
Outi Räihä

An Updated Survey on
Search Based Software Design

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

D 2009 5

TAMPERE 2009

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCES
SERIES OF PUBLICATIONS D – NET PUBLICATIONS
D 2009 5, AUGUST 2009

Outi Räihä

An Updated Survey on
Search Based Software Design

DEPARTMENT OF COMPUTER SCIENCES
FIN 33014 UNIVERSITY OF TAMPERE

ISBN 978 951 44 7827 7
ISSN 1795 4274

An Updated Survey on Search-Based Software
Design
OUTI RÄIHÄ
Tampere University of Technology, Finland
__

Search-based approaches to software design are investigated. Software design is considered from a wide view,
including topics that can also be categorized under software maintenance or re-engineering. Search-based
approaches have been used in research from high architecture level design to software clustering and finally
software refactoring. Enhancing and predicting software quality with search-based methods is also taken into
account as a part of the design process. The choices regarding fundamental decisions, such as representation and
fitness function, when used in meta-heuristic search algorithms, are emphasized and discussed in detail. Ideas
for future research directions are also given.

Categories and Subject Descriptors: D.2.10. [Software Engineering]: Design; D.2.11. [Software
Engineering]: Software Architectures; G.1.6 [Numerical Analysis]: Optimization.

General Terms: Algorithms, Design

Additional Key Words and Phrases: search-based software engineering, clustering, refactoring, software
architecture design, software quality, genetic algorithm, hill climbing, simulated annealing,
__

1. INTRODUCTION

Traditional software engineering attempts to find solutions to problems in a variety of

areas, such as testing, software design, requirements engineering, etc. A human software

engineer must apply his acquired knowledge and resources to solve such complex

problems that have to simultaneously meet needs but also be able to handle constraints.

Often there are conflicts regarding the wishes of different stakeholders, i.e., compromises

must be made with decisions regarding both functional and non-functional aspects.

However, as any other engineering discipline, software engineers still attempt to find the

optimal solution to any given problem, regardless of its complexity. As systems get more

complex, the task of finding even a near optimal solution will become far too laborious

for a human. Automating (or semi-automating) the process of finding, say, the optimal

software architecture or resource allocation in a software project, can thus be seen as the

ultimate dream in software engineering. Results from applications of search techniques in

other engineering disciplines further support this idea, as they have been extremely

encouraging.

Search-based software engineering (SBSE) applies meta-heuristic search techniques,

such as genetic algorithms and simulated annealing, to software engineering problems. It

stems from the realization that many tasks in software engineering can be formulated as

combinatorial search problems. The goal is to find, from the wide space of possibilities, a

solution that is sufficiently good according to an appropriate quality function. Ideally this

would be the optimal solution, but in reality optimality may be difficult (if not

impossible) to achieve or even define due to various reasons, such as the size of the

search space or the complexity of the quality function. Allowing a search algorithm to

find a solution from such a wide space enables partial or full automation of previously

laborious tasks, solves problems that are hard to manage by other methods, and often

leads to solutions that a human software engineer might not have been able to think of.

Interest in SBSE has been growing rapidly over the past years, both in academia and

industry. The combination of increased computing power, and new, more efficient,

search algorithms has made SBSE a practical solution method for many problems

throughout the software engineering life cycle [SSBSE, 2009]. A comprehensive review

of the field is made by Harman et al. [2009], and Harman [2007] has also provided a brief

overview to the current state of SBSE. Problems in the field of software engineering have

been formulated as search problems by Clarke et al. [2003] and Harman and Jones

[2001]. Search-based approaches have been most extensively applied in the field of

software testing, and a covering survey of this branch (focusing on test data generation)

has been made by McMinn [2004]. A review on SBSE concentrating on testing is also

provided by Mantere and Alander [2005]. Another test related survey has been made by

Afzal et al. [2008; 2009], who concentrate on testing non-functional properties. As there

has been much research and previous surveys regarding the area of testing, it will be

omitted from this survey, even if the studies related to testing could be considered as

altering (and thus perhaps improving) a software design. As in the case of, e.g., testability

transformations, Harman et al. [2004] define three critical differences to traditional

transformations, one of them concerning the functionality of the program. Harman et al.

[2004] state that “testability transformations need not preserve functional equivalence”,

which contradicts the idea of building a design based on a fixed set of requirements.

This survey will cover the branch of software design. Software design can be defined

as “the process which translates the requirements into a detailed design of a software

system” [Yau and Tsai, 1986]. Here software design is considered as described by Wirfs-

Brock and Johnson [1990]. Although they consider only object-oriented design, the

skeleton of a process from requirements to actual design can be applied to any form of

software design. A design process starts from requirements, and first enters an

exploratory phase, where the fundamental structure is decided. This leads to a

preliminary design, which then enters an analysis stage. After the suggested design is

analyzed and modified according to the result, the final design is achieved. Following this

interpretation, software refactoring and clustering have also been taken into account as

they are considered as actions of modifying (based on a certain analysis) a preliminary

model, which in many cases is a working implementation.

The area of search-based software design has developed greatly in the very recent

years, and is gaining an increasing interest in the SBSE community. However, although

several surveys have been made of the SBSE field as a whole, they deal with the design

area quite briefly. Also, the literature published from the software design perspective

either does not cover search-based methods [Yau and Tsai, 1986; Budgen, 2003] or only

briefly mentions the option of having an algorithm to automate class hierarchy design

[Wirfs-Brock and Johnson, 1990]. Thus, there is a need to cover this crossing of two

disciplines: search-based techniques and software design. New contribution is made

especially in summarizing research in architecture level design that uses search-based

techniques, as it has been overlooked in previous studies of search-based software

engineering.

The timeline for development of SBSE as a field is presented in Figure 1. It can

clearly be seen that the earliest applications have been in testing, as can be deduced from

the amount of existing surveys. However, more importantly, the timeline also shows the

steady increasing of ideas in the area of search based design in the past 10 years. Thus, a

covering survey in this area is certainly due. All in all, the timeline shows that the SBSE

has been a very active discipline in the past 20 years, as only novel ideas are presented

here: countless of approaches and studies regarding these ideas have been made but not

portrayed here. The explanations and references for the data points in Figure 1 are given

in Figure 2.

Harman [2004] points out how crucial the representation and fitness function are in all

search-based approaches to software engineering. When using genetic algorithms

[Holland, 1975], which are especially popular in search-based design, the choices

regarding genetic operators are just as important and very difficult to make. This survey

emphasizes the choices made regarding the particular characteristics of search

algorithms; any new study in the field of search-based software engineering would

benefit from learning what kind of solutions have proven to be particularly successful in

the past.

