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Abstract   

The generation of software architecture using genetic algorithms is studied with 
architectural styles and patterns as mutations. The main input for the genetic algo-
rithm is a rudimentary architecture representing the functional decomposition of 
the system, obtained as a refinement of use cases. Using a fitness function tuned 
for desired weights of simplicity, efficiency and modifiability, the technique pro-
duces a proposal for the software architecture of the target system, with applica-
tions of architectural styles and patterns. The quality of the produced architectures 
is studied empirically by comparing these architectures with the ones produced by 
undergraduate students.    



2  

1. Introduction 

The design of the architecture of a software system is traditionally regarded as the 
most crucial and creative task of software development. If the software is imple-
mented on the basis of an inappropriate architecture, the consequences can be 
dramatic and cost dearly. To facilitate software architecture design, various me-
thods have been proposed for choosing architectural solutions on the basis of their 
known (or assumed) effects on the quality attributes (e.g. (Matinlassi and Niemelä, 
2002; Diaz-Pace et al., 2008; Kim et al., 2009)) and assessing informally the 
“goodness” of the architecture on the basis of a small set of prioritized test cases, 
scenarios (Clements et al., 2002). Still, in practice software architecture design is 
often based on unarticulated and even esthetic arguments. For example, a well-
known limitation of human design is the Golden Hammer syndrome (Brown, 
1998): once the designer has found a solution that works in one context, she tends 
to rely on the same solution in other, perhaps less appropriate contexts as well. Is 
software architecture design inherently a human activity, sensitive to all human 
weaknesses, or could it be automated to a certain degree? Given functional and 
quality requirements for a particular system, could it be possible to generate a rea-
sonable software architecture design for the system automatically, thus avoiding 
human pitfalls? Besides being interesting from the viewpoint of understanding the 
character of software architecture, we see answers to these questions relevant from 
a pragmatic viewpoint as well. In particular, if it turns out that systems can suc-
cessfully design systems, various kinds of software generators can optimize the 
architecture according to the application description, and self-sustaining systems 
(S3 2008) can dynamically improve their own architecture in changing environ-
ments.      

To facilitate this study, let us make certain simplifying assumptions. First, we 
assume that the architecture synthesizer need not know anything about the seman-
tics of the system functionality, but it can rely on a “null architecture” that gives 
the basic decomposition of the functionalities into components. We will later show 
how the null architecture is derived from use cases. Second, we assume that the 
architecture is obtained by augmenting the null architecture with applications of 
general architectural solutions available in a knowledge base. Such solutions are 
typically architectural styles and design patterns (Buschmann et al., 1996). Third, 
we assume that the goodness of an architecture can be inferred by evaluating a re-
presentation of the architecture mechanically against the quality requirements of 
the system. Each application of a general solution enhances certain quality 
attributes of the system, at the expense of others.  

With these assumptions, software architecture design becomes essentially a 
search problem: find a combination of applications of the general solutions that sa-
tisfies the quality requirements in an optimal way. However, given multiple quali-
ty attributes and a large number of general solutions, the search space becomes 
huge for a system with realistic size. This leads us to the more refined research 
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problem discussed in this paper: to what extent we could use heuristic search me-
thods, like genetic algorithms (GA) (Mitchell, 1996), to produce a reasonable 
software architecture automatically for certain functional and quality require-
ments? 

The third assumption above is perhaps the most controversial. Since there is no 
exact definition of a good software architecture, and different persons would prob-
ably in many cases disagree on what is a good architecture, this assumption means 
that we can only approximate the evaluation of the goodness. Obviously, the suc-
cess of a search method depends on how well we can capture the intuitive archi-
tecture quality in a formula that can be mechanically evaluated. In this paper, we 
consider three basic quality attributes, modifiability, efficiency, and simplicity. 
For modifiability and simplicity, we rely on the use of existing software metrics 
(Chidamber and Kemerer, 1994); for efficiency, we exploit knowledge about the 
effect of the solutions on efficiency, and possible (optional) information given by 
the designer about the assumed resource consumption of certain functionalities. In 
addition, the designer can give more precise modifiability requirements as change 
scenarios (Clements et al., 2002), taken into account in the evaluation of modifia-
bility as well. 

