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Search-based approaches to software design are investigated. Software design is considered from a wide view, 
including topics that can also be categorized under software maintenance or re-engineering. Search-based 
approaches have been used in research from high architecture level design to software clustering and finally 
software refactoring. Enhancing and predicting software quality with search-based methods is also taken into 
account as a part of the design process. The choices regarding fundamental decisions, such as representation and 
fitness function, when used in meta-heuristic search algorithms, are emphasized and discussed in detail.  Ideas 
for future research directions are also given. 
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1. INTRODUCTION  

Traditional software engineering attempts to find solutions to problems in a variety of 

areas, such as testing, software design, requirements engineering, etc. A human software 

engineer must apply his acquired knowledge and resources to solve such complex 

problems that have to simultaneously meet needs but also be able to handle constraints. 

Often there are conflicts regarding the wishes of different stakeholders, i.e., compromises 

must be made with decisions regarding both functional and non-functional aspects. 

However, as any other engineering discipline, software engineers still attempt to find the 

optimal solution to any given problem, regardless of its complexity. As systems get more 

complex, the task of finding even a near optimal solution will become far too laborious 

for a human. Automating (or semi-automating) the process of finding, say, the optimal 

software architecture or resource allocation in a software project, can thus be seen as the 

ultimate dream in software engineering. Results from applications of search techniques in 

other engineering disciplines further support this idea, as they have been extremely 

encouraging.  

Search-based software engineering (SBSE) applies meta-heuristic search techniques, 

such as genetic algorithms and simulated annealing, to software engineering problems. It 

stems from the realization that many tasks in software engineering can be formulated as 

combinatorial search problems. The goal is to find, from the wide space of possibilities, a 



solution that is sufficiently good according to an appropriate quality function. Ideally this 

would be the optimal solution, but in reality optimality may be difficult (if not 

impossible)  to  achieve  or  even  define  due  to  various  reasons,  such  as  the  size  of  the  

search space or the complexity of the quality function. Allowing a search algorithm to 

find a solution from such a wide space enables partial or full automation of previously 

laborious tasks, solves problems that are hard to manage by other methods, and often 

leads to solutions that a human software engineer might not have been able to think of. 

Interest in SBSE has been growing rapidly over the past years, both in academia and 

industry. The combination of increased computing power, and new, more efficient, 

search algorithms has made SBSE a practical solution method for many problems 

throughout the software engineering life cycle [SSBSE, 2009]. A comprehensive review 

of the field is made by Harman et al. [2009], and Harman [2007] has also provided a brief 

overview to the current state of SBSE. Problems in the field of software engineering have 

been formulated as search problems by Clarke et al. [2003] and Harman and Jones 

[2001]. Search-based approaches have been most extensively applied in the field of 

software testing, and a covering survey of this branch (focusing on test data generation) 

has been made by McMinn [2004]. A review on SBSE concentrating on testing is also 

provided by Mantere and Alander [2005]. Another test related survey has been made by 

Afzal et al. [2008; 2009], who concentrate on testing non-functional properties.  As there 

has been much research and previous surveys regarding the area of testing, it will be 

omitted from this survey, even if the studies related to testing could be considered as 

altering (and thus perhaps improving) a software design. As in the case of, e.g., testability 

transformations, Harman et al. [2004] define three critical differences to traditional 

transformations, one of them concerning the functionality of the program. Harman et al. 

[2004] state that “testability transformations need not preserve functional equivalence”, 

which contradicts the idea of building a design based on a fixed set of requirements. 

This survey will cover the branch of software design. Software design can be defined 

as “the process which translates the requirements into a detailed design of a software 

system” [Yau and Tsai, 1986]. Here software design is considered as described by Wirfs-

Brock and Johnson [1990]. Although they consider only object-oriented design, the 

skeleton of a process from requirements to actual design can be applied to any form of 

software design.  A design process starts from requirements, and first enters an 

exploratory phase, where the fundamental structure is decided. This leads to a 

preliminary design, which then enters an analysis stage. After the suggested design is 

analyzed and modified according to the result, the final design is achieved. Following this 



interpretation, software refactoring and clustering have also been taken into account as 

they are considered as actions of modifying (based on a certain analysis) a preliminary 

model, which in many cases is a working implementation. 

The area of search-based software design has developed greatly in the very recent 

years, and is gaining an increasing interest in the SBSE community. However, although 

several surveys have been made of the SBSE field as a whole, they deal with the design 

area quite briefly. Also, the literature published from the software design perspective 

either does not cover search-based methods [Yau and Tsai, 1986; Budgen, 2003] or only 

briefly mentions the option of having an algorithm to automate class hierarchy design 

[Wirfs-Brock and Johnson, 1990]. Thus, there is a need to cover this crossing of two 

disciplines: search-based techniques and software design. New contribution is made 

especially in summarizing research in architecture level design that uses search-based 

techniques, as it has been overlooked in previous studies of search-based software 

engineering.  

The  timeline  for  development  of  SBSE  as  a  field  is  presented  in  Figure  1.  It  can  

clearly be seen that the earliest applications have been in testing, as can be deduced from 

the amount of existing surveys. However, more importantly, the timeline also shows the 

steady increasing of ideas in the area of search based design in the past 10 years. Thus, a 

covering survey in this area is certainly due. All in all, the timeline shows that the SBSE 

has been a very active discipline in the past 20 years, as only novel ideas are presented 

here: countless of approaches and studies regarding these ideas have been made but not 

portrayed here.  The explanations and references for the data points in Figure 1 are given 

in Figure 2.  

Harman [2004] points out how crucial the representation and fitness function are in all 

search-based approaches to software engineering. When using genetic algorithms 

[Holland, 1975], which are especially popular in search-based design, the choices 

regarding genetic operators are just as important and very difficult to make. This survey 

emphasizes the choices made regarding the particular characteristics of search 

algorithms; any new study in the field of search-based software engineering would 

benefit from learning what kind of solutions have proven to be particularly successful in 

the past. 

 



 
 

Fig. 1. Timeline of SBSE development 



 
 

Fig. 2. References for timeline data points 



 

This survey proceeds as follows. Section 2 describes search algorithms, and the 

underlying concepts for genetic algorithms, simulated annealing and hill climbing are 

discussed in detail. Different ways of performing the exploratory phase of design are then 

presented as ways for software architecture design (object-oriented and service-oriented) 

in Section 3. Sections 4, 5 and 6 deal with clustering, refactoring and software quality, 

respectively, which can all be seen as components of the analysis phase, starting from 

higher level re-design (clustering), going to low-level re-design (re-factoring) and finally 

pure analysis. The background for each underlying problem is first presented, followed 

by recent approaches applying search-based techniques to the problem. Summarizing 

remarks and a summary table of the studies is presented after each subsection. Finally, 

some ideas for future work are given in Section 7, and conclusions are presented in 

Section 8. 

 

2. SEARCH ALGORITHMS 

Meta-heuristics are commonly used for combinatorial optimization, where the search 

space can become especially large. Many practically important problems are NP-hard, 

and thus, exact algorithms are not possible. Heuristic search algorithms handle an 

optimization problem as a task of finding a “good enough” solution among all possible 

solutions to a given problem, while meta-heuristic algorithms are able to solve even the 

general class of problems behind the certain problem.  A search will optimally end in a 

global optimum in a search space, but at the very least it will give some local optimum, 

i.e., a solution that is “better” than a significant amount of alternative solutions nearby. A 

solution given by a heuristic search algorithm can be taken as a starting point for further 

searches or be taken as the “best” possible solution, if its quality is considered high 

enough. For example, simulated annealing can be used to produce seed solutions for a 

genetic algorithm that constructs the initial population based on the provided seeds. 

In order to use search algorithms in software engineering, the first step is that the 

particular software engineering problem should be defined as a search problem. If this 

cannot be done, search algorithms are most likely not the best way to solve the problem, 

and defining the different parameters and operations needed for the search algorithm can 

be difficult. After this has been done, a suitable algorithm can be selected and the issues 

regarding that algorithm must be dealt with. 

There are three common issues that need to be dealt with any search algorithm: 1. 

encoding the solution, 2. defining transformations, and 3. measuring the “goodness” of a 



solution. All algorithms need the solution to be encoded according to the algorithm’s 

specific needs. For example, in order for the genetic algorithm (GA) to operate, the 

encoding should be done in such a way that it can be seen as a chromosome consisting of 

a set of genes. However, for the hill climbing (HC), any encoding where a neighborhood 

can be defined is sufficient. The importance and difficulty of encoding a solution increase 

as the complexity of the problem at hand increases.  In this case complexity refers to how 

easily a solution can be defined, rather to the computational complexity of the problem 

itself. For example, a job-shop problem may be computationally complex, but the 

solution candidates are simple to encode as an integer array. However, a solution 

containing, e.g., all the information regarding a software architecture, is demanding to 

encode so that: 1. all information stays intact, 2. operations can efficiently be applied to 

the selected encoding of the solution, 3. the fitness evaluations can be performed 

efficiently, and 4. there is minimal need for “outside” data, i.e., data structures containing 

information about the solution that are not included in the actual encoding.  

Defining a neighborhood is crucial to all algorithms; HC, simulated annealing (SA) 

and tabu search operate purely on the basis of moving from one solution to its neighbor. 

A neighbor is achieved by some operation that transforms the solution. These operations 

can be seen equivalent to the mutations needed by the GA. 

Finally, the most important and difficult task is defining a fitness function. If defining 

the fitness function fails, the search algorithm will not be guided towards the desired 

solutions. All search algorithms require this quality function to evaluate the “goodness” 

of a solution in order to compare solutions and thus guide the search.  

To understand the basic concepts behind the approaches presented here, the most 

commonly used search algorithms are briefly introduced. The most common approach is 

to use genetic algorithms. Hill climbing and its variations, e.g., multi-ascent hill climbing 

(MAHC), is also quite popular due to its simplicity. Finally, several studies use simulated 

annealing. In addition to these algorithms, tabu search is a widely known meta-heuristic 

search technique, and genetic programming (GP) [Koza, 1992] is commonly used in 

problems that can be encoded as trees. For a detailed description on GA, see Mitchell 

[1996] or Sivanandam and Deepa [2007], for SA, see, e.g., Reeves [1995], and for HC, 

see Glover and Kochenberger [2003], who also cover a wide range of other meta-

heuristics. For a description on multi-objective optimization with evolutionary 

algorithms, see Deb [1999] or Fonseca and Fleming [1995]. A survey on model-based 

search, covering several meta-heuristic algorithms is also made by Zlochin et al. [2004]. 

2.1 Genetic algorithms 



Genetic algorithms were invented by John Holland in the 1960s. Holland’s original goal 

was not to design application specific algorithms, but rather to formally study the ways of 

evolution and adaptation in nature and develop ways to import them into computer 

science. Holland [1975] presents the genetic algorithm as an abstraction of biological 

evolution and gives the theoretical framework for adaptation under the genetic algorithm 

[Mitchell, 1996]. 

In order to explain genetic algorithms, some biological terminology needs to be 

clarified. All living organisms consist of cells, and every cell contains a set of 

chromosomes, which are strings of DNA and give the basic information of the particular 

organism. A chromosome can be further divided into genes, which in turn are functional 

blocks of DNA, each gene representing some particular property of the organism. The 

different possibilities for each property, e.g., different colors of the eye, are called alleles. 

Each gene is located at a particular locus of the chromosome.  When reproducing, 

crossover occurs: genes are exchanged between the pair of parent chromosomes. The 

offspring is subject to mutation, where single bits of DNA are changed. The fitness of an 

organism is the probability that the organism will live to reproduce and carry on to the 

next generation [Mitchell, 1996]. The set of chromosomes at hand at a given time is 

called a population. 

Genetic algorithms are a way of using the ideas of evolution in computer science. 

When thinking of the evolution and development of species in nature, in order for the 

species to survive, it needs to develop to meet the demands of its surroundings. Such 

evolution is achieved with mutations and crossovers between different chromosomes, i.e., 

individuals, while the fittest survive and are able to participate in creating the next 

generation.  

In computer science, genetic algorithms are used to find a good solution from a very 

large search space, the goal obviously being that the found solution is as good as 

possible.  To operate with a genetic algorithm, one needs an encoding of the solution, i.e., 

a representation of the solution in a form that can be interpreted as a chromosome, an 

initial population, mutation and crossover operators, a fitness function and a selection 

operator for choosing the survivors for the next generation. Algorithm 1 gives the pseudo 

code for a genetic algorithm. 

Algorithm 1 geneticAlgorithm 
Input: formalization of solution, initialSolution 
 chromosomes  createPopulation(initialSolution) 
 while NOT terminationCondition do  
  foreach chromosome in chromosomes 



    p   randomProbability 
   if p > mutationProbability then  
   mutate(chromosome) 
   end  if  
  end  for  
  foreach chromosomePair in chromosomes 
   cp  randomProbability 
   if cp > crossoverProbability then  
   crossover(chromosomePair)  
   addOffspringToPopulation() 
   end if 
  end  for  
  foreach chromosome in chromosomes 
   calculatefitness(chromosome) 
  end for 
  selectNextPopulation() 
 end while 

 

As discussed, correctly defining the different operations (mutations, crossover and 

fitness function) is vital in order to achieve satisfactory results. However, as seen in 

Algorithm 1, there are also many parameters regarding the GA that need to be defined 

and greatly affect the outcome. These parameters are the population size, number of 

generations (often used as the terminating condition) and the mutation and crossover 

probabilities. Having a large enough population ensures variability within a generation, 

and enables a wide selection of different solutions at every stage of evolution. However, 

at a certain point the results start to converge, and a larger population always means more 

fitness evaluations and thus requires more computation time. Similarly, the more 

generations the algorithm is allowed to evolve for, the higher the chances are that it will 

be able to reach the global optimum. However, again, letting an algorithm run for, say, 

10 000, generations will most probably not be beneficial, as if the operations and 

parameters have been chosen correctly, a reasonably good optimum should have been 

found much earlier. Mutation and crossover probabilities both affect how fast the 

population evolves. If the probabilities are too high, there is the risk that the 

implementation of genetic operations becomes random instead of guided. Vice versa, if 

the probabilities are too low there is the risk that the population will evolve too slowly, 

and no real diversity will exist. A theory to be noted with genetic operators is the building 

block hypothesis, which states that a genetic algorithm combines a set of sub-solutions, 

or building blocks, to obtain the final solution. The sub-solutions that are kept over the 

generations generally have an above-average fitness [Salomon, 1998]. The crossover 



operator is especially sensitive to this hypothesis, as an optimal crossover would thus 

combine two rather large building blocks in order to produce an offspring with a one-

point crossover. 

2.2 Simulated annealing 

Simulated annealing is originally a concept in physics. It is used when the cooling of 

metal needs to be stopped at given points where the metal needs to be warmed a bit 

before it can resume the cooling process. The same idea can be used to construct a search 

algorithm. At a certain point of the search, when the fitness of the solution in question is 

approaching a set value, the algorithm will briefly stop the optimizing process and revert 

to choosing a solution that is not the best in the current solution’s neighborhood. This 

way getting stuck to a local optimum can effectively be avoided. Since the fitness 

function in simulated annealing algorithms should always be minimized, it is usually 

referred to as a cost function [Reeves, 1995]. 

Simulated annealing usually begins with a point x in the search space that has been 

achieved through some heuristic method. If no heuristic can be used, the starting point 

will be chosen randomly. The cost value c, given by cost function E, of point x is then 

calculated. Next a neighboring value x1 is searched and its cost value c1 calculated. If c1 < 

c, then the search moves onto x1.  However, even though c  c1, there is still a chance, 

given by probability p, that the search is allowed to continue to a solution with a bigger 

cost [Clarke et al., 2003]. The probability p is a function of the change in cost function 

E, and a parameter T: 

    p = e E/T .  

This definition for the probability of acceptance is based on the law of thermodynamics 

that controls the simulated annealing process in physics. The original function is  

    p = e E/kt , 

where t is the temperature in the point of calculation and k is Boltzmann’s constant 

[Reeves, 1995]. 

The parameter T that substitutes the value of temperature and the physical constant is 

controlled by a cooling function C, and it is very high in the beginning of simulated 

annealing and is slowly reduced while the search progresses [Clarke et al., 2003]. The 

actual cooling function is application specific. 

 If the probability p given by this function is above a set limit, then the solution is 

accepted even though the cost increases. The search continues by choosing neighbors and 

applying the probability function (which is always 1 if the cost decreases) until a cost 

value is achieved that is satisfactory low. Algorithm 2 gives the pseudo code for a 



simulated annealing algorithm. 

Algorithm 2 simulatedAnnealing 
Input: formalization of solution, initialSolution, cooling ratio , initial 
temperature T0, frozen temperature Tf, and temperature constant r 
Output: optimized solution finalSolution 
 initialQuality  evaluate(initialSolution) 
                                                                                                                                                                                                                                                                                                                                                              

 initialSolution 
 Q1  initialQuality 
 T  T0 
 while T0 > Tf do 
  ri  0 
  while ri > r do 
   Si  findNeighbor(S1) 
   Qi  evaluate(Q1)  
   if Qi > Q1 then  
    S1  Si 
    Q1  Qi 
   else  
      Q1 - Qi’  
    p   randomProbability 
    if p < e /T then 

     S1  Si 
     Q1  Qi 
    end  if 
   end  if’  
  ri  ri +1 
 end while 
 T  T*  
end while 
return S1 

 

The key parameters to be adjusted for SA are the initial temperature, the cooling ratio 

and the temperature constant. These all combined affect how fast the cooling happens. If 

the cooling is too fast, the algorithm may not have sufficient time to achieve an optimum. 

However, if the cooling is too slow, the initial temperature may need a significantly high 

value so that the solution will be able to evolve enough (i.e., noticeably transform from 

the initial solution) before reaching the frozen temperature.  

2.3 Hill climbing  

Hill climbing begins with a random solution, and then begins to search through its 

neighbors for a better solution. There are several versions of how this is done; in some 

versions the algorithm moves on after finding the first neighbor that is better than the 



current, some do a fixed number of neighbor evaluations and continue to the best of this 

group, and some versions go through the entire neighborhood of a solution and select the 

best neighbor from which the procedure is continued. Algorithm 3 adopts the last option, 

i.e., the entire neighborhood is evaluated before moving on. Hill climbing does not 

include any mechanisms to avoid getting stuck with a local optimum. 

There are three critical choices regarding HC: 1. defining a neighborhood for each 

solution, 2. defining an evaluation function for a solution, and 3. defining by what extent 

each neighborhood is searched. If the problem at hand is very complex and each solution 

has an exponential amount of neighbors, traversing through each neighborhood maybe 

extensively time consuming. However, if the subgroup of neighbors to be examined is 

chosen wisely, the actual outcome of the algorithm may still be good enough, while much 

time is saved when not every solution needs to be evaluated. 

Algorithm 3 hillClimbing 
Input: formalization of solution, initialSolution 
 currentSolution  initialSolution 
 currentFitness  evaluate(currentSolution) 
 while betterNeighborsExist do  
  neighborhood  findNeighbors(currentSolution) 
  foreach neighbor in neighborhood 
    neighborFitness  evaluate(neighbor) 
   if neighborFitness > nextFitness then  
   nextSolution  neighbor 
   nextFitness  neighborFitness 
   end  if  
  end  for  
  if nextFitness > currentFitness then  
   currentSolution  nextSolution 
  else  
   termination  
   return  currentSolution 
  end  if  
 end while 
 

3. SOFTWARE ARCHITECTURE DESIGN 

The core of every software system is its architecture. Designing software architecture is a 

demanding task requiring much expertise and knowledge of different design alternatives, 

as well as the ability to grasp high-level requirements and piece them to detailed 

architectural decisions. In short, designing software architecture takes verbally formed 

functional and quality requirements and turns them into some kind of formal model, 

which is used as a base for code. Automating the design of software is obviously a 



complex task, as the automation tool would need to understand intricate semantics, have 

access to a wide variety of design alternatives, and be able to balance multi-objective 

quality factors. From the re-design perspective, program comprehension is one of the 

most expensive activities in software maintenance. The following sections describe meta-

heuristic approaches to software architecture design for object-oriented and service-

oriented architectures. 

3.1 Object-oriented architecture design 

3.1.1 Basics 

At its simplest, object-oriented design deals with extracting concepts from, e.g., use 

cases, and deriving methods and attributes, which are distributed into classes. A further 

step is to consider interfaces and inheritance. A final design can be achieved through the 

implementation of architecture styles [Shaw and Garlan, 1996] and design patterns 

[Gamma et al., 1995]. When attempting to automate the design of object-oriented 

architecture from concept level, the system requirements must be formalized. After this, 

the major problem lies within quality evaluation, as many design decisions improve some 

quality attribute [Losavio et al., 2004] but weaken another. Thus, a sufficient set of 

quality estimators should be used, and a balance should be found between them. Re-

designing software architectures automatically is slightly easier than building architecture 

from the very beginning, as the initial model already exists and it merely needs to be 

ameliorated. However, implementing design patterns is never straightforward, and 

measuring their impact on the quality of the system is difficult. For more background on 

software architectures, see, e.g., Bass et al. [1998].  

Approaches to search-based software design are presented starting from low-level 

approaches, i.e., what is needed when first beginning the architecture design, to high-

level approaches, ending with analyzing software architecture. Object-oriented 

architecture design begins with use cases and assigning responsibilities, i.e., methods and 

attributes to classes [Bowman et al., 2008; Simons and Parmee 2007a; Simons and 

Parmee, 2007b]. After the basic structure, the architecture can be further designed by 

applying design patterns, either on an existing system [Amoui et al., 2006] or building the 

design patterns in the system from the very beginning [Räihä et al., 2008a; Räihä et al., 

2008b; Räihä et al. 2009]. If an idea for an optimal solution is available, model 

transformations can be sought to achieve that solution [Kessentini et al., 2008]. There 

might also be many choices regarding the components of the architecture, depending on 

the needs of the system. An architecture can be made of alternative components [Kim and 

Park, 2009] or a subsystem can be sought after [Bodhuin et al., 2007]. Studies have also 



been made on identifying concept boundaries and thus automating software 

comprehension [Gold et al., 2006] and composing behavioral models for autonomic 

systems [Goldsby and Chang, 2008; Goldsby et al., 2008], which give a dynamic view of 

software architecture. One of the most abstract studies attempts to build hierarchical 

decompositions for a software system [Lutz, 2001, which already comes quite close to 

software clustering. Summarizing remarks of the approaches are given in the end, and the 

fundamentals of each study are collected in Table 1. 

3.1.2 Approaches 

Bowman et al. [2008] study the use of a multi-objective genetic algorithm (MOGA) in 

solving the class responsibility assignment problem. The objective is to optimize the class 

structure of a system through the placement of methods and attributes. The strength 

Pareto approach (SPEA2) is used, which differs from a traditional GA by containing an 

archive of individuals from past populations. This approach combines several aspects that 

aid in finding the truly optimal individuals and thus leaves less room for GA “to err” in 

terms of undesired mutations or overly relying on metrics.  