Fig. 1. Timeline of SBSE development

Fig. 2. References for timeline data points

This survey proceeds as follows. Section 2 describes search algorithms, and the

underlying concepts for genetic algorithms, simulated annealing and hill climbing are

discussed in detail. Different ways of performing the exploratory phase of design are then

presented as ways for software architecture design (object-oriented and service-oriented)

in Section 3. Sections 4, 5 and 6 deal with clustering, refactoring and software quality,

respectively, which can all be seen as components of the analysis phase, starting from

higher level re-design (clustering), going to low-level re-design (re-factoring) and finally

pure analysis. The background for each underlying problem is first presented, followed

by recent approaches applying search-based techniques to the problem. Summarizing

remarks and a summary table of the studies is presented after each subsection. Finally,

some ideas for future work are given in Section 7, and conclusions are presented in

Section 8.

2. SEARCH ALGORITHMS

Meta-heuristics are commonly used for combinatorial optimization, where the search

space can become especially large. Many practically important problems are NP-hard,

and thus, exact algorithms are not possible. Heuristic search algorithms handle an

optimization problem as a task of finding a “good enough” solution among all possible

solutions to a given problem, while meta-heuristic algorithms are able to solve even the

general class of problems behind the certain problem. A search will optimally end in a

global optimum in a search space, but at the very least it will give some local optimum,

i.e., a solution that is “better” than a significant amount of alternative solutions nearby. A

solution given by a heuristic search algorithm can be taken as a starting point for further

searches or be taken as the “best” possible solution, if its quality is considered high

enough. For example, simulated annealing can be used to produce seed solutions for a

genetic algorithm that constructs the initial population based on the provided seeds.

In order to use search algorithms in software engineering, the first step is that the

particular software engineering problem should be defined as a search problem. If this

cannot be done, search algorithms are most likely not the best way to solve the problem,

and defining the different parameters and operations needed for the search algorithm can

be difficult. After this has been done, a suitable algorithm can be selected and the issues

regarding that algorithm must be dealt with.

There are three common issues that need to be dealt with any search algorithm: 1.

encoding the solution, 2. defining transformations, and 3. measuring the “goodness” of a

solution. All algorithms need the solution to be encoded according to the algorithm’s

specific needs. For example, in order for the genetic algorithm (GA) to operate, the

encoding should be done in such a way that it can be seen as a chromosome consisting of

a set of genes. However, for the hill climbing (HC), any encoding where a neighborhood

can be defined is sufficient. The importance and difficulty of encoding a solution increase

as the complexity of the problem at hand increases. In this case complexity refers to how

easily a solution can be defined, rather to the computational complexity of the problem

itself. For example, a job-shop problem may be computationally complex, but the

solution candidates are simple to encode as an integer array. However, a solution

containing, e.g., all the information regarding a software architecture, is demanding to

encode so that: 1. all information stays intact, 2. operations can efficiently be applied to

the selected encoding of the solution, 3. the fitness evaluations can be performed

efficiently, and 4. there is minimal need for “outside” data, i.e., data structures containing

information about the solution that are not included in the actual encoding.

Defining a neighborhood is crucial to all algorithms; HC, simulated annealing (SA)

and tabu search operate purely on the basis of moving from one solution to its neighbor.

A neighbor is achieved by some operation that transforms the solution. These operations

can be seen equivalent to the mutations needed by the GA.

Finally, the most important and difficult task is defining a fitness function. If defining

the fitness function fails, the search algorithm will not be guided towards the desired

solutions. All search algorithms require this quality function to evaluate the “goodness”

of a solution in order to compare solutions and thus guide the search.

To understand the basic concepts behind the approaches presented here, the most

commonly used search algorithms are briefly introduced. The most common approach is

to use genetic algorithms. Hill climbing and its variations, e.g., multi-ascent hill climbing

(MAHC), is also quite popular due to its simplicity. Finally, several studies use simulated

annealing. In addition to these algorithms, tabu search is a widely known meta-heuristic

search technique, and genetic programming (GP) [Koza, 1992] is commonly used in

problems that can be encoded as trees. For a detailed description on GA, see Mitchell

[1996] or Sivanandam and Deepa [2007], for SA, see, e.g., Reeves [1995], and for HC,

see Glover and Kochenberger [2003], who also cover a wide range of other meta-

heuristics. For a description on multi-objective optimization with evolutionary

algorithms, see Deb [1999] or Fonseca and Fleming [1995]. A survey on model-based

search, covering several meta-heuristic algorithms is also made by Zlochin et al. [2004].

2.1 Genetic algorithms

Genetic algorithms were invented by John Holland in the 1960s. Holland’s original goal

was not to design application specific algorithms, but rather to formally study the ways of

evolution and adaptation in nature and develop ways to import them into computer

science. Holland [1975] presents the genetic algorithm as an abstraction of biological

evolution and gives the theoretical framework for adaptation under the genetic algorithm

[Mitchell, 1996].

In order to explain genetic algorithms, some biological terminology needs to be

clarified. All living organisms consist of cells, and every cell contains a set of

chromosomes, which are strings of DNA and give the basic information of the particular

organism. A chromosome can be further divided into genes, which in turn are functional

blocks of DNA, each gene representing some particular property of the organism. The

different possibilities for each property, e.g., different colors of the eye, are called alleles.

Each gene is located at a particular locus of the chromosome. When reproducing,

crossover occurs: genes are exchanged between the pair of parent chromosomes. The

offspring is subject to mutation, where single bits of DNA are changed. The fitness of an

organism is the probability that the organism will live to reproduce and carry on to the

next generation [Mitchell, 1996]. The set of chromosomes at hand at a given time is

called a population.

Genetic algorithms are a way of using the ideas of evolution in computer science.

When thinking of the evolution and development of species in nature, in order for the

species to survive, it needs to develop to meet the demands of its surroundings. Such

evolution is achieved with mutations and crossovers between different chromosomes, i.e.,

individuals, while the fittest survive and are able to participate in creating the next

generation.

In computer science, genetic algorithms are used to find a good solution from a very

large search space, the goal obviously being that the found solution is as good as

possible. To operate with a genetic algorithm, one needs an encoding of the solution, i.e.,

a representation of the solution in a form that can be interpreted as a chromosome, an

initial population, mutation and crossover operators, a fitness function and a selection

operator for choosing the survivors for the next generation. Algorithm 1 gives the pseudo

code for a genetic algorithm.