Although a number of heuristic search methods could be used here (Clarke et 
al., 2003), we are particularly interested in GA for two main reasons. First, the 
structural solutions visible in the living species in nature provide an indisputable 
evidence of the power of evolution in finding optimal system architectures. 
Second, crossover can be naturally interpreted for software architecture, as long as 
certain consistency rules are followed. Crossover can be viewed as a situation 
where two architects provide alternate designs for a system, and decide to merge 
their solutions, (hopefully) taking the best parts of both designs.  

This chapter studies the generation of software architecture based on genetic 
algorithms. The proposed evolutionary software architecture generation process 
and GA realization are discussed in Sections 2 and 3, concretized with an example 
system. An account of an empirical experiment evaluating the current level of the 
quality of the genetically produced software architecture is given in Section 4. Re-
lated work is discussed in Section 5. Finally, we conclude with some remarks 
about the implications of the results and future directions of our work.  

2. Overview of Evolutionary Software Architecture Generation 

Software architecture can be understood in different ways. The definitions of 
software architecture usually cover the high-level structure of the system, but in 
addition to that, often also more process-related aspects like design rules and ra-
tionale of design decisions are included (IEEE, 2000). To facilitate our research, 
we adopt a narrow view of software architecture, considering only the static struc-
tural  aspect,  expressible  as  a  UML  (stereotyped)  class  diagram.  In  terms  of  the  
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4+1 views of software systems (Kruchten, 1995), this corresponds to a (partial) 
logical view. While a similar approach could be applied to generate other views of 
software architectures as well, there are some fundamental limitations in using 
heuristic methods. For example, it is very difficult to produce the rationale for the 
design decisions proposed by a heuristic method. 

A central issue in our approach is the representation of the functional and quali-
ty requirements of the system, to be given as input for the genetic synthesis of the 
architecture. For expressing functional requirements we need to identify and ex-
press the primary use cases of the system, and refine them into sequence diagrams 
depicting the interaction between major components required to accomplish the 
use cases. This is a manual task, as the major components have to be decided, typ-
ically based on domain analysis. 

In our approach, a so-called null architecture represents a basic functional de-
composition of the system, given as a UML class diagram. No quality require-
ments are yet taken into account in the null architecture, although it does fulfill the 
functional requirements. The null architecture can be mechanically derived from 
the use case sequence diagrams: the (classes of the) participants in the sequence 
diagram become the classes, the operations of a class are the incoming call mes-
sages of the participants of that class, and the dependency relationships between 
the classes are inferred from the call relationships of the participants. This kind of 
generation of a class diagram can be easily automated (Selonen et al. 2005), but in 
the experiments discussed here we have done this manually. 

Depending on the quality attributes considered, various kinds of information 
may need to be associated with the operations of the null architecture. In our study 
we consider three quality attributes: simplicity, modifiability, and efficiency. Sim-
plicity is an operation-neutral property in the sense that the characteristics of the 
operations have no effect on the evaluation of simplicity. In contrast, modifiability 
and efficiency are partially operation-sensitive. For evaluating the modifiability of 
a system, it is useful to know which operations are more likely to be affected by 
changes than others. Similarly, for evaluating efficiency it is often useful to know 
something about the frequency and resource consumption of the operations. For 
example, if an operation that is frequently needed is activated via a message dis-
patcher, there is a performance cost because of the increased message traffic. To 
allow the evaluation of modifiability and efficiency, the operations can be anno-
tated with this kind of optional information. If this information is insufficient, the 
method may produce less satisfactory results than with the additional information. 