The chromosome is represented as an integer vector. Each gene represents a method 

or an attribute in the system and the integer value in a gene represents the class to which 

the method or attribute in that locus belongs. Dependency information between methods 

and attributes is stored in a separate matrix. Mutations are performed by simply changing 

the class value randomly; the creation of new classes is also allowed. Crossover is the 

traditional one-point one. There are also constraints: no empty classes are allowed 

(although the selected encoding method also makes them impossible), conceptually 

related methods are only moved in groups, and classes must have dependencies to at least 

one other class.  

The fitness function is formed of five different values measuring cohesion and 

coupling: 1. method-attribute coupling, 2. method-method coupling, 3. method-

generalization coupling, 4. cohesive interaction and 5. ratio of cohesive interaction. A 

complementary measure for common usage is also used. Selection is made with a binary-

tournament selection where the fitter individual is selected 90% of the time.  

In the case study an example system is used, and a high-quality UML class diagram 

of this system is taken as a basis. Three types of modifications are made and finally the 

modifications are combined in a final test. The efficiency of the MOGA is now evaluated 

in relation to how well it fixed the changes made to the optimal system. Results show that 

in most cases the MOGA managed to fix the made modifications and in some cases the 

resulting system also had a higher fitness value than the original “optimal” system. 



Bowman  et  al.  also  compare  MOGA  to  other  search  algorithms,  such  as  random  

search, hill climbing and a simple genetic algorithm. Random search and hill climbing 

only managed to fix a few of the modifications and the simple GA did not manage to fix 

any of the modifications. Thus, it would seem that a more complex algorithm is needed 

for the class responsibility assignment problem.  

The need for highly developed algorithms is further high-lighted when noting that a 

ready system is being ameliorated instead of completely automating the class 

responsibility assignment. As a ready system can be assumed to have some initial quality 

and conceptually similar methods and attributes are already largely grouped, it does help 

the algorithm when re-assigning the moved methods and attributes. This is due to the fact 

that by attempting to re-locate the moved method or attribute to the “wrong” class, the 

fitness value will be significantly lower than when assigning the method or attribute to 

the “right” class. 

Simons and Parmee [2007a; 2007b; 2008] take use cases as the starting point for 

system specification. Data is assigned to attributes and actions to methods, and a set of 

uses is defined between the two sets. The notion of class is used to group methods and 

attributes. Each class must contain at least one attribute and at least one method. Design 

solutions are encoded directly into an object-oriented programming language. This 

approach starts with pure requirements and leaves all designing to the algorithm, making 

the problem of finding an optimal class structure extremely more difficult than in cases 

where a ready system can be used as basis.  

A single design solution is a chromosome. In a mutation, a single individual is 

mutated by locating an attribute and a method from one class to another. For crossover 

two individuals are chosen at random from the population and their attributes and 

methods are swapped based on their class position within the individuals. Cohesiveness 

of  methods  (COM)  is  used  to  measure  fitness,  fitness  for  class  C  is  defined  as  f(C) = 

1/(|Ac||Mc|)* ij), where Ac (respectively Mc) stands for the number of attributes 

(respectively methods) in class C, and ij =  1,  if  method  j uses attribute i, and  0  

otherwise. Selection is performed by tournament and roulette-wheel. The choices 

regarding encoding, genetic operators and fitness function are quite traditional, although 

the problem to be solved is far from traditional. 

In an alternative approach, categorized by the authors as evolutionary programming 

(EP) and inspired by Fogel et al. [1966], offspring is created by mutation and selection is 

made with tournament selection. Two types of mutations are used, class-level mutation 

and element-level mutation. At class level, all attributes and methods of a class in an 



individual are swapped as a group with another class selected at random. At element 

level, elements (methods and attributes) in an individual are swapped at random from one 

class to another. Initialization of the population is made by allocating a number of classes 

to each individual design at random, within a range derived from the number of attributes 

and  methods.  All  attributes  and  methods  from  sets  of  attributes  and  methods  are  then  

allocated to classes within individuals at random. These operations appear quite 

simplistic, and the actual change to the design remains minimal, since the fitness of an 

individual depends on how methods and attributes depending on one another are located. 

When the elements are moved in a group, there does not seem to be very much change in 

the actual design.  

A case study is made with a cinema booking system with 15 actions, 16 datas and 39 

uses. For GA, the average COM fitness for final generation for both tournament and 

roulette-wheel is similar, as is the average number of classes in the final generation. 

However, convergence to a local optimum is quicker with tournament selection. Results 

reveal that the average and maximum COM fitness of the GA population with roulette-

wheel selection lagged behind tournament in terms of generation number. For EP, the 

average population COM fitness in the final generation is similar to that achieved by the 

GA.  

The initial average fitness values of the three algorithms are notably similar, although 

the variance of the values increases from GA tournament to GA roulette-wheel to EP. In 

terms of COM cohesion values, the generic operators produced conceptual software 

designs of similar cohesion to human performance. Simons and Parmee suggest that a 

multi-objective search may be better suited for support of the design processes of the 

human designer. To take into account the need for extra input, they attempted to correct 

the fitness function by multiplying the COM value by a) the number of attributes and 

methods in the class (COM.M+A); b) the square root of the number of attributes and 

methods in the class (COM. (M+A); c) the number of uses in the class (COM.uses) and 

d) the square root of the number of uses in a class (COM. uses). Using such multipliers 

raises some questions as there is no intuition for using the square root multipliers. 

Multiplying by the sum of methods and attributes or uses can intuitively be justified by 

showing more appreciation to classes that are large but are still comprehensible. 

However, such appreciation may lead to preferring larger classes.  

The  authors  have  taken  this  into  account  by  measuring  the  number  of  classes  in  a  

design solution and a design solution with higher number of classes is preferred to a 

design solution with fewer classes. When cohesion metrics that take class size into 



account are used, there is a broad similarity between the average population cohesion 

fitness and the manual design. Values achieved by the COM.M+A and COM.uses and 

cohesion metrics are higher than the manual design cohesion values, while 

COM. (M+A)and COM. uses values are lower. Manually examining the design 

produced by the evolutionary runs, a difference is observed in the design solutions 

produced by the four metrics that account for class size, when compared with the metrics 

that do not. From the results produced for the two case studies, it is evident that while the 

cohesion metrics investigated have produced interesting cohesive class design solutions, 

they are by no means a complete reflection of the inherently multi-objective evaluations 

conducted by a human designer. The evolutionary design variants produced are thus 

highly dependent on the extent and choice of metrics employed during search and 

exploration. These results further emphasize the importance of properly defining a fitness 

function and deciding on the appropriate metrics in all software design related problems.  

Amoui et al. [2006] use the GA approach to improve the reusability of software by 

applying architecture design patterns to a UML model. The authors’ goal is to find the 

best sequence of transformations, i.e., pattern implementations. Used patterns come from 

the collection presented by Gamma et al. [1995], most of which improve the design 

quality and reusability by decreasing the values of diverse coupling metrics while 

increasing cohesion. 

Chromosomes are an encoding of a sequence of transformations and their parameters. 

Each individual consists of several supergenes, each of which represents a single 

transformation. A supergene is a group of neighboring genes on a chromosome which are 

closely dependent and are often functionally related. Only certain combinations of the 

internal genes are valid. Invalid patterns possibly produced through mutations or 

crossover are found and discarded. The supergene concept introduced here is an 

insightful approach into handling masses of complex data that needs to be represented as 

a relatively simple form. Instead of having only one piece of information per gene, this 

way several pieces of related information can be grouped to such supergenes, which then 

logically form a chromosome. In the study by Bowman et al. [2008] the need for 

additional data storage (the matrix for data dependencies) demonstrates the complexity of 

design problems. In this case the supergene approach introduced by Amoui et al. [2006] 

could have been worth while to try to include all information regarding the attributes and 

methods in the chromosome encoding. 

Mutation randomly selects a supergene and mutates a random number of genes inside 

the supergene. After this, validity is checked. In case of encountering a transformed 



design which contradicts with object-oriented concepts, for example, a cyclic inheritance, 

a zero fitness value is assigned to chromosome. This is an interesting way of dealing with 

anomalies; instead of implementing a corrective operation to force validity, it is trusted 

that the fitness function will suffice in discarding the unsuitable individuals if they are 

given a low enough value. 

Two different versions of crossover are used. First is a single-point crossover applied 

at supergene level, with a randomly selected crossover point, which swaps the supergenes 

beyond the crossover point, but the internal genes of supergenes remain unchanged. This 

combines the promising patterns of two different transformation sequences. The second 

crossover randomly selects two supergenes from two parent chromosomes, and similarly 

applies single point crossover to the genes inside the supergenes. This combines the 

parameters of two successfully applied patterns. The first crossover thus attempts to 

preserve high-level building blocks, while the second version attempts to create low-level 

building blocks.  

The quality of the transformed design is evaluated, as introduced by Martin [2000], by 

its “distance from the main sequence” (D), which combines several object-oriented 

metrics by calculating abstract classes’ ratio and coupling between classes, and measures 

the overall reusability of a system.  

A case study is made with a UML design extracted of some free, open source 

applications. The GA is executed in two versions. In one version only the first crossover 

is applied and in second both crossovers are used. A random search is also used to see if 

the GA outperforms it. Results demonstrate that the GA finds the optimal solution much 

more efficiently and accurately. From the software design perspective, the transformed 

design of the best chromosomes are evolved so that abstract packages become more 

abstract and concrete packages in turn become more concrete. The results suggest that 

GA is a suitable approach for automating object-oriented software transformations to 

increase reusability. As the application of design patterns is by no means an easy task, 

these initial results suggest that at least the structure and needs of the GA does not restrict 

automated design of software architecture. 

Räihä et al. [2008a] take the design of software architecture a step further than 

Simons and Parmee [2007a] by starting the design from a responsibility dependency 

graph. The graph can also be achieved from use cases, but the architecture is developed 

further than the class distribution of actions and data. A GA is used for the automation of 

design.  

In this approach, each responsibility is represented by a supergene and a chromosome 



is a collection of supergenes. The supergene contains information regarding the 

responsibility, such as dependencies of other responsibilities, and evaluated parameters 

such as execution time and variability. Here the notion of supergene [Amoui et al., 2006] 

is efficiently used in order to store a large amount of different types of data pieces within 

the chromosome. Mutations are implemented as adding or removing an architectural 

design pattern [Gamma et al. 1995] or an interface, or splitting or joining class(es).  

Implemented design patterns are Façade and Strategy, as well as the message dispatcher 

architecture style [Shaw and Garlan, 1996]. Dynamic mutation probabilities are used to 

encourage the application of basic design choices (the architectural style(s)) in the 

beginning and more refined choices (such as the Strategy pattern) in the end of evolution. 

Crossover is a standard one-point crossover. The offspring and mutated chromosomes are 

always checked after the operations for legality, as design patterns may easily be broken. 

Selection is made with the roulette wheel method.  

This approach actually combines the class responsibility assignment problem studied 

by Simons and Paremee [2007a; 2007b] and applying design patterns, as studied by 

Amoui et al. [2006]. Although the selection of design patterns is smaller, the search 

problem of finding an optimal architecture is much more difficult. First the GA needs to 

find the optimal class responsibility distribution, and then apply design patterns. In this 

case the search space grows exponentially, as in order to optimally apply the design 

patterns, the class responsibility distribution may need to be sub-optimal. This produces a 

challenge when deciding on the fitness function.  

The fitness function is a combination of object-oriented software metrics, most of 

which are from the Chidamber and Kemerer [1994] collection, which have been grouped 

to measure quality concepts efficiency and modifiability. Some additional metrics have 

also been developed to measure the effect of communicating through a message 

dispatcher or interfaces. Furthermore, a complexity measure is introduced. The fitness 

function is defined as f = w1PositiveModifiability – w2NegativeModifiability + 

w3PositiveEfficiency – w4NegativeEfficiency – w5Complexity, where wis are weights to 

be fixed. As discussed, defining the fitness function is the most complex task in all 

SSBSE problems. In this case, when the problem is so diverse, the fitness function is also 

intricate: it requires a set of known metrics, a set of special metrics, the grouping of these 

metrics and additionally weights in order to set preferences to quality aspects.  

The approach is tested on a sketch of a medium-sized system [Räihä, 2008]. Results 

show positive development in overall fitness value, while the balancing of weights 

greatly affects whether the design is more modifiable or efficient. However, the actual 



designs are not compliant with the fitness values, and would not be accepted by a human 

architect. This suggests that further improvement is needed in defining the fitness 

function. 

Räihä et al. [2008b] further develop their work by implementing more design patterns 

and an alternative approach. In addition to the responsibility dependency graph, a domain 

model may be given as input. The GA can now be utilized in Model Driven Architecture 

design, as it takes care of the transformations from Computationally Independent Model 

to Platform Independent Model. The new design patterns are Mediator and Proxy, and the 

service oriented architecture style is also implemented by enabling a class to be called 

through a server. The chromosome representation, mutation and crossover operations and 

selection method are kept the same. Results show that the fitness values converge to 

some optima and reasonable high-level designs are obtained.  

In  this  case  the  task  for  the  GA  is  made  somewhat  easier,  as  a  skeleton  of  a  class  

structure is given to the algorithm in the form of a domain model. This somewhat 

eliminates the class responsibility assignment problem and the GA can only concentrate 

on applying the design patterns. As the results are significantly better, although the search 

space is more complex when more patterns have been added to the mutations, this 

suggests that the class responsibility assignment problem is extremely complex on its 

own, and more research on this would be highly beneficial as a background for several 

search-based software design related questions.  

Räihä et al. [2009] keep developing their approach by including the Template pattern 

to the design pattern/mutation collection and introducing scenarios as a way to enhance 

the evaluation of a produced architecture. Scenarios are basically a way to describe an 

interaction between the system and a stakeholder. In their work, Räihä et al. categorize 

and formalize modifiability related scenarios so that they can be encoded and given to the 

GA as an additional part of the fitness function. Each scenario is given a list of 

preferences regarding the architectural structures that are suitable for that scenario. The 

preferences are then compared with the suggested architecture and a fitness value is 

calculated according to how well the given architecture conforms to the preferences. This 

way the fitness value is more pointed as the most critical parts of the architecture can be 

given extra attention and the evaluation is not completely based on general metrics. 

Results from empirical studies made on two sample systems show that when the 

scenarios are used, the GA retains the high-speed phase of developing the architecture for 

10 to 20 generations longer than in the case where scenarios are not used. Also, when the 

scenario fitness is not included in the overall fitness evaluations the GA tends to make 



decisions that do not support the given scenarios. 

Results from this study shows that when the modifications are as detailed as applying 

a design pattern (rather than modifying the architecture “as a whole”), the fitness function 

also needs to be more pin-pointed to study the places of an architecture where such 

detailed solutions would be most beneficial. 

Kessentini et al. [2008] also use a search-based approach to model transformations. 

They start with a small set of examples from which transformation blocks are extracted 

and use particle swarm optimization (PSO) [Kennedy and Eberhart, 1995].  A model is 

viewed as a triple of source model, target model and mapping blocks between the source 

and target models.  The source model is formed by a set of constructs. The transformation 

is only coherent if it does not conflict the constructs. The transformation quality of a 

source model (i.e., global quality of a model) is the sum of the transformation qualities of 

its constructs (i.e., local qualities).  This approach is less automated, as the 

transformations need to be extracted from ready models, and are not general. However, 

using PSO is especially interesting, and suggests that other algorithms besides GA are 

also suitable for complex software design problems. 

To encode a transformation, an M-dimensional search space is defined, M being the 

number of constructs. The encoding is now an M-dimensional integer vector whose 

elements are the mapping blocks selected for each construct. The fitness function is a 

sum of constructs that can be transformed by the associated blocks multiplied by relative 

numbers of matched parameters and constructs. The fitness value is normalized by 

dividing it with 2*M, thus resulting in a fitness range of [0, 1]. 

The method was evaluated and experimented with 10 small-size models, of which 

nine are used as a training set and one as the actual model to be transformed. The 

precision of model transformation (number of constructs with correct transformations in 

relation to total number of constructs) is calculated in addition to the fitness values. The 

best solution was found already after 29 iterations, after which all particles converged to 

that solution. The test generated 10 transformations. The average precision of these is 

more than 90%, thus indicating that the transformations would indeed give an optimal 

result, as the fitness value was also high within the range. The test also showed that some 

constructs were correctly transformed although there were no transformation examples 

available for these particular constructs. 

Kim and Park [2009] use GAs to dynamically choose components to form software 

architecture according to changing demands. The basic concept is to have a set of 

interchangeable components (e.g., BasicUI and RichUI), which can be selected according 



to user preferences. The goal is thus to select an optimal architectural instance from all 

possible instances. This is especially beneficial when the software needs to transferred, 

e.g., from a PC to a mobile device. 

A  softgoal  interdependency  graph  (SIG)  is  used  as  a  basis  for  the  problem;  it  

represents relationships between quality attributes. The quality attributes are formulated 

by a set of quality variables. A utility function is used to measure the user’s overall 

satisfaction: the user now gives weights for the quality values to represent their priority. 

Functional alternatives (i.e., the interchangeable components) are denoted by 

operationalizing goals. The operationalizing goals can have an impact on a softgoal, i.e., 

a quality attribute. Alternatives with similar characteristics are grouped by a type. One 

alternative type corresponds to one architectural decision variable. These represent partial 

configurations of the application. A combination of architectural decision variables 

comprises an architectural instance.  

In addition to the SIG, situation variables and their values are needed as input. 

Situation variables describe partial information on environmental changes and determine 

the impacts that architectural decision variables have on the quality attributes. The impact 

is defined as a situation evaluation function, which is defined for each direct 

interdependency between an operationalizing goal and quality attribute.  Although the 

fitness function is quite standard, i.e., it calculates the quality through “quality values” 

and there are weights assigned, the actual computations are not that straightforward. The 

quality attributes the fitness function is based on rely on decision variables and situation 

variables. These in turn need to be calculated by hand, and there is no clear answer to 

how the situation variables themselves are gathered. 

For the GA, the architectural instance is encoded as a chromosome by using a string 

of integers representing architectural decisions. Mutation is applied to offspring, for 

which each digit is subjected to mutation (according to mutation probability). Crossover 

is a standard two-point crossover. The utility function is used as the fitness function and 

tournament selection is used for selecting the next generation.  

An empirical study is made and compared to exhaustive search. The time needed for 

the  GA  is  less  then  1*10-5 of the time needed for the exhaustive search. The GA also 

converges  to  the  best  solution  very  quickly,  after  only  40  generations.  Thus,  it  would  

seem that using a search algorithm to this problem would produce extremely good results, 

at least in term of time and speed. However, in this case all the components need to be 

known beforehand as the task is to choose an optimal set from alternative components. It 

would be interesting to see at least how all the different variables needed are acquired, 



and how the approach could be more generalized. 

Bodhuin et al. [2007] present an approach based on GAs and an environment that, 

based on previous usage information of an application, re-packages it with the objective 

of limiting amount of resources transmitted for using a set of application features. The 

overall idea is to cluster together (in jars) classes that, for a set of usage scenarios, are 

likely to be used together. Bodhuin et al. propose to cluster together classes according to 

dynamic information obtained from executing a series of usage scenarios. The approach 

aims at grouping in jars classes that are used together during the execution of a scenario, 

with the purpose of minimizing the overall jar downloading cost, in terms of time in 

seconds for downloading the application.  After having collected execution trace, the 

approach determines a preliminary re-packaging considering common class usages and 

then improves it by using GAs. This approach can be seen as attempting to find optimal 

sub-architectures for a system, as each jar-package needs to be able to operate on its own. 

Obviously the success of finding sub-systems greatly depends on how well the class 

responsibility assignment problem is solved in the system, linking these results to that 

fundamental problem.  

The  proposed  approach  has  four  steps.  First,  the  application  to  be  analyzed  is  

instrumented, and then it is exercised by executing several scenarios instantiated from use 

cases. Second, a preliminary solution of the problem is found, grouping together classes 

used by the same set of scenarios. Third, GAs are used to determine the (sub)-optimal set 

of jars. Fourth, based on the results of the previous steps, jars are created.  

For the GA, an integer array is used as chromosome representation, where each gene 

represents a cluster of classes.  The initial population is composed randomly. Mutation 

selects a cluster of classes and randomly changes its allocation to another jar archive. The 

crossover is the standard one-point crossover.  The fitness function is F(x) = 

1/N (Costi) where N is the number of scenarios and Cost is calculated from the call cost  

of making a request to the server and from the class sizes. 10% of the best individuals are 

kept alive across subsequent generations. Individuals to be reproduced are selected using 

a roulette-wheel selection.  Scenarios are used in a very different way here as in the work 

of Räihä et al. [2009]. Here scenarios define actions made with the system, and thus 

contain information of different components of the system that are needed, but do not 

deal with quality aspects other than how many operations, i.e., scenarios a certain set of 

responsibilities is able to perform. Räihä et al. [2009], however, use scenarios not to 

describe functional operations but expectations to the system in terms of quality aspects.  

These different studies suggest that there are more ways of measuring quality than 



metrics, and they should be more thoroughly investigated.  

Results  show that  GA does  improve  the  initial  packaging,  by  60-90 % to  the  actual  

initial packaging and by 5-43% compared to a packaging that contains two jars, “used” 

and “unused”, and  by 13-23% compared to the preliminary best solution.  When delay 

increases, the GA optimization starts to be highly more useful than the preliminary 

optimal solution, while the “used” packaging becomes better.  However, for network 

delay value lower or slightly higher than the value used for the optimization process, the 

GA optimization is always the best packaging option. It is found that even when there is a 

large corpus of classes used in all scenarios, a cost reduction is still possible, even if in 

such a case the preliminary optimized solution is already a good one. The benefits of the 

proposed approach depend strongly on several factors, such as the amount of collected 

dynamic information, the number of scenarios subjected to analysis, the size of the 

common corpus and the networks delay. However, the presented approach and its results 

can be binded to several other software design related questions, thus raising questions on 

how the different promising results can be combined so that even more complex 

problems can be solved with search-based methods.                                                                                                                                                                                                                                                                  

Gold et al. [2006] experiment with applying search techniques to integrate boundary 

overlapping concept assignment. Hill climbing and GA approaches are investigated. The 

fixed boundary Hypothesis Based Concept Assignment (HBCA) [Gold, 2001] technique 

is compared to the new algorithms. As program comprehension is extremely valuable 

when (re-)designing software architecture and locating (and understanding) overlapping 

concepts is one of the most demanding tasks in comprehension, automating this task 

would significantly save resources in program maintenance.  

A  concept  may  take  the  form  of  an  action  or  object.  For  each  concept  found  from  

source code, a hypothesis is generated and stored. The list of hypotheses is ordered 

according  to  the  position  of  the  indicators  in  the  source  code.  The  input  for  search  

problem is the hypothesis list. The hypothesis list is given by application of HBCA. The 

problem is defined as searching for segments of hypothesis in each hypothesis list 

according to predetermined fitness criteria such that each segment has the following 

attributes: each segment contains one or more neighboring hypotheses and there are no 

duplicate segments.  

