≤ k, in

η(n) = η1η2...ηn−1, and computes the sums s
(n)
Al

= V 0
l +
∑k
j=1 c

(n)
j Vl(mj) and s

(n,out)
Al

=

V 0
l +

∑k
j=1 c

(n)
j Vl(ηj) + Vl(ηn), 1 ≤ l ≤ m. Consider ηn = (pηn,1, pηn,2, ..., pηn,kηi ),

and αηn,1 = Aqn , 1 ≤ qn ≤ m. Process ℘n returns 1, if s
(n)
Aqn
≥ 1, sdfαηn,r+1 =

s
(n)
αηn,r+1 +

∑r
l=1 dfαηn,r+1(pηn,l) ≥ 1, for each 1 ≤ r ≤ kηn − 1, and s

(n,out)
Al

= 0, for
each 1 ≤ l ≤ m. Otherwise, ℘n returns 0.

Each of the above processes uses the third track of the working tape for auxiliary

computations, i.e., to record in binary the elements c
(i)
j , 2 ≤ i ≤ n, 1 ≤ j ≤ k, and

8Here s
(i)
αηi,r+1 is actually the sum s

(i)
Al

where αηi,r+1 is the lth nonterminal in N .
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to compute the sums s
(i)
Al

, 2 ≤ i ≤ n, sdfαηi,r+1 , 1 ≤ r ≤ kηi − 1, 1 ≤ i ≤ n, and

s
(n,out)
Al

, 1 ≤ l ≤ m. The input η is accepted if all ℘i, 1 ≤ i ≤ n, return 1. If at least
one of the above processes returns 0, then η is rejected.

The counting procedure used by each process ℘i, 1 ≤ i ≤ n, is a function in the
UE∗-uniform NC1. The same observation holds for the summation of a constant
number of vectors or multiplication of an integer of at most log n bits with a binary
constant. Hence, all the above operations can be performed by an ATM in log n
time and space. The out-degree of the computation tree at this level is n. By using
a divide and conquer procedure the computation tree can be converted into a binary
tree of height at most log n. Consequently, the whole algorithm requires O(log n)
time and space. 2

Corollary 1 SZM(CF ) ⊂ NC1.

Proof. The claim is a direct consequence of Theorem 3 and results in [41]. The
inclusion is strict since there exists L = {pn|n ≥ 0} ∈ NC1 − SZM(CF ). 2

Corollary 2 SZM(CF ) ⊂ DSPACE(log n).

Proof. SZM(CF ) ⊂ NC1 ⊆ DSPACE(log n). 2

Let G be a context-free MG with appearance checking. When reading a symbol
ηi, 1 ≤ i ≤ n, as in the proof of Theorem 3, an indexing ATM A cannot deduce
which of the rules in F have been previously applied or not. By using a simulation
a of MGs by off-line Turing machines (henceforth TMs) we have the next result.

Theorem 4 Each language L ∈ SZMac(CF ) can be recognized by an off-line de-
terministic Turing machine in O(log n) space and O(n log n) time (SZMac(CF ) ⊂
DSPACE(log n)).

Proof. Let G = (N,T,A1,M, F ) be a context-free MG with appearance checking.
Denote by P = {p`1 , p`2 , ..., p`s} the ordered set of productions in M , where `q is
the unique label associated with the qth production in P , and each p`q is a rule of
the form α`q → β`q , with α`q ∈ N , β`q ∈ (N ∪ T )∗, that may belong to one or
more matrices. Let B be an off-line deterministic Turing machine (with stationary
positions) composed of an input tape that stores an input word η ∈ M∗, η =
η1η2...ηn, of length n, and a (read-write) working tape. For each rule p`q , B records
on the working tape, the `q symbol, the left-hand side of p`q (i.e., the nonterminal
α`q), and the net effects of rule p`q , with respect to each nonterminal Al ∈ N .
Besides, any rule in P ∩ F is marked on the working tape by a symbol ]. In this
way each production in mj has associated a unique label `x, and mj can be seen as
a sequence of productions of the form p`x , whose characteristics, i.e., the rule’s left-
hand side, the net effects with respect to each nonterminal in N , and the ] symbol,
can be read from the working tape. In order to be readable all these characteristics
are separated by a special symbol. Since each matrix is a finite sequence of rules, and
the net effect of a rule, with respect to a certain nonterminal in N , does not depend
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on the length of the input string, to record the rules’ characteristics B requires a
constant amount of time and space (regarding the length of input).

At the beginning of the computation the working tape is empty. From an initial
state q0, in stationary positions, i.e., by reading no symbol, B records (in constant
time) the characteristics of all rules in P . At the right-hand side of these character-
istics B books m blocks, each of which is composed of O(log n) cells. These blocks
are used to record, in binary, the Parikh vectors associated with sentential forms.
We refer to these blocks as Parikh blocks. For the moment, B uses the first cell of
each Parikh block to record the Parikh vector V 0 of the axiom, i.e., V 0

1 = V 0
A1

= 1
and V 0

l = V 0
Al

= 0, 2 ≤ l ≤ m. The net effects of the rules in P and the Parikh
blocks are each separated by a ⊥ symbol. Denote by qc the state reached at the end
of this procedure. Then B continues with the next procedures.
Bη1,j1 : B searches for the very first rule pη1,j1 in η1 = (pη1,1, pη1,2, ..., pη1,kη1

),
such that pη1,j1 rewrites the axiom. This can be done by letting B when reading
η1, pass from state qc to state qη1,1, and from state qη1,j (in stationary positions) to
state qη1,j+1, 1 ≤ j ≤ j1− 1, and checking for each rule pη1,j , when entering in qη1,j ,
whether A1 6= αη1,j and pη1,j ∈ F (so that pη1,j can be skipped), 1 ≤ j ≤ j1− 1, and
whether A1 = αη1,j1 , when entering in state qη1,j1 . Suppose that rule pη1,j1 with the
above properties, is labeled by `x1 , i.e., pη1,j1 = p`x1

. B adds the net effect of rule

p`x1
, with respect to nonterminal Al to the value provided by V 0

l , for any 1 ≤ l ≤ m.

Hence, B computes the sums sdf
(η1,j1)
Al

= V 0
l + dfAl(p`x1

). For each 1 ≤ l ≤ m, the

lth Parikh block used to record V 0
l is now used to record sdf

(η1,j1)
Al

in binary.
Bη1,j2 : B searches for the very first rule pη1,j2 in η1, that can be applied after rule

pη1,j1 = p`x1
. This can be done by letting B, in stationary positions, pass form state

qη1,j to state qη1,j+1, j1 ≤ j ≤ j2− 1, and checking for each rule pη1,j , when entering

in the state qη1,j , whether sdf
(η1,j1)
αη1,j

= 0 and pη1,j ∈ F (i.e., pη1,j can be skipped,

j1 ≤ j ≤ j2 − 1), and whether sdf
(η1,j1)
αη1,j2

≥ 1, when entering in state qη1,j2 . Suppose
that rule pη1,j2 , with the above properties, is labeled by `x2 , i.e., pη1,j2 = p`x2

. B
adds the net effect of rule p`x2

, with respect to nonterminal Al, to sdf
(η1,j1)
Al

, for

any 1 ≤ l ≤ m. Hence, B computes the sums sdf
(η1,j2)
Al

= sdf
(η1,j1)
Al

+ dfAl(pη1,j2) =

V 0
l +dfAl(p`x1

)+dfAl(p`x2
). The space used to record sdf

(η1,j1)
Al

is now used to record

sdf
(η1,j2)
Al

in binary, for any 1 ≤ l ≤ m.

Suppose that up to the rth step of derivation in appearance checking in η1, B
has found a subsequence (pη1,j1 , pη1,j2 , ..., pη1,jr) of η1, composed of rules that can be
effectively applied and that the sentential form obtained at the rth step of derivation

in η1 contains sdf
(η1,jr)
Al

= V 0
l +

∑r
i=1 dfAl(pη1,ji) nonterminals Al, 1 ≤ l ≤ m. The

binary value of sdf
(η1,jr)
Al

, 1 ≤ l ≤ m, can be found on the lth Parikh block.
Bη1,jr+1 : B searches for the very first rule pη1,jr+1 in η1, that can be applied after

rule pη1,jr . This can be done by letting B, in stationary positions, to pass form
state qη1,j to state qη1,j+1, jr ≤ j ≤ jr+1 − 1, and checking for each rule pη1,j , when

entering in state qη1,j , whether sdf
(η1,jr)
αη1,j

= 0 and pαη1,j ∈ F , jr ≤ j ≤ jr+1 − 1, and

whether sdf
(η1,jr)
αη1,jr+1

≥ 1. Then B computes sdf
(η1,jr+1)
Al

= sdf
(η1,jr)
Al

+ dfAl(pη1,jr+1).
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The space used to record sdf
(η1,jr)
Al

is now used to record (in binary) sdf
(η1,jr+1)
Al

,
1 ≤ l ≤ m.
B continues in this way until a subsequence `qη1

= (pη1,j1 , pη1,j2 , ..., pη1,j
q
ξη1

) of η1,

is found such that the rules in `qη1
can be effectively applied one after the other in

the order they occur in `qη1
, and all rules in η1 that do not occur in `qη1

are skipped
because they cannot be effectively applied according to Definition 7. If jqξη1

6= kη1 ,

then B continues to check, by passing from state qη1,j to qη1,j+1, jξqη1
≤ j ≤ kη1 − 1,

whether rule pη1,j can be passed over because αη1,j does not occur in the sentential
form obtained at the jth step of derivation, in appearance checking, in η1. If no such
a subsequence of η1 can be found, then η is rejected.

Suppose that all rules in η1 can be applied in appearance checking, and at the
end of the checking procedures described above, B reaches the state qη1,kη1

. From
state qη1,kη1

, B enters in state qη2,1, by reading η2 = (pη2,1, pη2,2, ..., pη2,kη2
), and from

state qη2,j , B passes to state qη2,j+1, j1 ≤ j ≤ kη2 − 1, by checking, in stationary
positions, whether all rules in η2 can be applied in appearance checking. This can
be done by consecutively applying procedures of type Bη2,jr , 1 ≤ r ≤ ξqη2

, where `qη2

= (pη2,j1 , pη2,j2 , ..., pη2,jξqη2
) is a subsequence of η2 composed of rules that can be

effectively applied during the derivation inside η2. The Parikh vector of the sentential
form obtained after the application of matrix η2, in appearance checking, is recorded
on them Parikh blocks. B proceeds in the same manner for each matrix ηi, 3 ≤ i ≤ n.

The input is accepted if, for each ηi, a policy `qηi = (pηi,j1 , pηi,j2 , ..., pη2,jξqηi
) of ηi

can be found, such that all rules in `qηi can be effectively applied, while rules in ηi that
are not in `qηi are skipped according to Definition 7. Besides, for the last matrix ηi, in
the last state qηn,kηn , B also checks whether the Parikh vector of the last sentential

form contains no nonterminal, i.e., whether sdfAl = V 0
l +

∑n
i=1

∑j
ξ
q
ηi

r=1 dfAl(pηi,jr) = 0,
for any 1 ≤ l ≤ m.

As MGs work sequentially, the length of each sentential form is linearly bounded
by the length of the input. Hence, O(log n) cells are enough in order to record,
in binary, the number of occurrences of each nonterminal Al in a sentential form.
Therefore, the space used by B is O(log n). Each time reading an input symbol, B
visits O(log n) cells in the working tape, and the constant number of auxiliary oper-
ations with binary numbers (performed at each step of derivation) require O(log n)
time. Hence, B performs the whole computation in O(n log n) time. 2

Corollary 3 SZMac(CF ) ⊂ DSPACE(log n).

Proof. The strict inclusion of SZMac(CF ) in DSPACE(log n) follows, e.g., from
the existence of the language L= {pn|n ≥ 0}∈ DSPACE(log n)−SZMac(CF ). 2

3.3 On the Complexity of Leftmost Szilard Languages

MGs are highly nondeterministic rewriting systems. First, due to the nondeter-
ministic manner in which nonterminals can be rewritten, and second, due to the
appearance checking restrictions on which rules in a matrix can be passed over. The
second type of nondeterminism can be avoided by omitting the appearance checking
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mode. The first type of nondeterminism can be reduced by imposing an order on
the manner in which nonterminals are rewritten, similar to leftmost derivations in
CGs. As in the case of CGs, the leftmost derivation order leads to more interesting
results. In this section we focus on the complexity of Szilard languages associated
with leftmost-i derivations introduced in [14], i ∈ {1, 2, 3}, (Definition 10). However,
results provided for these three types of derivations can be generalized for several
other leftmost derivations introduced in [13], [18], or [42]. Hence, proofs in this sub-
section can be considered as “prototypes” for a large variety of complexity results
concerning several types of leftmost Szilard languages. For the case of leftmost-1
Szilard languages we have

Theorem 5 Each language L ∈ SZML1(CF ) can be recognized by an indexing
ATM in O(log n) time and space.

Proof. Let G = (N,T,A1,M, F ) be a MG with CF rules and without appearance
checking, working in the leftmost-1 derivation manner. Consider an indexing ATM
A having a similar configuration as the machine used in the proof of Theorem 3, and
let η ∈M∗, η = η1η2...ηn be an input word of length n. In order to guess the length
of η, A proceeds with the procedure described at Level 1 (Existential), Theorem 3.
Then A spawns (Level 2) n universal processes ℘i, 1 ≤ i ≤ n.

• On the first process A reads η1, where η1 = (pη1,1, pη1,2, ..., pη1,kη1
), and it checks

whether αη1,1 = A1 and sdfαη1,r+1 = V 0
αη1,r+1

+
∑r
l=1 dfαη1,r+1(pη1,l) ≥ 1, 1 ≤ r ≤

kη1 − 1, i.e., whether the nonterminal αη1,r+1 rewritten by the (r + 1)th rule of η1,
exists in the sentential form generated up to the rth step of derivation performed
by η1. Then A checks whether rules in η1 can be applied in a leftmost-1 derivation
manner. In order to check this property, from right-to-left in η1, A checks whether
each rule pη1,r, 2 ≤ r ≤ kη1 , can rewrite the first nonterminal occurring on the
right-hand side of the previous rule pη1,r−1, if this is a non-terminal rule. If pη1,r−1

is a terminal rule, then A searches backward in η1 for the non-terminal rule that
produces the nonterminal rewritten by rule pη1,r. In this respect A existentially
guesses (Level 3) an integer s (finite in this case) such that the rule pη1,s is a non-
terminal rule. A counts the number of rules existing in η1 between rule pη1,s and
rule pη1,r (excluding pη1,r). Suppose that this number is sv, i.e., sv = r − s. Then,
A counts the number of nonterminals that each rule existing between pη1,s+1 and
pη1,r−1 has on its right-hand side. Suppose that this number is sq. For sv and sq,
A checks whether the (sv − sq)th nonterminal existing on the right-hand side of rule
pη1,s equals the nonterminal rewritten by rule pη1,r, i.e., αη1,r.