The specific quality requirements of a system are represented in two ways. 
First, the fitness function used in the GA is basically a weighted sum of the values 
of individual quality attributes. By changing the weights the user can emphasize or 
downplay some quality attributes, or remove completely certain quality attributes 
as requirements. Second, the user can optionally provide more specific quality re-
quirements using so-called scenarios. The scenario concept is inspired by the 
ATAM architecture evaluation method (Clements et al., 2002), where scenarios 
are imaginary situations or sequences of events serving as test cases for the fulfil-
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ling of a certain quality requirement. In principle, scenarios could be used for any 
quality attribute, but their formalization is a major research issue outside the scope 
of this work. Here we have used only modifiability scenarios, which are fairly 
easy to formalize. For example, in our case a scenario could be: “With 50% prob-
ability operation T needs to be realized in different versions that can be changed 
dynamically”. This is expressed for the GA tool using a simple formal convention 
covering most usual types of change scenario contents.   

Figure 1 depicts the overall synthesis process. The functional requirements are 
expressed as use cases, which are refined into sequence diagrams. This is done 
manually by exploiting knowledge of the major logical domain entities having 
functional responsibilities. The null architecture, a class diagram, is derived me-
chanically from the sequence diagrams. The null architecture is used by the GA to 
first create an initial population of architectures and then, after generations of evo-
lution, the final architecture proposal is presented as the best individual of the last 
generation. New generations are produced by applying a fixed library of standard 
architectural solutions (styles, patterns, etc.) as mutations, and crossover opera-
tions to combine architectures. During the evolution, the GA makes use of the pa-
rameters set by the user (concerning, e.g., the weights of the fitness function) and 
the scenarios in the evaluation of the individuals. The probabilities of mutations 
and crossover can be set by parameters as well. The GA part is discussed in more 
detail in the next section. 

 

Genetic
architecture

synthesis

Quality
requirements

Software
architecture

Null
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Solution
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Refined use 
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requirements
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Fig. 1. Evolutionary architecture generation 
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3. Realizing Genetic Algorithms for Software Architecture 
Generation 

Genetic algorithms (Mitchell, 1996) are generally used to find a good solution 
from a very large search space, the goal obviously being that the found solution is 
as good as possible. Each solution is encoded as a chromosome, which can be fur-
ther divided into genes. When reproducing, crossover occurs: genes are exchanged 
between the pair of parent chromosomes. The offspring is subject to mutation, 
where gene values are changed. The fitness represents the quality of a solution. 
The set of chromosomes at hand at a given time is called a population. 

3.1 Representing architecture 

The genetic algorithm makes use of two kinds of information regarding each oper-
ation appearing in the null architecture. First, the basic input contains the call rela-
tionships of the operations taken from the sequence diagrams, other attributes like 
estimated parameter size, frequency and variability sensitiveness, and the null ar-
chitecture class it is initially placed in. Second, the information gives the position 
of the operation with respect to other structures: the interface it implements and 
the design patterns (Gamma et al., 1995) and styles (Shaw and Garlan, 1996) it is 
a part of. The latter data is produced by the genetic algorithm. All data regarding 
an operation is encoded as a supergene. The chromosome handled by the genetic 
algorithm is gained by collecting the supergenes, i.e., all data regarding all opera-
tions, thus representing a whole view of the architecture.  A more detailed specifi-
cation of the architecture representation is given by Räihä et al. (2008a; 2008b). 

The initial population is made by first encoding the null architecture into a 
chromosome form and creating the desired number of individuals. A random pat-
tern is then inserted into each individual (in a randomly selected place).  In addi-
tion, a special individual is left in the population where no pattern is initially in-
serted; this ensures versatility in the population. 

3.2 Mutations and crossover 

As discussed above, the actual design is made by adding patterns to the system. 
The patterns have been chosen so that there are very high-level architectural styles 
(dispatcher and client-server), medium-level design patterns (Façade and Media-
tor), and low-level design patterns (Strategy, Adapter and Template Method). The 
mutations are implemented in pairs of introducing a specific pattern or removing 
it. The dispatcher architecture style makes a small exception to this rule: the actual 
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dispatcher must first be introduced to the system, after which the operations can 
add new communicating pairs to the dispatcher.  