A chromosome is made up of a set of one or more segments representations, and its 

length  can  vary.  A  segment  is  encoded  as  a  pair  of  values  (locations)  representing  the  

start and end hypothesis of the hypothesis list. All segments with the same winning 

concept that overlap are compared and all but the fittest segment are removed from the 



solution. Tournament selection is used for crossover and mutation. Mutation in GA 

randomly replaces any hypothesis location within any segment with any other valid 

hypothesis location with the concern for causing the search to become overly 

randomized. In HC the mutation generates new solutions by selecting a segment and 

increasing or decreasing one of the values by a single increment. Selecting different 

mutations for GA and HC is noteworthy: this choice is partially justified by the authors 

by the fact that mutation is only the secondary operation for the GA, and transformations 

are primarily done with the crossover. The chosen mutation operator for the GA seems to 

ensure diversity within the population. The proposed HC takes advantage of the 

crossover for GA for the restart mechanism, which recombines all segments to create new 

pairs of location values, which are then added to the current solution if their inclusion 

results in an improvement to the fitness value. Crossover utilizes the location of the 

segments, where only segments of overlapping locations are recombined and the 

remaining are copied to the new chromosome.  

The fitness criteria’s aims are finding segments of strongest evidence and binding as 

many of the hypotheses within the hypothesis list as possible without compromising the 

segment’s strength of evidence. The segmentation strength is a combination of the inner 

fitness and the potential fitness of each segment. The inner fitness fiti of  a  segment  is  

defined as  signali – noisei, where signali is the number of hypotheses within the segment 

that contribute to the winner, and noisei represents the number of hypotheses within the 

segment that do not contribute to the winner. In addition, each segment is evaluated with 

respect to the entire segment hypothesis list: the potential segment fitness, fitp, is 

evaluated by taking account of signalp, the number of hypotheses outside of the segment 

that could contribute to the segment’s winning concept if they were included in the 

segment. The potential segment fitness is thus defined as fitp = signali – signalp. The 

overall segment fitness is defined as segfit = fiti + fitp. The total segment fitness is a sum 

of segment fitnesses. The fitness is normalized with respect to the length of the 

hypothesis list.  The chosen fitness function seems quite simple when broken down to 

actual calculations. This further confirms the findings by, e.g., Lutz [2001] that simple 

approaches tend to have promising results, as there is less room to err. 

An empirical study is used. Results are also compared to sets of randomly generated 

solutions for each hypothesis list, created according to the solutions structure.  The results 

from GA, HC and random experiment are compared based on their fitness values. The 

GA fitness distribution is the same as those of HC and random, but achieves higher 

values. HC is clearly inferior. Comparing GA, HC and HBCA shows a lack of solutions 



with low Signal to Noise ratios for GA and HC when compared to HBCA. GA is 

identified as the best of the proposed algorithms for concept assignment which allow 

overlapping concept boundaries. Also, the HC results are somewhat disappointing as they 

are found to be significantly worse than GA and random solutions. However, HC 

produces stronger results than HBCA on the signal to size measure. The GA and HC are 

found to consistently produce stronger concepts than HBCA. It might be worth studying 

how  the  HC  would  have  performed  if  it  used  the  same  mutation  operator  as  the  GA.  

Although the GA primarily used the crossover, which was used as a basis for the HC, the 

GAs large population makes the application of this operator significantly more different 

than with HC.   

Goldsby and Cheng [2008] and Goldsby et al. [2008] study the digital evolution of 

behavioral models for autonomic systems with Avida. It is difficult to predict the 

behavior of autonomic systems before deployment, and thus automatic generation of 

behavioral models greatly eases the task of software engineers attempting the 

comprehend the system. In digital evolution a population of self-replicating computer 

programs (digital organisms) exists in a computational environment and is subject to 

mutations and selection. In this approach each digital organism is considered as a 

generator for a UML state diagram describing the systems behavior. 

Each organism is  given instinctual  knowledge of  the  system in  the  form of  a  UML 

class diagram representing the system structure, as well as optional seed state diagrams. 

A genome is thus seen as a set of instructions telling how the system should behave. The 

genome is also capable of replicating itself. In fact, in the beginning of each population 

there exists only one organism that only knows how to replicate itself, thus creating the 

rest of the population. Mutations include replacing an instruction, inserting an additional 

instruction and removing an instruction from the genome. As genomes are self-

replicating, crossover is not used in order to create offspring. Here the choice of UML 

state diagrams is clever, as it visualizes the behavior in quite a simple manner, making 

the interpretation of the result easy. Also the choice of encoding conforms well to the 

chosen visualization method. However, the actual encoding of rules into the genome is 

not simple, and requires several different alphabets and lists of variables. 

The  fitness  or  quality  of  an  organism is  evaluated  by  a  set  of  tasks,  defined by the  

developer. Each task that the behavioral model is able to execute increases its merit. The 

higher a merit an organism has, the more it will replicate itself, eventually ending up 

dominating the population.  This is yet another incident where the fitness is measured 

with something else than traditional metrics. 



A behavioral model of an intelligent robot is used as a case study for Avida. Through 

a 100 runs of Avida, seven behavioral models are generated for the example system. 

Post-evolution analysis includes evaluation with the following criteria: minimum states, 

minimum transitions, fault tolerance, readability and tolerance. After the analysis, one of 

the models meets all but one criterion (safety) and three models meet three of the five 

criteria.  One model does not meet any of the additional criteria. Thus, the produced 

behavioral models would seem to be of quality in average. 

Lutz [2001] uses a measure based on an information theoretic minimum description 

length principle [Shannon, 1948] to compare hierarchical decompositions. This measure 

is  furthermore  used  as  the  fitness  function  for  the  GA  which  explores  the  space  of  

possible hierarchical decompositions of a system. Although this is very similar to 

software clustering, this approach is considered as architecture design as it does not need 

an initial clustering to improve, but designs the clustering purely based on the underlying 

system and its dependencies. 

In hierarchical graphs links can represent such things as dependency relationships 

between the components of control-flow or data-flow. In order to consider the best way 

to hierarchically break a system up into components, one needs to know what makes a 

hierarchical modular decomposition (HMD) of a system better than another. Lutz takes 

the view that the best HMD of a system is the simplest. In practice this seems to give rise 

to HMDs in which modules are highly connected internally (high cohesion) and have 

relatively few connections which cross module boundaries (low coupling), and thus 

seems to achieve a principled trade-off between the coupling and cohesion heuristics 

without actually involving either. This also suggests that high quality architectures can 

effectively be identified through subjective inspection. A human architect may quite 

easily say if one design appears simpler than another, while calculation cohesion and 

coupling values is more time consuming and complex.  

For the GA, the genome is a HMD for the underlying system. The chromosomes in 

the initial population are created by randomly mutating some number of times a 

particular “seed” individual. The initial seed individual is constructed by modularizing 

the initial system. Three different mutation operations are used that can all be thought of 

as operations on the module tree for the HMD. They are: 1. moving a randomly chosen 

node  from  where  it  is  in  the  tree  into  another  randomly  chosen  module  of  the  tree,  2.  

modularize the nodes of some randomly chosen module, i.e., create a new module 

containing the basic entities of some module, and 3. remove a module “boundary”. The 

crossover operator resembles a tree-based crossover operation used in genetic 



programming and is most easily considered as a concatenating operation on the module 

trees of the two HMDs involved. However, legal solutions are not guaranteed, and illegal 

ones are repaired.  

The tree-like structure is significantly more complex than usual genome encodings for 

a  GA.  This  is  of  course  in  line  with  the  demands  of  the  problem of  finding an  optimal  

HMD, but also reflects to the understandability of the chosen operations. The operations 

are difficult (if not impossible) to completely understand without visualization, and 

difficult corrective operations are needed in order to keep the system structure intact. The 

analogy between the chosen tree-operations and actual effects to the architecture is also 

quite difficult to grasp. 

The fitness is given as 1/complexity. Among other systems, a real software design is 

used for testing. A HMD with significantly lower complexity than the original was found 

very  reliably,  and the  system could  group the  various  components  of  the  system into  a  

HMD exhibiting a very logical (in terms of function) structure. These results validate that 

using simplicity as a fitness function is justified. 

3.1.3 Summarizing Remarks 

Search-based approaches to software architecture design is clearly a diverse field, as 

the studies presented solve very different issues relating to OO software architecture 

design and program comprehension. Some consensus can be found in the very basics: 

solving the class responsibility assignment problem, applying design choices to create an 

architecture and finding an optimal modularization (Lutz [2001] creates a modularization, 

Kim and Park [2009] attempt to find an optimal set of components and Bodhuin et al. 

[2007] attempt to find optimal sub-architectures). However, even within these sub-areas 

of OO design, the approaches are quite different, and practically no agreement can be 

found when studying the chosen encodings, operations or fitness function. What is 

noticeable, however, is that several approaches to quite different problems within this 

area use a fitness function that is not based on metrics. This highlights the need for better 

validation of using metrics in evaluating the quality of software, and especially software 

architectures. Many metrics need source code and very detailed information; this alone 

suggests that they are not suitable for this higher level problem.  



 

Table 1. Studies in search-based object-oriented software architecture design 

Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments 
Bowman et al. 
[2008] 

Class structure 
design is (semi-) 
automated 

Class diagram as 
methods, 
attributes and 
associations 

Integer vector and 
a dependency 
matrix 

Randomly change the 
class of method or 
attribute 

Standard one-point Cohesion and 
coupling 

Optimal class 
structure 

Comparison between 
different algorithms 

Simons and 
Parmee [2007a; 
2007b; 2008] 

Class structure 
design is automated  

Use cases; data 
assigned to 
attributes and 
actions to 
methods 

A design solution 
where attributes 
and methods are 
assigned to classes 

An attribute and a 
method are moved 
from one class to 
another 

Attributes and 
methods of parents 
are swapped 
according to class 
position 

Cohesiveness of 
methods (COM) 

Basic class 
structure for 
system. 

Design solutions 
encoded directly into a 
programming 
language 

Amoui et al. 
[2006] 
 

Applying design 
patterns; high level 
architecture design 

Software system Chromosome is a  
collection of 
supergenes, 
containing 
information of 
pattern 
transformations 

Implementing design 
patterns 

Single-point 
crossovers for both 
supergene level  
and chromosome 
level, with 
corrective function 

Distance from 
main sequence 

Transformed 
system, design 
patterns used as 
transformations to 
improve 
modifiability 

New concept of 
supergene used 

Räihä et al. 
[2008a] 

Automating 
architecture design  

Responsibility 
dependency 
graph 

Chromosome is a 
collection of 
supergenes, 
containing 
information of 
responsibilities 
and design 
patterns 
 
 

Mutations apply 
architectural design 
patterns and styles 

A standard one-
point  crossover 
with corrective 
function 

Efficiency, 
modifiability and 
complexity  

UML class 
diagram depicting 
the software 
architecture 

 



Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments 
Räihä et al. 
[2008b] 

Automating CIM-
to-PIM model 
transformations 

Responsibility 
dependency 
graph and 
domain model 
(CIM model) 

Chromosome is a 
collection of 
supergenes, 
containing 
information of 
responsibilities 
and design 
patterns 

Mutations apply 
architectural design 
patterns and styles 

A standard one-
point crossover 
with corrective 
function 

Efficiency, 
modifiability and 
complexity  

UML class 
diagram depicting 
the software 
architecture (PIM 
model) 

 

Räihä et al. 
[2009] 

Automating 
architecture design 

Responsibility 
dependency 
graph and 
domain model  

Chromosome is a 
collection of 
supergenes, 
containing 
information of 
responsibilities 
and design 
patterns 
 

Mutations apply 
architectural design 
patterns and styles 

A standard one-
point crossover 
with corrective 
function 

Efficiency, 
modifiability, 
complexity and 
modifiability 
related scenarios 

UML class 
diagram depicting 
the software 
architecture 

 

Kessentini et 
al. [2008] 

Using PSO for 
model 
transformations  

Source model, 
target model and  
mapping blocks  

Integer vector N/A N/A Number of source 
model constructs 
that can be 
transformed 

Optimal 
transformations 

Particle Swarm 
Optimization (PSO) 
used as search 
algorithm 

Kim and 
Park[2009] 

Dynamic selection 
of software 
components 

Softgoal 
interdependency 
graph,  decision 
variables 

String of integers 
representing 
decision variables 

Goes through each 
gene and changes the 
digit according to 
mutation probability  

Two-point 
crossover 

Quality attributes 
given by user 

Optimal 
architectural 
instance from the 
set of all instances 

 

Bodhuin et al. 
[2007] 

Automating class 
clustering in jar 
archives 

A grouping of 
classes of a 
system 

An integer array, 
each gene  is a 
cluster of classes 
allocated to the jar 
represented by 
integer 

Changes the 
allocation of a class 
cluster to another jar 
archive 

Standard one-point Download cost of 
jar archive 

Optimal 
packaging; finding 
the subsets of 
classes most likely 
to be used together 
(to be placed in 
same jar archive) 

 



Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments 
Gold et al. 
[2006] 

Using GA in the 
area of concepts 

Hypothesis list 
for concepts  

One or more 
segment 
representations 

A hypothesis location 
is randomly replaced 
within a segment pair 

Segment pairs of 
overlapping 
locations are 
combined, rest 
copied 

Strongest evidence 
for segments   and 
hypothesis binding  

Optimized concept 
assignment 

Hill climbing used as 
well as GA 
 
 
 
 
 

Goldsby and 
Chang [2008]; 
Goldsby et al. 
[2008] 

Designing a system 
from a behavioral 
point of view 

A class diagram, 
optional state 
diagram 

A set of behavioral 
instructions 

Changes, removes or 
adds an instruction  

Self-replication Number of 
executed tasks 

UML state diagram 
giving the 
behavioral model 
of system 

No actual 
evolutionary 
algorithm used, but a 
platform that is “an 
instance of evolution” 

Lutz [2001] Information theory 
applied in software 
design; high-level 
architecture design  

Software system Hierarchical 
modular 
decomposition 
(HMD)  

Three mutations 
operating the module 
tree for the HMD 

A variant of  tree-
based crossovers, 
as used in GP, with 
corrective function 

1/complexity Optimal 
hierarchical 
decomposition of 
system 

 



 

 

 

3.2 Service-oriented architecture design 

3.2.1. Basics 

Web services are rapidly changing the landscape of software engineering, and service-

oriented architectures (SOA) are especially popular in business. One of the most 

interesting challenges introduced by web services is represented by Quality of Service 

(QoS)-aware composition and late-binding. This allows binding, at run-time, a service-

oriented system with a set of services that, among those providing the required features, 

meet some non-functional constraints, and optimize criteria such as the overall cost or 

response time. Hence, QoS-aware composition can be modeled as an optimization 

problem. This problem is NP-hard, which makes it suitable for meta-heuristic search 

algorithms. For more background on SOA, see, e.g., Huhns and Sting [2005]. The 

following subsection describes several approaches that have used a GA to deal with 

optimizing service compositions. Summarizing remarks on the different approaches are 

given in the end, and the fundamentals of each approach are collected in Table 2. 

3.2.2. Approaches  

Canfora et al. [2005a] propose a GA to optimize service compositions. The approach 

attempts to quickly determine a set of concrete services to be bound to the abstract 

services composing the workflow of a composite service. Such a set needs both to meet 

QoS constraints, established in the Service Level Agreement (SLA), and to optimize a 

function of some other QoS parameters.  

A composite service S is  considered  as  a  set  of  n abstract services {s1, s2,…, sn}, 

whose structure is defined through some workflow description language. Each 

component sj can  be  bound  to  one  of  the  m concrete services, which are functionally 

equivalent. Computing the QoS of a composite service is made by combining 

calculations for quality attributes time, cost, availability, reliability and customer 

attraction. Calculations take into account Switch, Sequence, Flow and Loop patterns in 

the workflow.  

The genome is encoded as an integer array whose number of items equals to the 

number of distinct abstract services composing the services. Each item, in turn, contains 

an index to the array of the concrete services matching that abstract service. The mutation 

operator randomly replaces an abstract service with another one among those available, 

while the crossover operator is the standard two-point crossover. This can be seen as an 



attempt to preserve building blocks, i.e., sequences of optimal service bindings. Abstract 

services for which only one concrete service is available are taken out from the GA 

evolution.  

The fitness function needs to maximize some QoS attributes, while minimizing 

others. In addition, the fitness function must penalize individuals that do not meet the 

constraints and drive the evolution towards constraint satisfaction, the distance from 

which is denoted by D.  The fitness function is f = (w1Cost + w2Time)/ (w3Availability + 

w4Reliability) + w5D.  QoS attributes are normalized in the interval [0, 1). Although the 

fitness function seems simple in this way, the actual calculations behind the different 

attributes are complex. The values are achieved by calculating the quality value for each 

attribute  for  each  pattern  in  the  workflow.  The  actual  functions  to  define  how  these  

values are calculated are not defined, and it would be interesting to see how, e.g., 

availability is achieved, as this would show the amout of information needed as input to 

calculate the fitness value. The weights w1,…,w5 are positive reals. Normalizing the 

fitness evaluators ensures that the weights have the true effect to the fitness value that 

they are meant to have. 

A dynamic penalty is experimented with, so that w5 is increased over the generations. 

An elitist GA is used where the best two individuals are kept alive across generations. 

Roulette wheel method is used for selection.  

The GA is able to find solutions that meet the constraints, and optimizes different 

parameters (here cost and time). Results show that the dynamic fitness does not 

outperform the static fitness. Even different calibrations of weights do not help.  The 

convergence times of GA and Integer Programming (IP) [Garfinkel and Nemhauser, 

1972] are compared for the (almost) same achieved solution. The results show that when 

the number of concrete services is small, IP outperforms GA. For about 17 concrete 

services, the performance is about the same. After that, GA clearly outperforms IP. Thus, 

as SOA is most useful when the amount of services is large, it would seem that GA is a 

worthwhile solution to optimizing the service-binding. 

Canfora et al. [2005b] have continued their work by using a GA in replanning the 

binding between a composite service and its invoked services during execution. 

Replanning is triggered once it can be predicted that the actual service QoS will differ 

from initial estimates. After this, the slice, i.e., the part of workflow still remaining to be 

executed, is determined and replanned. The used GA approach is the same as earlier, but 

additional algorithms are used to trigger replanning and computing workflow slices. The 

GA is used to calculate the initial QoS-values as well as optimizing the replanned slices. 



Experiments were made with realistic examples and results concentrate on the cost 

quality factor. The algorithms managed to reduce the final cost from the initial estimate, 

while response time increased in all cases. The authors end with a note that the trade-off 

between response time and cost quality factors need to be examined thoroughly in the 

future. 

Jaeger and Mühl [2007] discuss the optimization problem when selecting services 

while considering different QoS characteristics. A GA is implemented and tested on a 

simulation environment in order to compare its performance with other approaches. 

An individual in the implemented GA represents an assignment of a candidate for 

each task and can be represented by a tuple. A population represents a set of task-

candidate assignments. The initial population is generated arbitrarily from possible 

combinations of tasks and candidates. Mutation changes a particular task-candidate 

assignment of an individual. Crossover is made by combining two particular task-

candidate assignments to form new ones and depends on the fitness value. The fitness 

value is computed based on the QoS resulting from the encoded task-services assignment. 

Jaeger and Mühl use the same fitness function as Canfora et al. [2005a; 2005b] in order 

to get comparable results. 

A trade-off couple between execution time and cost is defined as follows: the 

percentage a, added to the optimal execution time, is taken to calculate the percentage b, 

added to the optimal cost, with a + b = 100. Thus, the shorter the execution time is, the 

worse will be the cost and vice versa. The constraint is determined to perform the 

constraint selection on the execution time first. The aggregated cost for the composition 

is increased by 20% and then taken as the constraint that has to be met by the selection. 

This appears as an attempt to answer the problem noted by Canfora et al. [2005b] in their 

later study.  

Several variations of the fitness function are possible. Jaeger and Mühl use a 

multiplication of the fitness to make the difference between weak and strong fitnesses 

larger. When the multiplying factor is 4, it achieves higher QoS values than those with a 

smaller factor; however, a factor of 8 does not achieve values as high. The scaled 

algorithm performed slightly better than the one with a factor of 2, and behaved similarly 

to the weighted algorithm. The penalty factor was also investigated, and it was varied 

between 0.01 and 0.99 in steps of 0.01. The results show that a factor of 0.5 would result 

in few cases where the algorithm does not find a constraint meeting solution. On the other 

hand, solutions below 0.1 appear too strong, as they represent an unnecessary restriction 

of the GA to evolve further invalid solutions. These different experiments on some very 



basic parameters demonstrate the difficulty of optimizing the GA: even the more simple 

choices are anything but straightforward.  

The GA offers a good performance at feasible computational efforts when compared 

to, e.g., bottom-up heuristics. However, this approach shows a large gap when compared 

to the resulting optimization of a branch-and-bound approach or to exhaustive search. It 

appears that the considered setup of values along with the given optimization goals and 

constraints prevent a GA from efficiently identifying very near optimal solutions. 

Zhang et al. [2006] implement a GA that, by running only once, can construct the 

composite service plan according to the QoS requirements from many services 

compositions. This GA includes a special relation matrix coding scheme (RMCS) of 

chromosomes proposed on the basis of the characters of web services selection. 

By means of the particular definition, it can simultaneously represent all paths of 

services selection. Furthermore, the selected coding scheme can simultaneously denote 

many web service scenarios that the one dimension coding scheme can not express at one 

time.  

According to the characteristic of the services composition, the RMCS is adopted 

using a neighboring matrix. In the matrix, n is the number of all tasks included in services 

composition. The elements along the main diagonal for the matrix express all the abstract 

service nodes one by one and are arranged from the node with the smallest code number 

to the node with the largest code number. The objects of the evolution operators are all 

elements along the main diagonal of the matrix. The chromosome is made up of these 

elements. The other elements in the matrix are to be used to check whether the created 

new chromosomes by the crossover and mutation operators are available and to calculate 

the QoS values of chromosomes. This appears to mainly combine the integer array and 

the table of services linked to it, used by Canfora et al. [2005a], into one data structure. 

The tuple representation chosen by Jaeger and Mühl [2007] does not seem that different 

either, as a tuple can basically contain the information of what is represented by a column 

and a row in a matrix.  

The policy for initial population attempts to confirm the proportion of chromosomes 

for every path to the size of the population. The method is to calculate the proportion of 

compositions of every path to the sum of all compositions of all paths. The more there are 

compositions of one path, the more chromosomes for the path are in the population.  

The value of every task in every chromosome is confirmed according to a local 

optimized method. The larger the value of QoS of a concrete service is, the larger the 

probability to be selected for the task is. The roulette wheel selection is used to select 



concrete services for every task.  

The probability of mutation is for the chromosome instead of the locus. If mutation 

occurs, the object path will be confirmed firstly whether it is the same as the current path 

expressed by the current chromosome. If the paths are different, the object path will be 

selected from all available paths except the current one. If the object is itself, the new 

chromosome will be checked whether it is the same as the old chromosome. Same 

chromosome will result in the mutation operation again. If the objects are different paths 

from the current path, a new chromosome will be related on the basis of the object path.  

A check operation is used after the invocations of crossover and mutation. If the 

values of the crossover loci in two crossover chromosomes are all for the selected web 

services, the new chromosomes are valid. Else, the new chromosomes need to be checked 

on the basis of the relation matrix. Mutation checks are needed if changed from selected 

web service to a certain value or vice versa. 