If pη1,s is the right rule that produces in the sentential form the nonterminal
rewritten by rule pη1,r, and this is the r̄th nonterminal occurring on the right-hand
side of rule pη1,s, then for the case of leftmost-1 derivation order, the following
relation must hold r̄ + sq = sv. This is because each nonterminal produced in the
sentential form by rules used in a leftmost-1 derivation manner, between pη1,s and
pη1,r (including nonterminals existing up to the r̄th nonterminal on the right hand
side of pη1,s), must be fully rewritten by these rules. The nonterminals existing
in the sentential form before pη1,s is applied will be rewritten only after the new
nonterminals produced between pη1,s and pη1,r are fully rewritten.
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However, guessing an integer s that satisfies the above condition is not sufficient,
since between pη1,1 and pη1,r, there may exist several rules pη1,s with this property.
This may happen for instance, when the right-hand side of pη1,s has the length
greater than sv − sq, and all nonterminals on the right-hand side of pη1,s, are equal
with αη1,r. In order to eliminate those rules pη1,s that does not produce the real
nonterminal rewritten by pη1,r, for each s found at Level 3, A universally branches
(Level 4) all rules used between pη1,s and pη1,r. On each branch that takes the rule
pη1,l, s < l < r, A checks whether

1. αη1,l equals αη1,r,
2. if αη1,r is the r̄th nonterminal occurring on the right-hand side of rules pη1,s,

s̄q is the number of nonterminals produced between rules pη1,s+1 and pη1,l−1, and
s̄v = l − s is the number of rules used between rule pη1,s and pη1,l (excluding rule
pη1,l), then the following condition holds r̄ + s̄q = s̄v,

3. the number of nonterminals αη1,r rewritten between rules pη1,s and pη1,l−1 are
equal with the number of nonterminals αη1,r produced between these rules, up to
the r̄th nonterminal occurring on the right-hand side of pη1,s (excluding the r̄th

nonterminal).
On each universal branch A returns 0 if conditions 1− 3 hold, which means that

the r̄th nonterminal occurring on the right-hand side of rule pη1,s is not the real
nonterminal rewritten by pη1,r. Hence, the existential branch that guessed s, must
be canceled. Otherwise, A returns 1. If all universal branches spawned for pη1,s

at Level 4, return 1, then the rule pη1,s is the rule that produce the nonterminal
rewritten by pη1,s in leftmost-1 derivation manner. In this case ℘1 returns 1.
• For each ℘i, 2 ≤ i ≤ n, A proceeds as follows. A counts the number of

occurrences of each matrix mj , 1 ≤ j ≤ k, in η(i) = η1η2...ηi−1. Suppose that

this number is c
(i)
j , 0 ≤ c

(i)
j ≤ i − 1. Then, for each 1 ≤ l ≤ m, A computes the

values s
(i)
l = V 0

l +
∑k
j=1 c

(i)
j Vl(mj), i.e., A computes the number s

(i)
l of occurrences

of nonterminal Al in the sentential form upon which ηi is applied. Consider ηi =

(pηi,1, pηi,2, ..., pηi,kηi ) and αηi,1 = Aqi , 1 ≤ qi ≤ m. Then A checks whether s
(i)
qi =

s
(i)
αηi,1

≥ 1, i.e., whether the matrix ηi can start the computation. For each 1 ≤
r ≤ kηi − 1, A checks whether9 sdfαηi,r+1 = s

(i)
αηi,r+1 +

∑r
l=1 dfαηi,r+1(pηi,l) ≥ 1, i.e.,

whether the rules pηi,r, 2≤r≤kηi , can be applied in the same order they occur in ηi.
Then, A checks whether rules in ηi can be applied in a leftmost-1 derivation

manner. In this respect, A checks, from right-to-left in the sequence ηi = (pηi,1,
pηi,2, ..., pηi,kηi ), whether each rule pηi,r, 2 ≤ r ≤ kηi , rewrites the first nonterminal
occurring on the right-hand side of the previous rule pηi,r−1, if this is not a terminal
rule. If pηi,r−1 is a terminal rule, then A first searches backward in ηi, as in ℘1,
for an integer s such that rule pηi,s produces in the sentential form the nonterminal
rewritten by pηi,r. If no rule with this property can be found in ηi, A searches
backward in η(i) = η1η2...ηi−1 for a matrix ηv such that there exists a non-terminal
rule in ηv that produces the nonterminal rewritten by pηi,r.

In this order, A spawns i − 1 existential branches (Level 3), and each branch

9Note that s
(i)
αηi,r+1 is actually the sum s

(i)
l where αηi,r+1 is the lth nonterminal occurring in

V (mj).

15



takes the matrix ηv, 1 ≤ v ≤ i − 1. Suppose that ηv is defined by the sequence
(pηv ,1, pηv ,2, ..., pηv ,kηv ). A checks whether there exists a non-terminal rule pηv ,s,
1 ≤ s ≤ kηv , in ηv, such that pηv ,s produces the nonterminal rewritten by pηi,r. This
is performed as follows.

Denote by sv the number of rules used in the derivation process between rule pηv ,s
of matrix ηv and rule pηi,r−1 of matrix ηi (including rules pηv ,s and pηv ,r−1). Suppose
that q of these rules (without counting the rule pηv ,s) are non-terminal. Denote by sq
the total number of nonterminals produced by the q non-terminal rules used between
pηi,s+1 and pηv ,r−1. Then, as in process ℘1, A checks whether αηi,r is the (sv − sq)th
nonterminal occurring on the right-hand side of rule pηv ,s. Note that sv, q, and sq
can be computed by A through a trivial counting and summation procedure.

Each existential branch spawned at Level 3, is labeled by 1 if there exists a rule
pηv ,r with the above properties. For each existential branch at Level 3, labeled by 1,
A checks whether the r̄th nonterminal occurring in βηv ,s is indeed the nonterminal
αηi,r rewritten by rule pηi,r, i.e., no other rule used between rule pηv ,s of matrix `qηv
and rule pηi,r of matrix ηi rewrites the r̄th nonterminal αηi,r, occurring in βηv ,s. In
this respect A universally branches (Level 4) all symbols occurring between ηv+1

and ηi−1. There are v − i − 1 such branches. On each branch holding a matrix ηl,
defined by (pηl,1, pηl,2, ..., pηl,kηv ), v < l < i, A settles on a non-terminal rule pηl,s̄,
1 ≤ s̄ ≤ kηl , and it checks whether

1. αηl,s̄ equals αηi,r,
2. if αηi,r is the r̄th nonterminal occurring on the right-hand side of rule pηv ,r, s̄q is

the number of nonterminals produced between rules pηv ,s+1 and pηl,s̄−1, and s̄v is the
number of rules used between pηv ,s and pηl,s̄ (excluding rule pηl,s̄), then r̄+ s̄q = s̄v,

3. the number of nonterminals αηi,r rewritten between rules pηv ,s and pηl,s̄−1 is
equal to the number of nonterminals αηi,r produced between these rules, up to the
r̄th nonterminal occurring on the right-hand side of rule pηv ,s (excluding the r̄th

nonterminal).
Besides, for ℘n, as in Theorem 3, A checks whether at the end of the application

of matrix ηn the sentential form contains no nonterminal, i.e., whether condition

4. s
(n,out)
l = 0, where s

(n,out)
l = V 0

l +
∑k
j=1 c

(n)
j Vl(ηj) + Vl(ηn), 1 ≤ l ≤ m, holds.

On each universal branch (at Level 4) A returns 0 if conditions 1 − 3 hold.
Otherwise, it returns 1. If all universal branches spawned for the value s at Level 4
return 1, then rule pηv ,s (found at Level 3) is the rule that produces the nonterminal
rewritten by pηi,r in the leftmost-1 derivation manner. Then the existential branch
spawned at Level 3, corresponding to this s value, will be labeled by 1.

Each process ℘i, 2 ≤ i ≤ n− 1 returns 1 if there exists a non-terminal rule pηv ,s
in ηv with the above properties. Otherwise, ℘i returns 0. If conditions 1 − 4 hold,
℘n, returns 1. Otherwise, it returns 0.

Note that, for each ℘i, 1 ≤ i ≤ n, A does not have to check whether matrices
ηv and ηl can be applied in a leftmost-1 derivation manner. Nor even if they can
be applied, according to the definition of a derivation step in a MG. If ηv and ηl
do not satisfy these requirements, then the wrong logical value returned by ℘i is
“corrected” by the 0 value returned by processes ℘v or ℘l, since all these processes
are universally considered.

As in Theorem 3, each of the above processes uses the third track of the working
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tape for auxiliary computations, i.e., to record in binary the elements c
(i)
j , 2 ≤ i ≤ n,

1 ≤ j ≤ k, and to compute the sums s
(i)
l , 2 ≤ i ≤ n, sdfαηi,r+1 , 1 ≤ r ≤ kηi − 1,

1 ≤ i ≤ n, and s
(n,out)
l , 1 ≤ l ≤ m. It is easy to estimate that A performs the whole

computation in logarithmic time and space. 2

Corollary 4 SZML1(CF ) ⊂ NC1.

Corollary 5 SZML1(CF ) ⊂ DSPACE(log n).

The algorithm described in the proof of Theorem 5 cannot be applied for the case
of leftmost-1 Szilard languages with appearance checking. The explanation is that,
in the proof of Theorem 5, for any matrix ηi, 2 ≤ i ≤ n, A has to guess a policy of a
matrix ηv that contains a non-terminal rule that produces the nonterminal rewritten
by rule pηi,r of ηi. However, even if process ℘v returns the true value, which means
that at its turn ℘v can be applied in a leftmost-1 derivation manner on the substring
η1η2...ηv−1, the process ℘i cannot “see” with which policy ηv works in a leftmost-1
derivation manner, since all branches (or processes) spawned at the same level of
the computation tree of A are independent on each other. Hence, the policy of
℘v that provides the non-terminal rule that produces the nonterminal rewritten by
pηi,r, may not work in leftmost-1 derivation manner upon η1η2...ηv−1. That is why,
for the case of leftmost-1 derivations in matrix grammars with appearance checking
another algorithm should be applied.

In the sequel, we focus on the letfmost-i, i ∈ {1, 2, 3}, derivation procedures and
we describe an ATM that recognizes letfmost-i, i ∈ {1, 2, 3}, Szilard languages in
logarithmnic space and square logarithmnic time.

In order to simulate letfmost derivations in matrix grammars and to check
whether a given word η ∈ M∗, η = η1η2...ηn, belongs to the SZMLaci (CF ) class,
i ∈ {1, 2, 3}, for each matrix ηi, 1 ≤ i ≤ n, the ATM must have information concern-
ing the order in which the first occurrence of each nonterminal Al ∈ N , 1 ≤ l ≤ m,
occurs in the sentential form at any step of derivation. This can be obtained either
by sequentially reproducing the derivation up to the ith step on which ηi is applied,
or by letting the ATM to guess the possible order in which the first occurrences of
nonterminals in N occur in the sentential form on which ηi is applied. Then the
ATM has to check whether the guessed order is correct, in the sense that ηi can be
applied in letfmost-i, i ∈ {1, 2, 3}, derivation manner on the sentential form built
upon this order and whether the computation leads to a terminal derivation. In
order to describe the way in which the parallel procedure works we introduce the
notion of ranging vector. A ranging vector associated with a matrix mj , 1 ≤ j ≤ k,
or a policy of this matrix, provides the order in which first occurrences of nontermi-
nals in N occur in the sentential form obtained after mj has been applied at that
step of derivation.

Definition 11 Let G = (N,T,A1,M, F ) be a MG with appearance checking, where
M = {m1,m2, ...,mk} is the ordered finite set of matrices, N = {A1, A2, ..., Am} the
ordered finite set of nonterminals, and SF`qj

the sentential form obtained after matrix

mj , 1 ≤ j ≤ k, with policy `qj , has been applied at a certain step of derivation in G.
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The ranging vector associated with the sentential form SF`qj
and policy `qj , denoted10

by S(`qj), is a vector in Nm defined as

Sl(`
q
j) =


0, if Al ∈ N does not occur in SF`qj

, i.e., |SF`qj |Al = 0,

i,
if the first occurrence of Al in SF`qj

is the ith element in the

order of first occurrences of nonterminals from N in SF`qj
.

Note that, if matrix mj′ with policy `qj′ , is applied in the Szilard word before

matrix mj with the policy `qj , then the ranging vector S(`qj) can be nondeterminis-
tically computed knowing the ranging vector S(`qj′), for all leftmost-i, i ∈ {1, 2, 3},
derivation cases.

Example 1 Let S(`qj′) = (3, 0, 2, 1, 0) ∈ N5 be the ranging vector associated with

the sentential form obtained after the policy `qj′ of matrix mj′ has been applied at

a certain step of derivation, i.e., SF`q
j′

= A4X4A3X3,4A1X̄3,4, X4 ∈ ({A4} ∪ T )∗,

X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗ (such that |SF`q
j′

)|A1 = 1). If `qj is identified by the

sequence mq
j = (A4 → tA5, A3 → A2), t ∈ T ∗, then if mq

j rewrites the first occurrence
of A4 in SF`q

j′
and the second occurrence of A3, then the sentential form obtained

after `qj has been applied, in the leftmost-2 derivation manner, may look like

• SF`qj = tA5A4X4A3A2X3,4A1X̄3,4, X4 ∈ ({A4}∪T )∗, X3,4, X̄3,4 ∈ ({A3, A4}∪
T )∗, i.e., S(`qj) = (5, 4, 3, 2, 1),

• SF`qj = tA5A4X4A3X̄4A1A2X3,4, X4, X̄4 ∈ ({A4}∪T )∗, X3,4 ∈ ({A3, A4}∪T )∗,

i.e., S(`qj) = (4, 5, 3, 2, 1),

• SF`qj = tA5A3A4X4A2X3,4A1X̄3,4, X4 ∈ ({A4}∪T )∗, X3,4, X̄3,4 ∈ ({A3, A4}∪
T )∗, i.e., S(`qj) = (5, 4, 2, 3, 1), or like

• SF`qj = tA5A3A2X3A1A4X3,4, X3 ∈ ({A3} ∪ T )∗, X3,4 ∈ ({A3, A4} ∪ T )∗, i.e.,

S(`qj) = (4, 3, 2, 5, 1).

Thus the sentential form SF`qj
depends on the second occurrence of A3 and A4

in SF`q
j′

. Note that, for the case of leftmost-2 derivations, if say, the first rule in `qj

rewrites A3, then `qj is eligible to be applied in leftmost-2 derivation manner if and
only if there is no other policy of mj and no other matrix, distinct of mj , for which
the first rule in the matrix sequence rewrites A4. The same observations hold when
erasing rules are applied.

For instance, if `qj is identified by the sequence mq
j = (A4 → λ,A3 → t), t ∈ T ∗,

then if mq
j rewrites the first occurrence of A4 in SF`q

j′
and the second occurrence

of A3 in SF`q
j′

, then the sentential form obtained after `qj has been applied, in the

leftmost-2 derivation manner, may look like

10If `qj is not yet “decided” or F = ∅, then instead of S(`qj) the notation S(mj) is used.
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• SF`qj = A4X4A3tX3,4A1X̄3,4, X4 ∈ ({A4} ∪ T )∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗,

i.e., S(`qj) = (3, 0, 2, 1, 0),

• SF`qj = A4X4A3X̄4A1tX3,4, X4, X̄4 ∈ ({A4}∪T )∗, X3,4 ∈ ({A3, A4}∪T )∗, i.e.,

S(`qj) = (3, 0, 2, 1, 0),

• SF`qj = A3A4X4tX3,4A1X̄3,4, X4 ∈ ({A4} ∪ T )∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗,

i.e., S(`qj) = (3, 0, 1, 2, 0), or like

• SF`qj = A3tX3A1A4X3,4, X3 ∈ ({A3} ∪ T )∗, X3,4 ∈ ({A3, A4} ∪ T )∗, i.e.,

S(`qj) = (2, 0, 1, 3, 0),

depending on the second occurrence of A3 and A4 in SF`q
j′

.

If the matrix mj with the policy `qj , defined by the sequence mq
j = (A4 →

tA5, A3 → A2), is applied in the leftmost-3 derivation manner on SF ′, then after
rewriting the nonterminal A4, `qj must rewrite only the first occurrence of A3 in SF ′.
Hence, there are fewer possibilities than in the case of leftmost-2 derivation manner,
to build the ranging vector associated with SF`qj

.

In this case, by applying `qj defined by mq
j = (A4 → tA5, A3 → A2), on SF`q

j′
=

A4X4A3X3,4A1X̄3,4, X4 ∈ ({A4}∪T )∗, X3,4, X̄3,4 ∈ ({A3, A4}∪T )∗, we may obtain

• SF`qj = tA5A4X4A2A3X3,4A1X̄3,4, X4 ∈ ({A4}∪T )∗, X3,4, X̄3,4 ∈ ({A3, A4}∪
T )∗, i.e., S(`qj) = (5, 3, 4, 2, 1),

• SF`qj = tA5A2A3X3A4X3,4A1X̄3,4, X3 ∈ ({A3}∪T )∗, X3,4, X̄3,4 ∈ ({A3, A4}∪
T )∗, i.e., S(`qj) = (5, 2, 3, 4, 1), or

• SF`qj = tA5A2A4X4A3X3,4A1X̄3,4, i.e., S(`qj) = (5, 2, 4, 3, 1).

For the leftmost-1 derivation case matrix mj with the policy `qj , defined by the
sequence mq

j = (A4 → tA5, A3 → A2), cannot be applied, since there is no possibility
to obtain a new sentential form such that A3, rewritten by the second rule, to be the
leftmost nonterminal occurring in it. Matrix mj with the policy `qj , defined by the

sequence (A4 → λ,A3 → t), t ∈ T ∗, can be applied on SF`q
j′

= A4X4A3X3,4A1X̄3,4,

X4 ∈ ({A4} ∪ T )∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗, if and only if X4 = λ.

In the sequel we briefly describe an ATM A that checks whether an input word
η ∈ M∗, η = η1η2...ηn, belongs to SZMLaci (CF ), i ∈ {1, 2, 3}. First A guesses
an n-tuple < = (S(η1), S(η2), ..., S(ηn)), where each S(ηv) is the ranging vector
associated with the matrix ηv, 1 ≤ v ≤ n. There may exist O(cn) such n-tuples
of ranging vectors, where c is a constant that depends on the number of vectors
in Nm that can be built upon the set {0, 1, ...,m}. For instance, if we have the
information that a certain sentential form has only m − s distinct nonterminals,
then there are (m− s+ 1)m guesses that may provide the ranging vector associated
with this sentential form. Hence, c = O(

∑m−1
s=1 (m − s + 1)m). According to this

19



observation, A spawns O(cn) existential branches, each of them holding an n-tuple
of type <. A branch will be labeled by 1 if each vector in <, i.e., <v = S(ηv),
1 ≤ v ≤ n − 1, provides11 a possible order of first occurrences of nonterminals in
N in the sentential form on which ηv ends the vth step of derivation, the matrix
ηv+1 can be applied upon S(ηv) in the leftmost-i, i ∈ {1, 2, 3}, derivation manner,
and whether the derivation performed in the leftmost-i manner by using all ranging
vectors in <, leads to a word in the language.