Algorithm 1 geneticAlgorithm
Input: formalization of solution, initialSolution
 chromosomes createPopulation(initialSolution)
 while NOT terminationCondition do
 foreach chromosome in chromosomes

 p randomProbability
 if p > mutationProbability then
 mutate(chromosome)
 end if
 end for
 foreach chromosomePair in chromosomes
 cp randomProbability
 if cp > crossoverProbability then
 crossover(chromosomePair)
 addOffspringToPopulation()
 end if
 end for
 foreach chromosome in chromosomes
 calculatefitness(chromosome)
 end for
 selectNextPopulation()
 end while

As discussed, correctly defining the different operations (mutations, crossover and

fitness function) is vital in order to achieve satisfactory results. However, as seen in

Algorithm 1, there are also many parameters regarding the GA that need to be defined

and greatly affect the outcome. These parameters are the population size, number of

generations (often used as the terminating condition) and the mutation and crossover

probabilities. Having a large enough population ensures variability within a generation,

and enables a wide selection of different solutions at every stage of evolution. However,

at a certain point the results start to converge, and a larger population always means more

fitness evaluations and thus requires more computation time. Similarly, the more

generations the algorithm is allowed to evolve for, the higher the chances are that it will

be able to reach the global optimum. However, again, letting an algorithm run for, say,

10 000, generations will most probably not be beneficial, as if the operations and

parameters have been chosen correctly, a reasonably good optimum should have been

found much earlier. Mutation and crossover probabilities both affect how fast the

population evolves. If the probabilities are too high, there is the risk that the

implementation of genetic operations becomes random instead of guided. Vice versa, if

the probabilities are too low there is the risk that the population will evolve too slowly,

and no real diversity will exist. A theory to be noted with genetic operators is the building

block hypothesis, which states that a genetic algorithm combines a set of sub-solutions,

or building blocks, to obtain the final solution. The sub-solutions that are kept over the

generations generally have an above-average fitness [Salomon, 1998]. The crossover

operator is especially sensitive to this hypothesis, as an optimal crossover would thus

combine two rather large building blocks in order to produce an offspring with a one-

point crossover.

2.2 Simulated annealing

Simulated annealing is originally a concept in physics. It is used when the cooling of

metal needs to be stopped at given points where the metal needs to be warmed a bit

before it can resume the cooling process. The same idea can be used to construct a search

algorithm. At a certain point of the search, when the fitness of the solution in question is

approaching a set value, the algorithm will briefly stop the optimizing process and revert

to choosing a solution that is not the best in the current solution’s neighborhood. This

way getting stuck to a local optimum can effectively be avoided. Since the fitness

function in simulated annealing algorithms should always be minimized, it is usually

referred to as a cost function [Reeves, 1995].

Simulated annealing usually begins with a point x in the search space that has been

achieved through some heuristic method. If no heuristic can be used, the starting point

will be chosen randomly. The cost value c, given by cost function E, of point x is then

calculated. Next a neighboring value x1 is searched and its cost value c1 calculated. If c1 <

c, then the search moves onto x1. However, even though c c1, there is still a chance,

given by probability p, that the search is allowed to continue to a solution with a bigger

cost [Clarke et al., 2003]. The probability p is a function of the change in cost function

E, and a parameter T:

 p = e E/T .

This definition for the probability of acceptance is based on the law of thermodynamics

that controls the simulated annealing process in physics. The original function is

 p = e E/kt ,

where t is the temperature in the point of calculation and k is Boltzmann’s constant

[Reeves, 1995].

The parameter T that substitutes the value of temperature and the physical constant is

controlled by a cooling function C, and it is very high in the beginning of simulated

annealing and is slowly reduced while the search progresses [Clarke et al., 2003]. The

actual cooling function is application specific.

 If the probability p given by this function is above a set limit, then the solution is

accepted even though the cost increases. The search continues by choosing neighbors and

applying the probability function (which is always 1 if the cost decreases) until a cost

value is achieved that is satisfactory low. Algorithm 2 gives the pseudo code for a

simulated annealing algorithm.

Algorithm 2 simulatedAnnealing
Input: formalization of solution, initialSolution, cooling ratio , initial
temperature T0, frozen temperature Tf, and temperature constant r
Output: optimized solution finalSolution
 initialQuality evaluate(initialSolution)

 initialSolution
 Q1 initialQuality
 T T0
 while T0 > Tf do
 ri 0
 while ri > r do
 Si findNeighbor(S1)
 Qi evaluate(Q1)
 if Qi > Q1 then
 S1 Si
 Q1 Qi
 else
 Q1 - Qi’
 p randomProbability
 if p < e /T then

 S1 Si
 Q1 Qi
 end if
 end if’
 ri ri +1
 end while
 T T*
end while
return S1

The key parameters to be adjusted for SA are the initial temperature, the cooling ratio

and the temperature constant. These all combined affect how fast the cooling happens. If

the cooling is too fast, the algorithm may not have sufficient time to achieve an optimum.

However, if the cooling is too slow, the initial temperature may need a significantly high

value so that the solution will be able to evolve enough (i.e., noticeably transform from

the initial solution) before reaching the frozen temperature.

2.3 Hill climbing

Hill climbing begins with a random solution, and then begins to search through its

neighbors for a better solution. There are several versions of how this is done; in some

versions the algorithm moves on after finding the first neighbor that is better than the

current, some do a fixed number of neighbor evaluations and continue to the best of this

group, and some versions go through the entire neighborhood of a solution and select the

best neighbor from which the procedure is continued. Algorithm 3 adopts the last option,

i.e., the entire neighborhood is evaluated before moving on. Hill climbing does not

include any mechanisms to avoid getting stuck with a local optimum.

There are three critical choices regarding HC: 1. defining a neighborhood for each

solution, 2. defining an evaluation function for a solution, and 3. defining by what extent

each neighborhood is searched. If the problem at hand is very complex and each solution

has an exponential amount of neighbors, traversing through each neighborhood maybe

extensively time consuming. However, if the subgroup of neighbors to be examined is

chosen wisely, the actual outcome of the algorithm may still be good enough, while much

time is saved when not every solution needs to be evaluated.

Algorithm 3 hillClimbing
Input: formalization of solution, initialSolution
 currentSolution initialSolution
 currentFitness evaluate(currentSolution)
 while betterNeighborsExist do
 neighborhood findNeighbors(currentSolution)
 foreach neighbor in neighborhood
 neighborFitness evaluate(neighbor)
 if neighborFitness > nextFitness then
 nextSolution neighbor
 nextFitness neighborFitness
 end if
 end for
 if nextFitness > currentFitness then
 currentSolution nextSolution
 else
 termination
 return currentSolution
 end if
 end while

3. SOFTWARE ARCHITECTURE DESIGN

The core of every software system is its architecture. Designing software architecture is a

demanding task requiring much expertise and knowledge of different design alternatives,

as well as the ability to grasp high-level requirements and piece them to detailed

architectural decisions. In short, designing software architecture takes verbally formed

functional and quality requirements and turns them into some kind of formal model,

which is used as a base for code. Automating the design of software is obviously a

complex task, as the automation tool would need to understand intricate semantics, have

access to a wide variety of design alternatives, and be able to balance multi-objective

quality factors. From the re-design perspective, program comprehension is one of the

most expensive activities in software maintenance. The following sections describe meta-

heuristic approaches to software architecture design for object-oriented and service-

oriented architectures.