Zhang  et  al.  compared  the  GA  with  RMCS  to  a  standard  GA  with  the  same  data,  

including workflows of different sizes. The used fitness function is as defined by Canfora 

et al. [2004]. The coding scheme, the initial population policy and the mutation policy are 

the differences between the two GAs. Results show that the novel GA outperforms the 

standard one in terms of achieved fitness values. As the number of tasks grows, so does 

the difference between fitness values (and performance time, in the favor of the standard 

solution) between the two GAs. The weaknesses of this approach are thus long running 

time and slow convergence. Tests on the initial population and the mutation policies 

show that  as  the  number  of  tasks  grows,  the  GA with  RMCS outperforms the  standard  

one more clearly.  Thus it would seem that combining the information into a heavier data 

structure, a matrix, increases execution time significantly. Also, as noted that the 

improvement fitness values with the novel GA for larger task sets is achieved by testing 

other improvement than the encoding, the true achievements are the ones that really differ 

from previous approaches, rather than the new representation. Tests on the coding 

scheme show that the novel matrix approach only achieves noticeably better fitness 

values when the number of tasks is increased (although the improvement is not linear): 

the fitness values for 10 tasks only differ by less than 1 %, the fitness values for 25 tasks 

differ by approximately 30%, and the fitness values for 30 tasks by approximately 20%. 

Another interesting point is the choice of parameters: Zhang et al. use 10 000 generations 

and 400 individuals for a population in their tests. However, the standard GA seems to 

achieve its optimum after 1000 generations and the one with the novel encoding after 

3000 generations. Thus one wonders the need for such unusual parameter selections. 



Zhang et al. report that experiments on QoS-aware web services selection show that 

the GA with the presented matrix approach can get a significantly better composite 

service  plan  than  the  GA  with  the  one  dimension  coding  scheme,  and  that  the  QoS  

policies play an important role in the improvement of the fitness of GA. 

Su et al. [2007] continue the work of Zhang et al. [2006] by proposing improvements 

for the fitness function and mutation policy. An objective fitness function 1 (OF1) is first 

defined as a sum of quality factors and weights, providing the user with a way to show 

favoritism between quality factors. The sum of positive quality factors is divided by the 

sum of negative quality factors. The second fitness function (OF2) is a proportional one 

and takes into account the different ranges of quality value. The third fitness function 

(OF3) combines OF1 and OF2, producing a proportional fitness function that also 

expresses the differences between negative and positive quality factors. Thus Su et al. 

seem to have noticed the problems with defining the fitness functions, as the fitness 

function actually used by Canfora et al. [2005a; 2005b] includes similar improvements.  

Four different mutation policies are also inspected. Mutation policy 1 (MP1) operates 

so that the probability of the mutation is tied to each locus of a chromosome. Mutation 

policy 2 (MP2) has the mutation probability tied to the chromosomes. Mutation policy 3 

(MP3) has the same principle as MP1, except that now the child may be identical to the 

parent.  Mutation policy 4 (MP4) has the probability tied to each locus, and has an equal 

selection probability for each concrete service and the “0” service. 

Experiments with the different fitness functions suggest that OF3 clearly outperforms 

OF1  and  OF2  in  terms  of  the  reached  average  maximum  fitness  value.   This  is  quite  

unsurprising, as OF3 is the most developed fitness function. Experiments on the different 

mutation policies show that MP1 gains the largest fitness values while MP4 performs the 

worst. 

Cao et al. [2005a; 2005b] present a GA that is utilized to optimize a business process 

composed of many service agents (SAg). Each SAg corresponds to a collection of 

available web services provided by multiple-service providers to perform a specific 

function. Service selection is an optimization process taking into account the 

relationships among the services. Better performance is achieved using GA compared to 

using local service selection strategy.  

A service selection model using GA is proposed to optimize a business process 

composed of many service agents. A SAg corresponds to a collection of available web 

services provided by multiple service providers to perform a specific function. When 

only measuring cost, the service selection is equivalent to a single-objective optimization 



problem.  

An individual is generated for the initial population by randomly selecting a web 

service for each SAg of the services flow, and the newly generated individual is 

immediately checked whether the corresponding solution satisfies the constraints. If any 

of  the  constraints  is  violated,  then  the  generated  individual  is  regarded  as  invalid  and  

discarded. The roulette wheel selection is used for individuals to breed. 

Mutation bounds the selected SAg to a different web service than the original one. 

After an offspring is mutated, it is also immediately checked whether the corresponding 

solution is valid. If any constraints are violated, then the mutated offspring is discarded 

and the mutation operation is retried.  

A traditional single-point crossover operator is used to produce two new offspring. 

After each crossover operation, the offspring are immediately checked whether the 

corresponding solutions are valid. If any of the constraints is violated, then both offspring 

are discarded and the crossover operation for the mated parents is retried. If valid 

offspring still cannot be obtained after a certain number of retries, the crossover operation 

for these two parents is given up to avoid a possible infinite loop.  

Cao et al. take cost as the primary concern of many business processes. The overall 

cost of each execution path can always be represented by the summation cost of its subset 

components. For GA, integer encoding is used. The solution to service selection is 

encoded into a vector of integers. The fitness function is defined as f = U – (costs of 

service flows), if cost<U, and otherwise 0. The constant U should  be  selected  as  an  

appropriate positive number to ensure the fitness of all good individuals get a positive 

fitness value in the feasible solution space. On the other hand, U can also be utilized to 

adjust  the  selection  pressure  of  GA.  This  is  a  clever  approach  to  give  the  developer  a  

simple way to adjust the selection process and appreciation of different solutions.  

In  the  case  study  the  best  fitness  of  the  population  has  a  rapid  increase  at  the  

beginning of the evolution process and then convergences slowly. It means the overall 

cost of the SAg is generally decreasing with the evolution process. For better solutions, 

the whole optimization process can be repeated for a number of times, and the best one in 

all final solutions is selected as the ultimate solution to the service selection problem. 

3.2.3 Summarizing Remarks 

Contrary to the studies relating to OO architecture design, the approaches to apply search 

algorithms in SOA design are extremely similar. Nearly all studies use the same fitness 

functions or they have made only small modifications to it. Also the basic representation 

of the problem is very similar; although different definitions are used, the underlying 



problem is always linking concrete services with abstract services. Improvements have 

been attempted by creating different initial population and mutation policies; note, that 

the actual mutation is still the same, but the way the mutation is applied is changed. 

Additionally, there is no consensus in the encoding of the solution, although the problem 

is the same, and some tests have been made to compare different encoding options. Thus 

the main questions in this area seem to be: are there other problems in SOA where search 

algorithms could be applied to, and can a truly optimal encoding be found to the currently 

studied problem? Additionally, the fitness function deserves much more attention and 

testing, as the developers of the fitness function used by all the studies say themselves 

that the relationships and trade-offs between different quality attributes need to be 

carefully studied. Results with dynamic fitness functions also interestingly did not 

increase the fitness value. Räihä et al. [2008a; 2008b] experimented with dynamic 

mutations, but discarded them in their latest study [Räihä et al., 2009]. This would 

suggest that using dynamicity with GAs is a complex problem, demanding well-defined 

operations and firm justifications for the use of such improvements before adding them to 

the experiments.  

 

 

 



Table 2. Studies in search-based service-oriented software architecture design 

Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments 

Canfora et al. 
[2005a] 

Service 
composition with 
respect to QoS 
attributes 

Sets of abstract 
and concrete 
services 

Integer array, 
whose size is the 
number of abstract 
services, each item 
contains an index 
to array of 
concrete services 

Randomly 
replaces an 
abstract service 
with another 

Standard two-
point crossover 

Minimize cost and 
time, maximize 
availabity and 
reliabiliy, meet 
constraints, with 
penalty 

Optimized service 
composition 
meeting 
constraints, 
concrete services 
bound to abstract 
services 

A dynamic penalty 
was experimented 
with 

Canfora et al. 
[2005b] 

Replanning during 
execution time 

Sets of abstract 
and concrete 
services 

Integer array, 
whose size is the 
number of abstract 
services, each item 
contains an index 
to array of 
concrete services 

Randomly 
replaces an 
abstract service 
with another 

Standard two-
point crossover 

Minimize cost and 
time, maximize 
availability and 
reliability, meet 
constraints 

Optimized service 
composition 
meeting 
constraints, 
concrete services 
bound to abstract 
services 

GA used to 
calculate initial 
QoS-value and 
QoS-values 
inbetween: 
replanning is 
triggered by other 
algorithms 

Jaeger and 
Mühl [2007] 

Service 
assignment with 
respect to QoS 
attributes 

Selection of 
services and tasks 
to be carried out 

A tuple 
representing an 
assignment of a 
candidate for a 
task 

Changes an 
individual task-
candidate 
assignment 

Combining task-
candidate 
assignments 

Minimize cost and 
time, maximize 
availabity and 
reliabiliy, meet 
constraints, with 
penalty 

Tasks assigned to 
services 
considering QoS 
attributes 

A trade-off couple 
between execution 
time and cost is 
defined 

 

 

 



Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments 

Zhang et al. 
[2006] 

Task assignment 
with relation to 
QoS attributes 

Selections of tasks 
and services 

Relation matrix 
coding scheme 

Standard, with 
corrective function 

Standard, with 
corrective function 

Minimize cost and 
time, maximize 
availability and 
reliability, meet 
constraints 

Tasks assigned to 
services 
considering QoS 
attributes 

Initial population 
and mutation 
policies defined 

Su et al. [2007] Task assignment 
with relation to 
QoS attributes 

Selections of tasks 
and services 

Relation matrix 
coding scheme 

Standard, with 
corrective function 

Standard, with 
corrective function 

Minimize cost and 
time, maximize 
availability and 
reliability, meet 
constraints 

Tasks assigned to 
services 
considering QoS 
attributes 

Initial population 
and mutation 
policies defined 

Cao et al. 
[2005a; 2005b] 

Business process 
optimization 

Collections of web 
services  and 
service agents 
(SAg) composing 
a business process 

Integer encoding, 
assigning a SAg to 
a service 

Changes the 
service to which a 
SAg is bound with 
corrective function 

Standard one-
point, producing 
two new offspring 
with corrective 
function 

Cost Services assigned 
to service agents 

 

 

 

 



 

 

3.3. Other 

3.3.1 Background 

In addition to purely designing software architecture, there are some factors that should 

be optimized, regardless of the particularities of an architecture. Firstly, there is the 

reliability-cost tradeoff. The reliability of software is always dependent on its 

architecture, and the different components should be as reliable as possible. However, the 

more work is put to ensure reliability of different components, the more the software will 

cost. Wadekar and Gokhale [1999] implement a GA to optimize the reliability-cost 

tradeoff. Secondly, there are some parameters, e.g., tile sizes in loop tiling and loop 

unrolling, which can be optimized for all software architectures in order to optimize the 

performance of the software. Che et al. [2000] apply search-based techniques for such 

parameter optimization.   

3.3.2 Approaches 

Wadekar and Gokhale [1999] present an optimization framework founded on 

architecture-based analysis techniques, and describe how the framework can be used to 

evaluate cost and reliability tradeoffs using a GA. The methodology for the reliability 

analysis of a terminating application is based on its architecture. The architecture is 

described using the one-step transition probability matrix P of a discrete time Markov 

chain (DTMC).  

Wadekar and Gokhale assume that the reliabilities of the individual modules are 

known, with Ri denoting the reliability of module i. It is also assumed that the cost of the 

software consisting of n components, denoted by C, can be given by a generic expression 

of the form: C = C1(R1) + C2(R2) + … + Cn(Rn) where Ci is the cost of component i and 

the cost Ci depends monotonically on the reliability Ri. Thus, the problem of minimizing 

the software cost while achieving the desired reliability is the problem of selecting 

module reliabilities.  

A chromosome is a list of module reliabilities. Each member in the list, a gene, 

corresponds to a module in the software. The independent value in each gene is the 

reliability of the module it represents, and the dependent value is the module cost given 

by the module cost-reliability relation or a table known a priori. The gene values are 

changed to alter the cost and reliability of a software implementation represented by a 

particular chromosome.  

Mutation and crossover operations are standard. To avoid convergence to a local 



optimum as the population size increases, the mutation operation is used more frequently. 

A cumulative-probability based basic selection mechanism is used for selection. 

Chromosomes are ranked by fitness and divided into rank groups. The probability of 

selection of chromosomes varies uniformly according to their rank group where 

chromosomes in the first rank group have the largest probability. A new generation of the 

population is created by selecting pimax/2 chromosomes, where pimax is maximum 

population.  If  the  cost  reduction  is  less  than  or  equal  to  %  of  the  current  best  cost   

number of times, the GA terminates. During any generation cycle if the cost reduction is 

larger, the counter  is reset to 0. The reduction percentage factor  and the counter limit 

 are parameters. This approach is one of the few alternatives used to terminate a GA, as 

most studies presented use a straightforward generation number to terminate the 

execution of the algorithm. 

The fitness function is f =  (-K/lnR)/C , where K is a large positive constant. The 

fitness of solutions increases superlinearly with their reliability. The constant  is used to 

linearize the cost variation. The maximum fitness is directly proportional to K.   An  

intermediate value of gamma,  = 1.5, allows the GA to distinguish between low-cost and 

high-cost solutions, while selecting a sufficient number of high-cost high-reliability 

solutions, that may generate the optimal high-reliability low-cost solution.  

Wadekar and Gokhale compare the GA against exhaustive search. The results indicate 

that the GA consistently and efficiently provides optimal or very close to optimal designs, 

even though the percentage of such designs in the overall feasible design space is 

extremely small. The results also highlight the robustness of the GA. However, the small 

number of near-optimal solutions demonstrates that the fitness landscape is very 

complex, again conforming to the need to extensively investigate the cost-reliability 

trade-off. The case study results show how the GA can be effectively used to select 

components such that the software cost is minimized, for various cost structures. 

Che et al. [2003] present a framework for performance optimization parameter 

selection, where the problem is transformed into a combinatorial minimization problem. 

Many performance optimization methods depend on right optimization parameters to get 

good performance for an application. Che et al. search for the near optimal optimization 

parameters in a manner that is adaptable for different architectures. First a reduction 

transformation is performed to reduce the program’s runtime while maintaining its 

relative performance as regard to different parameter vectors. The near-optimal 

optimization parameter vector based on the reduced program’s real execution time is 

searched by GA, which converges to a near-optimal solution quickly. The reduction 



transformation reduces the time to evaluate the quality of each parameter vector.  

First some transformations are applied to the application, leaving the optimization 

parameter vector to be read from a configuration file. Second, the application is complied 

into executable with the native compiler. Then the framework repeatedly generates the 

configure file with a different parameter vector selected by search and measures the 

executable’s runtime.  

The chromosome encoding for the GA is a vector of integer values, with each integer 

corresponding to an optimization parameter of a solution. No illegal solutions are 

allowed. The population has a fixed size. A simple integer value mutation is implemented 

and an integer number recombination scheme is used for crossover. The fitness value 

reflects the duality of an individual in relation to other individuals. The linear rank-based 

fitness assignment scheme is used to calculate the fitness values. Selection for a new 

generation is made by elitism and roulette wheel method. Test results show that the GA 

can adapt to different execution environments automatically. For each platform, it always 

selects excellent optimization parameters for 80% programs. Results show that the 

number of individuals evaluated is far smaller than the size of solution space for each 

program on each platform. The optimization time is also small.  

 

4. SOFTWARE CLUSTERING 

4.1 Basics 

As  software  systems  develop  and  are  maintained,  they  tend  to  grow  in  size  and  

complexity. A particular problem is the growing number of dependencies between 

libraries, modules and components within the modules. Software clustering (or 

modularization) attempts to optimize the clustering of components into modules in such a 

way  that  there  are  as  many  dependencies  within  a  module  as  possible  and  as  few  

dependencies between modules as possible. This will enhance the understandability of a 

system, which in turn will make it more maintainable and modifiable. Also, fewer 

dependencies between modules usually results in better efficiency.  

As components or modules (depending on the level of detail in the chosen 

representation) can be depicted as vertices and dependencies between them as edges in a 

graph, the software clustering problem can be traced back to a graph partitioning 

problem, which is NP-complete. Genetic algorithms have successfully been applied to a 

general graph partitioning problem [Bui and Moon, 1996; Shazely et al., 1998], and thus, 

the related software clustering problem is most suitable for meta-heuristic search 

techniques.  



Although the basic problem is relatively simple to define and the goodness of a 

modularization can be calculated based on the goodness of the underlying graph 

partitioning, the nature of software systems provides challenges when defining the actual 

fitness function for the optimization algorithm. Also, not all necessary information can be 

encoded into a simple graph representation, and this presents another question to be 

answered when designing a search-based approach for modularization. The following 

subsection presents approaches using GAs, HC and SA to find good software 

modularizations, after which summarizing remarks are presented and the fundamentals of 

each study are collected in Table 3.    

 

4.2. Approaches 

Mancoridis et al. [1998] treat automatic modularization as an optimization problem and 

have  created  the  Bunch  tool  that  uses  HC  and  GA  to  aid  its  clustering  algorithms.  A  

hierarchical view of the system organization is created based solely on the components 

and relationships that exist in the source code. The first step is to represent the system 

modules and the module-level relationships as a module dependency graph (MDG). An 

algorithm is then used to partition the graph in a way that derives the high-level 

subsystem structure from the component-level relationships that are extracted from the 

source code. The goal of this software modularization process is to automatically 

partition the components of a system into clusters (subsystems) so that the resultant 

organization concurrently minimizes inter-connectivity while maximizing intra-

connectivity. This task is accomplished by treating clustering as an optimization problem 

where the goal is to maximize an objective function based on a formal characterization of 

the trade-off between inter- and intra-connectivity. Intuitively, intra-connectivity could be 

seen as cohesion and inter-connectivity as coupling.  

The clusters, once discovered, represent higher-level component abstractions of a 

system’s organization. Each subsystem contains a collection of modules that either 

cooperate to perform some high-level function in the overall system or provide a set of 

related services that are used throughout the system. Intra-connectivity Ai of cluster i 

consisting of Ni components and mi intra-edge dependencies as Ai = mi/Ni
2, bound 

between 0 and 1. Interconnectivity measures the connectivity between two distinct 

clusters. A high degree of inter-connectivity is an indication of poor subsystem 

partitioning. Inter-connectivity Eij between clusters i and j consisting of Ni and Nj 

components with eij inter-edge dependencies is 0, if i = j, and eij /  2*NiNj otherwise, 

bound between 0 and 1. Modularization Quality (MQ) demonstrates the trade-off 



between inter- and intra-connectivities, and it is defined for a module dependency graph 

partitioned into k clusters as 1/k* ji
i E
kk

A
,*

2
1*

1
 if k>1, or A1, if k = 1. 

The first step in automatic modularization is to parse the source code and build a 

MDG. A sub-optimal clustering algorithm works as the traditional hill climbing one by 

randomly selecting a better neighbor. The GA starts with a population of randomly 

generated initial partitions and systematically improving them until all of the initial 

samples converge. The GA uses the “neighboring partition” definition to improve an 

individual, and thus only contains one mutation operator, which is the same one as used 

with HC. Selection is done by randomly selecting a percentage of N partitions and 

improving each one by finding a better neighboring partition. A new population is 

generated by making N selections, with replacements for the existing population of N 

partitions. Selections are random and biased in favor of partitions with larger MQs. The 

algorithm continues until no improvement is seen for t generations, or until all of the 

partitions in the population have converged to their maximum MQ, or until the maximum 

number of generations has been reached.  The partition with the largest MQ in the last 

population is the sub-optimal solution.  

Experimentation with this clustering technique has shown good results for many of 

the systems that have been investigated. The primary method used to evaluate the results 

is to present an automatically generated modularization of a software system to the actual 

system designer and ask for feedback on the quality of the results. A case study was made 

and the results were shown to an expert, who highly appreciated the result produced by 

Bunch. 

The validation of the method is interesting, as the original designer of a system should 

be  the  one  who  knows  the  system  best,  and  thus  should  be  the  best  one  to  evaluate  

designs of the system. It is also encouraging that the designers were open and admitted 

that the tool was able to improve the design that they must have though of as optimal at 

some point. This indicates that there truly is a place for software design tools if the 

methods are well-defined enough.  

Doval et al. [1999] have implemented a more refined GA in the Bunch tool, as it now 

contains a crossover operator and more defined mutation and crossover rates. The 

effectiveness of the technique is demonstrated by applying it to a medium-sized software 

system. For encoding, each node in the graph (MDG) has a unique numerical identifier 

assigned to it. These unique identifiers define which position in the encoded string will be 



used to define that node’s cluster. Mutation and crossover operators are standard. A 

roulette wheel selection is used for the GA, complemented with elitism. Fitness function 

is based on the MQ metric. Crossover rate was 80% for populations of 100 individuals or 

fewer and 100% for populations of a thousand individuals or more, varying linearly 

between those values. Mutation rate is 0.004 log2(N). The MQ values for constant 

population and generation values were smaller, but fairly close, within 10% to values 

achieved with final values for population and generation.  

The affect of the population size to crossover rate is interesting, especially in the 

sense that with smaller populations the rate is smaller. Intuitively it would seem that with 

larger populations there would be a higher chance that the population contains some 

extremely poor individuals, the parts of which are not worthwhile to pass on to future 

generations. 

Mancoridis et al. [1999] have continued to develop the Bunch tool for optimizing 

modularization. Firstly, almost every system has a few modules that do not seem to 

belong to any particular subsystem, but rather, to several subsystems. These modules are 

called omnipresent, because they either use or are used by a large number of modules in 

the system. In the improved version users are allowed to specify two lists of omnipresent 

modules, one for clients and another for suppliers. The omnipresent clients and suppliers 

are assigned to two separate subsystems.  

Secondly, experienced developers tend to have good intuition about which modules 

belong to which subsystems. However, Bunch might produce results that conflict with 

this intuition for several reasons. This is addressed with a user-directed clustering feature, 

which enables users to cluster some modules manually, using their knowledge of the 

system design while taking advantage of the automatic clustering capabilities of Bunch to 

organize the remaining modules. Both user-directed clustering and the manual placement 

of omnipresent modules into subsystems have the advantageous side-effect of reducing 

the search space of MDG partitions. By enabling the manual placement of modules into 

subsystems, these techniques decrease the number of nodes in the MDG for the purposes 

of the optimization and, as a result, speed up the clustering process.  

Finally, once a system organization is obtained, it is desirable to preserve as much of 

it as possible during the evolution of the system. The integration of the orphan adoption 

technique into Bunch enables designers to preserve the subsystem structure when orphan 

modules are introduced. An orphan module is either a new module that is being 

integrated into the system, or a module that has undergone structural changes. Bunch 

moves orphan modules into existing subsystems, one at a time, and records the MQ for 



each of the relocations. The subsystem that produces the highest MQ is selected as the 

parent for the module. This process, which is linear with respect to the number of clusters 

in the partition, is repeated for each orphan module. Results from a case study support the 

added features. 

The chosen additions clearly stem from real needs when modularizing software. 

However,  two of  the  three  operations  increase  the  power  that  the  user  has  over  Bunch,  

thus decreasing the level of automation. Ideally the tool would be able to locate the 

omnipresent modules themselves, and gain the same level of expertise via a fitness 

function as experts, so that the user would not need to cluster anything beforehand. The 

last improvement, however, is truly beneficial, as hardly any software system stays intact 

during maintenance, and modules need to be added or modified. Automating the step of 

finding the optimal place for a new module is a big step towards the ideal of automating 

software design. 