On each existential branch, A proceeds with an universal and existential level
as follows. A spawns n universal processes ℘i, 1 ≤ i ≤ n. On each process A
spawns a polynomial number of existential branches, each of them holding a possible
configuration of policies used by matrices occurring in the input word up to the
matrix ηi, and computes the net effect according to this configuration. A guesses
a policy `qηi and, based on this net effect, checks whether matrix ηi with the policy
`qηi can be applied, in the leftmost-i, i ∈ {1, 2, 3}, derivation manner, on the current
sentential form for which the order of first occurrences of nonterminals in N is
provided by the vector S(ηi−1) in <. Then A checks whether S(ηi) is a ranging
vector on which `qηi may complete the ith step of derivation, in leftmost-i, i ∈ {1, 2, 3},
derivation manner.

Recall that the policy `qηi can be applied, in leftmost-1 derivation manner on
the ranging vector S(ηi−1) if the first rule in `qηi rewrites the nonterminal Al for
which Sl(ηi−1) = 1, and each rule in `qηi rewrites the leftmost nonterminal occurring
in the sentential form built according to the information provided by S(ηi−1) after
applying the first rule in `qηi .

The policy `qηi can be applied, in leftmost-2 derivation manner on the ranging
vector S(ηi−1) if there exists an index l, 1 ≤ l ≤ m, such that the first rule of `qηi
rewrites Al and there is no matrix mj , mj 6= ηi, and no policy `qmj of mj , 1 ≤ j ≤ k,
such that the first rule in `qmj rewrites a nonterminal Al′ with Sl′(ηi−1) < Sl(ηi−1).

For the case of leftmost-3 derivation manner A does not have to check the above
leftmost-2 condition, since the first rule of the policy `qηi is allowed to rewrite the first
occurrence of its left-hand side, i.e., Al, even if there exist several other matrices for
which the left-hand side of the first rule, say Al′ , may be placed in the sentential form
before Al, i.e., Sl′(ηi−1) < Sl(ηi−1). Hence, for the leftmost-3 derivation case `qηi can
be applied if the first rule in `qηi rewrites any nonterminal Al for which Sl(ηi−1) 6= 0.

Then A checks whether S(ηi) is a ranging vector on which `qηi may complete the

ith step of derivation, in leftmost-i, i ∈ {1, 2, 3}, derivation manner.
Note that the ranging vector S(ηi−1) does not provide complete information

concerning the shape of the sentential form obtained after the application of matrix
ηi−1, since S(ηi−1) provides only the order of the first occurrences of each nonter-
minal in N . Hence, the position of the second, third, and so on, occurrence of a
nonterminal must be considered according to the order provided by S(ηi−1).

To verify whether S(ηi) is a possible ranging vector on which `qηi may complete

the ith step of derivation, A builds all possible ranging vectors that can be computed
starting from S(ηi−1) in the leftmost-i, i ∈ {1, 2, 3}, derivation manner. Then A
checks whether S(ηi) is one of the ranging vectors computed in this way.

11S(ηn) must be the null vector.
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Each process ℘i returns 1 if there exists at least one configuration of policies
used by matrices occurring in the input word up to the matrix ηi, and at least one
policy `qηi of ηi, that satisfies the above leftmost-i, i ∈ {1, 2, 3}, requirements.

If all processes ηi, 1 ≤ i ≤ n, return 1 then < is a correct guess and the existential
branch holding this tuple is labeled by 1. The input is accepted if there exists at
least one existential branch, holding an n tuple <, labeled by 1. Otherwise, the
input is rejected.

Note that guesses yielded by different branches at a certain level of the computa-
tion tree of an ATM are independent on each other. If the ranging vectors composing
< are separately guessed by each process ℘i, 1 ≤ i ≤ n − 1, then A cannot check
whether the policy `qηi that works in a leftmost-i, i ∈ {1, 2, 3}, derivation manner on
the ranging vector S(ηi−1) yields the same ranging vector for which the policy `qηi+1

is guessed by process ℘i+1 to work in a leftmost-i, i ∈ {1, 2, 3}, derivation manner
on the ranging vector S(ηi). Therefore, A has to guess from the very beginning an
n-tuple < of ranging vectors associated with each matrix in η and to universally
check the correctness of this guess through the processes ℘i. In other words, the
whole n-tuple < must be seen by all the universal processes ℘i, 1 ≤ i ≤ n.

It is easy to observe that the first level of the computation tree associated with
A can be ”unfolded”, by using a divide and conquer procedure, into a computation
tree of height O(log cn) = O(n) in which each node has the out-degree 2. To record
the < vector A needs O(n) space. Hence, this algorithm cannot be related to the
parallel complexity classes NC1 and NC2. In order to improve the linear time and
space resources to logarithmic (the logarithmic uniformity assumptions required by
the NC classes) we divide the input string of length n, into (log n)logn substrings
of length log n, and apply the above algorithm for each substring. Briefly, the new
algorithm works as follows.

The ATM A performs a number of log n “iterated” divisions, where n is the
length of the input word. Dividing n by [log n] we obtain12 a quotient Q1 and a
remainder R1, i.e., n = Q1 [log n] +R1, where 0 ≤ R1 < log n. Dividing the quotient
Q1 by [log n] we obtain a new quotient Q2 and a remainder R2, i.e., n = (Q2 [log n]+
R2) [log n] +R1, with 0 ≤ R2 < log n. We continue this procedure until the resulted
quotient can be no longer divided by [log n]. Suppose that Q` is this quotient, then
n = ((...((Q` [log n] + R`) [log n] + R`−1) [log n] + ...) [log n] + R2) [log n] + R1, with
1 ≤ Ql < [log n] and 0 ≤ Rl < [log n], l ∈ {1, 2, ..., `}. It is easy to prove that
` < log n.
A guesses an R1-tuple of ranging vectors associated with the first R1 matrices

occurring in η = η1η2...ηn and checks, similar as in the algorithm described above,
whether the substring η1η2...ηR1 is valid, according to the leftmost-i, i ∈ {1, 2, 3},
derivation procedure. Then A guesses a [log n]-tuple of ranging vectors associated
with matrices placed at the [log n] cutting points in η obtained by dividing the
interval [R1 + 1...n] into [log n] intervals of length Q1. A continues with this routine
for each interval of length Q1 as follows.
A checks, in parallel, whether the first R2 matrices in each Q1-interval forms

a valid substring of a leftmost-i, i ∈ {1, 2, 3}, Szilard word. Then, in parallel for

12By [a] we denote the largest integer not greater than a, where a is a real number.
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each Q1-interval, A guesses another [log n]-tuple of ranging vectors associated with
matrices placed at the [log n] cutting points in η obtained by dividing each interval
of length Q1−R2 into [log n] intervals of length Q2. This procedure is repeated until
intervals of length Q` < log n are obtained. At this point, A checks whether the
substring of η corresponding to the Q`-intervals, are valid according to the leftmost-
i, i ∈ {1, 2, 3}, derivation order. It can be proved that all cutting points are right
edges of these intervals. If correct ranging vectors can be found for all intervals and
all cutting points, then η is a correct leftmost-i, i ∈ {1, 2, 3}, Szilard word.

On the other hand, the division operation is a function in the NC1 class13 [5].
Since A performs a number of logn divisions, the computation tree associated with
A has at least log n levels. At each level A needs O(log clogn) = O(log n) time to
check the correctness of a substring of length at most log n, O(log n) time to perform
the division operation, and O(log n) space (which is reused at each level) to record
the ranging vectors. Hence, the above algorithm requires log2 n time and log n space.
More precisely, we have

Theorem 6 Each language L ∈ SZMLaci (CF ), i ∈ {1, 2, 3}, can be recognized by
an indexing ATM in O(log2 n) time and O(log n) space.

Proof. We prove the claim for the leftmost-2 derivation. For the leftmost-1 and
leftmost-3 cases the proof is almost the same. Let G = (N,T,A1,M, F ) be a MG
with appearance checking, and A an indexing ATM with a similar configuration as
in the proof of Theorem 3. Let η ∈ M∗, η = η1η2...ηn, be an input word of length
n. To guess the length of η, A proceeds with the Level 1 (Existential), Theorem 3.

Level 2 (Existential) Consider the quotient Q1 and the remainder R1 of the divi-
sion of n by [log n], where 0 ≤ R1 < [log n]. A spawns O(clogn) existential branches,
each branch holding an R1-tuple of ranging vectors <R1 = (S(η1), S(η2), ..., S(ηR1)),
where14 c = O(

∑m−1
s=1(m− s+ 1)m) and S(ηv) is the ranging vector associated with

matrix ηv, 1 ≤ v ≤ R1. Then A checks whether all vectors in <R1 are correct,
according to the leftmost-2 derivation order. This can be done in O(log n) space
and O(log n) parallel time through Levels 3-4.

Levels 3-4 (Universal-Existential) A spawns (Level 3) R1 universal processes ℘
(R1)
v ,

1 ≤ v ≤ R1.

• On ℘
(R1)
1 A checks whether there exists a policy for η1 that can be applied in

leftmost-2 derivation manner on the axiom A1 and ends this step of derivation with

the ranging vector S(η1). Process ℘
(R1)
1 returns 1 if these conditions hold.

• On each ℘
(R1)
v , 2 ≤ v ≤ R1, A counts the number of occurrences of each ma-

trix mj ∈ M , 1 ≤ j ≤ k, in η(v) = η1η2...ηv−1. Suppose that each mj occurs

c
(v)
j times, 0 ≤ c

(v)
j ≤ v − 1, in η(v). A guesses k tuples of integers15 t

(v)
j =

13It is actually a function in the logspace-uniform T C0 class [22].
14The constant c depends on the number of vectors in Nm that can be built upon the set
{0, 1, ...,m}. Here and throughout the paper, c = O(

∑m−1

s=1
(m − s + 1)m). At page 20 we have

explained the manner in which this constant can be computed.
15Here and throughout this proof, by using an abuse of notation, we denote by cj = |mj ∩ F |,
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(c
(v)
j,1 , c

(v)
j,2 , ..., c

(v)

j,2cj−1
, c

(v)

j,2cj
), where c

(v)
j,q with 0 ≤ c

(v)
j,q ≤ c

(v)
j and

∑2cj
q=1 c

(v)
j,q = c

(v)
j ,

represents the number of times the policy `qj of matrix mj , 1 ≤ q ≤ 2cj , can be

used when mj is activated on η(v). Then A spawns (Level 4) N (R1)=O(R

∑k

j=1
2cj

1 )

existential branches, each of which holds k tuples t
(v)
j (one tuple for each matrix).

On each branch, A computes s
(v)
l = V 0

l +
∑k
j=1

∑2cj
q=1 c

(v)
j,q Vl(`

q
j), 1 ≤ l ≤ m. Suppose

that ηv is a matrix with 2cηv policies, where cηv = |ηv ∩F |, and that each policy `qηv ,
1 ≤ q ≤ 2cηv , is identified by the sequence mq

ηv=(pqηv ,1, pqηv ,2, ..., pq
ηv ,ξ

q
ηv

), 1 ≤ r ≤ ξqηv ,

|ηv − F | ≤ ξqηv ≤ |ηv|. Then A computes sdfαqηv,r+1
= s

(v)

αqηv,r+1
+
∑r
l=1 dfαqηv,r+1

(pqηv ,l),

1 ≤ r ≤ ξqηv − 1, and it checks whether

1. s
(v)

αqηv,1
≥ 1, i.e., pqηv ,1 can be applied on η(v) = η1η2...ηv−1,

2. sdfαqηv,r+1
≥ 1, 1 ≤ r ≤ ξqηv − 1, i.e., rules of policy `qηv can be applied one by

one in the order defined by the sequence mq
ηv ,

3. S(ηv−1) is a possible ranging vector with which ηv−1 ends the (v − 1)th step

of derivation, i.e., Sl(ηv−1) = 0, if s
(v)
l = 0, and Sl(ηv−1) > 0, if s

(v)
l > 0,

1 ≤ l ≤ m. Then A checks whether policy `qηv of ηv, can be applied on S(ηv−1)
in the leftmost-2 derivation manner, i.e., there exists an index l, 1 ≤ l ≤ m,
such that pqηv ,1, the first rule in mq

ηv , rewrites Al, i.e., Sl(ηv−1) 6= 0, and there is
no matrix mj , mj 6= ηv, and no policy `qmj of mj , such that the first rule in `qmj
rewrites a nonterminal Al′ with Sl′(ηv−1) < Sl(ηv−1). Then A verifies whether
S(ηv) is a possible ranging vector on which `qηv ends the vth step of derivation in
leftmost-2 manner. Note that S(ηv) can be (nondeterministically) computed
knowing the rules of the policy `qηv applied in leftmost-2 derivation manner on
S(ηv−1) (Example 1).

Each ℘
(R1)
v , 2 ≤ v ≤ R1, returns 1 if there exist at least one t

(v)
j -tuple and at

least one policy `qηv of ηv, that satisfy the above leftmost-2 requirements. If each

℘
(R1)
v , 1 ≤ v ≤ R1, returns 1 then <R1 is a correct guess and the existential branch

holding the [log n]-tuple, spawned at Level 2, is labeled by 1.

Level 5 (Existential) Let Q2 be the quotient and R2 the remainder of Q1 divided
by [logn], 0 ≤ R2 < [log n]. A spawns O(clogn) existential branches, each of them
holding a 2 [log n]-tuple of ranging vectors <cR2

= (S(ηR1), S(ηR1+R2), S(ηR1+Q1),
S(ηR1+Q1+R2), ..., S(ηR1+([logn]−1)Q1

), S(ηR1+([logn]−1)Q1+R2
)), where S(ηR1) is the

ranging vector belonging to the <R1-tuple found correct at Levels 3-4, and each S(ηj)
is a guessed ranging vector associated with matrix ηj , j ∈ {R1 +R2, R1 +Q1, R1 +
Q1 +R2, R1 +2Q1, ..., R1 +([log n]−1)Q1, R1 +([log n]−1)Q1 +R2, R1 +[logn]Q1}.
Because <R1 is not useful anymore, the space used by A to record <R1 is allocated
now to record <cR2

.

i.e., the number of rules existing in the same time in mj and F . Then each matrix mj , 1 ≤ j ≤ k,
may have

(cj
0

)
+
(cj

1

)
+ ... +

(cj
cj

)
= 2cj policies. Namely, there exist

(cj
0

)
choices of using no rule

from mj ∩ F ,
(cj

1

)
choices of passing over only one rule from mj ∩ F ,

(cj
2

)
choices of passing over

two rules from mj ∩ F , and so on.
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Level 6 (Universal) On each existential branch from Level 5, A spawns [log n]

universal processes ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n]− 1. Each process ℘
(Q1)
i1

takes the interval
[R1+i1Q1...R1+i1Q1+R2], and checks whether the ranging vectors S(ηR1+i1Q1) and
S(ηR1+i1Q1+R2), 1 ≤ i1 ≤ [log n]− 1, provide a correct order in which the leftmost-2
derivation can be performed between matrices ηR1+i1Q1 and ηR1+i1Q1+R2 . Besides

S(ηR1+i1Q1) and S(ηR1+i1Q1+R2), each ℘
(Q1)
i1

also keeps, from the previous level, the
ranging vector S(ηR1+(i1+1)Q1

). In this way each S(ηR1+i1Q1), 1 ≤ i1 ≤ [log n] − 1,

guessed at Level 5, is redirected to only one process, i.e., to ℘
(Q1)
i1−1.

Level 7 (Existential) For each process ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n]−1, A spawns O(clogn)
existential branches (guesses), each branch holding an (R2 + 1)-tuple of ranging
vectors <R2 = (S(ηR1+i1Q1), S(ηR1+i1Q1+1), ..., S(ηR1+i1Q1+R2−1), S(ηR1+i1Q1+R2)).
Then A checks whether all vectors in <R2 are correct according to the leftmost-

2 derivation requirements. This can be done, for each process ℘
(Q1)
i1

, 1 ≤ i1 ≤
[log n]− 1, in O(log n) time and space, through Levels 8-9 as follows.

Levels 8-9 (Universal-Existential) For each branch spawned at Level 7, i.e., for

each 0 ≤ i1 ≤ [log n] − 1, A spawns R2 universal processes ℘
(R2)
v , 1 ≤ v ≤ R2.