3.1 Object-oriented architecture design

3.1.1 Basics

At its simplest, object-oriented design deals with extracting concepts from, e.g., use

cases, and deriving methods and attributes, which are distributed into classes. A further

step is to consider interfaces and inheritance. A final design can be achieved through the

implementation of architecture styles [Shaw and Garlan, 1996] and design patterns

[Gamma et al., 1995]. When attempting to automate the design of object-oriented

architecture from concept level, the system requirements must be formalized. After this,

the major problem lies within quality evaluation, as many design decisions improve some

quality attribute [Losavio et al., 2004] but weaken another. Thus, a sufficient set of

quality estimators should be used, and a balance should be found between them. Re-

designing software architectures automatically is slightly easier than building architecture

from the very beginning, as the initial model already exists and it merely needs to be

ameliorated. However, implementing design patterns is never straightforward, and

measuring their impact on the quality of the system is difficult. For more background on

software architectures, see, e.g., Bass et al. [1998].

Approaches to search-based software design are presented starting from low-level

approaches, i.e., what is needed when first beginning the architecture design, to high-

level approaches, ending with analyzing software architecture. Object-oriented

architecture design begins with use cases and assigning responsibilities, i.e., methods and

attributes to classes [Bowman et al., 2008; Simons and Parmee 2007a; Simons and

Parmee, 2007b]. After the basic structure, the architecture can be further designed by

applying design patterns, either on an existing system [Amoui et al., 2006] or building the

design patterns in the system from the very beginning [Räihä et al., 2008a; Räihä et al.,

2008b; Räihä et al. 2009]. If an idea for an optimal solution is available, model

transformations can be sought to achieve that solution [Kessentini et al., 2008]. There

might also be many choices regarding the components of the architecture, depending on

the needs of the system. An architecture can be made of alternative components [Kim and

Park, 2009] or a subsystem can be sought after [Bodhuin et al., 2007]. Studies have also

been made on identifying concept boundaries and thus automating software

comprehension [Gold et al., 2006] and composing behavioral models for autonomic

systems [Goldsby and Chang, 2008; Goldsby et al., 2008], which give a dynamic view of

software architecture. One of the most abstract studies attempts to build hierarchical

decompositions for a software system [Lutz, 2001, which already comes quite close to

software clustering. Summarizing remarks of the approaches are given in the end, and the

fundamentals of each study are collected in Table 1.

3.1.2 Approaches

Bowman et al. [2008] study the use of a multi-objective genetic algorithm (MOGA) in

solving the class responsibility assignment problem. The objective is to optimize the class

structure of a system through the placement of methods and attributes. The strength

Pareto approach (SPEA2) is used, which differs from a traditional GA by containing an

archive of individuals from past populations. This approach combines several aspects that

aid in finding the truly optimal individuals and thus leaves less room for GA “to err” in

terms of undesired mutations or overly relying on metrics.

The chromosome is represented as an integer vector. Each gene represents a method

or an attribute in the system and the integer value in a gene represents the class to which

the method or attribute in that locus belongs. Dependency information between methods

and attributes is stored in a separate matrix. Mutations are performed by simply changing

the class value randomly; the creation of new classes is also allowed. Crossover is the

traditional one-point one. There are also constraints: no empty classes are allowed

(although the selected encoding method also makes them impossible), conceptually

related methods are only moved in groups, and classes must have dependencies to at least

one other class.

The fitness function is formed of five different values measuring cohesion and

coupling: 1. method-attribute coupling, 2. method-method coupling, 3. method-

generalization coupling, 4. cohesive interaction and 5. ratio of cohesive interaction. A

complementary measure for common usage is also used. Selection is made with a binary-

tournament selection where the fitter individual is selected 90% of the time.

In the case study an example system is used, and a high-quality UML class diagram

of this system is taken as a basis. Three types of modifications are made and finally the

modifications are combined in a final test. The efficiency of the MOGA is now evaluated

in relation to how well it fixed the changes made to the optimal system. Results show that

in most cases the MOGA managed to fix the made modifications and in some cases the

resulting system also had a higher fitness value than the original “optimal” system.

Bowman et al. also compare MOGA to other search algorithms, such as random

search, hill climbing and a simple genetic algorithm. Random search and hill climbing

only managed to fix a few of the modifications and the simple GA did not manage to fix

any of the modifications. Thus, it would seem that a more complex algorithm is needed

for the class responsibility assignment problem.

The need for highly developed algorithms is further high-lighted when noting that a

ready system is being ameliorated instead of completely automating the class

responsibility assignment. As a ready system can be assumed to have some initial quality

and conceptually similar methods and attributes are already largely grouped, it does help

the algorithm when re-assigning the moved methods and attributes. This is due to the fact

that by attempting to re-locate the moved method or attribute to the “wrong” class, the

fitness value will be significantly lower than when assigning the method or attribute to

the “right” class.

Simons and Parmee [2007a; 2007b; 2008] take use cases as the starting point for

system specification. Data is assigned to attributes and actions to methods, and a set of

uses is defined between the two sets. The notion of class is used to group methods and

attributes. Each class must contain at least one attribute and at least one method. Design

solutions are encoded directly into an object-oriented programming language. This

approach starts with pure requirements and leaves all designing to the algorithm, making

the problem of finding an optimal class structure extremely more difficult than in cases

where a ready system can be used as basis.

A single design solution is a chromosome. In a mutation, a single individual is

mutated by locating an attribute and a method from one class to another. For crossover

two individuals are chosen at random from the population and their attributes and

methods are swapped based on their class position within the individuals. Cohesiveness

of methods (COM) is used to measure fitness, fitness for class C is defined as f(C) =

1/(|Ac||Mc|)* ij), where Ac (respectively Mc) stands for the number of attributes

(respectively methods) in class C, and ij = 1, if method j uses attribute i, and 0

otherwise. Selection is performed by tournament and roulette-wheel. The choices

regarding encoding, genetic operators and fitness function are quite traditional, although

the problem to be solved is far from traditional.

In an alternative approach, categorized by the authors as evolutionary programming

(EP) and inspired by Fogel et al. [1966], offspring is created by mutation and selection is

made with tournament selection. Two types of mutations are used, class-level mutation

and element-level mutation. At class level, all attributes and methods of a class in an

individual are swapped as a group with another class selected at random. At element

level, elements (methods and attributes) in an individual are swapped at random from one

class to another. Initialization of the population is made by allocating a number of classes

to each individual design at random, within a range derived from the number of attributes

and methods. All attributes and methods from sets of attributes and methods are then

allocated to classes within individuals at random. These operations appear quite

simplistic, and the actual change to the design remains minimal, since the fitness of an

individual depends on how methods and attributes depending on one another are located.

When the elements are moved in a group, there does not seem to be very much change in

the actual design.

A case study is made with a cinema booking system with 15 actions, 16 datas and 39

uses. For GA, the average COM fitness for final generation for both tournament and

roulette-wheel is similar, as is the average number of classes in the final generation.