Mitchell and Mancoridis [2002; 2006; 2008] have continued to work with the Bunch 

tool and have further developed the MQ metric. They define MQ as the sum of Clustering 

Factors for each cluster of the partitioned MDG. The Clustering Factor (CF) for a cluster 

is defined as a normalized ratio between the total weight of the internal edges and half of 

the total weight of external edges. The weight of the external edges is split in half in order 

to apply an equal penalty to both clusters that are connected by an external edge. If edge 

weights are not provided by the MDG, it is assumed that each edge has a weight of 1. The 

clustering factor is defined as 

 CF = intra-edges / (intra-edges + ½*  (inter-edges)).  

The measurement is adjusted, as Mitchell and Mancoridis argue that the old MQ 

tended to minimize the inter-edges that exited the clusters, and not minimize the number 

of inter-edges in general. The representation also supports weights. This is an interesting 

observation, as the original definition of the MQ metric makes no distinction to whether 

an edge exits a cluster or not. Thus, one could ask whether the MQ metric was the sole 

reason for the previous results, or if other improvements besides the newly defined MQ 

metric also had a significant effect on obtaining the better quality results. The addition of 

weights is also noteworthy, as previously the problem was not considered a multi-

objective one, while the addition of weights clearly indicates so.  

 The HC algorithm for the Bunch tool has also been enhanced. During each iteration, 

several options are now available for controlling the behavior of the hill-climbing 

algorithm. First, the neighboring process may use the first partition that it discovers with 

a larger MQ as the basis for the next iteration. Second, the neighboring process examines 



all neighboring partitions and selects the partition with the largest MQ as the basis for the 

next iteration. Third, the neighboring process ensures that it examines a minimum 

number of neighboring partitions during each iteration. For this, a threshold n is used to 

calculate the minimum number of neighbors that must be considered during each iteration 

of the process. Experience has shown that examining many neighbors during each 

iteration, so that n > 75%, increases the time the algorithm needs to converge to a 

solution. This is quite intuitive, as each examination increases the run time of the 

algorithm, and it is not likely that simply by examining several neighbors the algorithm 

would suddenly find a steeper climb (i.e., converge faster). 

It  is observed that as n increases so does the overall runtime and the number of MQ 

evaluations. However, altering n does  not  appear  to  have  an  observable  impact  on  the  

overall quality of the clustering results. A simulated annealing algorithm is also made for 

comparison. Although the simulated annealing implementation does not improve the MQ, 

it does appear to help reduce the total runtime needed to cluster each of the systems in 

this case study. 

Mitchell and Mancoridis [2003; 2008] continue their work by proposing an evaluation 

technique for clustering based on the search landscape of the graph being clustered. By 

gaining insight into the search landscape, the quality of a typical clustering result can be 

determined. The Bunch software clustering system is examined. Authors model the 

search landscape of each system undergoing clustering, and then analyze how Bunch 

produces results within this landscape in order to understand how Bunch consistently 

produces similar results. Studying the search landscape of any problem is very beneficial 

when attempting to understand why certain changes to, e.g., the fitness function or the 

operators, have the kind of effect they have on the results.  

The search landscape is modeled using a series of views and examined from two 

different perspectives. The first perspective examines the structural aspects of the search 

landscape, and the second perspective focuses on the similarity aspects of the landscape. 

The structural search landscape highlights similarities and differences from a collection 

of clustering results by identifying trends in the structure of graph partitions. The 

similarity search landscape focuses on modeling the extent of similarity across all of the 

clustering results.  

The results produced by Bunch appear to have many consistent properties. By 

examining views that compare the cluster counts to the MQ values, it can be noticed that 

Bunch tends to converge to one or two “basins of attraction” for all of the systems 

studied. Also, for the real software systems, these attraction areas appear to be tightly 



paced. An interesting observation can be made when examining the random system with 

a higher edge density: although these systems converged to a consistent MQ, the number 

of clusters varied significantly over all of the clustering runs. The percentage of intra-

edges in the clustering results indicates that Bunch produces consistent solutions that 

have a relatively large percentage of intra-edges. Also, the intra-edge percentage 

increases as the MQ values increase. It seems that selecting a random partition with a 

high intra-edge percentage is highly unlikely. Another observation is that Bunch 

generally  improves  the  MQ  of  real  software  systems  much  more  and  that  of  random  

systems with a high edge density. Number of clusters produced compared with number of 

clusters in the random starting point indicates that the random starting points appear to 

have a uniform distribution with respect to the number of clusters. The view shows that 

Bunch always converges to a “basin of attraction” regardless of the number of clusters in 

the random starting point.  

When examining the structural views collectively, the degree of commonality 

between the landscapes for the systems in the case study is quite similar. Since the results 

converge to similar MQ values, Mitchell and Mancoridis speculate that the search space 

contains a large number of isomorphic configurations that produce similar MQ values. 

Once  Bunch  encounters  one  of  these  areas,  its  search  algorithms  cannot  find  a  way  to  

transform the current partition into a new partition with higher MQ. The main 

observation is that the results produced by Bunch are stable. However, the true meaning 

of the result is that the Bunch actually gets stuck to a local optimum, and cannot find a 

way to escape that local optimum. This is naturally the problem for nearly all search 

algorithms: a true global optimum is not even expected to be found. Doing this kind of 

fitness landscape study should, however, aid in designing the algorithm so that it would 

have a better chance of escaping the local optimum, as the fitness landscape reveals what 

drives the algorithm to the particular basins of attractions that it chooses.  

In order to investigate the search landscape further Mitchell and Mancoridis measure 

the degree of similarity of the placement of nodes into clusters across all of the clustering 

runs to see if there are any differences between random graphs and real software systems. 

Bunch creates a subsystem hierarchy, where the lower levels contain detailed clusters, 

and higher levels contain clusters of clusters. Results from similarity measures indicate 

that the results for the real software systems have more in common than the results for 

random systems do. Results with similarity measures also support the isomorphic “basin 

of attraction” conjecture proposed. 

Mitchell et al. [2000] have developed a two step process for reverse engineering the 



software architecture of a system directly from its source code. The first step involves 

clustering the modules from the source code into abstract structures called subsystems. 

Bunch is used to accomplish this. The second step involves reverse engineering the 

subsystem-level relations using a formal (and visual) architectural constraint language.  

Using the reverse engineered subsystem hierarchy as input, a second tool, ARIS, is used 

to enable software developers to specify the rules and relations that govern how modules 

and subsystems can relate to each other. This again gives the user the possibility to use 

his/her own expertise as a basis for the fitness function, so it is not based on metrics.  

ARIS takes a clustered MDG as input and attempts to find the missing style relations. 

The goal is to induce a set of style relations that will make all of the use relations well-

formed. A relation is well-formed if it does not violate any permission rule described by 

the style; this is called the edge repair problem. The relative quality of a proposed 

solution is evaluated by an objective function. The objective function that is designed into 

the ARIS system measures the well-formedness of a configuration in terms of the number 

of well-formed and ill-formed relations it contains. The quality measurement Q(C) for 

configuration C gives a high quality score to configurations with a large number of well-

formed use relations and a low quality score to configurations with a large number of ill-

formed style relations or large visibility. Here, as in many other cases where some 

external expertise is added, the actual fitness function seems simple (only calculating 

sums and divisions), but much work is first needed by the user to define the input 

variables, here rules, for the fitness function.  Again, it raises the question: what kind of 

automation is expected from a tool based on search algorithms? Is it good enough that the 

algorithm only performs a small task and expects a lot of input, or should the algorithm 

be better defined so that it actually diminishes the work load of the software designer 

instead of increasing it?  

Two search algorithms have been implemented to maximize the objective function: 

HC and edge removal. The HC algorithm starts by generating a random configuration. 

Incremental improvement is achieved by evaluating the quality of neighboring 

configurations. A neighboring configuration Cn is  one  that  can  be  obtained  by  a  small  

modification to the current configuration C. The search process iterates as long as a new 

Cn can be found such that Q(Cn) > Q(C).  

The edge removal algorithm is based on the assumption that as long as there exists at 

least one solution to the edge repair problem for a system with respect to a style 

specification, the configuration that contains every possible reparable relation will be one 

of the solutions. Using this assumption, the edge removal algorithm starts by generating 



the fully reparable configuration for a given style definition and system structure graph. It 

then removes relations, one at a time, until no more relations can be removed without 

making the configuration ill-formed.  A case study is performed, where the results seem 

promising as they give intuition to the nature of the system. This may be beneficial for 

novice designers, who do not have very much knowledge of the system, but it should be 

assumed that the developers who have to define the rules that the tool is based on already 

have a mature idea of the system in order to be able to define those rules.  

Mahdavi et al. [2003a; 2003b] show that results from a set of multiple hill climbs can 

be combined to locate good “building blocks” for subsequent searches. Building blocks 

are formed by identifying the common features in a selection of best hill climbs. This 

process reduces the search space, while simultaneously ‘hard wiring’ parts of the 

solution. Mahdavi et al. also investigate the relationship between the improved results 

and the system size.  

An initial set of hill climbs is performed and from these a set of best hill climbs is 

identified according to some “cut off” threshold.  Using these selected best hill climbs the 

common features of each solution are identified. These common features form building 

blocks for a subsequent hill climb. A building block contains one or more modules fixed 

to be in a particular cluster, if and only if all the selected initial hill climbs agree that 

these modules were to be located within the same cluster. Since all the selected hill 

climbs agree on these choices, it is likely that good solutions will also contain these 

choices.  

The implementation uses parallel computing techniques to simultaneously execute an 

initial set of hill climbs. From these climbs the authors experiment with various cut off 

points ranging from selecting the best 10% of hill climbs to the best 100% in steps of 

10%. The building blocks are fixed and a new set of hill climbs are performed using the 

reduced search space. The principal research question is whether or not the identification 

of building blocks improves the subsequent search. 

A variety of experimental subjects are used. Two types of MDGs are used: first type 

contains non-weighted edges, second type has weighted edges. The MQ values are 

gathered after the initial and the final climbs, and compared for difference. Statistical 

tests provide some evidence towards the premise that the improvement in MQ values is 

less likely to be a random occurrence due to the nature of the hill climb algorithm. The 

improvement is observed for MDGs with and without weighted edges and for all size 

MDGs.  

Larger MDGs show more substantial improvement when the best initial fitness is 



compared with the best final fitness values. One reason for observing more substantial 

improvement in larger MDGs may be attributed to the nature of the MQ fitness measure. 

To overcome the limitation that MQ is not normalized, the percentage MQ improvement 

of the final runs over the initial runs is measured. These statistical tests show no 

significant correlation between size and improvement in fitness for both weighted and 

non-weighted MDGs.  

The increase in fitness, regardless of number of nodes or edges, tends to be more 

apparent as the building blocks are created from a smaller selection of individuals. This 

may signify some degree of importance for the selection process.  

Results indicate that the subsequent search is narrowed to focus on better solutions, 

that better clustering are obtained and that the results tend to improve when the selection 

cut off is higher. These initial results suggest that the multiple hill climbing technique is 

potentially a good way of identifying building blocks. Authors also found that although 

there was some correlation between system size and various measures of the 

improvement achieved with multiple hill climbing, none of these correlations is 

statistically significant. These results would provide an interesting starting point to a 

study where the building blocks achieved with multiple hill climbs could be used to 

initialize the first population given to a genetic algorithm.  

Harman et al. [2002] experiment with fitness functions derived from measures of 

modules granularity, cohesion and coupling for software modularization. They present a 

new encoding and crossover operator and report initial results based on simple 

component topology. The new representation allows only one representation per 

modularization and the new crossover operator attempts to preserve building blocks 

[Salomon, 1998].  

Harman et al. [2002] present the problem of finding a representation for 

modularization so that “non-unique representations of modularizations artificially 

increase the search space size, inhibiting search-based approaches to the problem”. In 

their approach modules are numbered, and elements allocated to module numbers using a 

simple look-up table. Component number one is always allocated to module number one. 

All components in the same module as component number one are also allocated to 

module number one. Next, the lowest numbered component, n, not in module one, is 

allocated to module number two. All components into the same module as component 

number n are allocated to module number two. This process is repeated, choosing each 

lowest number unallocated component as the defining element for the module. This 

representation must be renormalized when components move as the result of mutation 



and crossover. The chosen method clearly saves resources and clarifies the search space 

as there are no alternative representations for the same solution.  

Harman et al.'s crossover operator attempts to preserve partial module allocations 

from parents to children in an attempt to promote good building blocks.  Rather than 

selecting an arbitrary point of crossover within the two parents, a random parent is 

selected and one of its arbitrarily chosen modules is copied to the child. The allocated 

components are removed from both parents. This removal prevents duplication of 

components in the child when further modules are copied from one or the other parent to 

the  child.  The  process  of  selecting  a  module  from a  parent  and copying to  the  child  is  

repeated and the copied components are removed from both parents until the child 

contains a complete allocation. This approach ensures that at least one module from the 

parents is preserved (in entirety) in the child and that parts of other modules will also be 

preserved. As it is not clarified how the modules are represented in the chromosome, it is 

not, however, exactly clear how risky it would be to perform traditional crossovers with 

the selected encoding. In fact, it seems perfectly possible to make such an encoding that 

supports building blocks even with the traditional operators.  

The fitness function maximizes cohesion and minimizes coupling.  In order to capture 

the additional requirement that the produced modularization has a granularity (number of 

modules) similar enough to the initial granularity, a polynomial punishment factor is 

introduced into the fitness function to reward solutions as they approach the target value 

for granularity of the modularization. The granularity is normalized to a percentage. The 

three fitness components are given equal weights.  

A standard one-point crossover is also implemented for comparison. The GA with the 

novel crossover outperforms the one with the traditional one, although it quickly becomes 

trapped in local optima. This would suggest that the attempt to reserve building blocks 

might actually be “too strong”, as the GA does not have any method to escape the local 

optimum. Results also show that the novel GA is more sensitive to inappropriate choices 

of target granularity than any other approach.  

Harman et al. [2005] present empirical results which compare the robustness of two 

fitness functions used for software module clustering: MQ is used exclusively for module 

clustering and EVM [Tucker et al., 2001] has previously been applied to time series and 

gene expression data. The clustering algorithm is based upon the Bunch algorithm 

[Mancoridis et al., 1999] and redefined. Three types of MDGs were studied: real program 

MDGs, random MDGs and perfect MDGs.  

The primary findings are that searches guided by both fitness functions degrade 



smoothly as noise increases, but EVM would appear to be the more robust fitness 

function for real systems. Searches guided by MQ behave poorly for perfect and near-

perfect module dependency graphs (MDGs). The results of perfect graphs (MDGs) show 

however, that EVM produces clusterings which are perfect and that the clusterings 

produced stay very close to the perfect results as more noise is introduced. This is true 

both for the comparison against the perfect clustering and the initial clustering. By 

comparison, the MQ fitness function performs much worse with perfect MDGs.  

Comparing results for random and real MDGs, both fitness functions are fairly robust. 

Further results show that searches guided by MQ do not produce the perfect clustering for 

a perfect MDG but a clustering with higher MQ values. This very strongly suggests that 

fitness metrics indeed do not actually match what is truly desired of the solution.  

These results highlight a possible weakness in MQ as a guiding fitness function for 

modularization searches: it may be possible to improve upon it by addressing that issue. 

The results show that EVM performs consistently better than MQ in the presence of noise 

for both perfect and real MDGs but worse for random MDGs. The results for both fitness 

functions are better for perfect or real graphs than random graphs, as expected. As the 

real programs increase in size, there appears to be a decrease in the difference between 

the performance of searches guided by EVM and those guided by MQ. The results show 

that both metrics are relatively robust in the presence of noise, with EVM being the more 

robust of the two.  

This study is a significant indicator that fitness metrics should never be blindly 

trusted. The problem here is particularly curious, as the developers of the MQ metric 

showed the results (achieved with the aid of this metric) to actual software designers, 

who were reported to give positive feedback. Thus, it could be assumed that the MQ 

metric was based on real feedback from human designers. However, it still failed in 

comparison to another metric and could not produce optimal results. These results 

suggest that the quality requirements for software design problems are extremely difficult 

to define, which in turn makes the definition of a proper fitness function a demanding 

task.  

Antoniol et al. [2003] present an approach to re-factoring libraries with the aim of 

reducing the memory requirements of executables. The approach is organized in two 

steps: the first step defines an initial solution based on clustering methods, while the 

second step  refines  the  initial  solution  with  a  GA.  Antoniol  et  al.  [2003]  propose  a  GA 

approach that considers the initial clusters as the starting population, adopts a knowledge-

based mutation function and has a multi-objective fitness function. Tests on medium and 



large open source software systems have effectively produced smaller, loosely coupled 

libraries, and reduced the memory requirement for each application.  

Given a system composed by applications and libraries, the idea is to re-factor the 

biggest libraries, splitting them into two or more smaller clusters, so that each cluster 

contains symbols used by a common subset of applications (i.e., Antoniol et al. made the 

assumption that symbols often used together should be contained in the same library). 

Given that, for each library to be re-factored, a Boolean matrix MD is composed.  

Antoniol et al. have chosen to apply the Silhouette statistic [Kaufman and Rousseeuw, 

1990] to compute the optimal number of clusters for each MD matrix. Once the number 

of clusters is known for each “old library”, agglomerative-nesting clustering was 

performed on each MD matrix. This allows the identification of a certain number of 

clusters. These clusters are the new candidate libraries. When given a set of all objects 

contained into the candidate libraries, a dependency graph is built, and the removal of 

inter-library dependencies can therefore be brought back to a graph partitioning problem.  

The encoding is the achieved bit-matrix, where for each matrix point [x, y] has value 1 

if the object y is used by the application or library defined by x, and 0 otherwise. The GA 

is initialized with the encoding of the set of libraries obtained in the previous step. This 

encoding method is well-chosen, as there is no need to make any unnecessary 

transformation between two encodings, and the genetic operations can be easily defined 

for a matrix. 

The mutation operator works in two modes: normally, a random column is taken and 

two random rows are swapped. When cloning an object, a random position in the matrix 

is taken; if it is zero and the library is dependent on it, then the mutation operator clones 

the  object  into  the  current  library.  Of  course  the  cloning  of  an  object  increases  both  

linking and size factors, therefore it should be minimized. This GA activates the cloning 

only for the final part of the evolution (after 66%) of generations in their case studies. 

This strategy favors dependency minimization by moving objects between libraries; then, 

at the end, remaining dependencies are attempted to remove by cloning objects. The 

crossover is a one-point crossover: given two matrices, both are cut at the same random 

column, and the two portions are exchanged.  Population size and number of generations 

were chosen by an iterative procedure.  

The fitness function attempts to balance three factors: the number of inter-library 

dependencies at a given generation, the total number of objects linked to each application 

that should be as small as possible, and the size of the new libraries. A unitary weight is 

set to the first factor, and two weights are selected using an iterative trial-and-error 



procedure, adjusting them each time until the factors obtained at the final step are 

satisfactory.  The partitioning ratio is also calculated. Case study results show that the GA 

manages to considerably reduce the amount of dependencies, while the partition ratio 

stays nearly the same or slightly reduced. The proposed re-factoring process allows 

obtaining smallest, loosely coupled libraries from the original biggest ones.  

The selected fitness function would benefit from more enhanced techniques to deal 

with multi-objectivity. Also, in multi-objective problems there usually are cases when 

one goal may need to be emphasized at the cost of another goal. In this case there are no 

such tests, as the weights are simply optimized for a general case. It would be interesting 

to  see  what  kinds  of  results  are  achieved,  if,  e.g.,  the  size  of  libraries  is  shown  

significantly more appreciation than the number of inter-library dependencies. If these 

cases would produce interesting modularizations, then a Pareto optimal fitness function 

would be good to experiment with. 

Di Penta et al. [2005] build on these results and present a software renovation 

framework (SRF), a toolkit that covers several aspects of software renovation, such as 

removing unused objects and code clones, and refactoring existing libraries into smaller 

ones.  Refactoring  has  been implemented  in  the  SRF using  a  hybrid  approach based on 

hierarchical clustering, GAs and hill climbing, also taking into account the developer’s 

feedback. Most of the SRF activities deal with analyzing dependencies among software 

artifacts, which can be represented with a dependency graph.  

Software systems are represented by a system graph SG, which contains the sets of all 

object modules, all software system libraries, all software system applications and the set 

of oriented edges representing dependencies between objects. The refactoring framework 

consists of several steps: 1. software systems applications, libraries and dependencies 

among them are identified, 2. unused functions and objects are identified, removed or 

factored out, 3. duplicated or cloned objects are identified and possibly factored out, 4. 

circular dependencies among libraries are removed, or at least reduced, 5. large libraries 

are refactored into smaller ones and, if possible, transformed into dynamic libraries, and 

6. objects which are used by multiple applications, but which are not yet organized into 

libraries, are grouped into new libraries. Step five, splitting existing, large libraries into 

smaller clusters of objects, is now studied more closely.  

The refactoring of libraries is done in the SRF in the following steps: 1. determine the 

optimal number of clusters and an initial solution, 2. determine the new candidate 

libraries using a GA, 3. ask developers’ feedback. The effectiveness of the refactoring 

process is evaluated by a quality measure of the new library organization, the Partitioning 



Ratio, which should be minimized.  

The genome representation and mutations are as previously presented by Antoniol et 

al. [2003]. Now, however, the developers may also give a Lock Matrix when they 

strongly believe that an object should belong to a certain cluster. The mutation operator 

does not perform any action that would bring a genome in an inconsistent state with 

respect to the Lock Matrix. The crossover is the one point crossover, which exchanges 

the content of two genome matrices around a random column.  

The fitness function F should balance four factors: the number of inter-library 

dependencies, the total number of objects linked to each application, the size of new 

libraries and the feedback by developers. Thus, developer feedback is brought to the 

fitness function as an additional element to those already presented by Antoniol et al. 

[2003]. The fitness function F is defined to consist of the Dependency factor DF, the 

Partitioning ratio PR, the Standard deviation factor SD and the Feedback factor FF. The 

FF is stored in a bit-matrix FM, which has the same structure of the genome matrix and 

which incorporates those changes to the libraries that developers suggested.  Each factor 

of the fitness function is given a separate real, positive weight. DF is given weight 1, as it 

has maximum influence.  

Di  Penta  et  al.  report  that  the  presented  GA  suffers  from  slow  convergence.  To  

improve its performance, it has been hybridized with HC techniques. In their experiment, 

applying HC only to the last generation significantly improves neither the performance 

nor the results, but applying HC to the best individuals of each generation makes the GA 

converge significantly faster. In the case study, the GA reduces dependencies of one 

library  to  about  5% of  the  original  amount  while  keeping the  PR almost  constant.   For  

two other libraries, a significant reduction of inter-library dependencies is obtained while 

slightly reducing PR in one and increasing the PR in the other.  The addition of HC into 

GA does not improve the fitness values, since GA also converges to similar results, when 

it is executed on an increased number of generations and increased population size. 

Noticeably, performing HC on the best individuals of each generation produces a drastic 

reduction in convergence times. These results show that hybrid algorithms are a strong 

candidate when attempting to improve the results of search-based approaches.  