On each ℘
(R2)
v , A checks whether each substring ηR1+i1Q1ηR1+i1Q1+1...ηR1+i1Q1+v

is correct according to the leftmost-2 derivation requirements, and whether each

ranging vector in <R2 is correct. This is performed as follows. For each ℘
(R2)
v ,

1 ≤ v ≤ R2, A counts the number of occurrences of each matrix mj ∈M , 1 ≤ j ≤ k,
in η(i1,v) = η1η2...ηR1+i1Q1+v−1. Denote by xi1 = R1 + i1Q1. Suppose that each

mj occurs c
(i1,v)
j times, 0 ≤ c

(i1,v)
j ≤ xi1 + v − 1, in η(i1,v). Then A guesses a

t
(i1,v)
j -tuple of integers of the form (c

(i1,v)
j,1 , c

(i1,v)
j,2 , ..., c

(i1,v)

j,2cj−1
, c

(i1,v)

j,2cj
), where c

(i1,v)
j,q

with 0 ≤ c
(i1,v)
j,q ≤ c

(i1,v)
j and

∑2cj
q=1 c

(i1,v)
j,q = c

(i1,v)
j , represents the number of times

the policy `qj of matrix mj , 1 ≤ q ≤ 2cj , can be used when mj is activated on

η(i1,v). A spawns (Level 9) N (R2) = O(c
(i1,v)

∑k

j=1
2
cj

j ) = O(n
∑k

j=1
2cj

) existential

branches, each of which holds k tuples t
(i1,v)
j , 1 ≤ j ≤ k. On each existential branch,

A computes the sums s
(i1,v)
l =

∑k
j=1

∑2cj
q=1 c

(i1,v)
j,q Vl(`

q
j), 1 ≤ l ≤ m. Suppose that

ηxi1+v is a matrix with 2
cηxi1+v policies, where cηxi1+v = |ηxi1+v ∩ F |, and that each

policy `qηxi1+v
, 1 ≤ q ≤ 2

cηxi1+v , is identified by the sequence mq
ηxi1+v

= (pqηxi1+v ,1
,

pqηxi1+v ,2
, ..., pq

ηxi1+v ,ξ
q
ηxi1

+v

), where |ηxi1+v − F | ≤ ξqηxi1+v
≤ |ηxi1+v|.

A computes the net effect of each rule inmq
ηxi1+v

, i.e., sdfαqηxi1+v,r+1
= s

(i1,v)

αqηxi1+v,r+1
+∑r

l=1 dfαqηxi1+v,r+1
(pqηxi1+v ,l

), 1 ≤ r ≤ ξqηxi1+v
− 1, and it checks whether

1. s
(v)

αqηxi1+v,1
≥ 1, i.e., pqηxi1+v ,1

the first rule of `qηxi1+v
, can be applied on η(i1,v),

2. sdfαqηxi1+v,r+1
≥ 1, 1 ≤ r ≤ ξqηxi1+v

− 1, i.e., rules of policy `qηηxi1+v
can be

applied one by one in the order defined by the sequence mq
ηxi1+v

. Furthermore,
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A checks the following leftmost-2 conditions:

3. S(ηxi1+v−1) is a possible ranging vector with which matrix ηxi1+v−1 ends the

(xi1 + v − 1)th step of derivation, i.e., Sl(ηxi1+v−1) = 0, if s
(i1,v)
l = 0, and

Sl(ηxi1+v−1) > 0, if s
(i1,v)
l > 0, 1 ≤ l ≤ m. The policy `qηxi1+v

of ηxi1+v, can be

applied on S(ηxi1+v−1) in a leftmost-2 manner, i.e., A checks whether there
exists an l, 1 ≤ l ≤ m, such that pqηxi1+v ,1

, the first rule of `qηxi1+v
, rewrites Al

and there is no matrix mj , mj 6= ηxi1+v, and no policy `qmj of mj , such that the
first rule in `qmj rewrites a nonterminal Al′ with Sl′(ηxi1+v−1) < Sl(ηxi1+v−1),
Sl(ηxi1+v−1) 6= 0. Then A checks whether S(ηxi1+v) is a possible ranging

vector on which `qηxi1+v
ends the (xi1 + v)th step of derivation. Note that

S(ηxi1+v) can be nondeterministically computed knowing S(ηxi1+v−1) and the
rules composing `qηxi1+v

.

Each ℘
(R2)
v , 1 ≤ v ≤ R2, is said partially correct if there exist at least one

t
(i1,v)
j -tuple (guessed at Level 9) and at least one policy `qηxi1+v

of ηxi1+v, that satisfy

conditions 1 − 3. If ℘
(R2)
v is not partially correct, it is labeled by 0. Note that, at

this moment we cannot decide whether ℘
(R2)
v can be labeled by 1, since we do not

know whether S(ηxi1 ) is valid, i.e., whether matrix ηxi1 indeed ends the xthi1 step of
derivation with the ranging vector S(ηxi1 ), and whether ηxi1 can be applied in the
leftmost-2 derivation manner upon the ranging vector S(ηxi1−1) (which is not yet

guessed16). The logical value of each ℘
(R2)
v will be decided at the end of computation,

when it will be known whether S(ηR1+i1Q1) is a valid ranging vector with respect
to the matrices that compose the subword ηR1+(i1−1)Q1

...ηR1+i1Q1−1. A partially

correct process ℘
(R2)
v is labeled by a symbol �. If all processes ℘

(R2)
v are labeled by

�, then the existential branch holding the <R2-tuple, provided at Level 7, is labeled

by �. Otherwise, this branch is labeled by 0. A process ℘
(Q1)
i1

, yielded at Level 6,
will be labeled by � if there exists at least one existential branch labeled by � at

Level 7. Otherwise, ℘
(Q1)
i1

returns 0.

Suppose that we have run the algorithm up to the (`−1)th “iterated” division of
n by [log n], i.e., we know the quotient Q`−1 and the remainder R`−1 of Q`−2 divided
by [log n], i.e., Q`−2 = Q`−1 [log n]+R`−1. More precisely, Q`−2 = Q`−1 [log n]+R`−1

and n = ((...((Q`−1 [log n]+R`−1) [log n]+R`−2) [log n]+ ...) [log n]+R2) [log n]+R1,
with Q`−1 ≥ [log n], 0 ≤ Rl < [log n], l ∈ {1, 2, ..., `− 1}, and ` ≤ [log n].

Level 5(` − 1) (Existential) Consider the quotient Q` and the remainder R`
of Q`−1 divided by [log n], 0 ≤ Q`, R` < [log n]. Since Q`−2, R`−2 and R`−1

are no more needed, the space used to record them is now used to record Q`
and R`, still keeping Q`−1. Denote by xi`−2

=
∑`−1
l=1Rl +

∑`−2
l=1 ilQl. For each

16S(ηxi1−1) will be guessed at the last level of the computation tree associated with A, when all
the remainders of the “iterated” division of n by [logn] will be spent, and when ηR1+i1Q1−1 will
actually be the last matrix occurring in the suffix of ηR1+(i1−1)Q1

...ηR1+i1Q1−1 of length Q`, the
last quotient of the “iterated” division.
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existential branch labeled by � at Level 5` − 8, A spawns O(clogn) existential
branches (guesses), each of which holds a 2 [log n]-tuple of ranging vectors <cR` =
(S(ηxi`−2

), S(ηxi`−2
+R`), S(ηxi`−2

+Q`−1
), S(ηxi`−2

+Q`−1+R`), ..., S(ηxi`−2
+([logn]−1)Q`−1

),

S(ηxi`−2
+([logn]−1)Q`−1+R`)), such that S(ηxi`−2

) is the ranging vector belonging to

the tuple <R`−1
found correct at Level 5`−8. Because <R`−1

is no more needed, the
space used by A to record <R`−1

is allocated now to record the tuple <cR` . Then A
proceeds with the Level 5`− 4, similar to Levels 6, 11, ..., 5`− 9.

Level 5` − 4 (Universal) On each existential branch spawned at Level 5(` − 1),

A spawns [log n] universal processes ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1. Denote by

xi`−1
=
∑`−1
l=1 Rl+

∑`−1
l=1 ilQl = xi`−2

+ i`−1Q`−1, 0 ≤ i`−1 ≤ [log n]−1. Each process

℘
(Q`−1)
i`−1

takes the interval [xi`−1
...xi`−1

+R`], and checks whether the ranging vectors
(guessed at Level 5(` − 1)) S(ηxi`−1

) and S(ηxi`−1
+R`), 0 ≤ i`−1 ≤ [log n] − 1, pro-

vides a correct order in which the leftmost-2 derivation can be performed between

matrices ηxi`−1
and ηxi`−1

+R` . Besides S(ηxi`−1
) and S(ηxi`−1

+R`), each ℘
(Q`−1)
i`−1

, also

keeps, from the previous level, the ranging vector S(ηxi`−2
+(i`−1+1)Q`−1

). Then A
continues with Level 5`− 3, similar to Levels 7, 12, ..., 5`− 8.

Level 5` − 3 (Existential) For each process ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1, A
spawns O(clogn) existential branches, each branch holding an (R` + 1)-tuple <R` =
(S(ηxi`−1

), S(ηxi`−1
+1), ..., S(ηxi`−1

+R`−1), S(ηxi`−1
+R`)) of ranging vectors. Then A

checks whether all vectors in <R` are correct. This can be done, for each process

℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1, in O(log n) time and space, through Levels 5` − 2
(Universal) and 5`− 1 (Existential) similar to Levels 3-4, 8-9, ..., (5`− 7)-(5`− 6).

Levels (5`−2)-(5`−1) (Universal-Existential) For each existential branch spawned

at Level 5`− 3, A spawns R` universal processes ℘
(R`)
v , 1 ≤ v ≤ R`. On each ℘

(R`)
v ,

1 ≤ v ≤ R`, A spawns N (R`) = O((xi`−1
+ v)

∑k

j=1
2cj

) = O(n
∑k

j=1
2cj

) existential
branches, each of which holds a possible configuration of policies used by matrices
occurring in η(i`−1,v) = η1η2...ηxi`−1

+v−1, and computes the net effect according to
this configuration. A guesses a policy `qηxi`−1

+v
and, based on the net effect com-

puted before, checks whether ηxi`−1
+v with the policy `qxi`−1

+v can be applied, in

leftmost-2 derivation manner, on the sentential form having the associated ranging
vector S(ηxi`−1

+v−1) in <R` . Then A checks whether S(ηxi`−1
+v) in <R` is a possi-

ble ranging vector on which `qηxi`−1
+v

ends the (xi`−1
+ v)th step of derivation. Note

that S(ηxi`−1
+v) can be nondeterministically computed, knowing the ranging vector

S(ηxi`−1
+v−1) and the sequence of rules that defines `qηxi`−1

+v
.

Each process ℘
(R`)
v , 1 ≤ v ≤ R`, that satisfies the above conditions is partially

correct, and it is labeled by �. Otherwise, ℘
(R`)
v is labeled by 0. If all ℘

(R`)
v are

labeled by �, then the existential branch holding the tuple <R` , provided at Level

5`− 3, is labeled by �. Otherwise, this branch is labeled by 0. The process ℘
(Q`−1)
i`−1

,
yielded at Level 5` − 4, will be labeled by � if there exists at least one existential

branch labeled by � at Level 5`− 3. Otherwise, ℘
(Q`−1)
i`−1

is labeled by 0.
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At this level the only substrings of η left unchecked are those substrings that cor-
responds to intervals IQ`−1

= [
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl + i`−1Q`−1 + R`...

∑`−1
l=1 Rl +∑`−2

l=1 ilQl + (i`−1 + 1)Q`−1] = [xi`−2
+ i`−1Q`−1 + R`...xi`−2

+ (i`−1 + 1)Q`−1],
0 ≤ il ≤ [log n] − 1, 1 ≤ l ≤ ` − 1, and besides the cutting points P u` =

∑u
l=1Rl +∑u−1

l=1 ilQl + (iu + 1)Qu, 1 ≤ u ≤ `− 1. On each interval of type IQ`−1
, A proceeds

with Level 5`.

Level 5` (Existential) Each interval IQ`−1
can be divided into [logn] subintervals

of length 1 ≤ Q` < [log n]. Hence, A spawns O(clogn) existential branches each of
which holds a [log n]-tuple of ranging vectors <cQ` = (S(ηxi`−1

+R`), S(ηxi`−1
+R` +Q`),

..., S(ηxi`−1
+R`+([logn]−1)Q`)), where S(ηxi`−1

+R`) is the ranging vector found valid

at Level 5`− 3.

Level 5`+1 (Universal) For each existential branch spawned at Level 5`, A spawns

[log n] universal processes ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n]− 1. Each ℘
(Q`)
i`

takes an interval of

length Q` of the form [
∑`
l=1Rl+

∑`−1
l=1 ilQl+i`Q`...

∑`
l=1Rl+

∑`−1
l=1 ilQl+(i`+1)Q`].

Denote by xi` =
∑`
l=1Rl +

∑`−1
l=1 ilQl + i`Q`, 0≤ i`≤ [log n] − 1. For each interval

[xi` ...xi`+1], A checks whether the substring ηxi` ... ηxi`+1 , 0 ≤ i` ≤ [log n] − 1, is
valid according to the leftmost-2 derivation order.

Level 5` + 2 (Existential) For each ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n] − 1, A spawns O(clogn)
existential branches, each branch holding an (Q`+ 1)-tuple of ranging vectors <Q`=
(S(ηxi` ), S(ηxi`+1), ..., S(ηxi`+Q`−1), S(ηxi`+1)). In each <Q`-tuple the first vector
S(ηxi` ) and the last vector S(ηxi`+1) have been guessed at Level 5`. They are rang-
ing vectors associated with matrices placed in cutting points, i.e., end points of
intervals of length at most log n. They are also overlapping points of two consec-
utive intervals of type [xi` ...xi`+1]. Hence, each ranging vector S(ηxi` ) is checked
two times. Once if it is a valid vector on which ηxi`+1 can be applied in leftmost-2
derivation manner, and twice if by applying ηxi` on the sentential form built by
using the ranging vector S(ηxi`−1) a sentential form with the ranging vector S(ηxi` )
is obtained.

As all intervals of type [xi` ...xi`+1] are universally checked, the tuple <cQ` spawned
at Level 5` is labeled by 1, if all ranging vectors S(ηxi` ) and all vectors composing <Q`
are correct. To check whether all ranging vectors in <Q` are correct, for each process

℘
(Q`)
i`

, 0 ≤ i` ≤ [log n]−1, A follows the same procedure, that requires O(log n) time
and space, described at Levels 5`− 2 (Universal) and 5`− 1 (Existential).

For the last substring of length Q` in η, i.e., the suffix of η of length Q` of the form

η∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+([logn]−1)Q`

...η∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

, on ℘
(Q`)
[logn]−1

A must check whether the matrix η∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

= ηn ends the

computation. This can be checked as in process ℘n, Theorem 3.
Each cutting point P u` =

∑u
l=1Rl +

∑u−1
l=1 ilQl + (iu + 1)Qu can be equiva-

lently rewritten as
∑u+1
l=1 Rl +

∑u
l=1 ilQl + [log n]Qu+1, due to the equality Qu =

[log n]Qu+1 + Ru+1, for any 1 ≤ u ≤ ` − 1. Furthermore,
∑u+1
l=1 Rl +

∑u
l=1 ilQl +

[log n]Qu+1 is equal with
∑u+1
l=1 Rl+Ru+2+

∑u
l=1 ilQl+([log n]−1)Qu+1+[log n]Qu+2,

due to the equality Qu+1 = [log n]Qu+2 +Ru+2, for any 1 ≤ u ≤ `− 2. By applying
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this transformation k times, where k = `−u, each P u` can be equivalently rewritten
as
∑u+1
l=1Rl + Ru+2 + ... + Ru+k +

∑u
l=1 ilQl + ([log n] − 1)(Qu+1 + ... + Qu+k−1) +

[log n]Qu+k, where u + k = `. In this way each P u` , yielded at Level 5u by the
<cRu+1

-tuple, 1 ≤ u ≤ ` − 1, is in fact the end point of an interval of the form

[
∑`
l=1Rl +

∑`−1
l=1 ilQl + i`Q`...

∑`
l=1Rl +

∑`−1
l=1 ilQl + (i` + 1)Q`] = [xi` ...xi`+1], for

which 0 ≤ il ≤ [log n]− 1, 1 ≤ l ≤ `− 1, i` = [log n]− 1. Hence, the decision on the
correctness of each ranging vector S(η∑u

l=1
Rl+

∑u−1

l=1
ilQl+(iu+1)Qu

) = S(ηPu
`

) will be

actually taken by a process of type ℘
(Q`)
[logn]−1.

Since the validity of each cutting point is decided by a process of type ℘
(Q`)
[logn]−1,

the logical value returned by this process is ”propagated” up to the level of the
computation tree that has spawned the corresponding cutting point, and thus each �
symbol receives a logical value. The input is accepted, if going up in the computation
tree, with all �’s changed into logical values, the root of the tree is labeled by 1.