The crossover is implemented as a traditional one-point crossover with a cor-
rective function. This function ensures that the architecture stays coherent, as pat-
terns may be broken by overlapping mutations. In addition to ensuring that the 
patterns present in the system stay coherent and “legal”, the corrective function al-
so checks that no anomalies are brought to the design, such as interfaces without 
any users.  

The mutation (and crossover) points are selected randomly. However, we have 
taken advantage of the variability property of operations with the Strategy, Adap-
ter and dispatcher communication mutations. The chances of a gene being sub-
jected to these mutations increase with respect to the variability value of the cor-
responding operation. This should favor highly variable operations. 

The actual mutation probabilities are given as input. Selecting the mutation is 
made with a “roulette wheel” selection (Michalewicz, 1992), where the size of 
each slice of the wheel is in proportion to the given probability of the respective 
mutation. Null mutation and crossover are also included in the wheel. The cros-
sover probability increases linearly in relation to the fitness rank of an individual, 
which causes the probabilities of mutations to decrease in order to fit the larger 
crossover slice to the wheel. Also, after crossover, the parents are kept in the pop-
ulation for selection. These actions favor strong individuals to be kept intact 
through generations. Each individual has a chance of reproducing in each genera-
tion: if the first roulette selection lands on a mutation, another selection is per-
formed after the mutation has been administered. If the second selection lands on 
the crossover slice, the individual may produce offspring. In any other case, the 
second selection is not taken into account, i.e., the individual is not mutated twice. 

3.3 Fitness function 

The quality function is based on software product metrics, most of which are from 
the metrics suite introduced by Chidamber and Kemerer (1994). These metrics 
have been used as a starting point for the quality function, and have been further 
developed and grouped to achieve clear “sub-functions” for modifiability and per-
formance, both of which are measured with a positive and negative metric. The 
biggest modifications to the basic metrics include taking into account the positive 
effect of interfaces and the dispatcher and client-server architecture styles in terms 
of modifiability, as well as the negative effect of the dispatcher and server in terms 
of efficiency. A simplicity metric is added to penalize having many classes and in-
terfaces. 

Dividing the evaluation function into sub-functions gives the possibility em-
phasize certain quality attributes and downplay others. Denoting the weight for the 
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respective sub-function sfi with  wi, the core evaluation function fc(x) for architec-
ture x can be expressed as   
 fc(x) = w1 sf1  – w2 sf2 + w3  sf3 – w4  sf4 – w5  sf5. 

Here, sf1 measures positive modifiability, which takes into account how well 
interfaces are used (number of implementing operations, number of calls through 
interfaces, and the sensitiveness to variation of operations called through an inter-
face). Also the interfaces provided by design patterns are considered here. In addi-
tion, calls between operations that are handled via message dispatcher are re-
warded, and the sensitiveness to variation of the operations is used to enhance the 
reward. Negative modifiability is calculated in sf2 by penalizing calls between 
classes where the required operation is not placed behind a design pattern or called 
via message dispatcher or server.  

As for efficiency, sf3 measures positive efficiency by checking how well opera-
tions are placed within classes. We reward structures which lead to minimal 
amount of calls between different classes as well as calls between operations with-
in the same class. The operation’s required amount of data is also considered and 
used to increase the reward. Negative efficiency (sf4) in turn counts the relation of 
calls between classes and within classes, and the amount of calls to the message 
dispatcher and through servers. The effect of using a dispatcher or server to call an 
operation is further emphasized by taking into account the frequency of calls to 
the operations involved.  

Finally, complexity (or negative simplicity) is penalized in sf5 by calculating 
the amount of classes and interfaces.  

Additionally, scenarios can be used for more detailed fitness calculations. Basi-
cally, a scenario describes an interaction between a stakeholder and the system 
(Bass et al., 1998). In our approach we have concentrated only on change scena-
rios. We have categorized each scenario in three ways: is the system changed or is 
something added; if changed, does the change concern semantics or implementa-
tion of the operation, and whether the modification should be done dynamically or 
statically. This categorization is the basis for encoding the scenarios. In addition, 
each encoding of a scenario contains information of the operation it affects, and 
the probability of the scenario occurrence. Räihä et al. (2009) explain the scenario 
encoding in more detail. 