Huynh and Cai [2007] present an automated approach to check the conformance of 

source code modularity to the designed modularity. Design structure matrices (DSMs) are 

used as a uniform representation and they are automatically clustered and checked for 

conformance by a GA. A design DSM and source code DSM work at different levels of 

abstraction. A design DSM usually needs higher level of abstraction to obtain the full 



picture of the system, while a source code DSM usually uses classes or other program 

constructs as variables labeling the rows and columns of the matrix. Given two DSMs, 

one at the design level and the other at the source code level, the GA takes one DSM as 

the  optimal  goal  and  searches  for  a  best  clustering  method  in  the  other  DSM  that  

maximizes the level of isomorphism between the two DSMs. One of the two DSMs is 

defined  as  the  sample  graph,  and  the  other  one  as  a  model  graph,  and  finally  a  

conformance criterion is defined. This approach appears beneficial especially in the area 

of program comprehension and validity checking (as well as purely increasing program 

quality). Performing conformance checks on a large test set of programs could even 

produce general ideas on where the programs generally differ from the initial design.  

To determine the conformance of the source code modularity to the high level design 

modularity the variables of the sample graph are clustered and thus a new graph is 

formed, which is called the conformance graph. Each vertex of the conformance graph is 

associated with a cluster of variables from the sample graph.  The more conforming the 

source code modularity is to the design modularity, the closer to isomorphic the 

conformance graph and the model graph will be. In computing the level of isomorphism 

between two graphs, the graph edit distance is computed between the graphs.  

With the given representation of the problem, a GA is formulated with which the goal 

is to find the clustering of sample graph vertices such that the conformance graph of these 

clustered nodes is isomorphic, or almost isomorphic, to the model graph. This is a 

projection. The algorithm first creates an initial population of random projections. The 

fitness function is defined as f = –D – P –  – , where D is the graph edit distance, P is a 

penalty, and   and  provide finer differentiation between mappings with the same graph 

edit distance. The last two functions allow configuring a sample graph so that it can be 

clustered in different ways, each corresponding to how the design targeted DSM is 

clustered. The dissimilarity function  is used to calculate how separated components 

from each directory grouping are. If a sample graph node attribute matches a name 

pattern specified by the user but is not correctly mapped to the model graph vertex then 

the fitness of the projection is reduced through . Interestingly, the fitness function only 

measures negative aspects, quite differently to other fitness functions in modularization, 

which usually attempt to maximize at least some quality value.  

The  GA  is  run  on  two  DSM  models  of  an  example  software.  The  experiments  

consistently converge to produce the desired result, although the tool sometimes produces 

a result that is not the desired view of the source code, even though the graphs are 

isomorphic, i.e., the result conforms with the model. The experiment shows the feasibility 



of using a GA to automatically cluster DSM variables and correctly identify links 

between source code components and high level design components. The results support 

the hypothesis that it is possible to check the conformance between source code structure 

and design  structure  automatically,  and this  approach has  the  potential  to  be  scaled  for  

use in large software systems. 

4.3 Summarizing remarks 

The majority of the studies relating to search-based software clustering have been done 

with the Bunch tool, which has seen many improvements. This is very promising for 

other approaches to search-based design as well, as the tool has been accepted for use in 

the software engineering community. However, there are still many open questions in the 

area of software modularization. What is a proper encoding to represent a modularization 

problem? This question is especially highlighted by the study made by Harman et al. 

[2002], as they point out the massive amount of redundant information in many 

encodings. What is a proper fitness metric for modularizations? Again, the study 

comparing the very popular MQ metric with another modularization metric (EVM), 

showed that while the metric is robust (as already validated by its developers), it can be 

outperformed. How can metrics be relied on then? Di Penta et al. [2005] have attempted 

to enhance the performance of their tool by giving the developers a chance to formalize 

their knowledge on quality. However, defining quality as a matrix form cannot be very 

user-friendly.  

As stated, the research on software clustering revolves quite strongly around Bunch or 

the MQ metric. The main exception to this is the studies made by Antoniol et al., [2003] 

and Di Penta et al. [2005] who use a matrix to encode the modularization and use matrix-

related or metrics instead of the MQ, and Hyunh and Cai [2007], who use a matrix and 

then turn it into a graph, and use graph related metrics to evaluate the quality of a 

proposed solution. Especially the approach by Hyunh and Cai [2007] is significantly 

different to Bunch, as two modularizations are ultimately compared, while Bunch 

attempts to ameliorate a poor modularization without a certain goal it is aiming towards. 

Thus, there is much room in search-based software clustering for alternative methods, as 

competition always makes each different approach strive towards even better solutions. 

 

 

 

 



Table 3. Research approaches in search-based software clustering 

Name Approach Input Encoding Mutation 
 

Crossover Fitness Outcome Comments 

Mancoridis et 
al. [1998] 

Automation of  
partitioning  
components of a 
system into 
clusters  

System given as a 
module 
dependency graph 
(MDG) 

MDG N/A N/A Minimize inter-
connectivity, 
maximize intra-
connectivity, 
combined as 
modulariztion 
quality (MQ) 

Optimized 
clustering of 
system 

 

Doval et al. 
[1999] 

Automation of  
partitioning  
components of a 
system into 
clusters 

MDG String of integers Standard Standard MQ Optimized 
clustering of 
system 

Continued work 
from Mancoridis et 
al. [1998] by 
implementing a 
GA 

Mancoridis et 
al. [1999] 

Automation of  
partitioning  
components of a 
system into 
clusters 

MDG MDG N/A N/A MQ Optimized 
clustering of 
system 

Continued work 
from Mancoridis et 
al. [1998]; 
characterisics of 
modules taken into 
account in 
clustering 
operations 

Mitchell and 
Mancoridis 
[2002; 2006; 
2008] 

Automation of  
partitioning  
components of a 
system into 
clusters 

MDG String of integers Standard Standard MQ as a sum of 
clustering factors 

Optimized 
clustering of 
system 

Continued work 
from Doval et al. 
[2002];  new 
definition of the 
modularization 
quality and an 
enhanced HC 
algorithm 



 

 

 

Name Approach Input Encoding Mutation 
 

Crossover Fitness Outcome Comments 

Mitchell and 
Mancoridis 
[2003; 2008] 

Automation of  
partitioning  
components of a 
system into 
clusters 

MDG String of integers Standard Standard MQ, search 
landscape 

Optimized 
clustering of 
system 

Continued work 
from Mitchell 
and Mancoridis 
[2002; 2006; 
2008];  search 
landscape taken 
into account 

Mitchell et al. 
[2000] 

Automated reverse 
engineering from 
source code to 
architecture 

Source code of 
application 

N/A N/A N/A Quality based on 
use and style 
relations 

Software 
architecture 

HC and edge 
removal are used 
as search 
algorithms from 
MDG to 
architecture 

Mahdavi et al. 
[2003a; 2003b] 

Automated 
clustering of 
system 

MDG String of integers Standard Standard MQ Optimized 
clusterinng of 
system 

Multiple hill 
climbs are used 
as search 
algorithm; 
building blocks 
are preserved by 
using parallel 
hill climbs 

 

 



Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments 

Harman et al. 
[2002] 

New encoding and 
crossover 
introduced 

System as 
modules and 
elements 

Look-up table for 
modules 

Move component 
from one module 
to another 

New 
crossover, 
preserves partial 
module 
allocations 

Maximize 
cohesion, 
minimize coupling 

Optimized 
clustering 

 

Harman et al. 
[2005] 

Comparison of 
robustness 
between two 
fitness functions 

Clustered system N/A  N/A  N/A MQ compared 
against EVM 

-  

Antoniol et al. 
[2003] 

Cluster 
optimization 

System containing 
applications and 
libraries 

Bit matrix Two random rows 
of a column in 
matrix are 
swapped or an 
object is cloned by 
changing a value 
from zero to one 

A random column 
is taken as split 
point and contents 
are swapped 

Inter-library 
dependencies, 
number of object-
application links 
and size of 
libraries 

Optimized 
clustering, sizes 
and dependencies 
between libraries 
diminished 

Optimal number of 
clusters is 
calculated for a 
matrix with the 
Silhouette statistic 

Di Penta et al. 
[2005] 

A refactoring 
framework taking 
into account 
several aspects of 
software quality 
when refactoring 
existing system. 

Software system 
as a system graph 
SG 

Bit matrix; each 
library of clusters 
is represented by a 
matrix 

Swapping two bits 
in a column or 
changing a value 
from 0 to 1 (taking 
into account 
preconditions) 

N/A Dependency 
factor, partitioning 
ratio, standard 
deviation and 
feedback 

Refactored 
libraries 

HC and GA used. 

Hyunh and Cai 
[2007] 

Conformance 
check of actual 
design to 
suggested design 

Design structure 
matrices for 
design and source 
code   (DSM) 

Graph constructed 
of DSM 

N/A N/A Graph edit 
distance, penalty 
and differentiation 
between graphs 
with same 
distance 

Optimized 
clustering of 
actual design 
conforming to 
suggested design 

 



 

5. SOFTWARE REFACTORING 

5.1. Background 

Software evolution often results in “corruption” in software design, as quality is 

overlooked while new features are added, or the old software should be modified in order 

to ensure the highest possible quality. At the same time resources are limited. Refactoring 

and in particular the miniaturization of libraries and applications are therefore necessary. 

Program transformation is useful in a number of applications including program 

comprehension, reverse engineering and compiler optimization. A transformation 

algorithm defines a sequence of transformation steps to apply to a given program and it is 

described as changing one program into another. It involves altering the program syntax 

while leaving it semantics unchanged. In object-oriented design, one of the biggest 

challenges when optimizing class structures using random refactorings is to ensure 

behavior preservation. One has to take special care of the pre- and post-conditions of the 

refactorings.  

There are three problems with treating software refactoring as a search-based 

problem. First, how to determine which are the useful metrics for a given system. Second, 

finding how best to combine multiple metrics. Third is that while each run of the search 

generates a single sequence of refactorings, the user is given no guidance as to which 

sequence may be best for their given system, beyond their relative fitness values. 

In practice, refactoring (object-oriented software) can begin with simple restructurings of 

the class structure and being very close to software clustering, and then move on to a 

more detailed level of moving elements from one class to another. The lowest level of 

refactoring already deals with code, as procedures are sliced to eliminate redundancy or 

transformed in order to simplify the program or make it more efficient. The following 

subsection presents approaches where search-based techniques have been used to 

automatically achieve refactorings, as well as a study on a new method for evaluating the 

fitness of a refactored software. Summarizing remarks are then presented, and the 

fundamentals of each study are collected in Table 4. 

5.2. Approaches 

Seng et al. [2005] describe a methodology that computes a subsystem decomposition that 

can be used as a basis for maintenance tasks by optimizing metrics and heuristics of good 

subsystem design. GA is used for automatic decomposition.  If a desired architecture is 

given, e.g., a layered architecture, and there are several violations, this approach attempts 

to determine another decomposition that complies with the given architecture by moving 



classes around. Instead of working directly on the source code, it is first transformed into 

an abstract representation, which is suitable for common object-oriented language.  

In the GA, several potential solutions, i.e., subsystem decompositions, form a 

population. The initial population can be created using different initialization strategies. 

Before the algorithm starts, the user can customize the fitness function by selecting 

several metrics or heuristics as well as by changing thresholds.  The model is a directed 

graph. The nodes of the graph can either represent subsystems or classes. Edges between 

subsystems or subsystems and classes denote containment relations, whereas edges 

between classes represent dependencies between classes. The approach is based on the 

Grouping GA [Falkenaur, 1998], which is particularly well suited for finding groups in 

data. For chromosome encoding, subsystem candidates are associated with genes and the 

power set of classes is used as the alphabet for genes. Consequently, a gene is associated 

with a set of classes, i.e., an element of the power set. This representation allows a one-

to-one mapping of geno- and phenotype to avoid redundant coding.  

An adapted crossover operator and three kinds of mutation are used.  The operators 

are adapted so that they are non-destructive and preserve a complete subsystem candidate 

as far as possible. The split&join mutation either divides one subsystem to two, or vice 

versa. The operator splits a subsystem candidate in such a way that the separation in two 

subsystem candidates occurs at a loosely associated point in the dependency graph. 

Elimination mutation deletes a subsystem candidate and distributes its classes to other 

subsystem candidate, based on association weights.  Adoption mutation tries to find a 

new subsystem candidate for an orphan, i.e., a subsystem candidate containing only a 

single class. This operator moves the orphan to the subsystem candidate that has the 

highest connectivity to the orphan. The chosen mutations support reversibility, i.e., a GA 

can always backtrack its steps. The split&join mutation is obvious in this case, but also 

the adoption mutation can be seen as a reverse operation for the elimination, if a new 

subsystem can be created dynamically.  

Initial population supports the building block theorem. Randomly selected connected 

components of the dependency graph are taken for half the population and highly fit ones 

for the rest. The crossover operator forms two children from two parents. After choosing 

the parents, the operator selects a sequence of subsystem candidates in both parents, and 

mutually integrates them as new subsystem candidates in the other parent, and vice versa, 

thus forming two new children consisting of both old and new subsystem candidates. Old 

subsystem candidates which now contain duplicated classes are deleted, and their non-

duplicated classes are collected and distributed over the remaining subsystem candidates.  



Fitness function is defined as f = w1* cohesion + w2* coupling + w3* complexity + w4* 

cycles + w5*  bottlenecks.  Again  the  fitness  function  is  based  on  the  two  most  used  

metrics, cohesion and coupling, but introduces some new interesting concepts from OO 

design, such as cycles and bottlenecks, which are more defined than the usual general 

metrics.  

For evaluation, a tool prototype has been implemented. Evaluation on the clustering 

of different software systems has revealed that results on roulette wheel selection are only 

slightly better than those of tournament selection. The adapted operators allow using a 

relatively small population size and few generations. Results from a Java case study show 

that the approach works well. Tests on optimizing subsets of the fitness function show 

that only if all criteria are optimized, the authors are able to achieve a suitable 

compromise with very good complexity, bottleneck and cyclomatic values and good 

values for coupling and cohesion. Again, as the work here is very similar to optimal 

software clustering, it can be questioned whether the metrics used in those studies, that 

mainly calculate modified values for coupling and cohesion, are actually sufficient.  

Seng et al. [2006] have continued their work by developing a search-based approach 

that suggests a list of refactorings. The approach uses an evolutionary algorithm and 

simulated refactorings that do not change the system’s externally visible behavior. The 

source code is transformed into a suitable model – the phenotype. The genotype consists 

of the already executed refactorings. Model elements are differentiated according to the 

role they play in the system’s design before trying to improve the structure. Not all 

elements can be treated equally, because the design patterns sometimes deliberately 

violate existing design heuristics. The approach is restricted to those elements that respect 

general design guidelines. Elements that deliberately do not respect them are left 

untouched in order to preserve the developers conscious design decisions. The notion of 

applying something that is known to somehow worsen the quality of a system is peculiar. 

In a way this is natural, as there are always trade-offs when trying to optimize conflicting 

quality values, but each decision should have a positive affect from some perspective. 

Hence, it is odd that no quality evaluator has been found that would prevent the 

elimination of these “deliberately violating” patterns.  

The initial population is created by copying the model extracted from the source code 

a selected number of times. Selection for a new generation is made with tournament 

selection strategy. The optimization stops after a predefined number of evolution steps. 

The source code model is designed to accommodate several object-oriented languages. 

The basic model elements are classes, methods, attributes, parameters and local variables. 



In addition, special elements called access chains are needed. An access chain models the 

accesses inside a method body, because it is needed to adapt these references during the 

optimization. If a method is moved, the call sites need to be changed. An access chain 

therefore consists of a list of accesses. Access chains are hierarchical, because each 

method argument at a call site is modeled as a separate access chain that could possibly 

contain further access chains.   

The model allows to simulate most of the important refactorings for changing the 

class structure of a system, which are extract class, inline class, move attribute, push 

down attribute, pull up attribute, push down method, pull up method, extract superclass 

and collapse class hierarchy. The genotype consists of an ordered list of executed model 

refactorings including necessary parameters. The phenotype is created by applying these 

model  refactorings  in  the  order  that  is  given by the  genotype  to  the  initial  source  code  

model. Therefore the order of the model refactorings is important, since one model 

refactoring might create the necessary preconditions for some of the following ones.  

Mutation extends the current genome by an additional model refactoring; the length 

of the genome is unlimited. Crossover combines two genomes by selecting the first 

random n model refactorings from parent one and adding the model refactorings of parent 

two to the genome. The refactorings from parent one are definitely safe, but not all model 

refactorings of parent two might be applicable. Therefore, the model refactorings are 

applied to the initial source code model. If a refactoring that cannot be executed is 

encountered due to unsatisfied preconditions, it is dropped. Seng et al. argue that the 

advantage of this crossover operator is that it guarantees that the externally visible 

behavior is not changed, while the drawback is that it takes some time to perform the 

crossover since the refactorings need to be simulated again. This approach is quite similar 

to that of Amoui et al. [2006], discussed in Section 3, who approach the problem from a 

slightly higher level by using architectural design patterns as refactoring, but similarly 

search for the optimal transformation sequence. 

Fitness is a weighted sum of several metric values and is designed to be maximized. 

The properties that should be captured are coupling, cohesion, complexity and stability. 

For coupling and cohesion, the metrics from Briand’s [2000] catalogue are used. For 

complexity, weighted methods per class (WMC) and number of methods (NOM) are 

used.  The formula for stability is adapted from the reconditioning of subsystem 

structures. Fitness = (weightm* (M(S) – Minit(S))/Mmax(S) – Minit(S).  Before optimizing 

the structure the model elements are classified according to the roles they play in the 

systems design, e.g., whether they are a part of a design pattern.  



Tests show that after approximately 2000 generations in a case study the fitness value 

does not significantly change anymore. The approach is able to find refactorings that 

improve the fitness value. Actually, this is to be expected, as it would be rather surprising 

if it did not improve the fitness value, as then there would be something significantly 

wrong with the GA. Thus, more importantly, in order to judge whether the refactorings 

make sense, they are manually inspected by the authors, and from their perspective, all 

proposed refactorings can be justified. As a second goal, the authors modify the original 

system by selecting 10 random methods and misplacing them. The approach successfully 

moves back each method at least once.  

O’Keeffe and Ó Cinnéide [2004] have developed a prototype software engineering 

tool capable of improving a design with respect to a conflicting set of goals. A set of 

metrics is used for evaluating the design quality. As the prioritization of different goals is 

determined by weights associated with each metric, a method is also described of 

assigning coherent weights to a set of metrics based on object-oriented design heuristics.  

The presented tool, Dearthóir, is a prototype for design improvement, as it 

restructures a class hierarchy and moves methods within it in order to minimize method 

rejection, eliminate code duplication and ensure superclasses are abstract when 

appropriate. The refactorings are behavior-preserving transformations in Java code. The 

refactorings employed are limited to those that have an effect on the positioning of 

methods within an inheritance hierarchy. Contrary to most other approaches, this tool 

uses simulated annealing to find close-to-optimum solutions to this combinatorial 

optimization problem.  In order for the SA search to move freely through the search space 

every change to the design must be reversible. To ensure this, pairs of refactoring have 

been chosen that complement each other. The refactoring pairs are: 1. move a method up 

or down in the class hierarchy, 2. extract (from abstract class) or collapse a subclass, 3. 

make a class abstract or concrete, and 4. change superclass link of a class.  

The following method is intended to filter out heuristics that cannot easily be 

transformed into valid metrics because they are vague, unsuitable for the programming 

language in use, or dependent on semantics. Firstly, for each heuristic: define the 

property to be maximized or minimized in the heuristic, determine whether the property 

can be accurately measured, and note whether the metrics should be maximized or 

minimized. Secondly, identify the dependencies between the metrics. Thirdly, establish 

precedence between dependent metrics and a threshold where necessary: prioritize 

heuristics. Fourthly, check that the graph of precedence between metrics is acyclic. 

Finally, weights should be assigned to each of the metrics according to the precedences 



and threshold.  

 The selected metrics are: 1. minimize rejected methods (RM) (number of inherited 

but unused methods), 2. minimize unused methods (UM), 3. minimize featureless classes 

(FC), 4. minimize duplicate methods (DM) (number of methods duplicated within an 

inheritance hierarchy), 5. maximize abstract superclasses (AS). Metrics should be 

appreciated so that DM > RM > FC > AS, and UM > FC.  Note that the used metrics are 

much more specific to the needs of object-oriented design than the general structural 

metrics that are commonly used. Also, the heuristic of defining the weights (and the 

metrics) would be very beneficial for many studies, as assigning balanced weights can be 

a very complex task, and the dependencies between different metrics and their affect to 

the weights is rarely taken into account (at least so that it would be mentioned in the 

studies).  

Most of the dependencies in the graph do not require thresholds. However, a duplicate 

method is avoided by pulling the method up into its superclass, which could result in the 

method being rejected by any number of classes. Therefore a threshold value is 

established for this dependency. O’Keeffe and Ó Cinnéide argue that it is more important 

to avoid code duplication than any amount of method rejection; therefore the threshold 

can be an arbitrarily high number.  

A case study is conducted with a small inheritance hierarchy. The case study shows 

that the metric values for input and output either become better or stay the same. In the 

input design several classes contain clumps of methods, where as in the output design 

methods are spread quite evenly between the various classes. This indicates that 

responsibilities are being distributed more evenly among the classes, which means that 

components of the design are more modular and therefore more likely to be reusable. 

This in turn suggests that adherence to low-level heuristics can lead to gains in terms of 

higher-level goals. Results indicate that a balance between metrics has been achieved, as 

several potentially conflicting design goals are accommodated. 

O’Keeffe and Ó Cinnéide [2006; 2008a] have continued their research by 

constructing a tool capable of refactoring object-oriented programs to conform more 

closely to a given design quality model, by formulating the task as a search problem in 

the space of alternative designs. This tool, CODe-Imp, can be configured to operate using 

various subsets of its available automated refactorings, various search techniques, and 

various evaluation functions based on combinations of established metrics.  

CODe-Imp uses a two-level representation; the actual program to be refactored is 

given as source code and represented as its Abstract Syntax Tree (AST) but a more 



abstract model called the Java Program Model (JPM) is also maintained, from which 

metric values are determined and refactoring preconditions are checked. The change 

operator is a transformation of the solution representation that corresponds to a 

refactoring that can be carried out on the source code. 

The CODe-Imp calculates quality values according to the fitness function and effects 

change in the current solution by applying refactorings to the AST as required by a given 

search technique. Output consists of the refactored input code as well as a design 

improvement report including quality change and metric information.  

The refactoring configuration of the tool is constant throughout the case studies and 

consists of the following fourteen refactorings. Push down/pull up field, push down/pull 

up method, extract/collapse hierarchy, increase/decrease field security, replace 

inheritance with delegation/replace delegation with inheritance, increase/decrease method 

security, made superclass abstract/concrete. During the search process alternative designs 

are repeatedly generated by the application of a refactoring to the existing design, 

evaluated for quality, and either accepted as the new current design or rejected. As the 

current design changes, the number of points at which each refactoring can be applied 

will also change. In order to see whether refactorings can be made without changing 

program behavior, a system of conservative precondition checking is employed.  