The <Rh̄ , <cRh̄ , <Q` , and <cQ`-tuples of ranging vectors, 1 ≤ h̄ ≤ `, the sequences
mq
j , the vectors V (`qj), 1 ≤ j ≤ k, and auxiliary net effects computed by A during

the algorithm, are stored by using O(log n) space. It is easy to observe that A has
O(log n) levels. Since at each level A spawns either O(nc) or O(clogn) existential
branches, where c is a constant (independent of the length of the input), each level
is thus convertible into a binary tree with O(log n) levels. Moreover, at each Level
5h̄, 1 ≤ h̄ ≤ `, A performs a division operation, which requires O(log n) time and
space. Consequently, A performs the whole computation in O(log2 n) parallel time
and O(log n) space. 2

Corollary 6 Each language L ∈ SZMLi(CF ), i ∈ {1, 2, 3}, can be recognized by
an indexing ATM in O(log n) space and O(log2 n) time.

Proof. The proof is similar to the proof provided for Theorem 6. The main differ-
ence is that at each Level 5h̄ + 4, 0 ≤ h̄ ≤ `, A does not have to spawn N (Rh̄+1) =

O(R

∑k

j=1
2cj

h̄+1 ) existential branches in order to guess the t
(ih̄,v)
j -tuples of integers that

provide the number of times each policy of mj can be used in the substring η(ih̄,v),
for each matrix mj , 1 ≤ j ≤ k. However, this does not decrease the time resources
needed, since A has to perform log n division operations, each of which requiring
O(log n) time and space. Hence, the parallel time is still O(log2 n). 2

Corollary 7 SZMLi(CF ) ∪ SZMLaci (CF ) ⊂ NC2, i ∈ {1, 2, 3}.

Corollary 8 SZMLi(CF ) ∪ SZMLaci (CF ) ⊂ DSPACE(log2 n), i ∈ {1, 2, 3}.

4 Szilard Languages of Random Context Grammars

Random Context Grammars (RCGs) are regulated rewriting grammars in which the
application of a rule is enabled by the existence in the current sentential form of
some nonterminals that provide the context under which the rule in question can be
applied. These nonterminals are listed by the so called permitting context of that
rule. The use of a rule may be disabled by the existence, in the current sentential
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form, of some nonterminals that provide the forbidden context under which the
rule in question cannot be applied. These nonterminals are listed by the so called
forbidding context of that rule.

RCGs with context-free rules have been first introduced in [47] to cover the
gap existing between the classes CFLs and CSLs. A generalization of RCGs for
phrase-structure rules can be found in [14]. The generative capacity and several
descriptional properties of RCGs can be found in [10], [12], [14], [17], [47], and [48].

4.1 Random Context Grammars - Prerequisites

Definition 12 A random context grammar (RCG) is a quadruple G = (N,T, S, P )
where S is the axiom, N and T , N ∩ T = ∅, are finite sets of nonterminals and
terminals, respectively. P is a finite set of triplets (random context rules) of the
form r = (pr, Qr, Rr), where pr : αr → βr is a phrase structure rule over N ∪ T , i.e.,
αr ∈ (N ∪ T )∗N(N ∪ T )∗ and βr ∈ (N ∪ T )∗, Qr and Rr are subsets of N , called
the permitting and forbidding context of r, respectively. If Rr = ∅, for any r ∈ P ,
then G is a permitting RCG. If Qr = ∅, for any r ∈ P , then G is a forbidding RCG.

A permitting RCG is a RCG without appearance checking, i.e., Rr = ∅ for any
r ∈ P . If there exists at least one r ∈ P such that Rr 6= ∅, then G is a RCG with
appearance checking (henceforth RCGac). If Qr = ∅ for any r ∈ P , then G is called
forbidding RCG. If all rules pr are phrase-structure (PS), context-sensitive (CS),
context-free (CF), or regular (REG) rules then G is a PS, CS, CF, or REG random
context grammar.

Definition 13 Let G = (N,T, S, P ) be a RCG or a RCGac, and V = N ∪ T . The
language L(G) generated by G is defined as the set of all words w ∈ T ∗ for which
there exists a derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris ws = w,
s ≥ 1, where rij = (αij → βij , Qij , Rij ), 1 ≤ j ≤ s − 1, wj−1 = w′j−1αijw

′′
j−1,

wi = w′j−1βijw
′′
j−1 for some w′j−1, w′′j−1 ∈ V ∗, such that i. all symbols in Qij occur

in w′j−1w
′′
j−1, and ii. no symbol of Rij occurs in w′j−1w

′′
j−1.

Denote by L(RC,X) and L(RC,X, ac) the class of languages generated by RCGs
without appearance checking and RCGs with appearance checking, respectively,
with X-rules, X ∈ {REG,CF,CF − λ,CS, PS}, then L(RC,X, ac) = L(M,X, ac),
L(RC, Y ) = L(M,Y ), Y ∈ {REG,CS, PS}, L(RC,CF ) ⊆ L(M,CF ), L(RC,CF −
λ) ⊆ L(M,CF − λ) [12], [14]. Hence
1. CFL ⊂ L(RC,CF − λ) ⊂ L(RC,CF − λ, ac) ⊂ CSL ⊂ L(RC,CF, ac) = RE,
2. CFL ⊂ L(RC,CF − λ) ⊆ L(RC,CF ) ⊂ L(RC,CF, ac) = RE,
3. L(RC,X) = L(RC,X, ac) = XL, X ∈ {REG,CS, PS}.

Let G = (N,T, S, P ) be a RCG. If labels are associated with triplets17 r =
(p,Q,R) ∈ P , in one-to-one correspondence, then the Szilard language associated
with a RCG is defined as follows.

17For the sake of simplicity, we use the same notation both for a triple and the label associated
with it.
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Definition 14 Let G = (N,T, S, P ) be a RCG, P = {r1, r2, ..., rk} the set of pro-
ductions, L(G) the language generated by G, and w a word in L(G). The Szilard
word of w associated with the derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

...⇒ris
ws = w, s ≥ 1, is defined as SzD(w) = ri1ri2 ...ris , rij ∈ P , 1 ≤ j ≤ s. The Szilard
language of G is Sz(G) = {SzD(w)|w ∈ L(G), D is a terminal derivation of w}.

Denote by SZRC(X) and SZRC(X)ac the classes of Szilard languages associated
with RCGs without appearance checking and RCGs with appearance checking and
X rules, X ∈ {CF,CS, PS}, respectively.

Definition 10 is applicable also for leftmost-i, i ∈ {1, 2, 3}, derivations in RCGs
with CF rules [14]. In terms of triplets r = (pr, Qr, Rr) ∈ P , where pr is a CF rule of
the form αpr → βpr , αpr ∈ N , βpr ∈ (N∪T )∗, and Qr and Rr are the permitting and
forbidding context of r, respectively, these derivations can be explained as follows.

A production r = (pr, Qr, Rr) ∈ P can be applied in leftmost-1 derivation man-
ner if pr rewrites the leftmost nonterminal occurring in the sentential form, as long
as the sentential form on which r is applied contains all nonterminals in Qr and no
nonterminal in Rr.

A production r = (pr, Qr, Rr) ∈ P can be applied in leftmost-2 derivation man-
ner if the rule pr rewrites the leftmost nonterminal that can be rewritten by any
rule in P eligible to be applied on the current sentential form, in the sense that if
any other rule r′ = (pr′ , Qr′ , Rr′) ∈ P can be applied, because the sentential form
contains all nonterminals in Qr′ and no nonterminal in Rr′ , then the nonterminal
rewritten by r′ follows in the sentential form the nonterminal rewritten by r.

A production r = (pr, Qr, Rr) ∈ P can be applied in leftmost-3 derivation man-
ner if the rule pr rewrites the leftmost nonterminal that can be rewritten by r, as
long as the sentential form on which r is applied contains all nonterminals in Qr and
no nonterminal in Rr.

Szilard languages associated with leftmost-i, i ∈ {1, 2, 3}, derivations can be
defined in the same way as in Definition 14, with the specification that D is a
leftmost-i derivation of w. We denote by SZRCLi(X) and SZRCLaci (X) the classes
of leftmost-i, i ∈ {1, 2, 3}, Szilard languages associated with RCGs and RCGs with
appearance checking with X rules, X ∈ {CF,CS, PS}, respectively.

Let G = (N,T, P,A1) be an arbitrary RCG with CF rules, where A1 is the
axiom, N = {A1, A2, ..., Am} and P = {r1, r2, ..., rk} are the finite sets of ordered
nonterminals and labels associated in one-to-one correspondence, respectively. For
each production r = (pr, Qr, Rr) ∈ P , where pr is a rewriting rule of the form
αpr → βpr , αpr ∈ N , and βpr ∈ (N ∪ T )∗, its net effect during the derivation
D with respect to each nonterminal Al ∈ N , 1 ≤ l ≤ m, is given by dfAl(pr) =
|βpr |Al − |αpr |Al . To each rule r we associate a vector V (r) ∈ Zm defined by V (r) =
(dfA1(pr), dfA2(pr), ..., dfAm(pr)), where Z is the set of integers. The value of V (r)
taken at the lth place, 1 ≤ l ≤ m, is denoted by Vl(r).

4.2 On the Complexity of Unrestricted Szilard Languages

Theorem 7 Each language L ∈ SZRC(CF ) ∪ SZRCac(CF ) can be recognized
by an indexing ATM in O(log n) time and space (SZRC(CF ) ∪ SZRCac(CF ) ⊆
ALOGTIME).
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Proof. We give the proof for the class SZRCac(CF ). For the class SZRC(CF )
the proof is simpler. Let G = (N,T, P,A1) be an arbitrary RCGac with CF rules.
We describe an indexing ATM that decides in logarithmic time and space whether
an input word γ = γ1γ2...γn ∈ P ∗ of length n, belongs to Sz(G). Let A be an
indexing ATM composed of an input tape that stores γ, an index tape, and a
working tape composed of three tracks. Here and throughout this paper, each label
γi corresponds to a triplet in P of the form (pγi , Qγi , Rγi), where pγi is a CF rule
of the form αγi → βγi , αγi ∈ N , and βγi ∈ (N ∪ T )∗, 1 ≤ i ≤ n. At the beginning
of the computation the first track of the working tape of A stores k + 1 vectors,
V 0 corresponding to the axiom, i.e., V 0

1 = 1 and V 0
l = 0, 2 ≤ l ≤ m, and V (rj),

1 ≤ j ≤ k. The other two tracks are initially empty.

Level 1 (Existential) In an existential state A guesses the length of γ, i.e., writes
on the index tape n, and checks whether the nth cell of the input tape contains a
terminal symbol and the cell n + 1 contains no symbol. The correct value of n is
recorded in binary on the second track of the working tape.

Level 2 (Universal) A spawns n universal processes ℘i, 1 ≤ i ≤ n.

• On ℘1, A checks whether αγ1 = A1. Process ℘1 returns 1 if this equality holds.

• For each ℘i, 2 ≤ i ≤ n, A counts the number of occurrences of each rule rj ∈ P ,

1 ≤ j ≤ k, in γ(i) = γ1γ2...γi−1. Suppose that each rj occurs c
(i)
j times, 0 ≤

c
(i)
j ≤ i − 1, in γ(i). A computes s

(i)
Al

= V 0
l +

∑k
j=1 c

(i)
j Vl(rj), i.e., the number

of times each nonterminal Al, 1 ≤ l ≤ m, occurs in the sentential form obtained
at the ith step of derivation. Besides, for ℘n, for each 1 ≤ l ≤ m, A computes

s
(n,out)
Al

= V 0
l +

∑k
j=1 c

(n)
j Vl(rj) + Vl(γn). Each ℘i, 2 ≤ i ≤ n − 1, returns 1 if only

one of the conditions 1−3 holds. Process ℘n returns 1, if one of the conditions 1−3

holds, and besides s
(n,out)
Al

= 0, for each 1 ≤ l ≤ m.

1. s
(i)
αγi
≥ 1, αγi /∈ Qγi ∪ Rγi , s

(i)
X ≥ 1, for each X ∈ Qγi , and s

(i)
Y = 0 for each

Y ∈ Rγi ,

2. s
(i)
αγi
≥ 2 if αγi ∈ Qγi − Rγi , s

(i)
X ≥ 1, for each X ∈ Qγi , X 6= αγi , and s

(i)
Y = 0

for each Y ∈ Rγi ,

3. s
(i)
αγi

= 1 if αγi ∈ Rγi − Qγi , s
(i)
X ≥ 1, for each X ∈ Qγi , and s

(i)
Y = 0 for each

Y ∈ Rγi , Y 6= αγi .

The computation tree ofA has only two levels, in which each node has unbounded
out-degree. By using a divide and conquer algorithm each of these levels can be
converted into a binary tree of height O(log n). All functions used in the algorithm,
such as counting and addition, are in NC1, which is equal to ALOGTIME under the
UE∗-uniformity restriction [41]. In order to store, on the third track of the working

tape, the binary value of c
(i)
j , and to compute in binary s

(i)
Al

and s
(n,out)
Al

, 1 ≤ i ≤ n,
1 ≤ j ≤ k, 1 ≤ l ≤ m, A needs O(log n) space. Hence, for the whole computation
A uses O(log n) time and space. 2

Corollary 9 SZRC(CF ) ∪ SZRCac(CF ) ⊂ NC1.

Corollary 10 SZRC(CF ) ∪ SZRCac(CF ) ⊂ DSPACE(log n).
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4.3 On the Complexity of Leftmost Szilard Languages

Theorem 8 Each language L ∈ SZRCLac1 (CF ) can be recognized by an indexing
ATM in O(log n) time and space (SZRCLac1 (CF ) ⊆ ALOGTIME).

Proof. Let G = (N,T, P,A1) be a RCGac with CF rules working in leftmost-1
derivation manner. Consider an indexing ATM A having a similar structure as in
the proof of Theorem 7. Let γ = γ1γ2...γn ∈ P ∗, be an input word of length n. In
order to guess the length of γ, A proceeds with the procedure described at Level
1-Existential, Theorem 7. Then A spawns (Level 2-Universal) n universal processes
℘i, 1 ≤ i ≤ n, and (briefly) proceeds as follows.

For each ℘i, 1 ≤ i ≤ n, A checks as in Theorem 7, whether each triplet γi can be
applied on γ(i) = γ1γ2...γi−1 according to Definition 13. Then A checks whether rule
pγi can be applied in a leftmost-1 derivation manner on γ(i). To do so, A spawns at
most i− 1 existential branches (Level 3-Existential) each branch corresponding to a
label γv, 1 ≤ v ≤ i−1, such that pγv in (pγv , Qγv , Rγv) is a non-terminal rule. Denote
by q the number of non-terminal rules used in γ between γv+1 and γi−1 (including
γv+1 and γi−1), and by sq the total number of nonterminals produces by these rules,
and let s = i− v− sq. A checks whether αγi is the sth nonterminal occurring on the
right-hand side18 of rule pγv .

An existential branch spawned at Level 3, is labeled by 1 if pγv satisfies these
properties. For each existential branch labeled by 1 at Level 3, A checks whether
the sth nonterminal occurring in βγv is indeed the αγi nonterminal rewritten by rule
pγi , i.e., no other rule used between rule pγv of γv and rule pγi of γi rewrites the sth

nonterminal, equal to αγi , in βγv (for which a relation of type “s+ sq = i− v” may
also hold). Hence, A universally branches (Level 4-Universal) all symbols occurring
between rules γv+1 and γi−1. On each branch holding a triplet γl = (pγl , Qγl , Rγl),
v < l < i, A checks whether 1. αγl equals αγi ,

2. s + s̄q = l − v, providing that αγi is the sth nonterminal occurring on the
right-hand side of rule pγv (found at Level 3) and s̄q is the number of nonterminals
produced between rules pγv and pγl ,

3. the number of nonterminals αγi rewritten between pγv and pγl is equal to the
number of nonterminals αγi produced between these rules, up to the sth nonterminal
occurring on the right-hand side of rule pγv .

On each universal branch (Level 4) A returns 0 if conditions 1 − 3 hold. Oth-
erwise, it returns 1. Note that, for each ℘i, 1 ≤ i ≤ n, A does not have to check
whether γv and γl, can be applied in leftmost-1 derivation manner. This condition is
checked by each of the processes ℘v and ℘l, since all of them are universally consid-
ered. It is easy to estimate that A performs the whole computation in logarithmic
time and space. 2

18If pγv is the rule that produces the nonterminal rewritten by rule pγi , and this is the sth

nonterminal occurring on the right-hand side of pγv , then for the case of leftmost-1 derivation
order, we must have s + sq = i − v. This is because each nonterminal produced in the sentential
form by rules used in a leftmost-1 derivation manner, between pγv and pγi (including nonterminals
existing up to the sth nonterminal on the right-hand side of pγv ), must be fully rewritten by these
rules. The nonterminals existing in the sentential form before pγv has been applied, will be rewritten
only after the new nonterminals produced between pγv and pγi are fully rewritten.
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Corollary 11 SZRCL1(CF ) ∪ SZRCLac1 (CF ) ⊂ NC1.