However, convergence to a local optimum is quicker with tournament selection. Results

reveal that the average and maximum COM fitness of the GA population with roulette-

wheel selection lagged behind tournament in terms of generation number. For EP, the

average population COM fitness in the final generation is similar to that achieved by the

GA.

The initial average fitness values of the three algorithms are notably similar, although

the variance of the values increases from GA tournament to GA roulette-wheel to EP. In

terms of COM cohesion values, the generic operators produced conceptual software

designs of similar cohesion to human performance. Simons and Parmee suggest that a

multi-objective search may be better suited for support of the design processes of the

human designer. To take into account the need for extra input, they attempted to correct

the fitness function by multiplying the COM value by a) the number of attributes and

methods in the class (COM.M+A); b) the square root of the number of attributes and

methods in the class (COM. (M+A); c) the number of uses in the class (COM.uses) and

d) the square root of the number of uses in a class (COM. uses). Using such multipliers

raises some questions as there is no intuition for using the square root multipliers.

Multiplying by the sum of methods and attributes or uses can intuitively be justified by

showing more appreciation to classes that are large but are still comprehensible.

However, such appreciation may lead to preferring larger classes.

The authors have taken this into account by measuring the number of classes in a

design solution and a design solution with higher number of classes is preferred to a

design solution with fewer classes. When cohesion metrics that take class size into

account are used, there is a broad similarity between the average population cohesion

fitness and the manual design. Values achieved by the COM.M+A and COM.uses and

cohesion metrics are higher than the manual design cohesion values, while

COM. (M+A)and COM. uses values are lower. Manually examining the design

produced by the evolutionary runs, a difference is observed in the design solutions

produced by the four metrics that account for class size, when compared with the metrics

that do not. From the results produced for the two case studies, it is evident that while the

cohesion metrics investigated have produced interesting cohesive class design solutions,

they are by no means a complete reflection of the inherently multi-objective evaluations

conducted by a human designer. The evolutionary design variants produced are thus

highly dependent on the extent and choice of metrics employed during search and

exploration. These results further emphasize the importance of properly defining a fitness

function and deciding on the appropriate metrics in all software design related problems.

Amoui et al. [2006] use the GA approach to improve the reusability of software by

applying architecture design patterns to a UML model. The authors’ goal is to find the

best sequence of transformations, i.e., pattern implementations. Used patterns come from

the collection presented by Gamma et al. [1995], most of which improve the design

quality and reusability by decreasing the values of diverse coupling metrics while

increasing cohesion.

Chromosomes are an encoding of a sequence of transformations and their parameters.

Each individual consists of several supergenes, each of which represents a single

transformation. A supergene is a group of neighboring genes on a chromosome which are

closely dependent and are often functionally related. Only certain combinations of the

internal genes are valid. Invalid patterns possibly produced through mutations or

crossover are found and discarded. The supergene concept introduced here is an

insightful approach into handling masses of complex data that needs to be represented as

a relatively simple form. Instead of having only one piece of information per gene, this

way several pieces of related information can be grouped to such supergenes, which then

logically form a chromosome. In the study by Bowman et al. [2008] the need for

additional data storage (the matrix for data dependencies) demonstrates the complexity of

design problems. In this case the supergene approach introduced by Amoui et al. [2006]

could have been worth while to try to include all information regarding the attributes and

methods in the chromosome encoding.

Mutation randomly selects a supergene and mutates a random number of genes inside

the supergene. After this, validity is checked. In case of encountering a transformed

design which contradicts with object-oriented concepts, for example, a cyclic inheritance,

a zero fitness value is assigned to chromosome. This is an interesting way of dealing with

anomalies; instead of implementing a corrective operation to force validity, it is trusted

that the fitness function will suffice in discarding the unsuitable individuals if they are

given a low enough value.

Two different versions of crossover are used. First is a single-point crossover applied

at supergene level, with a randomly selected crossover point, which swaps the supergenes

beyond the crossover point, but the internal genes of supergenes remain unchanged. This

combines the promising patterns of two different transformation sequences. The second

crossover randomly selects two supergenes from two parent chromosomes, and similarly

applies single point crossover to the genes inside the supergenes. This combines the

parameters of two successfully applied patterns. The first crossover thus attempts to

preserve high-level building blocks, while the second version attempts to create low-level

building blocks.

The quality of the transformed design is evaluated, as introduced by Martin [2000], by

its “distance from the main sequence” (D), which combines several object-oriented

metrics by calculating abstract classes’ ratio and coupling between classes, and measures

the overall reusability of a system.

A case study is made with a UML design extracted of some free, open source

applications. The GA is executed in two versions. In one version only the first crossover

is applied and in second both crossovers are used. A random search is also used to see if

the GA outperforms it. Results demonstrate that the GA finds the optimal solution much

more efficiently and accurately. From the software design perspective, the transformed

design of the best chromosomes are evolved so that abstract packages become more

abstract and concrete packages in turn become more concrete. The results suggest that

GA is a suitable approach for automating object-oriented software transformations to

increase reusability. As the application of design patterns is by no means an easy task,

these initial results suggest that at least the structure and needs of the GA does not restrict

automated design of software architecture.

Räihä et al. [2008a] take the design of software architecture a step further than

Simons and Parmee [2007a] by starting the design from a responsibility dependency

graph. The graph can also be achieved from use cases, but the architecture is developed

further than the class distribution of actions and data. A GA is used for the automation of

design.

In this approach, each responsibility is represented by a supergene and a chromosome

is a collection of supergenes. The supergene contains information regarding the

responsibility, such as dependencies of other responsibilities, and evaluated parameters

such as execution time and variability. Here the notion of supergene [Amoui et al., 2006]

is efficiently used in order to store a large amount of different types of data pieces within

the chromosome. Mutations are implemented as adding or removing an architectural

design pattern [Gamma et al. 1995] or an interface, or splitting or joining class(es).

Implemented design patterns are Façade and Strategy, as well as the message dispatcher

architecture style [Shaw and Garlan, 1996]. Dynamic mutation probabilities are used to

encourage the application of basic design choices (the architectural style(s)) in the

beginning and more refined choices (such as the Strategy pattern) in the end of evolution.

Crossover is a standard one-point crossover. The offspring and mutated chromosomes are

always checked after the operations for legality, as design patterns may easily be broken.

Selection is made with the roulette wheel method.

This approach actually combines the class responsibility assignment problem studied

by Simons and Paremee [2007a; 2007b] and applying design patterns, as studied by

Amoui et al. [2006]. Although the selection of design patterns is smaller, the search

problem of finding an optimal architecture is much more difficult. First the GA needs to

find the optimal class responsibility distribution, and then apply design patterns. In this

case the search space grows exponentially, as in order to optimally apply the design

patterns, the class responsibility distribution may need to be sub-optimal. This produces a

challenge when deciding on the fitness function.