The used search techniques include first-ascent HC (HC1), steepest-ascent HC (HC2), 

multiple-restart HC (MHC) and low-temperature SA. For the SA, CODe-Imp employs 

the standard geometric cooling schedule.  

The evaluation functions are flexibility, reusability and understandability of the 

QMOOD hierarchical design quality model [Bansiya and Davis, 2002]. Each evaluation 

function in the model is based on a weighted sum of quotients on the 11 metrics forming 

the QMOOD (design size in class, number or hierarchies, average number of ancestors, 

number of polymorphic methods, class interface size, number of methods, data access 

metric, direct class coupling, cohesion among methods of class, measure of aggregation 

and measure of functional abstraction).  Each metric value for the refactored design is 

divided by the corresponding value for the original design to give the metric change 

quotient. A positive weight corresponds to a metric that should be increased while a 

negative weight corresponds to metric that should be decreased. It should be noted that 

while the complexity of the problem grew, as the program representation became more 

intricate, the number of refactorings (mutations) was more than doubled, this reflected on 

the need for a significantly more complicated fitness function. The fitness function used 

in the previous study only contained 5 metrics, while the current one contains 11 metrics 



which are grouped into 3 different fitness functions.  

All techniques demonstrate strengths. HC1 consistently produces quality 

improvements at a relatively low cost, HC2 produces the greatest mean quality 

improvements in two of the six cases, MHC produces individual solutions of highest 

quality in two cases and SA produced the greatest mean quality improvement in one case. 

Based on this it would seem that the SA is actually inferior to the different hill climbing 

approaches, as it only outperformed them in one measure in one test case out of the six. 

Combining the results of these different search algorithms would be interesting: is it 

possible to produce such a hybrid that would preserve the strengths from all algorithms? 

Inspection of output code and analysis of solution metrics provide some evidence in 

favor of use of the flexibility metric and even stronger evidence for using the 

understandability function. The reusability in present form is not found suitable for 

maintenance because it resulted in solutions including a large number of featureless 

classes. As these kinds of classes are not generally accepted in OO design (apart from 

having “technical classes”), one might wonder whether some corrective function could be 

used in order to prevent featureless classes from appearing to the design. Simple pre-and 

post-conditions for mutations might very well help dealing with the problem. The authors 

conclude that both local search and simulated annealing are effective in the context of 

search-based software refactoring.  

O’Keeffe and Ó Cinnéide [2007; 2008b] have further continued their work by 

implementing also a GA and a multiple ascent HC (MAHC) to the CODe-Imp refactoring 

tool and further testing the existing search techniques. The encoding, crossover and 

mutation for the GA are similar to those presented by Seng et al. [2006], and the power of 

the tool has been increased by adding a number of different refactorings available for use 

in searching for a superior design.  

The fitness function is an implementation of the understandability function from 

Bansiya and Davis's [2002] QMOOD hierarchical design quality model consisting of a 

weighted sum of metric quotients between two designs. This choice was clearly inspired 

by the earlier study, where two other quality functions, flexibility and reusability, did not 

perform as well in terms of actual quality enhancement. This design quality evaluation 

function was previously found by the authors to result in tangible improvements to 

object-oriented program design in the context of search-based refactoring.  

Results for the SA support the recommendation of low values for the cooling factor, 

since more computationally expensive parameters do not yield greater quality function 

gains.  



In summary, SA has several disadvantages: it is hard to recommend a cooling 

schedule that will generally be effective, results vary considerably across input programs 

and  the  search  is  quite  slow.  No  significant  advantage  in  terms  of  quality  gain  was  

observed that would make up for these shortcomings. The GA has the advantage that it is 

easy to establish a set of parameters that work well in the general case, but the 

disadvantages are that it is costly to run and varies greatly for different input programs. 

Again, no significant advantage in terms of quality gain was observed that would make 

up for these shortcomings. Multiple-ascent HC stood out as the most efficient search 

technique in this study: it produced high-quality results across all the input programs, is 

relatively easy to recommend parameter for and runs more quickly than any of the other 

techniques examined. Steepest ascent HC produced surprisingly high quality solutions, 

suggesting that the search space is less complex than might be expected, but is slow when 

considered its known inability to escape local optima. Results show MAHC to 

outperform both SA and GA over a set of four input programs. As the genetic algorithm 

is the most commonly used search technique, these results should stimulate more 

comparisons between different algorithms. The search space for this problem was, after 

all, quite large, when taking into account the high number of refactorings that could be 

applied to a design. Thus, maybe the more refined hill climbing techniques could be 

compared to the GA.  

Quaum and Heckel [2009] apply the Ant Colony Optimization (ACO) [Dorigo, 1992] 

for software refactoring.  The software is represented as a class diagram with methods 

and attributes, and the refactoring task is considered as a graph transformation problem, 

which makes it suitable for ACO. In order to perform ACO, five things need to be 

defined: 1. a set of components C and  the  edges  between  them,  2.  a  set  of  states  as  a  

sequence of components belonging to C, 3. a set of candidate solutions S, with a subset of 

feasible candidate solutions according to given constraints, 4. a non-empty subset (of S) 

of optimal solutions, and 5. an evaluation associated to each candidate solution.  Based 

on this, Quaum and Heckel define a graph by associating the set of graph vertices to the 

set of proposed transformations. Edges are associated with dependencies. The pheromone 

and heuristic values are associated with the graph edges and are determined by partial 

evaluations associated with incomplete candidate solutions.   

The goal is to find an optimal set of transformations. These transformations are pre-

determined based on the given program (graph) and consider, e.g., moving methods and 

alternating the class hierarchy. An ant begins with an empty solution from the start vertex 

in the graph and then gradually checks the available refactoring steps in order to construct 



a candidate solution. Initially, any random component from C is chosen and then the 

partial evaluation function will guide the selection of the corresponding edge through the 

pheromone values. The fitness value is calculated for each feasible sequence of 

transformations after applying it on the source graph model, the basis for the fitness being 

the cost of the transformation and the quality of the result. The approach is tested on a 

small example system.  

This approach demonstrates the use of yet another search technique, ACO, which is 

especially suitable for graph problems. Other choices, however, raise questions 

particularly on the generality of this approach. It is only tested on a small system, and all 

the transformations are pre-defined, and dependent on the particular system. How can this 

approach be generalized to be applied to any system without extensive work required to 

define all possible transformations of that system, which is incredibly laborious, if the 

system is large? Also, the details regarding fitness calculations are not very clear.  

Jiang et al. [2008a] apply a set of search algorithms to program slicing in order to 

locate dependence structures. They attempt to find the subsets from all possible sets of 

program slices that reveal interesting dependence structures. A program is divided into 

slices according to program points, which are the nodes of a System Dependency Graph 

(SDG) [Horwitz et al., 1988].  In order to formulate the problem as a search problem, it is 

instantiated as a set cover problem. With increasing program sizes a search-based 

approach is extremely suitable for this type of problem.  

A program is represented as a bit matrix, where rows indicate program slices and 

columns indicate program points. The value in point i, j, is 1 if the slice based on criterion 

i contains the program point j, and 0 if not.  A solution should contain as many program 

points as possible but should have minimum overlap, i.e., slices that contain the same 

program points.   

The fitness function is seen as a parameter to the overall approach of search-based 

slicing, as choosing the fitness function depends on the properties of the slice set and 

what the user considers as “interesting” when searching for dependencies. The fitness 

function is based on metrics that calculate the Coverage and Overlap of the program. 

Coverage measures how many program points out of all possible points the program 

contains. Overlap measures the number of program points within the intersection a 

slicing set. It can be divided in many ways, but Jiang et al. only consider Average, which 

evaluates the percentage of overlapping program points based on pair-wise calculations, 

and Maximum, which evaluates the maximum number of overlapping points based on 

pair-wise calculations. Both Coverage and Overlap are given weights and then combined 



for the overall fitness function. Although it is said that the user can define the fitness 

function based on his/her own desires of what is “interesting”, it is left unclear whether 

the definitions must rely on the presented metrics or whether the user can build any kind 

of fitness function. Also, it is not clear how the properties of the slice set affect the choice 

of fitness function.  

Jiang et al. [2008a] implement HC, GA, a Greedy Algorithm [Naeimi et al., 2004]  

and a Random Search algorithm. The GA uses a multi-point crossover and a standard bit 

change as a mutation. Elitism and rank selection are used as selection methods. For HC, a 

multiple restart HC is implemented in order to give it the same amount of computation 

time as the other algorithms.  A Greedy Algorithm constitutes of two sets: a solution set 

and a candidate set, and three functions: selection, value-computing and solution 

function. A solution is created out of the solution set and a candidate set represents all 

possible elements that might be contained in a solution. Selection chooses the most 

promising candidate to be added to the solution, value-computing function gives a value 

for the solution and solution function checks whether the final solution has been reached. 

Here  the  initial  solution  set  is  a  binary  string  with  each  bit  set  to  0,  and  the  candidate  

solution set is made of all the slices. The value-computing function calculates the 

program points in a solution and the selection function chooses the one with the best 

coverage and smallest overlap.  

An  empirical  study  is  made  with  six  open  source  programs,  and  possible  slices  are  

collected with a separate program from each program’s SDG. The program sizes vary 

from 37 to 1008 program points. Every other algorithm except the Greedy Algorithm was 

executed 100 times; the Greedy algorithm gives the same result every time and thus does 

not need several test runs. For the fitness function using Average Overlap, the Greedy 

Algorithm performs the best for all but one test case, where HC and GA perform the best. 

Furthermore,  it  is  seen  that  for  smaller  programs  HC  outperforms  GA  and  Random  

search. As the program size increases, GA starts to perform better, and wins over HC. For 

the second fitness function where the Maximum Overlap was used, the results are similar 

as with the first fitness function. However, in this case GA performs the best of the other 

algorithms, and HC only beats Random search on the smallest test case.  The Greedy 

Algorithm also outperforms all others in terms of execution time. It is no surprise that the 

Random Search is outperformed every time. However, it is naturally a bit disappointing 

that the Greedy Algorithm was superior in every aspect, when compared to other search 

methods.  

Jiang et al. [2008a] make another study by only using the Greedy Algorithm for six 



different large programs. As the previous study showed that the Greedy Algorithm 

outperformed all other studied search algorithms, now it is tested how efficient it is in 

decomposing a program into a set of slices. Results suggest that less than 20% of a 

program can be used to decompose the whole program or function.  

Jiang et al. [2008b] continue by applying a Greedy Algorithm to procedure splitting. 

They attempt to split a procedure into two or more sub-procedures in order to improve 

cohesion. The Greedy Algorithm is used to find close to optimal splitting points.  

A slice is represented as a bit matrix. A matrix value is depends on whether a program 

point (i.e., a node in the system’s SDG) belongs to a certain slice. The splitting algorithm 

proceeds in four steps: 1. slice with respect to all nodes in SDG to find all static backward 

slices, 2. find sets of slices with minimum overlap, 3. recover slice statements by 

combining nodes that belong to a single statement, 4. make sub-procedures obtained 

executable. 

Results indicate that more than 20% of procedures in all six programs contain 

independent sub-programs. Also, it would seem that most procedures are not splittable, 

and the ones that are, can usually be split into only 2 or 3 sub-programs. Splittability 

appears to correlate with the size of the program.  

Fatiregun et al. [2004] use meta-heuristic search algorithms to automate, or partially 

automate the problem of finding good program transformation sequences. With the 

proposed method one can dynamically generate transformation sequences for a variety of 

programs also using a variety of objective functions. The goal is to reduce program size, 

but the approach is argued to be sufficiently general that it can be used to optimize any 

source-code level metric. Random search (RS), hill climbing and GA are used.  

An overall transformation of a program p to an improved version p’ typically consists 

of many smaller transformation tactics. Each tactic consists of the application of a set of 

rules. A transformation rule is an atomic transformation capable of performing the simple 

alterations. To achieve an effective overall program transformation tactic many rules may 

need to be applied and each would have to be applied in the correct order to achieve the 

desired results.  

In HC, an initial sequence is generated randomly to serve as the starting point. The 

algorithm is restarted several times using a random sequence as the starting individual 

each time. The aim is to divert the algorithm from any local optimum.  

Each transformation sequence is encoded as an individual that has a fixed sequence 

length of 20 possible transformations. An example individual is a vector of the 

transformation numbers. In HC, the neighbor is defined as the mutation of a single gene 



from the original sequence. Crossover is the standard one-point crossover. In addition to 

transformations, cursor moves are also used. The tournament selection is used for 

selecting mating parents and creating a single offspring, which replaces the worse of the 

parents. The authors consider optimizing the program with respect to the size of the 

source-code, i.e., LOC, where the aim is to minimize the number of lines of code as much 

as possible. This metric is quite simple, and the effects are hardly arguable, if the length 

of a line of code is somehow restricted.  

The fitness is measured as the nominal difference in the lines of code between the 

source program and the new transformed program created by that particular sequence. 

This is evaluated by a process of five steps: 1. compute length of the input program, 2. 

generate the transformation sequence, 3. apply the transformation sequence, 4. compute 

the current length of the program, 5. compute the fitness, which is the difference between 

steps 1 and 4.  

Results show that GA outperforms both RS and HC. In cases where RS outperformed 

GA  and  HC,  it  was  noticed  that  GA  and  HC  are  not  “moving”  towards  areas  where  

potential optimizations could be. Analyzing the GA, the authors believe that the GA 

potentially kills off good subsequences of transformations during crossover. These results 

are interesting as this would indicate that the selected (standard) crossover would not 

support the preservation of building blocks. As discussed in Section 4, it may be that also 

the encoding could be improved to preserve building blocks. All in all, examining the 

fitness landscape and rethinking the encoding and crossover operators may be able to 

improve the results achieved with the GA. 

Williams [1998] implements several search algorithms in his REVOLVER system 

that make program transformations in order to parallelize the program and thus lessen the 

execution time. The idea is to transform loops in different ways, and as loops are the core 

of  the  approach,  they  are  numbered.  HC,  SA and GA are  used,  and most  interestingly,  

two different encodings are experimented with. 

In the first encoding, Gene-Transformation (GT), each gene represents a 

transformation that is applied to the system. The gene contains information what 

transformation is applied, and the number of the loop it is applied to. Three different 

mutations can be used: changing the transformation, changing the loop number or 

changing both (i.e., the entire gene). Both one-point and two-point crossovers are 

implemented. However, in the one-point crossover, the crossover points for the parent 

chromosomes are chosen individually for each parent, as they might be of unequal length. 

This approach is applied to HC, SA and GA. 



In the second encoding, Gene-Statement (GS), each gene represents a statement in the 

program, .e.g., an if- or a do-statement, and the chromosome thus represents the program 

as a sequence of statements. The mutations that are applied are the chosen operations on 

loops, and applying them to the program. This is actually quite odd, as only loop related 

transformations  are  used,  but  there  are  only  loops  in  some  of  the  genes.  Note,  that  a  

mutation will alter the program, as, say, combining two loops will remove the statement 

representing one of them, and thus shortens the chromosome by one gene. No crossover 

is used in this representation, and the used algorithms are HC and evolutionary strategy 

(ES), which is basically a GA, i.e., it has a population and selection, but without the 

crossover. 

The fitness function for both approaches is the actual execution time of the 

transformed program, and tournament selection is used. In the tests the population size 

was only 5 for the algorithms with populations, and the number of generations only 50. 

These parameters seem incredibly low, as there is very little room for versatility in the 

population, and there is very little time for development also. Thus, one wonders whether 

the benefits of the GA are truly used in this approach.  

Test results on five programs show that the ES and HC with the GS encoding 

outperformed all other algorithms. The traditional GA appeared the worst. These results 

further  suggest  that  the  population  parameter  chosen  for  the  traditional  GA  should  be  

revised,  as  the  GA  cannot  use  its  full  potential.  Interestingly,  ES,  which  also  had  a  

population, performed the best. The strength of the GS encoding is also very interesting, 

considering there is much information in the genes that cannot be mutated. However, ES 

did not have a crossover, and thus choosing parents is not an issue for this algorithm. All 

in all, the algorithms were able to improve the execution times significantly.  

Ryan and Ivan [1999] have taken a rather different approach to program 

parallelization, as they encode the program in tree form and use genetic programming as 

the search algorithm. They use GP in an unusual way, as it does not actually “program”, 

but  searches  for  the  optimal  transformations  for  the  program,  thus  making  this  study  a  

design problem.  

The program is considered as a sequence of instructions. The actual tree given by the 

GP then comes from examining the atoms representing the instructions, and deciding on 

transformations based on the type of the instruction. The GP works in two modes: atom 

mode  and  loop  mode.  Each  step  begins  in  atom  mode,  and  if  the  fond  instruction  is  a  

loop, the mode is switched. In atom mode, there are three classes of transformations. The 

transformations in the first class split the sequence of instructions according to a given 



percent, thus forking the execution of a program. The ones in the second class also split 

the sequence of instructions, but with less effect, as the split point is always either after 

the first of before the last instruction. The last class delays the execution of the program.  

Each atom mode transformation is an internal node in a tree, and takes as input the 

program segment before passing it onto the next transformation. The program segment 

ultimately diminishes to one atom as transformations are applied. In loop mode the idea 

is to parallelize each loop by executing each iteration on a different processor, 

unfortunately, though, this raises issues with data dependencies. A significant operator in 

loop mode is loop fusion, which combines consecutive loops.  

The fitness function is a combination of fitness calculations from the atom mode and 

the loop mode. For the atom mode the fitness is the execution time and the correctness of 

the program. For loop mode the fitness is the number of successes for applied loop 

operators. The initial results are promising; the approach is able to parallelize programs 

and thus ameliorate them in terms of execution time.  

The approach of Ryan and Ivan [1999] appears quite similar to that of Williams 

[1998] in terms of the choosing loops as a key ingredient in the mutations. However, 

Ryan and Ivan have taken atom transformations into account as traditional mutations, 

while Williams has chosen to deal with non-loop structures only at the encoding stage. 

The fitness function for both approaches is basically the same, as execution time is the 

most important factor. It would be interesting to study the problem of program 

parallelization also in terms of other quality factors and as a larger problem in the context 

of, e.g., distributed systems.  

Harman and Tratt [2007] show how Pareto optimality can improve search based 

refactoring, making the combination of metrics easier and aiding the presentation of 

multiple sequences of optimal refactorings to users. Intuitively, each value on a Pareto 

front maximizes the multiple metrics used to determine the refactorings. Through results 

obtained from three case studies on large real-world systems, it is shown how Pareto 

optimality allows users to pick from different optimal sequences of refactorings, 

according to their preferences. Moreover, Pareto optimality applies equally to sub-

sequences of refactorings, allowing users to pick refactoring sequences based on the 

resources available to implement those refactorings. Pareto optimality can also be used to 

compare different fitness functions, and to combine results from different fitness 

functions. 

 Harman and Tratt use the move method refactoring presented by Seng et al. [2006]. 

Three systems are used in the case study, all non-trivial real-world systems. The search 



algorithm itself is a non-deterministic non-exhaustive hill climbing approach. A random 

move method refactoring is chosen and applied to the system. The fitness value of the 

updated system is then calculated. If the new fitness value is worse than the previous 

value,  the  refactoring  is  discarded  and  another  one  is  tried.  If  the  new  fitness  value  is  

better than the previous, the refactoring is added to the current sequence of refactorings, 

and applied to the current system to form the base for the next iteration. A cut-off point is 

set for checking neighbors before concluding that a local maximum is reached. The end 

result of the search is a sequence of refactorings and a list of the before and after values 

of the various metrics involved in the search.  

Two metrics are used to measure the quality: coupling and standard deviation of 

methods per class (SDMPC). Coupling (CBO) is from Briand’s [2000] catalogue. The 

second metric, SDMPC, is used to act as a ‘counter metric’ for coupling. An arbitrary 

combination of the metrics is used, the fitness function being SDMPC*CBO. The new 

fitness function improves the CBO value of the refactored system while also improving 

the SDMPC of the system.  All the points on a Pareto front are, in isolation, considered 

equivalently good. In such cases, it might be that the user may prefer some of the Pareto 

optimal points over others.  

The concept of a Pareto front is argued to make as much sense with subsets of data as 

it does for complete sets. Harman and Tratt also stress the importance of knowing how 

many runs a search-based refactoring system will need to achieve a reasonable Pareto 

front approximation. Furthermore, developers are free to execute extra runs of the system 

if they feel they have not yet achieved points of sufficient quality on the front 

approximation. Pareto optimality allows determining whether one fitness function is 

subsumed by another: broadly speaking, if fitness function f produces data which, when 

merged with the data produced from function f’, contributes no points to the Pareto front 

then we know that f is subsumed by f’. Although it may not be immediately apparent, 

Pareto optimally confers a benefit potentially more useful than simply determining 

whether one fitness function is subsumed by another. If two fitness functions generate 

different Pareto optimal points, then they can naturally be combined to single front.  

Pareto optimality is shown to have many benefits for search-based refactoring, as it 

lessens the need for “perfect” fitness functions. This would make Pareto optimality an 

approach that should be considered for any optimization problem with conflicting goals. 

5.3 Summarizing remarks 

The approaches to search-based refactorings can be divided into the following groups: 

refactoring the program at class level, refactoring the program at procedure level, and 



refactoring pieces of code. The most studies have been performed on refactoring at class 

level, and they are all quite similar, and actually end up using the same operations for the 

search algorithm. For the other aspects only one or two studies have been made, and this 

suggests that there is much room for competing approaches. The most advanced results 

have been achieved with refactorings at class level, while studies in program 

transformations have achieved both good and not so good results.  

When examining the refactoring problems, one notable characteristic is that Seng et 

al. [2006] attempt to preserve building blocks from the very beginning, and several other 

studies have later built on the operators introduced by them. The mutation selection by 

Seng et al. [2006] also appears popular. The complexity of the refactoring problem at 

class level was most pointedly demonstrated by O’Keeffe and Ó Cinneide [2006; 2008a], 

who had a list of 14 mutations and 11metrics, and Quaum and Heckle [2009], who had to 

pre-define mutations according to the specific system. Considering that there can be even 

more general refactorings in addition to those presented by O’Keeffe and Ó Cinneide, 

and that they could be combined with system specific mutations, the search space for an 

optimal refactoring sequence will soon become incredibly large. 

The approaches to search based refactoring also seem advanced in the aspect that 

there have already been several studies that compare different search algorithms and 

fitness functions. As for the search algorithms, different hill climbing applications are 

clearly very efficient and able to produce high quality results. Interestingly, simulated 

annealing has been outperformed by other algorithms, although one might argue that it is 

more “sophisticated” than at least the basic hill climbing.  All in all, there are very few 

approaches that use simulated annealing, and no breaking results have been achieved 

with it. The studies in fitness functions further support the notion of complexity in this 

problem area. There have O’Keeffe and Ó Cinnéide [2004] have considered the problem 

of finding an appropriate fitness function so important that they have developed a 

heuristic for balancing different weights, and Harman et al. [2007] have introduced the 

Pareto optimality concept to this field, as software design is indeed an area where trade-

offs and compromises need to be made. As for the other studies, the variety of metrics 

quality evaluators shows that a refined method for deciding on an appropriate fitness 

function is truly needed. The only area where consensus can be found is program 

transformations, where quality can quite simply be measured in terms of run time and 

correctness or size of the program. 