Corollary 12 SZRCL1(CF ) ∪ SZRCLac1 (CF ) ⊂ DSPACE(log n).

In order to simulate letfmost-i derivations, i ∈ {2, 3}, and to check whether
γ = γ1γ2...γn ∈ P ∗ belongs to SZRCLaci (CF ), for each triplet γi, 1 ≤ i ≤ n, an
ATM must have information concerning the order in which the first occurrence of
each nonterminal Al ∈ N , 1 ≤ l ≤ m, occurs in the sentential form at any step of
derivation. In this respect we introduce the notion of ranging vector for a RCG.

Definition 15 Let G = (N,T, P,A1) be a RCGac with CF rules, where P =
{r1, r2, ..., rk} is the ordered finite set of triplets in P . Let SFrj be the senten-
tial form obtained after the triplet rj = (pj , Qj , Rj), 1 ≤ j ≤ k, has been applied at
a certain step of derivation in G. The ranging vector associated with SFrj , denoted
by S(rj), 1 ≤ j ≤ k, is a vector in Nm defined as

Sl(rj) =


0, if Al ∈ N does not occur in SFrj , i.e., |SFrj |Al = 0,

i,
if the first occurrence of Al in SFrj is the ith element in the
order of first occurrences of nonterminals from N in SFrj .

Depending on the context, the value of S(rj) taken at the lth place, 1 ≤ l ≤ m,
i.e., Sl(rj), is also denoted by Sαpj (rj) if pj in rj = (pj , Qj , Rj) is a CF rule of the
form αpj → βpj and αpj = Al.

Note that, if rj′ = (pj′ , Qj′ , Rj′) is applied in the Szilard word before rj =
(pj , Qj , Rj) then the ranging vector S(rj) can be computed knowing S(rj′). This
observation holds for both leftmost-2 and leftmost-3 derivations (Example 2).

Example 2 Consider S(rj′) = (3, 0, 2, 1, 0) ∈N5 the ranging vector associated with
the sentential form SFrj′ , obtained after rule rj′ has been applied, at the ith step of
derivation. Suppose that SFrj′ contains one occurrence of A1, three occurrences of
A3, and arbitrary number of A4. According to Definition 15, SFrj′ looks like SFrj′ =

tA4X4A3X3,4A1X̄3,4, where t ∈ T ∗, X4 ∈ ({A4} ∪ T )∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗.
If in rj = (pj , Qj , Rj), pj is the rule A3 → tA5, Qj = {A3, A4} and Rj = {A5},
then rj can be applied in leftmost-2 derivation manner after rj′ , if there is no other
RC rule rj′′ = (pj′′ , Qj′′ , Rj′′) ∈ P , such that pj′′ rewrites A4, SFrj′ contains all
nonterminals in Qj′′ and no nonterminal in Rj′′ . Depending on the position of the
second occurrence of A3 in SFrj′ , the sentential form obtained after pj has been
applied on SFrj′ may look like

• SFrj = tA4X4A5A3X3,4A1X̄3,4 or SFrj = tA4X4A5X̄4A3X3,4A1X̄3,4, t ∈ T ∗,
X4, X̄4 ∈ ({A4} ∪ T )∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T )∗, i.e., S(rj) = (4, 0, 3, 1, 2),
or like

• SFrj = tA4X4A5X̄4A1A3X3,4, or SFrj = tA4X4A5X̄4A1X̃4A3X3,4, t ∈ T ∗,

X4, X̄4, X̃4 ∈ ({A4}∪T )∗, X3,4 ∈ ({A1, A3, A4}∪T )∗, i.e., S(rj) = (3, 0, 4, 1, 2).

For the case of leftmost-3 derivation, rule rj can be applied in leftmost-3 manner
after rj′ , by rewriting the leftmost occurrence of A3 in S(rj′), even if there exist a
RC rule rj′′ ∈ P able to rewrite A4.
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Next we sketch an ATM A that decides whether an input word γ = γ1γ2...γn
belongs to SZRCLaci (CF ), i ∈ {2, 3}. Let Q1 be the quotient, and R1 the remainder
of n divided by [log n]. Dividing Q1 by [log n] a new quotient Q2 and remainder R2

are obtained. If this “iterated” division is performed until the resulted quotient,
denoted by Q`, can be no longer divided by [log n], then n (written in the base
[log n]) is n = ((...((Q` [log n]+R`) [log n]+R`−1) [log n]+ ...) [log n]+R2)[log n]+R1,
1 ≤ Q` <log n, 0 ≤ Rl <log n, l ∈ {1, ..., `}, and ` < log n.

Knowing R1, A guesses an R1-tuple of ranging vectors associated with the first
R1 triplets (RC rules) occurring in γ and checks whether γ1γ2...γR1 is valid, according
to the leftmost-i derivation manner, i ∈ {2, 3}. Then A guesses a [log n]-tuple of
ranging vectors associated with triplets placed at the [log n] cutting points in γ
obtained by dividing [R1 + 1...n] in [log n] intervals of length Q1. A continues with
this routine for each interval of length Q1 as follows. First A checks, in parallel,
whether the first R2 triplets in each Q1-interval forms a valid substring of a leftmost-
i, i ∈ {2, 3}, Szilard word. Then, in parallel for each Q1-interval, A guesses another
[log n]-tuple of ranging vectors associated with triplets placed at the [log n] cutting
points in γ obtained by dividing each interval of length Q1−R2 into [log n] intervals
of length Q2. This procedure is repeated until intervals of length Q` < log n are
obtained. At this point, A checks whether the substrings of γ corresponding to
Q`-intervals, are valid according to the leftmost-i derivation order, i ∈ {2, 3}. It
can be proved that all cutting points are right edges of these intervals. If correct
ranging vectors can be found for all intervals and all cutting points, then γ is a
correct leftmost-i, i ∈ {2, 3}, Szilard word. Hence, we have

Theorem 9 Each language L ∈ SZRCLaci (CF ), i ∈ {2, 3}, can be recognized by an
indexing ATM in O(log n) space and O(log2 n) time.

Proof. We prove the claim for the leftmost-2 derivation. For the leftmost-3 case the
proof is almost the same. Let G = (N,T, P,A1) be an arbitrary RCGac working in
leftmost-2 derivation manner, and A be an indexing ATM with a similar configura-
tion as in the proof of Theorem 7. Let γ = γ1γ2...γn ∈ P ∗, be an input of length
n. To guess the length of γ, A proceeds with the procedure described at Level 1
(Existential), Theorem 7.

Level 2 (Existential) Consider the quotient Q1 and the remainder R1 of the divi-
sion of n by [log n], where 0 ≤ R1 < [log n]. A spawns O(clogn) existential branches,
each branch holding an R1-tuple <R1 = (S(γ1), S(γ2), ..., S(γR1)) of ranging vectors,
where19 c = O(

∑m−1
s=1(m− s+ 1)m) and S(γv) is the ranging vector associated with

γv, 1 ≤ v ≤ R1. A checks (Levels 3) in O(log n) time and space, whether all vectors
in <R1 are correct, in the sense that S(γv) can be obtained from S(γv−1) by applying
rule γv in leftmost-2 derivation manner on the sentential form built from S(γv−1).

Level 3 (Universal) A spawns R1 universal processes ℘
(R1)
v , 1 ≤ v ≤ R1.

19The constant c depends on the number of vectors in Nm that can be built upon the set
{0, 1, ...,m}. If a certain sentential form has only m − s distinct nonterminals, then there are
(m− s+ 1)m guesses that provide the ranging vector associated with this sentential form. Hence,
here and throughout this proof, c = O

∑m−1

s=1
(m− s+ 1)m), see also the explanations at page 22.
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• Process ℘
(R1)
1 reads γ1 = (pγ1 , Qγ1 , Rγ1) and it checks whether γ1 can be applied

on A1, i.e., αγ1 =A1, and whether S(γ1) is the ranging vector associated with βγ1 .

If these conditions hold, ℘
(R1)
1 returns 1. Otherwise, it returns 0.

• For each ℘
(R1)
v , 2 ≤ v ≤ R1, A counts the number of occurrences of each RC rule

rj ∈ P , 1 ≤ j ≤ k, in γ(v) = γ1γ2...γv−1. Suppose that each rj occurs c
(v)
j times in

γ(v), 0 ≤ c(v)
j ≤ v− 1. For each 1 ≤ l ≤ m, A computes s

(v)
Al

= V 0
l +

∑k
j=1 c

(v)
j Vl(rj),

i.e., the number of times nonterminal Al occurs in the sentential form obtained at

the vth step of derivation. Each ℘
(R1)
v , 2 ≤ v ≤ R1, returns 1 if only one of the

conditions in I
(v)
1 and all conditions in I

(v)
2 hold.

I
(v)
1



1. s
(v)
αγv ≥ 1, αγv /∈ Qγv ∪Rγv , s

(v)
X ≥ 1, for each X ∈ Qγv , and s

(v)
Y = 0

for each Y ∈ Rγv ,
2. s

(v)
αγv ≥ 2 if αγv ∈ Qγv −Rγv , s

(v)
X ≥ 1, for each X ∈ Qγv , X 6= αγv ,

and s
(v)
Y = 0 for each Y ∈ Rγv ,

3. s
(v)
αγv = 1 if αγv ∈ Rγv−Qγv , s

(v)
X ≥ 1, for each X ∈ Qγv , and s

(v)
Y = 0

for each Y ∈ Rγv , Y 6= αγv .

I
(v)
2



1. S(γv−1) is a possible ranging vector on which γv−1 ends the (v − 1)th

step of derivation, i.e., Sl(γv−1) = 0 if s
(v)
Al

= 0, and Sl(γv−1) 6= 0 if

s
(v)
Al

> 0, for each 1 ≤ l ≤ m,

2. for any RC rule r = (p,Q,R) ∈ P , p is of the form αp → βp, αp 6= αγv ,

that can be applied on γ(v) (because it satisfies one of the conditions
of type 1− 3 in I1) we have Sαγv (γv−1) < Sαp(γv−1), i.e., pγv can be

applied in leftmost-2 manner on γ(v) with the ranging vector S(γv−1),
3. S(γv) is a possible ranging vector with which γv ends the vth step of

derivation, i.e., Sl(γv) = 0 if s
(v)
Al

+ Vl(γv) = 0, and Sl(γv) 6= 0 if s
(v)
Al

+

Vl(γv) > 0, for each 1 ≤ l ≤ m.

If all processes ℘
(R1)
v , 1 ≤ v ≤ R1, return 1 then <R1 is a correct guess and the

existential branch holding the [log n]-tuple, spawned at Level 2, is labeled by 1.

Level 4 (Existential) Let Q2 be the quotient and R2 the remainder of Q1 divided by
[log n], 0 ≤ R2 < [log n]. A spawns O(clogn) existential branches, each of which hold-
ing a tuple <cR2

=(S(γR1), S(γR1+R2), S(γR1+Q1), S(γR1+Q1+R2), ..., S(γR1+([logn]−1)Q1
),

S(γR1+ ([logn]−1)Q1+R2
)), where S(γR1) is the ranging vector belonging to the R1-

tuple found correct at Level 3. Because the tuple <R1 is not useful anymore, the
space used by A to record <R1 is allocated now to record <cR2

.

Level 5 (Universal) On each existential branch from Level 4, A spawns [log n] uni-

versal processes ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n] − 1. Each process ℘
(Q1)
i1

takes the interval
[R1 + i1Q1...R1 + i1Q1 + R2], and checks whether the ranging vectors S(γR1+i1Q1)
and S(γR1+i1Q1+R2), 1 ≤ i1 ≤ [log n] − 1, provide a correct order in which the
leftmost-2 derivation can be performed between γR1+i1Q1 and γR1+i1Q1+R2 . Besides

S(γR1+i1Q1) and S(γR1+i1Q1+R2), each ℘
(Q1)
i1

also keeps, from the previous level,
the ranging vector S(γR1+(i1+1)Q1

). In this way each ranging vector S(γR1+i1Q1),
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1 ≤ i1 ≤ [log n]− 1, guessed at Level 4, is redirected to only one process, i.e., ℘
(Q1)
i1−1.

Denote by xi1 = R1 + i1Q1, 0 ≤ i1 ≤ [log n]− 1.

Level 6 (Existential) For each universal process ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n] − 1, A
spawns O(clogn) existential branches, each branch holding an (R2 +1)-tuple of rang-
ing vectors <R2 = (S(γxi1 ), S(γxi1+1), ..., S(γxi1+R2−1), S(γxi1+R2)). Then A checks
whether all vectors in <R2 are correct ranging vectors according to the leftmost-

2 derivation requirements. This can be done, for each process ℘
(Q1)
i1

, 0 ≤ i1 ≤
[log n]− 1, in O(log n) time and space, through Level 7 as follows.

Level 7 (Universal) For each existential branch spawned at Level 6, A spawns R2

universal processes ℘
(R2)
v , 1 ≤ v ≤ R2. On each ℘

(R2)
v , A checks whether each sub-

string γxi1γxi1+1...γxi1+v is correct according to the leftmost-2 derivation order. In

this respect, for each ℘
(R2)
v , 1 ≤ v ≤ R2, A counts the number of occurrences of each

RC rule rj ∈ P , 1 ≤ j ≤ k, in γ(i1,v) = γ1γ2...γxi1+v−1. Suppose that each rj occurs

c
(i1,v)
j times, 0 ≤ c

(i1,v)
j ≤ xi1 + v − 1, in γ(i1,v). For each 1 ≤ l ≤ m, A computes

s
(i1,v)
Al

= V 0
l +

∑k
j=1 c

(i1,v)
j Vl(rj), i.e., the number of times Al occurs in the sentential

form obtained at the (xi1 +v)th step of derivation. Then A checks conditions of type

I
(v)
1 and I

(v)
2 (Level 3) for the RC rule γxi1+v, i.e., instead of v, xi1 + v is considered.

Denote by I
(i1,v)
1 and I

(i1,v)
2 these conditions.

Each ℘
(R2)
v , 1 ≤ v ≤ R2, is said partially correct if one of the conditions in I

(i1,v)
1

and all conditions in I
(i1,v)
2 hold. If ℘

(R2)
v is not partially correct, it is labeled by 0.

Note that, at this moment we cannot decide whether ℘
(R2)
v can be labeled by 1, since

we do not know whether S(γxi1 ) is valid, i.e., whether γxi1 indeed ends the xthi1 step
of derivation with the ranging vector S(γxi1 ), and whether γxi1 can be applied in the
leftmost-2 derivation manner upon the ranging vector S(γxi1−1) (which is not yet

guessed20). The logical value of each ℘
(R2)
v will be decided at the end of computation,

when it will be known whether S(γxi1 ) is a valid ranging vector with respect to
the rules that compose the subword γR1+(i1−1)Q1

...γR1+i1Q1−1 = γxi1−1 ...γxi1−1. A

partially correct process ℘
(R2)
v is labeled by �. If all processes ℘

(R2)
v are labeled by

�, then the existential branch holding the tuple <R2 , provided at Level 6, is labeled

by �. Otherwise, this branch is labeled by 0. Process ℘
(Q1)
i1

, yielded at Level 5, will
be labeled by � if there exists at least one existential branch labeled by � at Level

6. Otherwise, ℘
(Q1)
i1

returns 0.

Suppose that we have run the algorithm up to the (` − 1)th “iterated” divi-
sion of n by [log n], i.e., we know the quotient Q`−1 and the remainder R`−1 of
Q`−2 divided by [log n]. More precisely, Q`−2 = Q`−1 [log n] + R`−1 and n =
((...((Q`−1 [log n] + R`−1) [log n] + R`−2) [log n] + ...) [log n] + R2) [log n] + R1, with
Q`−1 > [log n], 0 ≤ Rl < [log n], l ∈ {1, 2, ..., `− 1}, and ` ≤ [log n].