The fitness function is a combination of object-oriented software metrics, most of

which are from the Chidamber and Kemerer [1994] collection, which have been grouped

to measure quality concepts efficiency and modifiability. Some additional metrics have

also been developed to measure the effect of communicating through a message

dispatcher or interfaces. Furthermore, a complexity measure is introduced. The fitness

function is defined as f = w1PositiveModifiability – w2NegativeModifiability +

w3PositiveEfficiency – w4NegativeEfficiency – w5Complexity, where wis are weights to

be fixed. As discussed, defining the fitness function is the most complex task in all

SSBSE problems. In this case, when the problem is so diverse, the fitness function is also

intricate: it requires a set of known metrics, a set of special metrics, the grouping of these

metrics and additionally weights in order to set preferences to quality aspects.

The approach is tested on a sketch of a medium-sized system [Räihä, 2008]. Results

show positive development in overall fitness value, while the balancing of weights

greatly affects whether the design is more modifiable or efficient. However, the actual

designs are not compliant with the fitness values, and would not be accepted by a human

architect. This suggests that further improvement is needed in defining the fitness

function.

Räihä et al. [2008b] further develop their work by implementing more design patterns

and an alternative approach. In addition to the responsibility dependency graph, a domain

model may be given as input. The GA can now be utilized in Model Driven Architecture

design, as it takes care of the transformations from Computationally Independent Model

to Platform Independent Model. The new design patterns are Mediator and Proxy, and the

service oriented architecture style is also implemented by enabling a class to be called

through a server. The chromosome representation, mutation and crossover operations and

selection method are kept the same. Results show that the fitness values converge to

some optima and reasonable high-level designs are obtained.

In this case the task for the GA is made somewhat easier, as a skeleton of a class

structure is given to the algorithm in the form of a domain model. This somewhat

eliminates the class responsibility assignment problem and the GA can only concentrate

on applying the design patterns. As the results are significantly better, although the search

space is more complex when more patterns have been added to the mutations, this

suggests that the class responsibility assignment problem is extremely complex on its

own, and more research on this would be highly beneficial as a background for several

search-based software design related questions.

Räihä et al. [2009] keep developing their approach by including the Template pattern

to the design pattern/mutation collection and introducing scenarios as a way to enhance

the evaluation of a produced architecture. Scenarios are basically a way to describe an

interaction between the system and a stakeholder. In their work, Räihä et al. categorize

and formalize modifiability related scenarios so that they can be encoded and given to the

GA as an additional part of the fitness function. Each scenario is given a list of

preferences regarding the architectural structures that are suitable for that scenario. The

preferences are then compared with the suggested architecture and a fitness value is

calculated according to how well the given architecture conforms to the preferences. This

way the fitness value is more pointed as the most critical parts of the architecture can be

given extra attention and the evaluation is not completely based on general metrics.

Results from empirical studies made on two sample systems show that when the

scenarios are used, the GA retains the high-speed phase of developing the architecture for

10 to 20 generations longer than in the case where scenarios are not used. Also, when the

scenario fitness is not included in the overall fitness evaluations the GA tends to make

decisions that do not support the given scenarios.

Results from this study shows that when the modifications are as detailed as applying

a design pattern (rather than modifying the architecture “as a whole”), the fitness function

also needs to be more pin-pointed to study the places of an architecture where such

detailed solutions would be most beneficial.

Kessentini et al. [2008] also use a search-based approach to model transformations.

They start with a small set of examples from which transformation blocks are extracted

and use particle swarm optimization (PSO) [Kennedy and Eberhart, 1995]. A model is

viewed as a triple of source model, target model and mapping blocks between the source

and target models. The source model is formed by a set of constructs. The transformation

is only coherent if it does not conflict the constructs. The transformation quality of a

source model (i.e., global quality of a model) is the sum of the transformation qualities of

its constructs (i.e., local qualities). This approach is less automated, as the

transformations need to be extracted from ready models, and are not general. However,

using PSO is especially interesting, and suggests that other algorithms besides GA are

also suitable for complex software design problems.

To encode a transformation, an M-dimensional search space is defined, M being the

number of constructs. The encoding is now an M-dimensional integer vector whose

elements are the mapping blocks selected for each construct. The fitness function is a

sum of constructs that can be transformed by the associated blocks multiplied by relative

numbers of matched parameters and constructs. The fitness value is normalized by

dividing it with 2*M, thus resulting in a fitness range of [0, 1].

The method was evaluated and experimented with 10 small-size models, of which

nine are used as a training set and one as the actual model to be transformed. The

precision of model transformation (number of constructs with correct transformations in

relation to total number of constructs) is calculated in addition to the fitness values. The

best solution was found already after 29 iterations, after which all particles converged to

that solution. The test generated 10 transformations. The average precision of these is

more than 90%, thus indicating that the transformations would indeed give an optimal

result, as the fitness value was also high within the range. The test also showed that some

constructs were correctly transformed although there were no transformation examples

available for these particular constructs.

Kim and Park [2009] use GAs to dynamically choose components to form software

architecture according to changing demands. The basic concept is to have a set of

interchangeable components (e.g., BasicUI and RichUI), which can be selected according

to user preferences. The goal is thus to select an optimal architectural instance from all

possible instances. This is especially beneficial when the software needs to transferred,

e.g., from a PC to a mobile device.

A softgoal interdependency graph (SIG) is used as a basis for the problem; it

represents relationships between quality attributes. The quality attributes are formulated

by a set of quality variables. A utility function is used to measure the user’s overall

satisfaction: the user now gives weights for the quality values to represent their priority.

Functional alternatives (i.e., the interchangeable components) are denoted by

operationalizing goals. The operationalizing goals can have an impact on a softgoal, i.e.,

a quality attribute. Alternatives with similar characteristics are grouped by a type. One

alternative type corresponds to one architectural decision variable. These represent partial

configurations of the application. A combination of architectural decision variables

comprises an architectural instance.

In addition to the SIG, situation variables and their values are needed as input.

Situation variables describe partial information on environmental changes and determine

the impacts that architectural decision variables have on the quality attributes. The impact

is defined as a situation evaluation function, which is defined for each direct

interdependency between an operationalizing goal and quality attribute. Although the

fitness function is quite standard, i.e., it calculates the quality through “quality values”

and there are weights assigned, the actual computations are not that straightforward. The

quality attributes the fitness function is based on rely on decision variables and situation

variables. These in turn need to be calculated by hand, and there is no clear answer to

how the situation variables themselves are gathered.

For the GA, the architectural instance is encoded as a chromosome by using a string

of integers representing architectural decisions. Mutation is applied to offspring, for

which each digit is subjected to mutation (according to mutation probability). Crossover

is a standard two-point crossover. The utility function is used as the fitness function and

tournament selection is used for selecting the next generation.