Each scenario type is given a list of preferences according to the general guide-
lines of what is a preferable way to deal with that particular type of modification. 
These preferences are general, and do not in any way consider the specific needs 
or properties of the given system. 

When scenarios are encoded, the algorithm processes the list of given scena-
rios, and compares the solution for each scenario to the list of preferences. Each 
solution is then awarded points according to how well it supports the scenarios, 
i.e., how similar the partial solutions regarding individual operations are to the 
given preferences. 

Formally, the scenario sub-quality function sfs can be expressed as  
 sfs  = scenarioProbability*100/scenarioPreference. 
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Adding the scenario sub-quality function to the core quality function results in the 
overall quality, f(x) = fc(x) + ws*sfs. 

4. Application 

4.1 Creating input 

As an example system, we will use the control system for a computerized 
home, called ehome. Use cases for this system are assumed to consist of logging 
in, changing the room temperature, changing the unit of temperature, making cof-
fee, moving drapes, and playing music. In Fig. 2, the coffee making use case has 
been refined into a sequence diagram. Since we are here focusing on the architec-
ture of the actual control system, we ignore user interface issues and follow a sim-
ple convention that the user interface is represented by a single (subsystem) partic-
ipant that can receive use case requests. Similarly, in the null architecture the user 
interface is in this example represented by a single component that has the use 
cases as operations. 

 

:UserInterface :CoffeeManager :WaterControl

Make coffee

coffeeState waterState

chooseCoffeeQuality

chooseCoffeeAmount

startCoffeeMachine

calculateCoffeeAnd

WaterAmount

addWater

stopCoffeeMachine

ok
show coffee ok

 
 

Fig. 2. Make coffee  use case refined 

To refine this use case, we observe that we need further components. The main 
unit for controlling the coffee machine is introduced as CoffeeManager; addition-
ally there is a separate component for managing water, this is named as  Water-
Control. If a component has a significant state or it manages a significant data ent-
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ity (like, say, a data base), this is added to the participant box. In this case, Cof-
feeManager and WaterControl are assumed to have significant state information. 

In this case, the null architecture in Figure 3 can be mechanically derived from 
the use case sequence diagrams. 

 

 
Fig. 3. Null architecture for ehome 

After the operations are derived from the use cases, some properties of the op-
erations can be estimated to support the genetic synthesis, regarding the amount of 
data an operation needs, frequency of calls, and sensitiveness for variation. For 
example, it is likely that the coffee machine status can be shown in several differ-
ent ways, and thus it is more sensitive to variation than ringing the buzzer when 
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the coffee is done. Measuring the position of drapes requires more information 
than running the drape motor, and playing music quite likely has a higher frequen-
cy than changing the password for the system. Relative values for the chosen 
properties can similarly be estimated for all operations. This information, together 
with operation call dependencies, is included in the null architecture (not visible in 
Figure 3), 

Finally, different stakeholders’ viewpoints are considered regarding how the 
system might evolve in the future, and modifiability scenarios are formulated ac-
cordingly. For example, change scenarios for the ehome system include: 

 the user should be able to change the way the music list is showed (90%) 
 the developer should be able to change the way water is connected to the coffee 

machine (50%) 
 the developer should be able to add another way of showing the coffee machine 

status (60%). 

A total of 15 scenarios were given for the ehome system.  