Level 4(`−1) (Existential) Let Q` be the quotient and R` the remainder of Q`−1 di-

20S(γxi1−1) will be guessed at the last level of the computation tree of A, when all the remainders
of the “iterated” division of n by [logn] will be spent, and when γxi1−1 will be the last rule occurring
in the suffix of length Q` of the substring γR1+(i1−1)Q1

...γR1+i1Q1−1 = γxi1−1 ...γxi1−1 of γ.
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vided by [log n], 0 ≤ Q`, R` < [log n]. SinceQ`−2, R`−2 andR`−1 are no more needed,
the space used to record them is now used to record Q` and R` in binary, still keeping
Q`−1. Denote by xi`−2

=
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl. For each existential branch labeled

by � at Level 4`− 6, A spawns O(clogn) existential branches, each branch holding a
2 [log n]-tuple <cR` = (S(γxi`−2

), S(γxi`−2
+R`), S(γxi`−2

+ Q`−1
), S(γxi`−2

+ Q`−1+R`), ...,

S(γxi`−2
+([logn]−1)Q`−1

), S(γxi`−2
+([logn]−1)Q`−1+R`)), where S(γxi`−2

) is the ranging

vector belonging to tuple <R`−1
found correct at Level 4`− 5. Because <R`−1

is no
more needed the space used to record <R`−1

is allocated now to record <cR` . Then
A proceeds with Level 4`− 3, similar to Levels 5,..., 4`− 7.

Level 4` − 3 (Universal) On each existential branch spawned at Level 4(` − 1),

A spawns [log n] universal processes ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n]−1. Denote by

xi`−1
=
∑`−1
l=1 Rl+

∑`−1
l=1 ilQl = xi`−2

+ i`−1Q`−1, 0 ≤ i`−1 ≤ [log n]−1. Each process

℘
(Q`−1)
i`−1

takes the interval [xi`−1
...xi`−1

+R`], and checks whether the ranging vectors
(guessed at Level 4(`−1)) S(γxi`−1

) and S(γxi`−1
+R`), 0 ≤ i`−1 ≤ [log n]−1, provide

a correct order in which the leftmost-2 derivation can be performed between γxi`−1

and γxi`−1
+R` . Besides S(γxi`−1

) and S(γxi`−1
+R`), each ℘

(Q`−1)
i`−1

, also keeps from the

previous level S(γxi`−2
+(i`−1+1)Q`−1

). Then A continues with Level 4`− 2, similar to

Levels 6, ..., 4`− 6.

Level 4`−2 (Existential) For each universal process ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n]−1, A
spawns O(clogn) existential branches, each branch holding an (R`+1)-tuple of rang-
ing vectors <R` =(S(γxi`−1

), S(γxi`−1
+1), ..., S(γxi`−1

+R`−1), S(γxi`−1
+R`)). Then A

checks whether all vectors composing <R` are correct. This can be done, for each

process ℘
(Q`−1)
i`−1

, 0 ≤ i`−1 ≤ [log n] − 1, in O(log n) time and space, through Level
4`− 1 similar to Levels 3, 7, ..., 4`− 5.

Level 4` − 1 (Universal) For each existential branch spawned at Level 4` − 2, A
spawns R` universal processes ℘

(R`)
v , 1 ≤ v ≤ R`. On each ℘

(R`)
v , A checks whether

each substring γxi`−1
...γxi`−1

+v and each ranging vector in <R` is correct according

to the leftmost-2 derivation order. In this respect A checks conditions of type I
(v)
1

and I
(v)
2 (Level 3) for the rule γxi`−1

+v, i.e., instead of v, xi`−1
+ v is considered.

Denote by I
(i`−1,v)
1 and I

(i`−1,v)
2 these conditions.

Each process ℘
(R`)
v , 1 ≤ v ≤ R`, that satisfies only one of the conditions in

I
(i`−1,v)
1 and all conditions in I

(i`−1,v)
2 is partially correct, and it is labeled by �.

Otherwise, ℘
(R`)
v is labeled by 0. If all processes ℘

(R`)
v are labeled by �, then the

existential branch holding the tuple <R` , provided at Level 4` − 2, is labeled by �.
Otherwise, this branch is labeled by 0. Process ℘

(Q`−1)
i`−1

, yielded at Level 4` − 1,
is labeled by � if there exists at least one existential branch labeled by � at Level

4`− 2. Otherwise, ℘
(Q`−1)
i`−1

is labeled by 0.
At this level the only substrings of γ left unchecked are those substrings that

corresponds to the intervals of the form IQ`−1
= [
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl + i`−1Q`−1 +

R`...
∑`−1
l=1 Rl +

∑`−2
l=1 ilQl + (i`−1 + 1)Q`−1], 0 ≤ il ≤ [log n]− 1, 1 ≤ l ≤ `− 1, and

besides the cutting points P u` =
∑u
l=1Rl +

∑u−1
l=1 ilQl + (iu + 1)Qu, 1 ≤ u ≤ ` − 1.
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On each interval of type IQ`−1
, A proceeds with Level 4`.

Level 4` (Existential) Each interval IQ`−1
can be divided into [log n] subintervals of

length 1 ≤ Q` <[log n]. Hence, A spawns O(clogn) existential branches each of which
holds a [log n]-tuple <cQ`=(S(γxi`−1

+R`), S(γxi`−1
+R`+Q`), ..., S(γxi`−1

+R`+([logn]−1)Q`)),

where S(γxi`−1
+R`) is the ranging vector found valid at Level 4`− 1.

Level 4`+1 (Universal) For each existential branch spawned at Level 4`, A spawns

[log n] universal processes ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n] − 1. Each process ℘
(Q`)
i`

takes an

interval of length Q` of the form [
∑`
l=1Rl+

∑`−1
l=1 ilQl+ i`Q`...

∑`
l=1Rl+

∑`−1
l=1 ilQl+

(i` + 1)Q`]. Denote by xi`=
∑`
l=1Rl +

∑`−1
l=1 ilQl + i`Q`, 0≤ i`≤ [log n]− 1. For each

interval [xi` ...xi`+1], A checks whether the substring γxi` ...γxi`+1 is valid according
to the leftmost-2 derivation order (Level 4`+ 2).

Level 4` + 2 (Existential) For each ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n] − 1, A spawns O(clogn)
existential branches, each branch holding an (Q`+ 1)-tuple of ranging vectors <Q`=
(S(γxi` ), S(γxi`+1), ..., S(γxi`+Q`−1), S(γxi`+1)). In each <Q` the vectors S(γxi` ) and
S(γxi`+1) have been guessed at Level 4`. They are ranging vectors associated with
triplets placed in cutting points, i.e., edges of intervals of length [log n]. They are
also overlapping points of two consecutive intervals of type [xi` ...xi`+1]. Hence,
each ranging vector S(γxi` ) is checked two times. Once if it is a valid vector on
which γxi`+1 can be applied in leftmost-2 derivation manner (checked by process

℘
(Q`)
i`

). Then, if by applying γxi` on the sentential form built upon the ranging vec-
tor S(γxi`−1) a sentential form with an associated ranging vector equal to S(γxi` ) is

obtained (which is checked by ℘
(Q`)
i`−1).

As all intervals of type [xi` ...xi`+1] are universally checked by processes ℘
(Q`)
i`

,
the tuple <cQ` spawned at Level 4` is labeled by 1, if all ranging vectors S(γxi` )
and all vectors in <Q` are correct. To check whether all ranging vectors in <Q` are

correct, for each process ℘
(Q`)
i`

, 0 ≤ i` ≤ [log n] − 1, A follows the same procedure,
that requires O(log n) time and space, described at Levels 3, 7, ..., 4` − 1 (Univer-
sals). For the last substring of length Q` in γ, i.e., the suffix of γ of length Q` of
the form γ∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+([logn]−1)Q`

... γ∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

,

℘
(Q`)
[logn]−1 must check whether the triplet γ∑`

l=1
Rl+

∑`−1

l=1
([logn]−1)Ql+[logn]Q`

= γn ends

the computation. This is done as for process ℘n, Theorem 7.

Each cutting point P u` =
∑u
l=1Rl +

∑u−1
l=1 ilQl + (iu + 1)Qu can be equiva-

lently rewritten as
∑u+1
l=1 Rl +

∑u
l=1 ilQl + [log n]Qu+1, due to the equality Qu =

[log n]Qu+1 + Ru+1, for any 1 ≤ u ≤ ` − 1. Furthermore,
∑u+1
l=1 Rl +

∑u
l=1 ilQl +

[log n]Qu+1 is equal with
∑u+1
l=1 Rl+Ru+2+

∑u
l=1 ilQl+([log n]−1)Qu+1+[log n]Qu+2,

due to the equality Qu+1 = [log n]Qu+2 +Ru+2, for any 1 ≤ u ≤ `− 2. By applying
this transformation k times, where k = `−u, each P u` can be equivalently rewritten as∑u+1
l=1Rl+Ru+2+...+Ru+k+

∑u
l=1 ilQl+([log n]−1)(Qu+1+...+Qu+k−1)+[log n]Qu+k,

where u+ k = `.
In this way each P u` , yielded at Level 4u by <cRu+1

, 1 ≤ u ≤ ` − 1, is in fact

the right edge of an interval of the form [
∑`
l=1Rl +

∑`−1
l=1 ilQl + i`Q`...

∑`
l=1Rl +

38



∑`−1
l=1 ilQl + (i` + 1)Q`] = [xi` ...xi`+1], for which 0 ≤ il ≤ [log n] − 1, 1 ≤ l ≤ ` − 1,

i` = [log n] − 1. Hence, the decision on the correctness of each ranging vector
S(γ∑u

l=1
Rl+

∑u−1

l=1
ilQl+(iu+1)Qu

) = S(γPu
`

) will be actually taken by a process of type

℘
(Q`)
[logn]−1. Since the validity of each cutting point is decided by a process of type

℘
(Q`)
[logn]−1, the logical value returned by this process is “propagated” up to the level

of the computation tree that has spawned the corresponding cutting point, and thus
each � symbol receives a logical value. The input is accepted, if going up in the
computation tree, with all �’s changed into logical values, the root of the tree is
labeled by 1.

The tuples <Rh̄ , <cRh̄ , <Q` , <cQ` , 1 ≤ h̄ ≤ `, vectors V (rj), 1 ≤ j ≤ k, and aux-
iliary net effects computed by A during the algorithm, are stored by using O(log n)
space, in a similar manner as in Theorems 7 and 8.

It is easy to observe that A has O(log n) levels. Since at each level A spawns

either O(nc1) or O(clogn
2 ) existential branches, where c1 and c2 are constants, (each

level being thus convertible into a binary tree with O(log n) levels), and at each
Level 4h̄, 1 ≤ h̄ ≤ `, A performs a division operation, which requires O(log n) time
and space [22], A will perform the whole computation in O(log2 n) parallel time and
O(log n) space. 2

Corollary 13 SZRCLi(CF ) ∪ SZRCLaci (CF ) ⊂ NC2, i ∈ {2, 3}.

Corollary 14 SZRCLi(CF ) ∪ SZRCLaci (CF ) ⊂ DSPACE(log2 n), i ∈ {2, 3}.

5 Szilard Languages of Programmed Grammars

Programmed grammars (PGs) are regulated rewriting grammars in which the ap-
plication of a rule is conditioned by its occurrence in the so called success field
associated with the rule previously applied in the derivation. If a rule is effectively
applied, in the sense that its left-hand side occurs in the current sentential form, then
the next rule to be used is chosen from its success field. For programmed grammars
working in appearance checking mode, if the left-hand side of a rule (chosen to be
applied) does not occur in the current sentential form then, at the next derivation
step, a rule from its failure field must be used.

Programmed grammars have been introduced in [39] and [40], as a generaliza-
tion of phrase-structure grammars with applications in natural language processing.
This is possible due to the success and failure fields that prescribe an order in
which productions can be used during the derivation. Extended versions of context-
free programmed grammars, namely stochastic context-free programmed grammars,
have been effectively used in pattern recognition [23] and [45]. For more results on
the generative capacity of PGs the reader is referred to [39], [40], [18], [12], [13], and
[14]. From [14] we have the following definitions.

5.1 Programmed Grammars - Prerequisites

Definition 16 A programmed grammar (PG) is a quadrupleG = (N,T, S, P ) where
S is the axiom, N and T , N ∩ T = ∅, are finite sets of nonterminals and terminals,
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respectively. P is a finite set of triplets (programmed grammar rules) of the form
r = (pr, σr, ϕr), where pr is a rewriting rule of the form αr → βr, with αr ∈
(N ∪ T )∗N(N ∪ T )∗ and βr ∈ (N ∪ T )∗, σr and ϕr are subsets of P , called the
success field and failure field of r, respectively. If ϕr = ∅, for any r ∈ P , then G is a
programmed grammar without appearance checking, otherwise G is a programmed
grammar with appearance checking (henceforth PGac).

If all rules in P are phrase-structure (PS), context-sensitive (CS), context-free
(CF), or regular (REG) rules then G is a PS, CS, CF, or REG programmed grammar,
respectively.

Definition 17 Let G = (N,T, S, P ) be a PG or a PGac and V = N ∪ T . The
language L(G) generated by G is defined as the set of all words w ∈ T ∗ such that
there is a derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris ws = w, s ≥ 1, and
for rij = (prij , σrij , ϕrij ), where prij is a rule of the form αij → βij , 1 ≤ j ≤ s − 1,

we have either i. wj−1 = w′j−1αijw
′′
j−1, wj = w′j−1βijw

′′
j−1 for some w′j−1, w′′j−1 ∈ V ∗

and rij+1 ∈ σrij , or ii. αij does not occur in wj−1, wj−1 = wj and rij+1 ∈ ϕrij .

Note that, for the case of PGs without appearance checking we have, in Definition
17, ϕrij = ∅ for any rij , and therefore there is no reason to check condition ii.

Denote by L(P,X) and L(P,X, ac) the class of languages generated by PGs and
PGs with appearance checking, respectively, with X-rules, X ∈ {REG,CF,CF −
λ,CS, PS}, then L(M,X) = L(P,X) and L(M,X, ac) = L(P,X, ac) [14]. Hence
1. CFL ⊂ L(P,CF − λ) ⊂ L(P,CF − λ, ac) ⊂ CSL ⊂ L(P,CF, ac) = RE,
2. CFL ⊂ L(P,CF − λ) ⊆ L(P,CF ) ⊂ L(P,CF, ac) = RE,
3. L(P,X) = L(P,X, ac) = XL, X ∈ {REG,CS, PS}.

Let G = (N,T, S, P ) be a PG. If labels are associated with triplets21 r =
(p, σ, ϕ) ∈ P , in one-to-one correspondence, then the Szilard language associated
with G is defined as follows.

Definition 18 Let G = (N,T, S, P ) be a programmed grammar, P = {r1, r2, ..., rk}
the set of productions, L(G) the language generated by G, and w a word in L(G).
The Szilard word of w associated with the derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris ws = w, s ≥ 1, is defined as SzD(w) = ri1ri2 ...ris , rij ∈ P ,
1 ≤ j ≤ s. The Szilard language of G is Sz(G) = {SzD(w)|w ∈ L(G), D is a
terminal derivation of w}.

Let SZP (X) and SZP ac(X) be the classes of Szilard languages associated with
programmed grammars and programmed grammars with appearance checking, re-
spectively, with X rules, X ∈ {CF,CS, PS}.

Definition 10 is applicable also for leftmost-i, i ∈ {1, 2, 3}, derivations in PGs
with CF rules [14]. In terms of triplets r = (pr, σr, ϕr) ∈ P , where p is a CF rule of
the form αij → βij , αij ∈ N , these derivations can be explained as follows.

For the case of leftmost-1 derivations, after r has been effectively applied in
leftmost-1 manner, the rule from σr that rewrites the leftmost nonterminal occurring

21As in the case of RCGs, for the sake of simplicity, we use the same notation both for a triple
and the label associated with it.

40



in the current sentential form must be applied. If no rule in σr can rewrite the
leftmost nonterminal occurring in the sentential form, then the grammar cannot be
applied in the leftmost-1 derivation manner. If no rule in σr can be applied (because
the left-hand sides of the rules do not occur in the sentential form) then a rule in
ϕr′ , where r′ = (pr′ , σr′ , ϕr′) is an arbitrary rule in σr, must be applied in leftmost-1
manner.

For the case of leftmost-2 derivations, after r has been effectively applied in
leftmost-2 manner, the rule from σr that rewrites the leftmost nonterminal that can
be rewritten by rules in σr (not necessary the leftmost nonterminal occurring in
the sentential from) must be applied. If no rule in σr can be applied in leftmost-2
manner, then a rule in ϕr′ , where r′ = (pr′ , σr′ , ϕr′) is an arbitrary rule in σr, that
rewrites the leftmost nonterminal that can be rewritten by rules in ϕr′ , must be
applied.

For the case of leftmost-3 derivations, after r has been effectively applied in
leftmost-3 manner, a rule from σr that rewrites the leftmost occurrence of its left-
hand side in the current sentential form must be applied. If no rule in σr can be
applied in leftmost-3 manner, then a rule in ϕr′ , where r′ = (pr′ , σr′ , ϕr′) is an
arbitrary rule in σr, must be applied in leftmost-3 manner.

Szilard languages associated with leftmost-i, i ∈ {1, 2, 3}, derivations can be
defined in the same way as in Definition 18, with the specification that D is a
leftmost-i derivation of w.