 

Table 4. Research approaches in search-based software refactoring 

Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments 

Seng et al. [2005] Optimizing 
subsystem 
decomposition for 
maintenance 

Model of system 
as a graph, 
extracted from 
source code 

Genes represent 
subsytem 
candidates 

Split&join, 
elimination and 
adoption 

Two children 
from two 
parents, 
integrating 
crossover 

Cohesion, 
coupling, 
complexity, 
bottlenecks and 
cycles 

Source code 
extracted from 
resulting model 

 

Seng et al. [2006] Refactoring a 
software system 
with a wide set of 
operations 

Model of system, 
extracted from 
source code, with 
access chains 

Ordered list of 
refactorings 

Common class 
structrure 
refactorings, the 
list is extended 
with a suggested 
transformation 
 

Minimize 
rejected, 
duplicated and 
unused methods 
and featureless 
classes and 
maximize 
abstract classes 

Refactored 
software system 

SA used as search 
algorithm, 
introducing a 
heuristic for 
weighting 
conflicting quality 
goals 

 

O'Keeffe and Ó 
Cinnéide [2004] 

Automating 
software 
refactoring 

Software system N/A Restructure class 
hiearchy and 
method moves, 
mutations in 
counter-pairs in 
order to reverse a 
move 

N/A Minimize rejected, 
duplicated and 
unused methods 
and featureless 
classes and 
maximize abstract 
classes 

Refactored 
software system 

SA used as search 
algorithm, 
introducing a 
heuristic for 
weighting 
conflicting quality 
goals 

O'Keeffe and Ó 
Cinnéide [2006; 
2008a] 

Automating 
software 
refactoring  

System as Java 
source code 
 

N/A Refactorings 
regarding 
visibility, class 
hierarchy and 
method placement 

N/A Reusability, 
flexibility and 
understandability 
 

Refactored code 
and design 
improvement 
report 

Three variations of 
hill climbing and 
SA used as search 
algorithms 

 

 

 



Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments 

O'Keeffe and Ó 
Cinnéide [2007; 
2008b] 

Comparison 
between different 
search techniques  

System as Java 
source code 
 

Ordered list of 
refactorings [Seng 
et al., 2006] 

Common class 
structrure 
refactorings, the 
list is extended 
with a suggested 
transformation 
[Seng et al., 2006] 
 

A random set of 
transformations 
from one parent 
chosen, the 
transformations 
of the other 
added to that list 
[Seng et al., 
2006] 

Understandability Refactored code 
and design 
improvement 
report 

GA and multiple 
ascent hill climb 
implemented 

Qayum and 
Heckel [2009] 

Refactoring graph 
structure 

Class diagram N/A A set of 
refactorings 
defined for each 
individual 
problem 

N/A Partial fitness 
evaluations, cost 
and quality 

A sequence of 
refactorings 

ACO used as search 
algorithm 

Jiang et al. 
[2008a] 

Locating 
dependence 
structures with 
slicing, 
comparing 
different search 
techniques  

Source code  
 

Two-dimensional 
bit matrix 

A random bit flip 
to offspring 
 

Multi-point 
crossover 

Coverage and 
Overlap, which is 
divided to average 
and maximum 

Optimal set of 
program slices 

HC, GA, Random 
search and Greedy 
algorithm 
implemented; 
fitness function is 
used as a parameter 

Jiang et al. 
[2008b] 

Splitting 
procedures  

Source code 
 

Two-dimensional 
bit matrix 

Change bit 
 

N/A Overlap Optimal set of 
procedure slices 
without overlap 

Greedy algorithm 
used 
 

 

 



Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments 

Fatiregun et al. 
[2004] 

Program 
refactoring on 
source code level 

Source code Integer vector 
containing 
transformation 
numbers 

Standard Standard one-
point 

Size of source code 
(LOC) 

A sequence of 
program 
transformations 

Random search, HC 
and GA are used 

Williams [1998] Program 
parallelization 

Source code Two alternate 
encodings: 
GT includes a 
three symbol 
abbreviation of 
transformation 
and a loop 
number,  
GS includes an 
encoded 
statement 

Applying one of 6 
transformations, 
changing 
transformation or 
loop number 

One-point and 
two-point, 
individual 
crossover points 

Execution time Transformed 
program 

HC, GA, SA and ES 
implemented 

Ryan and Ivan 
[1999] 

Program 
parallelization 

Source code Tree structure of 
transformations 

Applying atom or 
loop level 
tranformation 

N/A Execution time, 
correctness, loop 
transformation 
success 

Transformed 
program, 
transformation 
sequence 

GP used as 
algorithm 

Harman and Tratt 
[2007] 

Pareto optimality 
used for multi-
objective 
optimization 

Software system N/A Move method N/A Coupling and 
standard deviation 
of methods per 
class 

A sequence of 
refactorings 

HC used as search 
algorithm 



 

6. SOFTWARE QUALITY 

Software quality assessment has become an increasingly important field. The complexity 

caused by object-oriented methods makes the task more important and more difficult. An 

ideal quality predictive model can be seen as the mixture of two types of knowledge: 

common knowledge of the domain and context specific knowledge. In existing models, 

one  of  the  two  types  is  often  missing.  During  its  operating  time,  a  software  system  

undergoes various changes triggered by error detection, evolution in the requirements or 

environment changes. As a result, the behavior of the software gradually deteriorates as 

modifications increase. This quality slump may go as far as the entire software becoming 

unpredictable.  

Software quality is a special concern when automatically designing software systems, 

as the quality needs to be measured with metrics and in pure numerical values. The use of 

metrics may even be argued, as they cannot possibly contain all the knowledge that an 

experienced human designer has. Sahraoui et al. [2000] have investigated whether some 

object-oriented metrics can be used as an indicator for automatically detecting situations 

where a particular transformation can be applied to improve the quality of a system. The 

detection process is based on analyzing the impact of various transformations on these 

object-oriented metrics using quality estimation models.  

Sahraoui et al. have constructed a tool which, based on estimations on a given design, 

suggests particular transformations that can be automatically applied in order to improve 

the quality as estimated by the metrics. Roughly speaking, building a quality estimation 

model consists of establishing a relation of cause and effect between two types of 

software characteristics. Firstly, internal attributes which are directly measureable, such 

as size, inheritance and coupling, and secondly, quality characteristics which are 

measurable after a certain time of use such as maintainability, reliability and reusability. 

To study the impact of the global transformations on the metrics, first the impact of each 

elementary transformation is studied and then the global impact is derived.   A case study 

is used for the particular case of the diagnosis of bad maintainability by using the values 

of metrics for coupling and inheritance as symptoms.  Based on the results of this study, 

Sahraoui et al. argue that using metrics is a step toward the automation of quality 

improvement, but that experiments also show that a prescription cannot be executed 

without a validation of a designer/programmer.  

The use of evolution metrics for fitness functions has especially been studied [Mens 

and Demeyer 2001; Harman and Clarke, 2004]. If one looks at the whole process of 



detecting flaws and correcting them, metrics can help automating a large part of it. 

However, the results of the experiments show that a prescription cannot be executed 

without a validation of a designer or programmer. This approach cannot capture all the 

context of an application to allow full automation.  

Some approaches regarding software quality have also been made with search-based 

techniques. Bouktif et al. [2002; 2004] aim at predicting software quality of object-

oriented systems with GAs, and Vivanco and Jin [2007] have implemented a GA to 

identify possible problematic software components. Bouktif et al. [2006] have also 

implemented a SA to combine different quality prediction models.  Summarizing remarks 

are presented in the end, and the fundamentals of each approach are collected in Table 5. 

 

6.1 Search-based approaches 

 
Bouktif et al. [2002; 2004] study the prediction of stability at object-oriented class level 

and propose two GA based approaches to solve the problem of quality predictive models: 

the first approach combines two rule sets and the second one adapts an existing rule set. 

The predictive model will take the form of a function that receives as input a set of 

structural metrics and an estimation of stress, and produces as output a binary estimation 

of the stability. Here, stress represents the estimated percentage of added methods in a 

class between two consecutive versions. 

The model encoding for the GA that combines rule sets is based on a decision tree. 

The decision tree is a complete binary tree where each inner node represents a yes-or-no 

question, each edge is labeled by one of the answers, and terminal nodes contain one of 

the classification labels from a predetermined set. The decision making process starts at 

the root of the tree. When the questions at the inner nodes are of form “Is x > a?”, the 

decision regions of the tree can be represented as a set of isothetic boxes in an n-

dimensional space (n = number of metrics). For the GA representation, these boxes are 

enumerated in a vector. Each gene is a (box, label) pair, and a vector of these pairs is the 

chromosome.  The complexity of quality as a concept is directly shown in the complexity 

of the encoding. No simple integer vector can be used to represent quality estimations. 

An interesting research question is to determine what is the minimal information needed 

in order to evaluate or predict quality.  

Mutation is a random change in the genes that happens with a small probability. In 

this problem, the mutation operator randomly changes the label of a box. To obtain an 

offspring, a random subset of boxes from one parent is selected and added to the set of 



boxes of the second parent. The size of the random subset is v times the number of boxes 

of the parent where v is a parameter of the algorithm.  By keeping all the boxes of one of 

the parents, completeness of the offspring is automatically ensured. To guarantee 

consistency, the added boxes are made predominant (the added boxes are “laid over” the 

original boxes). A level of predominance is added as an extra element to the genes. Each 

gene is now a three-tuple (box, label, level). The boxes of the initial population have level 

1. Each time a predominant box is added to a chromosome, its level is set to 1 plus the 

maximum level in the hosting chromosome. To find the label of an input vector x (a 

software element), first all the boxes containing x are found, and x is assigned the label of 

the box that have the highest level of predominance.  

To measure the fitness a correctness function is used; the function calculates the 

number of cases that the rule correctly classifies divided by the total number of cases that 

the rule classifies. The correctness function is defined as C = 1 - training error. By using 

the training error for measuring the fitness, it is found that the GA tended to “neglect” 

unstable classes. To give more weight to data points with minority labels, Youden’s 

[1961] J-index is used. Intuitively, the J-label is the average correctness per label. If one 

has  the  same  number  of  points  for  each  label,  then  J = C. As seen, the actual fitness 

evaluations for quality seem simple, which is surprising when compared to the 

complicated metric combinations used to evaluate quality in all the various GA 

implementations already presented. However, here the most work is needed for defining 

the rules that need to be satisfied and questions that need to be answered. 

With a GA for adapting a rule set, an existing rule set is used as the initial population 

of chromosomes, each rule of the rule set being a chromosome and each condition in the 

rule as well as the classification label being a gene.  Each chromosome is attributed a 

fitness value, which is C*t, where t is the fraction of cases that the rule classifies in the 

training set. The weight t allows  giving  rules  that  cover  a  large  set  of  training  cases  a  

higher chance of being selected.  

Parents for crossover are selected with roulette wheel method. A random cut point is 

generated for each parent, i.e., the cut-points are different for each parent. Otherwise, the 

operation is a traditional one-point crossover. By allowing chromosomes within a pair to 

be cut at different places, a wider variety is allowed with respect to the length of the 

chromosomes. The chromosomes are then mutated. The mutation of a gene consists of 

changing the value to which the attribute encoded in the gene is compared to a value 

chosen randomly from a predefined set of values for the attribute (or class label, in case 

the last gene is mutated). The new chromosomes are scanned and trimmed to get rid of 



redundancy in the conditions that form the rules that they encode. Inconsistent rules are 

attributed a fitness value of 0 and will eventually die. A fixed population size is 

maintained. Elitism is performed when the population size is odd. This consists of 

copying one or more of the best chromosomes from one generation to the next. Before 

passing from one generation to another, the performance of combined rules to one rule 

set is evaluated.  

In the experimental setting, to build experts (that simulate existing models), stress and 

18 metrics (belonging to coupling, cohesion, complexity and inheritance) are used. 

Eleven object-oriented systems are used to “create” 40 experts. For the combining GA, 

the elitist strategy is used, where the entire population apart from a small number of 

fittest chromosomes is replaced. The test results show that the approach of combining 

experts can yield significantly better results than using individual models. The adaptation 

approach does not perform as well as the combination, although it gave a slight 

improvement over the initial model in one case. The authors believe that using more 

numerous and real experts on cleaner and less ambiguous data, the improvement will be 

more significant. It is quite inspiring that approach of combining experts produced the 

more promising results. If it can be assumed that experts in both initial populations have 

the same amount of knowledge, it would seem that merely adapting an expert would be a 

smaller task to perform than successfully combining the knowledge from two different 

experts. Thus the results are very positive when considering what the GA is capable of. 

Bouktif et al. [2006] have continued their research by applying simulated annealing to 

combine experts. Their approach attempts to reuse and adapt quality predictive models, 

each of which is viewed as a set of expertise parts. The search then aims to find the best 

subset of expertise parts, which forms a model with an optimal predictive accuracy. The 

SA  algorithm  and  a  GA  made  for  comparison  were  defined  for  Bayesian  classifiers  

(BCs), i.e., probabilistic predictive models.   

An optimal model is built  of a set of experts, each of which is given a weight. Each 

individual, i.e., chunk, of expertise is presented by a tuple consisting of an interval and a 

set of conditional probabilities. Transitions in the neighborhood are made by changing 

probabilities or interval boundaries. A transition may also be made by adding or deleting 

a chunk of expertise. The fitness function is the correctness function.   

For evaluation, the SA needs two elements as inputs: a set of existing experts and a 

representative sample of context data.  Results show a considerable improvement in the 

predictive accuracy, and the results produced by the SA are stable. The values for GA 

and SA are so similar that the authors do not see a need to value one approach over the 



other. Results also show that the accuracy of the best produced expert increases as the 

number of reused models increases and that good chunks of expertise can be hidden in 

inaccurate models. Again the results achieved with SA encourages further usage of 

different search algorithms apart from GA, or even combining and making more hybrid 

approaches in order to increase quality in search based approaches to software design.  

Vivanco  and  Jin  [2007]  present  initial  results  of  using  a  parallel  GA  as  a  feature  

selection method to enhance a predictive model’s ability to identify cognitively complex 

components in a Java application. Linear discriminant analysis (LDA) can be used as a 

multivariate predictive model.  

It is theorized that the structural properties of modules have an impact on the 

cognitive complexity of the system, and further on, that modules that exhibit high 

cognitive complexity result in poor quality components. Again, this is in line with the 

assumption already made by Lutz [2001], that the simpler a design, the better. A 

preliminary study is carried out with a biomedical application developed in Java. 

Experienced program developers are asked to evaluate the system. Classes labeled as low 

are considered easy to understand and use, while a high ranking implied the class is 

difficult to fully comprehend and would likely take considerable much more effort to 

maintain. Source code measurements, 63 metrics for each Java class, are computed using 

a commercial source code inspection application. To establish a baseline, all the available 

metrics are used with the predictive model. The Chidamber and Kemerer [1994] metrics 

suite is used to determine if the model would improve. Finally, the GA is used to find 

alternate metrics subsets. Using the available metrics with LDA, less than half of the Java 

classes are properly classified as difficult to understand. The CK metrics suite performs 

slightly better. Using GA, the LDA predictive model has the highest performance using a 

subset of 32 metrics. The GA metrics correctly classify close to 100% of the low, nearly 

half of the medium and two thirds of the high complexity classes.  

Vivanco and Jin are most interested in finding the potentially problematic classes with 

high cognitive complexity. A two-stage approach is evaluated. First, the low complexity 

classes are classified against the medium/high complexity classes. The GA driven LDA 

highly accurately identifies the low and medium/high complexity classes with a subset of 

24 metrics. When only the medium complexity classes are compared to high complexity, 

a GA subset of 28 metrics results in extremely high accuracy for the medium complexity 

classes and in identifying the problematic classes. In all GA subsets, metrics that cover 

Halstead complexity, coupling, cohesion, and size are used, as well as program 

readability metrics such as comment to code ratios and the average length of method 



names. 

This study is extremely interesting as it ties known software metrics with human 

expertise and compares how metrics perform when trying to correctly classify objects. It 

is noteworthy that from 63 different metrics the optimal outcome was achieved with 24-

32 metrics, which is less than half of all metrics available. Although there is naturally 

overlap between different metrics, it is interesting to see that many of them do not seem 

to correctly evaluate the program. The found metrics cohesion, coupling and complexity 

support the current fitness function choices to a certain points. However, many fitness 

functions only calculate 2-5 different metrics, while the optimum was reached with over 

20.  In addition, several metrics need the source code, and thus make them unsuitable for 

more high-level problems. 

6.2 Summarizing remarks 

The presented studies on software quality estimation show that correctly evaluating 

software is anything but easy. However, although the amount of studies is small, they are 

all very recent, and thus shows promise that search-based approaches can also be used in 

this sub-are of software design. Finding a search algorithm for quality estimation can also 

be seen as a developed way of tackling the problem of finding an optimal fitness 

function. In other words, in the future it might be possible to use a fitness function (i.e., a 

search algorithms) to find an optimal fitness function for each individual software design 

problem.  Using search algorithms for quality estimations, the current fitness function, is 

the first step in this direction.  

 

 

 

 

 

 

 

 

 

 

 



Table 5. Studies in search-based software quality enhancement 

Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments 

Bouktif et al. 
[2002;2004] 

Combining two 
rule sets vs. 
adapting a rule set 
with GA in quality 
prediction models  

Decision tree 
 

Combination: box, 
label -pairs from 
decision tree 
 
Adaptation: one 
rule is one 
chromosome, each 
condition in the 
rule is a gene  

Combination: 
change of label  
 
Adaptation: 
change value of 
attribute encoding 

Combination: a 
random set of 
boxes from one 
parent added to 
the other and 
level of 
predominance 
added to gene 
(box, label, level) 
 
Adaptation: 
standard one-
point, parents 
selected with 
roulette-wheel 
method 

Correctness  Optimal rule set  

Bouktif et al. 
[2006] 

Combining 
software quality 
prediction  
models, i.e., 
experts 

Set of example 
models and 
context data 
 

Range and 
conditional 
probabilities 

Modify range or 
probability or add 
or remove an 
expert 
 

N/A Correctness Optimal model 
combined of sub-
optimal models 

SA used 

Vivanco and 
Jin [2007] 

Identification of 
complex 
components 

Software system N/A N/A N/A OO metrics Classes divided 
according to 
complexity levels 

 



 

7. FUTURE WORK 

From the search-based approaches presented here, software clustering and software 

refactoring (i.e., re-design) appear to be at the most advanced stage. Thus, most work is 

needed with actual architecture design, starting from requirements and not a ready-made 

system. Also, search-based application of, e.g., design patterns, should be investigated 

more. Another branch of research should be focused on quality metrics. So far the quality 

of a software design has mostly been measured with cohesion and coupling, which 

mostly conform to the quality factors of efficiency and modifiability. However, there are 

many more quality factors, and if an overall stable software system is desired, more 

factors should be taken into account in evaluation, such as reliability and stability.  Also, 

as demonstrated with the MQ metric in Section 4, metrics that have seemed good in the 

beginning may prove to be inadequate when investigated further.  Fortunately, it seems 

that most of the work presented here is the result of developing research that is still 

continuing. The following research questions should and could very well be answered in 

the foreseeable future: 

- What kind of architectural decisions are feasible to do with search-based 

techniques? 

Research with search-based software architecture design is at an early stage, and not 

all possible architecture styles and design patterns have been tested. Some architectural 

decisions are more challenging to implement automatically than others, and in some 

cases it may not be possible at all. The possibilities should be mapped to effectively 

research the extent of search-based designs capabilities. 

- What is a sufficient starting point to being software architecture design with search-

based technique? 

So far requirements with a limited set of parameters have been used to build software 

architecture, or a ready system has been improved. Some design choices need very 

detailed information regarding the system in order to effectively evaluate the change in 

quality after implementing a certain design pattern or architecture style. The question of 

what information is needed for correct quality evaluation is not by any means easily 

answered. 

- What would be optimal representation, crossover and mutation operators regarding 

the software modularization problem? 

Much work has been done with software modularization, and the chromosome 

encoding, crossover and mutation operators vary greatly. Optimal solutions would be 



interesting to find. As discussed throughout the survey, the chosen encoding significantly 

affects the result of mutation and crossover operations and also has a big impact on run 

time for the algorithm. There are also several options for crossover, where some maintain 

building blocks better than others.  

- What would be optimal representation, crossover and mutation operators regarding 

the software refactoring problem? 

Much research has been done with software refactoring, and the chromosome 

encoding, crossover and mutation operators vary greatly. Especially the set of mutations 

is  interesting,  as  they  define  how  greatly  the  software  can  be  refactored.  An  optimal  

encoding might enable a larger set of mutations, thus giving the search-based algorithm a 

larger space to search for optimal solutions.  

- What metrics could be seen as a “standard” for evaluating software quality? 

The evaluation of quality, i.e., the fitness function, is a crucial part of evolutionary 

approaches to software engineering. Some metrics, e.g., coupling and cohesion, have 

been widely used to measure quality improvements at different levels of design. 

However, these metrics only evaluate a small portion of quality factors, and there are 

several versions of even some very “standard” metrics. Metrics by, e.g., Briand [2000] 

and Chidamber and Kemerer [1994] can be considered as some kind of standards. 

However, all software metrics are constantly subjected to criticism, as their correctness is 

challenged. Thus, by the author’s view, as there are several versions of even the most 

common metrics and there is no agreement that metrics even measure the right things at 

the moment, no metric set can currently be seen as standard. Thus, a well-validated 

metric set would be extremely beneficial, if it is possible to conduct such a set. It very 

well may be that the present metrics simply don’t suffice, and in that case other directions 

must be taken to evaluate quality, as has already been demonstrated in some of the work 

covered in this survey. 

- How can metrics be grouped to achieve more comprehendible quality measures? 

Metrics achieve clear values, but if a human designer would attempt to use a tool in 

the design process, notions such as “efficiency” and “modifiability” are more 

comprehendible than “coupling” and “cohesion”. Thus, being able to group sets of 

metrics to correspond to certain real-world quality values would be beneficial when 

making design tools available for common use.  

 

8. CONCLUSIONS 

This survey has presented on-going research in the sub-fields of search-based software 



design. There has been much progress in the sub-fields of software modularization and 

refactoring, and very promising results have been achieved.  A more complex problem is 

automatically designing software architecture from requirements, but some initial steps 

have already been taken in this direction as well.  Figure 3 shows the timeline of the 

presented studies, and it very effectively demonstrates the increasing interest in the area 

during the very past years. There has been immense increase in the area of OO design 

and refactoring, while clustering, the first application in the area, has not sparked new 

research interest.  
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Fig. 3. Timeline for studies in search-based design 

The surveyed research shows that metrics, such as cohesion and coupling can 

accurately evaluate some quality factors, as the achieved, automatically improved 

designs, have been accepted by human designers. However, many authors also report 

problems: the quality of results is not as high as wished or expected, and many times the 

blame is placed with a less than optimal encoding and crossover operators. Extensive 

testing of different encoding options is practically infeasible, and thus inspiration could 

be found in those solutions that have produced the most promising results. As a whole, 

software (re-)design seems to be an appropriate field for the application of meta-heuristic 

search algorithms, and there is much room for further research.  
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