4.2 Experiment 

In our experiment, we used a population of 100 and 250 generations. The fitness 
curves presented are averages of 10 test runs, where the actual y-value is the aver-
age of 10 best individuals in a given population.  
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Fig. 4. Fitness development, all quality factors equal 
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Ehome, modifiability weighted
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Fig. 5. Fitness development, modifiability weighted 

We  first  set  all  the  weights  to  1,  i.e.,  did  not  favor  any  quality  factor  over  
another. The fitness curve for this is given in Figure 4, and an example architec-
ture is presented in Figure 6. To study the effect of the weighting we then assumed 
that modifiability should be emphasized, weighting positive modifiability over 
other quality attributes. Simultaneously negative efficiency was given a smaller 
than usual weight, to indicate that possible performance penalty of solutions in-
creasing modifiability is not crucial. The fitness curve for this experiment is given 
in Figure 5 and an example solution is depicted in Figure 7. As can be seen, both 
fitness curves develop steadily. The higher values in Fig. 5 can be quite 
straightforwardly explained by the larger weight for efficiency, which yields in 
larger values. However, the fitness improvement between 1 and 100 generations 
(where most of the development happens) is also significantly larger (9000) when 
modifiability is weighted when compared to the standard test run in Figure 5 (fit-
ness improvement 3500). 
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Fig. 6. Example architecture for ehome when all quality factors are equally weighted  

The architecture in Figure 6, achieved with equal weights for all quality 
attributes, is quite simple. There are instances of all low-level patterns (Adapter, 
Template Method and Strategy), and the client-server architecture style is also ap-
plied. The patterns seem quite well placed, for example in the case of DrapeRegu-
lation, the operations that are likely to contain much calculation (measureSun and 
measureDrapePosition) have been placed behind a Strategy pattern. In Figure 7 
the solution with overweighted modifiability is quite different. The biggest differ-
ence is the presence of the dispatcher architecture style, and there are also many 
more Strategy patterns than in the solution where all quality factors are equally 
weighted. This is a natural consequence of the weighting: the dispatcher has a sig-
nificant positive effect on modifiability, and since it is not punished too much for 
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inefficiency, it is fairly heavily used as a communication pattern. The same applies 
to Strategy, although in smaller scale. 

 

 
Fig. 7. Example architecture for ehome when modifiability is weighted over other quality 
factors  

5. Empirical study on the quality of synthesized architectures 

As shown in the previous section, genetic software architecture synthesis appears 
to be able to produce reasonable architecture proposals, although obviously they 
still need some human polishing. However, since the method is not deterministic, 
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it is essential to understand what is the goodness distribution of the proposals, that 
is, to what extent the architect can rely on the quality of the generated architecture. 
To study this, we carried out an experiment where we wanted to relate the quality 
of the generated architectures to the quality of the architectures produced by stu-
dents. The setup and results of this experiment are discussed in the sequel.  
 

5.1 Setup 

5.1.1. Producing architectures 

First, a group of 10 students from an undergraduate software engineering class 
was asked to produce an architecture for the ehome system. Most of the students 
were third year Software Systems majors from Tampere University of Technolo-
gy, having participated in a course on software architectures. The synthesized so-
lutions were achieved in 10 runs, resulting in 10 architecture proposals. The pur-
pose of the study was to relate the quality of these proposals to the quality of 
student solutions. The setup for the synthesized architectures was the same as giv-
en in Section 4, where modifiability was weighted over other quality attributes.  
 
The students were given essentially the same information that is used as input for 
the GA, that is, the null architecture and the scenarios. They were asked to design 
the architecture for the system, using only the same architecture styles (message 
dispatcher and client-server) and design patterns (façade, mediator, strategy, adap-
ter, template method) that were available for GA. The students were instructed to 
consider performance, modifiability and simplicity in their designs, with an em-
phasis on modifiability.  

5.1.2. Evaluating architectures 

After the students had returned their designs, the assistant teacher for the course 
(impartial to the GA research) was asked to grade the designs as test answers on a 
scale of 1 to 5, 5 being the highest. The solutions were then categorized according 
to  the  points  they  achieved.  From  the  categories  of  1,  3  and  5,  one  solution  for  
each category was randomly selected. These architectures were presented as grad-
ing examples to four software engineering experts. 

The experts were researchers and teachers at the Department of Software Sys-
tems at Tampere University of Technology. They all had a M.Sc. or a Ph.D. de-
gree in Software Systems or in a closely related discipline and several years of ex-
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pertise from software architectures, gained by research or teaching. The experts 
were given 10 pairs of architectures. One solution in each pair was a student solu-
tion and one a synthesized solution. The solutions were edited in such a way that it 
was not possible for the experts to know which solution was synthesized. The ex-
perts were then asked to grade each solution with points 1, 3 or 5. They were giv-
en the same information as the students regarding the requirements. 