An empirical study is made and compared to exhaustive search. The time needed for

the GA is less then 1*10-5 of the time needed for the exhaustive search. The GA also

converges to the best solution very quickly, after only 40 generations. Thus, it would

seem that using a search algorithm to this problem would produce extremely good results,

at least in term of time and speed. However, in this case all the components need to be

known beforehand as the task is to choose an optimal set from alternative components. It

would be interesting to see at least how all the different variables needed are acquired,

and how the approach could be more generalized.

Bodhuin et al. [2007] present an approach based on GAs and an environment that,

based on previous usage information of an application, re-packages it with the objective

of limiting amount of resources transmitted for using a set of application features. The

overall idea is to cluster together (in jars) classes that, for a set of usage scenarios, are

likely to be used together. Bodhuin et al. propose to cluster together classes according to

dynamic information obtained from executing a series of usage scenarios. The approach

aims at grouping in jars classes that are used together during the execution of a scenario,

with the purpose of minimizing the overall jar downloading cost, in terms of time in

seconds for downloading the application. After having collected execution trace, the

approach determines a preliminary re-packaging considering common class usages and

then improves it by using GAs. This approach can be seen as attempting to find optimal

sub-architectures for a system, as each jar-package needs to be able to operate on its own.

Obviously the success of finding sub-systems greatly depends on how well the class

responsibility assignment problem is solved in the system, linking these results to that

fundamental problem.

The proposed approach has four steps. First, the application to be analyzed is

instrumented, and then it is exercised by executing several scenarios instantiated from use

cases. Second, a preliminary solution of the problem is found, grouping together classes

used by the same set of scenarios. Third, GAs are used to determine the (sub)-optimal set

of jars. Fourth, based on the results of the previous steps, jars are created.

For the GA, an integer array is used as chromosome representation, where each gene

represents a cluster of classes. The initial population is composed randomly. Mutation

selects a cluster of classes and randomly changes its allocation to another jar archive. The

crossover is the standard one-point crossover. The fitness function is F(x) =

1/N (Costi) where N is the number of scenarios and Cost is calculated from the call cost

of making a request to the server and from the class sizes. 10% of the best individuals are

kept alive across subsequent generations. Individuals to be reproduced are selected using

a roulette-wheel selection. Scenarios are used in a very different way here as in the work

of Räihä et al. [2009]. Here scenarios define actions made with the system, and thus

contain information of different components of the system that are needed, but do not

deal with quality aspects other than how many operations, i.e., scenarios a certain set of

responsibilities is able to perform. Räihä et al. [2009], however, use scenarios not to

describe functional operations but expectations to the system in terms of quality aspects.

These different studies suggest that there are more ways of measuring quality than

metrics, and they should be more thoroughly investigated.

Results show that GA does improve the initial packaging, by 60-90 % to the actual

initial packaging and by 5-43% compared to a packaging that contains two jars, “used”

and “unused”, and by 13-23% compared to the preliminary best solution. When delay

increases, the GA optimization starts to be highly more useful than the preliminary

optimal solution, while the “used” packaging becomes better. However, for network

delay value lower or slightly higher than the value used for the optimization process, the

GA optimization is always the best packaging option. It is found that even when there is a

large corpus of classes used in all scenarios, a cost reduction is still possible, even if in

such a case the preliminary optimized solution is already a good one. The benefits of the

proposed approach depend strongly on several factors, such as the amount of collected

dynamic information, the number of scenarios subjected to analysis, the size of the

common corpus and the networks delay. However, the presented approach and its results

can be binded to several other software design related questions, thus raising questions on

how the different promising results can be combined so that even more complex

problems can be solved with search-based methods.

Gold et al. [2006] experiment with applying search techniques to integrate boundary

overlapping concept assignment. Hill climbing and GA approaches are investigated. The

fixed boundary Hypothesis Based Concept Assignment (HBCA) [Gold, 2001] technique

is compared to the new algorithms. As program comprehension is extremely valuable

when (re-)designing software architecture and locating (and understanding) overlapping

concepts is one of the most demanding tasks in comprehension, automating this task

would significantly save resources in program maintenance.

A concept may take the form of an action or object. For each concept found from

source code, a hypothesis is generated and stored. The list of hypotheses is ordered

according to the position of the indicators in the source code. The input for search

problem is the hypothesis list. The hypothesis list is given by application of HBCA. The

problem is defined as searching for segments of hypothesis in each hypothesis list

according to predetermined fitness criteria such that each segment has the following

attributes: each segment contains one or more neighboring hypotheses and there are no

duplicate segments.

A chromosome is made up of a set of one or more segments representations, and its

length can vary. A segment is encoded as a pair of values (locations) representing the

start and end hypothesis of the hypothesis list. All segments with the same winning

concept that overlap are compared and all but the fittest segment are removed from the

solution. Tournament selection is used for crossover and mutation. Mutation in GA

randomly replaces any hypothesis location within any segment with any other valid

hypothesis location with the concern for causing the search to become overly

randomized. In HC the mutation generates new solutions by selecting a segment and

increasing or decreasing one of the values by a single increment. Selecting different

mutations for GA and HC is noteworthy: this choice is partially justified by the authors

by the fact that mutation is only the secondary operation for the GA, and transformations

are primarily done with the crossover. The chosen mutation operator for the GA seems to

ensure diversity within the population. The proposed HC takes advantage of the

crossover for GA for the restart mechanism, which recombines all segments to create new

pairs of location values, which are then added to the current solution if their inclusion

results in an improvement to the fitness value. Crossover utilizes the location of the

segments, where only segments of overlapping locations are recombined and the

remaining are copied to the new chromosome.

The fitness criteria’s aims are finding segments of strongest evidence and binding as

many of the hypotheses within the hypothesis list as possible without compromising the

segment’s strength of evidence. The segmentation strength is a combination of the inner

fitness and the potential fitness of each segment. The inner fitness fiti of a segment is

defined as signali – noisei, where signali is the number of hypotheses within the segment

that contribute to the winner, and noisei represents the number of hypotheses within the

segment that do not contribute to the winner. In addition, each segment is evaluated with

respect to the entire segment hypothesis list: the potential segment fitness, fitp, is

evaluated by taking account of signalp, the number of hypotheses outside of the segment

that could contribute to the segment’s winning concept if they were included in the

segment. The potential segment fitness is thus defined as fitp = signali – signalp. The

overall segment fitness is defined as segfit = fiti + fitp. The total segment fitness is a sum

of segment fitnesses. The fitness is normalized with respect to the length of the

hypothesis list. The chosen fitness function seems quite simple when broken down to

actual calculations. This further confirms the findings by, e.g., Lutz [2001] that simple

approaches tend to have promising results, as there is less room to err.