We denote by SZPLi(X) and SZPLaci (X) the classes of leftmost-i, i ∈ {1, 2, 3},
Szilard languages associated with PGs and PGs with appearance checking with X
rules, X ∈ {CF,CS, PS}, respectively.

Let G = (N,T, P,A1) be an arbitrary programmed grammar with appearance
checking, where A1 is the axiom, N = {A1, A2, ..., Am} and P = {r1, r2, ..., rk} are
the finite sets of ordered nonterminals and labels, respectively.

For each production r = (pr, σr, ϕr) ∈ P , where pr is a rewriting rule of the form
αpr → βpr , αpr ∈ (N ∪ T )∗N(N ∪ T )∗, and βpr ∈ (N ∪ T )∗, its net effect during
the derivation D with respect to each nonterminal Al ∈ N , 1 ≤ l ≤ m, is given
by the difference dfAl(pr) = |βpr |Al − |αpr |Al . To each rule r we associate a vector
V (r) ∈ Zm defined by V (r) = (dfA1(pr), dfA2(pr), ..., dfAm(pr)), where Z is the set
of integers. The value of V (r) taken at the lth place, 1 ≤ l ≤ m, is denoted by Vl(r).

5.2 On the Complexity of Unrestricted Szilard Languages

In this subsection we focus on unrestricted Szilard languages of PGs with CF rules.
Leftmost Szilard languages are studied in Subsection 5.3. The case of Szilard lan-
guages of PGs with CS and PS rules is briefly discussed in Section 6.

Theorem 10 Each language L ∈ SZP (CF )∪ SZP ac(CF ) can be recognized by an
indexing ATM in O(log n) time and space (SZP (CF )∪SZP ac(CF ) ⊆ ALOGTIME).

Proof. We give the proof for the class SZP ac(CF ). For the class SZP (CF ) the
proof is simpler. Let G = (N,T, P,A1) be a PGac with CF rules, and A an indexing
ATM composed of an input tape that stores an input γ = γ1γ2...γn ∈ P ∗, an
index tape, and a working tape composed of three tracks. Here and throughout
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this section, each label γi corresponds to a triplet in P of the form (pγi , σγi , ϕγi),
where pγi is a CF rule of the form αγi → βγi , 1 ≤ i ≤ n. At the beginning of the
computation the first track stores k+1 vectors, V 0 corresponding to the axiom, i.e.,
V 0

1 = 1 and V 0
l = 0, 2 ≤ l ≤ m, and V (ri), 1 ≤ i ≤ k. The other two tracks are

initially empty. In order to guess the length of γ, A proceeds with the procedure
described at Level 1 (Existential), Theorem 3 or Theorem 7.

Levels 2-3 (Universal-Existential) A spawns n universal processes ℘i, 1 ≤ i ≤ n
(Level 2). On ℘1 A checks whether αγ1 = A1, while on ℘2, A checks whether
γ2 ∈ σγ1 . For each ℘i, 3 ≤ i ≤ n, A counts the number of occurrences of each

rj ∈ P , 1 ≤ j ≤ k, in γ(i−1) = γ1γ2...γi−2. Suppose that rj occurs c
(i−1)
j times in

γ(i−1), 0 ≤ c
(i−1)
j ≤ i − 2. Since for some occurrences of rj = (pj , σj , ϕj) in γ(i−1),

pj may be either effectively applied (because its left-hand side αγj occurs in the
sentential form) or it is a “dummy” rule (because pj cannot be applied), for each

1 ≤ j ≤ k, A guesses a pair of arbitrarily large integers t
(i−1)
j = (c

(i−1)
j,a , c

(i−1)
j,d ) such

that c
(i−1)
j,a + c

(i−1)
j,d = c

(i−1)
j , where c

(i−1)
j,a is the number of times rj is effectively

applied up to the (i− 1)th step of derivation, and c
(i−1)
j,d is the number of times rj is

a dummy rule in γ(i−1). Since there exist O(n2) guesses, A spawns O(n2) existential

branches (Level 3). On each existential branch holding a pair t
(i−1)
j , A computes

the sums s
(i−1)
Al

= V 0
l +

∑k
j=1 c

(i−1)
j,a Vl(rj), 1 ≤ l ≤ m, i.e., the number of occurrences

of each Al in the sentential form obtained at the (i− 1)th step of derivation. Then,
A checks whether one of the following conditions holds:

1. s
(i−1)
αγi−1

≥ 1 and γi ∈ σi−1, i.e., γi−1 is effectively applied and the next rule must
be chosen from its success field,

2. s
(i−1)
αγi−1

= 0 and γi ∈ ϕi−1, i.e., γi−1 is a dummy rule and the next rule must be
chosen from its failure field.

Besides, for the last process ℘n, A computes s
(n,out,a)
Al

= s
(n−1)
Al

+ dfAl(pγn−1) +

dfAl(pγn) and s
(n,out,d)
Al

= s
(n−1)
Al

+ dfAl(pγn), 1 ≤ l ≤ m, and it checks whether one
of the following conditions holds:

1. s
(n−1)
αγn−1

≥ 1, γn ∈ σn−1, s
(n)
αγn ≥ 1, s

(n,out,a)
Al

= 0, 1 ≤ l ≤ m,

2. s
(n−1)
αγn−1

= 0, γn ∈ ϕn−1, s
(n)
αγn ≥ 1, s

(n,out,d)
Al

= 0, 1 ≤ l ≤ m.

Each process ℘i, 3 ≤ i ≤ n, returns 1, if one of the conditions 1 − 2 holds.
Otherwise it returns 0. Finally, γ is accepted if all ℘i, 1 ≤ i ≤ n, return 1, i.e., all
n universal branches are labeled by 1.

Each of the above processes uses the third track of the working tape for auxiliary

computations, i.e., to record in binary the elements c
(i−1)
j , c

(i−1)
j,a , and c

(i−1)
j,d ), 3 ≤ i ≤

n, 1 ≤ j ≤ k, and to compute the sums s
(i−1)
Al

, 3 ≤ i ≤ n, and s
(n,out,a)
Al

, 1 ≤ l ≤ m.
The counting procedure used by each process ℘i, 1 ≤ i ≤ n, is a function in

the UE∗-uniform NC1 class. The same observation holds for the summation of a
constant number of vectors or multiplication of an integer of at most log n bits long
with a binary constant. Hence, all the above operations can be performed by an
ATM in log n time and space. The out-degree of the computation tree at this level is
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n. By using a divide and conquer procedure the computation tree can be converted
into a binary tree of height at most log n. Consequently, for the whole computation
A uses O(log n) time and space. 2

Corollary 15 SZP (CF ) ∪ SZP ac(CF ) ⊂ NC1.

Corollary 16 SZP (CF ) ∪ SZP ac(CF ) ⊂ DSPACE(log n).

5.3 On the Complexity of Leftmost Szilard Languages

The algorithm described in the proof of Theorem 8 cannot be applied for the case of
leftmost-1 SZLs of PGs with appearance checking. The explanation is that, in the
proof of Theorem 8, even if process ℘v returns the true value, which means that at its
turn γv can be applied in a leftmost-1 derivation manner on γ1γ2...γv−1, the process
℘i cannot “see” whether γv has been effectively applied in the derivation, or it is
only a dummy rule, since all branches spawned at the same level of the computation
tree of A are independent on each other. Hence, for the case of leftmost-1 derivation
in PGs with appearance checking an algorithm similar to that described in the proof
of Theorem 6 or Theorem 9 must be applied. Using a similar method as for Theorem
5 or Theorem 8 we have

Theorem 11 Each language L ∈ SZPL1(CF ) can be recognized by an indexing
ATM in O(log n) time and space.

Corollary 17 SZPL1(CF ) ⊂ NC1.

Corollary 18 SZPL1(CF ) ⊂ DSPACE(log n).

In order to simulate derivations of type letfmost-i, i ∈ {1, 2, 3}, and to check
whether a given word γ ∈ P ∗, γ = γ1γ2...γn, belongs to SZPLaci (CF ), as in the
case of RCGs, for each triplet γi, 1 ≤ i ≤ n, the ATM must have information
concerning the order in which the first occurrence of each nonterminal Al ∈ N ,
1 ≤ l ≤ m, occurs in the sentential form at any step of derivation. In this respect we
redefine the notion of a ranging vector for PGs. A ranging vector associated with a
triple rj = (pj , σj , ϕj) ∈ P , 1 ≤ j ≤ k, provides the order in which first occurrences
of nonterminals in N occur in the sentential form obtained after rj has been applied
at that step of derivation. Similar to the Definition 15, for the case of PGs we have

Definition 19 Let G = (N,T, S, P ) be a PG with appearance checking and CF
rules, where P = {r1, r2, ..., rk} is the ordered finite set of triples in P . Let SFrj
be the sentential form obtained after triplet rj = (pj , σj , ϕj), 1 ≤ j ≤ k, has been
applied at a certain step of derivation in G. The ranging vector associated with
SFrj , denoted by S(rj), 1 ≤ j ≤ k, is a vector in Nm defined as

Sl(rj) =


0, if Al ∈ N does not occur in SFrj , i.e., |SFrj |Al = 0,

i,
if the first occurrence of Al in SFrj is the ith element in the
order of first occurrences of nonterminals from N in SFrj .

Note that if rj′ = (pj′ , σj′ , ϕj′) is applied in the Szilard word before rj =
(pj , σj , ϕj) then the ranging vector S(rj) can be computed knowing S(rj′). This
observation holds for all leftmost-i, i ∈ {1, 2, 3}, derivations.
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Example 3 Consider the ranging vector S(rj′) = (3, 0, 2, 1, 0) ∈ N5, associated
with the sentential form SFrj′ obtained, at a certain step of derivation, after the ap-

plication of rule rj′ , i.e., SFrj′ = A4X4A3X3,4A1X̄3,4, X4 ∈ ({A4}∪T )∗, X3,4, X̄3,4 ∈
({A3, A4} ∪ T )∗.

If in rj = (pj , σj , ϕj), pj is the rule A3 → tA5, then rj can be applied in leftmost-
2 derivation manner after rj′ , if either rj′ has been effectively applied in leftmost-2
manner, rj ∈ σj′ , and no rule in σj′ rewrites A4, or rj′ is a dummy rule (case in
which the shape of the sentential form SFrj′ is actually borrowed from the very last
PG rule effectively applied before rj′), rj ∈ ϕj′ , and no rule in ϕj′ rewrites A4.

The triplet rj = (pj , σj , ϕj) can be applied in leftmost-3 derivation manner after
rj′ , if either rj′ has been effectively applied in leftmost-3 manner, rj ∈ σj′ , and the
rule pj rewrites the first occurrence of A3 in SFrj′ (even if there may exist rules in
σj′ that rewrites the first occurrence of A4 in SFrj′ ), or rj′ is a dummy rule, rj ∈ ϕj′ ,
and the rule pj rewrites the first occurrence of A3 in SFrj′ .

Depending on the position of the second occurrence of A3 in SFrj′ , the sentential
form obtained after pj has been applied on SFrj′ may look like

• SFrj = A4X4A5A3X3,4A1X1,3,4, X4 ∈ ({A4} ∪ T )∗, X3,4 ∈ ({A3, A4} ∪ T )∗,
X1,3,4 ∈ ({A1, A3, A4} ∪ T )∗, i.e., S(rj) = (4, 0, 3, 1, 2),

• SFrj = A4X4A5X̄4A3X3,4A1X1,3,4, X4, X̄4 ∈ ({A4} ∪ T )∗, X3,4 ∈ ({A3, A4} ∪
T )∗, X1,3,4 ∈ ({A1, A3, A4} ∪ T )∗, i.e., S(rj) = (4, 0, 3, 1, 2), or like

• SFrj = A4X4A5X̄4A1X1,4A3X1,3,4, X4, X̄4 ∈ ({A4}∪ T )∗, X1,4 ∈ ({A1, A4}∪
T )∗, X1,3,4 ∈ ({A1, A3, A4} ∪ T )∗, i.e., S(rj) = (3, 0, 4, 1, 2).

Using a similar method as in the proof of Theorem 6, for MGs, or Theorem 9,
for RCGs, for the case of leftmost-i derivations, i ∈ {1, 2, 3}, in PGs, we have

Theorem 12 Each language L ∈ SZPLaci (CF ), i ∈ {1, 2, 3}, can be recognized by
an indexing ATM in O(log n) space and O(log2 n) time.

Corollary 19 SZPLi(CF ) ∪ SZPLaci (CF ) ⊂ NC2, i ∈ {1, 2, 3}.

Corollary 20 SZPLi(CF ) ∪ SZPLaci (CF ) ⊂ DSPACE(log2 n), i ∈ {1, 2, 3}.

6 Remarks on Szilard Languages of Regulated Rewrit-
ing Grammars with PS Rules

The derivation mechanism in MGs, PGs, or RCGs is quite similar to the derivation
mechanism in Chomsky grammars. In the case of MGs, the only difference is that
productions are grouped into matrices composed of a finite number of rules obeying
a predefined order and some constraints that prohibit the use of some of the rules
composing the matrix sequence. For the case of PGs constraints are imposed by
the success and failure lists that prescribe the rules eligible to be applied at a
certain step of derivation, while for the case or RCGs constraints are provided by
the permitting and forbidding contexts that enable or disable a rule to be applied.
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These restrictions do increase the generative power of MGs, PGs, or RCGs [14] but
they do not change the complexity of the corresponding Szilard languages.

On the other hand Definition 10 of leftmost-i, i ∈ {1, 2, 3}, derivations in MGs,
PGs, or RCGs with CF rules, can be naturally generalized for PS rules as follows.

Let G = (N,T, S,M,F ) be a MG with PS rules, where M = {m1,m2, ...,mk},
each mj is a finite sequence of the form mj = (pj1 , pj2 , ..., pjk(j)

), k(j) ≥ 1, and each
rule pji ∈ mj , 1 ≤ i ≤ k(j), is of the form αpji → βpji , αpji ∈ (N ∪ T )∗N(N ∪ T )∗,
βpji ∈ (N ∪ T )∗. Consider Pα = {αpji |1 ≤ j ≤ k, 1 ≤ i ≤ k(j)} the set of the
left-hand sides of all rules in mj , 1 ≤ j ≤ k.

Consider G = (N,T, S, P ) a PG or RCG with PS rules, where P = {r1, r2, ..., rk}
and each rule pj ∈ P , 1 ≤ j ≤ k, is of the form αpj → βpj , αpj ∈ (N ∪T )∗N(N ∪T )∗

and βpj ∈ (N ∪T )∗. Consider Pα = {αpj |1 ≤ j ≤ k} the set of the left-hand sides of
all rules in P .

Definition 20 A derivation in G, where G is a MG, PG or RCG is called

• leftmost-1 if each rule used in the derivation rewrites the leftmost substring
α occurring in the current sentential form, such that if α0α is a prefix of the
current sentential form, then α0 ∈ T ∗ and α ∈ Pα,

• leftmost-2 if at each step of derivation, the leftmost occurrence of α ∈ Pα that
can be rewritten is rewritten,

• leftmost-3 if each rule used in the derivation rewrites the leftmost occurrence
of its left-hand side in the current sentential form.

In [9] we proved that the class of leftmost Szilard languages of PS (and particu-
larly of CS) grammars can be recognized in logarithmic time and space by indexing
ATMs. The case of leftmost-1 derivation in MGs, PGs, or RCGs with CF or PS rules
is in fact a generalization of the leftmost derivation in CGs (Defintion 5). Using a
similar method as in [9] it can be proved that Theorems 5, 8, and 11 hold for classes
of leftmost-1 Szilard languages of MGs, PGs, or RCGs (with or without appearance
checking) with CS or PS rules, too. Hence, we have

Theorem 13 Each L ∈ SZML1(X)∪SZPL1(X)∪SZRCL1(X)∪SZRCLac1 (X),
X ∈ {CS,PS} can be recognized by an indexing ATM in O(log n) time and space.

Corollary 21 SZML1(X) ∪ SZPL1(X) ∪ SZRCL1(X) ∪ SZRCLac1 (X) ⊂ NC1,
X ∈ {CS,PS}.

Corollary 22 SZML1(X)∪SZPL1(X)∪SZRCL1(X)∪SZRCLac1 (X) ⊂ DSPACE
(log n), X ∈ {CS,PS}.

For the moment we have no results concerning the complexity of leftmost-1 Szi-
lard languages of MGs and PGs with appearance checking and PS rules, or leftmost-i,
i ∈ {2, 3}, Szilard languages of MGs, PGs, and RCGs, with or without appearance
checking, and PS rules.

45



References
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[13] J. Dassow, H. Fernau, and Gh. Păun, On the Leftmost Derivation in Matrix
Grammars. International Journal of Foundations of Computer Science, 10(1),
61–80, 1999.
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[29] E. Mäkinen, On Context-Free and Szilard Languages. BIT Numerical Mathe-
matics, 24(2), 164–170, 1984.
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