5.2 Results 

All points given by the experts to all the synthesized architectures are shown in 
Table 1, along with calculated averages for each synthesized solution (g1-g10), 
each expert (e1-e4), and all solutions. We excluded the cases (g2, g6 and g8) 
where the evaluation was considered inconclusive (both 1 and 5 appeared in the 
points). Solution g7 is presented in Figure 7 (Section 4.2) as an example of the 
synthesized solutions. 

Table 1. Points for synthesized solutions  

 
Experts

e1 e2 e3 e4 Average
g1 3 5 3 3 3.5
g3 5 5 3 3 4
g4 1 1 1 3 1.5

Solutions g5 3 3 3 5 3.5
g7 3 1 1 3 2
g9 3 1 3 3 2.5
g10 3 5 3 5 4
Average 3 3 2.4 3.6 3  

 
The synthesized solutions have a total average of 3 points, while the student 

solutions have a total average of 2.4 points. Two of the experts valued the synthe-
sized solutions on average higher than the student solutions, for one (e3) they were 
just as good, and one (e1) valued the student solutions higher. There are some syn-
thesized solutions that are clearly worse than average while some others are better 
than average.  

The best synthesized solutions appear to be g3 and g10, with an average of 4 
points. In solution g3 the message dispatcher was used, and there were quite few 
patterns, so the design seemed easily understandable while still being modifiable. 
However, g10 was quite the opposite: the message dispatcher was not used, and 
there were especially as many as eight instances of the Strategy pattern, when g3 
had only two.  There were also several Template and Adapter pattern instances. In 
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this case the solution was highly modifiable, but not nearly as good in terms of 
simplicity. This demonstrates how very different solutions can be highly valued 
with the same evaluation criteria, when the criteria are conflicting (it is quite im-
possible to achieve a solution that is at the same time optimally efficient, modifia-
ble and still understandable).   

The worst solution was considered to be g4, with an average of 1.5 points. 
This solution used the message dispatcher, but also the server style was eagerly 
applied. There were not very many patterns, and the ones that existed were quite 
poorly applied.  

To summarize, the experiments suggest that, using this kind of application of 
GA, genetic software architecture synthesis works roughly at the level of an un-
dergraduate student.  

6. Related work 

Search-based software engineering applies meta-heuristic search techniques to 
software engineering issues that can be modeled as optimization problems. A 
comprehensive survey of applications in search-based software engineering has 
been made by Harman et al. (2009). Recently, there has been increasing interest in 
software design in the field of search-based software engineering. A survey on this 
subfield has been conducted by Räihä (2009). We will now briefly discuss the 
most prominent studies in the field of search-based software design. 

Bowman et al. (2008) study the use of a multi-objective genetic algorithm 
(MOGA) in solving the class responsibility assignment problem. The objective is 
to optimize the class structure of a system through the placement of methods and 
attributes within given constraints. So far they do not demonstrate assigning me-
thods and attributes “from scratch” (based on, e.g., use cases), but try to find out 
whether the presented MOGA can fix the structure if it has been modified.  

Simons and Parmee (2007a; 2007b) take use cases as the starting point for sys-
tem specification. Data is assigned to attributes and actions to methods, and a set 
of uses is defined between the two sets. The notion of class is used to group me-
thods and attributes. This approach starts with pure requirements and leaves all 
designing to the genetic algorithm. The genetic algorithm works by changing the 
allocation of attributes and methods. However, no design choices beyond class 
structure are made, leaving the end result simpler than what is the goal with our 
approach.  

Amoui et al. (2006) use the GA approach to improve the reusability of software 
by applying architecture design patterns to a UML model. The authors’ goal is to 
find the best sequence of transformations, i.e., pattern implementations. Used pat-
terns come from the collection presented by Gamma et al. (1995). From the soft-
ware design perspective, the transformed design of the best chromosomes are 
evolved so that abstract packages become more abstract and concrete packages in 
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turn become more concrete. This approach only uses one quality factor (reusabili-
ty), and also a more refined starting point than what is used in our approach. 

Seng et al. (2005) describe a methodology that computes a subsystem decom-
position that can be used as a basis for maintenance tasks by optimizing metrics 
and heuristics of good subsystem design. GA is used for automatic decomposition.  
If a desired architecture is given, and there are several violations, this approach at-
tempts to determine another decomposition that complies with the given architec-
ture by moving classes around. Seng et al. (2006) have continued their work by 
searching for a list of refactorings, which deal with the placement of methods and 
attributes and inheritance hierarchy.  

O’Keeffe and Ó Cinnéide (2004) have developed a tool for improving a design 
with respect to a conflicting set of goals. The tool restructures a class hierarchy 
and moves methods within it in order to minimize method rejection, eliminate 
code duplication and ensure superclasses are abstract when appropriate. Contrary 
to most other approaches, this tool uses simulated annealing.  O’Keeffe and Ó 
Cinnéide (2006; 2008) have continued their research by constructing a tool for re-
factoring object-oriented programs to conform more closely to a given design 
quality model. This tool can be configured to operate using various subsets of its 
available automated refactorings, various search techniques, and various evalua-
tion functions based on combinations of established metrics.  

Mancoridis et al. (1998) have created the Bunch tool for automatic modulariza-
tion. Bunch uses HC and GA to aid its clustering algorithms. A hierarchical view 
of the system organization is created based on the components and relationships 
that exist in the source code. The system modules and the module-level relation-
ships are represented as a module dependency graph (MDG). The goal of the 
software modularization process is to automatically partition the components of a 
system into clusters (subsystems) so that the resultant organization concurrently 
minimizes inter-connectivity while maximizing intra-connectivity. In our work we 
have    

Di Penta et al. (2005) build on these results and present a software renovation 
framework (SRF) which covers several aspects of software renovation, such as 
removing unused objects and code clones, and refactoring existing libraries into 
smaller ones. Refactoring has been implemented in the SRF using a hybrid ap-
proach based on hierarchical clustering, GAs and hill climbing, also taking into 
account the developer’s feedback. Most of the SRF activities deal with analyzing 
dependencies among software artifacts, which can be represented with a depen-
dency graph.  

Most of the approaches discussed above are different from ours in terms of the 
level of detail: we are especially interested to shape the overall architecture genet-
ically, while the works discussed above consider the problem of improving an ex-
isting architecture in terms of fairly fine-grained mechanisms. 
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7. Conclusions 

We have presented a method for using genetic algorithms for producing software 
architectures, given a certain representation of functional and a quality require-
ments. We have focused on three basic quality attributes: modifiability, efficiency 
and simplicity. The approach is evaluated with an empirical study, where the pro-
duced architectures were given for evaluation to experts alongside with student so-
lutions for the same design problem. 

The empirical study suggests that the current technique is at the level of an un-
dergraduate student. In addition to the automation aspect, major strengths of the 
presented approach are the versatility and options for expansion. Theoretically, an 
unlimited amount of patterns can be used in the solution library, while a human 
designer typically considers only a fairly limited set of standard solutions. The ge-
netic synthesis is also not tied to prejudices, and is able to produce fresh, unbiased 
solutions that a human architect might not think of. 

The main challenge in this approach is the specification of the fitness function. 
As it turned out in the experiment, even experts can disagree on what is a good ar-
chitecture. Obviously, the fitness function can only approximate the idea of archi-
tectural quality. Also, tuning the parameters (fitness weights and mutation proba-
bilities) is nontrivial and may require calibration for a particular type of a system. 

Our future research topics focus on the boosting of the simulated evolution e.g. 
by using more specialized crossover where parents are selected in a particular 
way, on the development of a genetic architecting tool environment, and on the 
studies of possible alternative ways to measure architectural quality.  
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