An empirical study is used. Results are also compared to sets of randomly generated

solutions for each hypothesis list, created according to the solutions structure. The results

from GA, HC and random experiment are compared based on their fitness values. The

GA fitness distribution is the same as those of HC and random, but achieves higher

values. HC is clearly inferior. Comparing GA, HC and HBCA shows a lack of solutions

with low Signal to Noise ratios for GA and HC when compared to HBCA. GA is

identified as the best of the proposed algorithms for concept assignment which allow

overlapping concept boundaries. Also, the HC results are somewhat disappointing as they

are found to be significantly worse than GA and random solutions. However, HC

produces stronger results than HBCA on the signal to size measure. The GA and HC are

found to consistently produce stronger concepts than HBCA. It might be worth studying

how the HC would have performed if it used the same mutation operator as the GA.

Although the GA primarily used the crossover, which was used as a basis for the HC, the

GAs large population makes the application of this operator significantly more different

than with HC.

Goldsby and Cheng [2008] and Goldsby et al. [2008] study the digital evolution of

behavioral models for autonomic systems with Avida. It is difficult to predict the

behavior of autonomic systems before deployment, and thus automatic generation of

behavioral models greatly eases the task of software engineers attempting the

comprehend the system. In digital evolution a population of self-replicating computer

programs (digital organisms) exists in a computational environment and is subject to

mutations and selection. In this approach each digital organism is considered as a

generator for a UML state diagram describing the systems behavior.

Each organism is given instinctual knowledge of the system in the form of a UML

class diagram representing the system structure, as well as optional seed state diagrams.

A genome is thus seen as a set of instructions telling how the system should behave. The

genome is also capable of replicating itself. In fact, in the beginning of each population

there exists only one organism that only knows how to replicate itself, thus creating the

rest of the population. Mutations include replacing an instruction, inserting an additional

instruction and removing an instruction from the genome. As genomes are self-

replicating, crossover is not used in order to create offspring. Here the choice of UML

state diagrams is clever, as it visualizes the behavior in quite a simple manner, making

the interpretation of the result easy. Also the choice of encoding conforms well to the

chosen visualization method. However, the actual encoding of rules into the genome is

not simple, and requires several different alphabets and lists of variables.

The fitness or quality of an organism is evaluated by a set of tasks, defined by the

developer. Each task that the behavioral model is able to execute increases its merit. The

higher a merit an organism has, the more it will replicate itself, eventually ending up

dominating the population. This is yet another incident where the fitness is measured

with something else than traditional metrics.

A behavioral model of an intelligent robot is used as a case study for Avida. Through

a 100 runs of Avida, seven behavioral models are generated for the example system.

Post-evolution analysis includes evaluation with the following criteria: minimum states,

minimum transitions, fault tolerance, readability and tolerance. After the analysis, one of

the models meets all but one criterion (safety) and three models meet three of the five

criteria. One model does not meet any of the additional criteria. Thus, the produced

behavioral models would seem to be of quality in average.

Lutz [2001] uses a measure based on an information theoretic minimum description

length principle [Shannon, 1948] to compare hierarchical decompositions. This measure

is furthermore used as the fitness function for the GA which explores the space of

possible hierarchical decompositions of a system. Although this is very similar to

software clustering, this approach is considered as architecture design as it does not need

an initial clustering to improve, but designs the clustering purely based on the underlying

system and its dependencies.

In hierarchical graphs links can represent such things as dependency relationships

between the components of control-flow or data-flow. In order to consider the best way

to hierarchically break a system up into components, one needs to know what makes a

hierarchical modular decomposition (HMD) of a system better than another. Lutz takes

the view that the best HMD of a system is the simplest. In practice this seems to give rise

to HMDs in which modules are highly connected internally (high cohesion) and have

relatively few connections which cross module boundaries (low coupling), and thus

seems to achieve a principled trade-off between the coupling and cohesion heuristics

without actually involving either. This also suggests that high quality architectures can

effectively be identified through subjective inspection. A human architect may quite

easily say if one design appears simpler than another, while calculation cohesion and

coupling values is more time consuming and complex.

For the GA, the genome is a HMD for the underlying system. The chromosomes in

the initial population are created by randomly mutating some number of times a

particular “seed” individual. The initial seed individual is constructed by modularizing

the initial system. Three different mutation operations are used that can all be thought of

as operations on the module tree for the HMD. They are: 1. moving a randomly chosen

node from where it is in the tree into another randomly chosen module of the tree, 2.

modularize the nodes of some randomly chosen module, i.e., create a new module

containing the basic entities of some module, and 3. remove a module “boundary”. The

crossover operator resembles a tree-based crossover operation used in genetic

programming and is most easily considered as a concatenating operation on the module

trees of the two HMDs involved. However, legal solutions are not guaranteed, and illegal

ones are repaired.

The tree-like structure is significantly more complex than usual genome encodings for

a GA. This is of course in line with the demands of the problem of finding an optimal

HMD, but also reflects to the understandability of the chosen operations. The operations

are difficult (if not impossible) to completely understand without visualization, and

difficult corrective operations are needed in order to keep the system structure intact. The

analogy between the chosen tree-operations and actual effects to the architecture is also

quite difficult to grasp.

The fitness is given as 1/complexity. Among other systems, a real software design is

used for testing. A HMD with significantly lower complexity than the original was found

very reliably, and the system could group the various components of the system into a

HMD exhibiting a very logical (in terms of function) structure. These results validate that

using simplicity as a fitness function is justified.

3.1.3 Summarizing Remarks

Search-based approaches to software architecture design is clearly a diverse field, as

the studies presented solve very different issues relating to OO software architecture

design and program comprehension. Some consensus can be found in the very basics:

solving the class responsibility assignment problem, applying design choices to create an

architecture and finding an optimal modularization (Lutz [2001] creates a modularization,

Kim and Park [2009] attempt to find an optimal set of components and Bodhuin et al.

[2007] attempt to find optimal sub-architectures). However, even within these sub-areas

of OO design, the approaches are quite different, and practically no agreement can be

found when studying the chosen encodings, operations or fitness function. What is

noticeable, however, is that several approaches to quite different problems within this

area use a fitness function that is not based on metrics. This highlights the need for better

validation of using metrics in evaluating the quality of software, and especially software

architectures. Many metrics need source code and very detailed information; this alone

suggests that they are not suitable for this higher level problem.

Table 1. Studies in search-based object-oriented software architecture design

Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments
Bowman et al.
[2008]

Class structure
design is (semi-)
automated

Class diagram as
methods,
attributes and
associations

Integer vector and
a dependency
matrix

Randomly change the
class of method or
attribute

Standard one-point Cohesion and
coupling

Optimal class
structure

Comparison between
different algorithms

Simons and
Parmee [2007a;
2007b; 2008]

Class structure
design is automated

Use cases; data
assigned to
attributes and
actions to
methods

A design solution
where attributes
and methods are
assigned to classes

An attribute and a
method are moved
from one class to
another

Attributes and
methods of parents
are swapped
according to class
position

Cohesiveness of
methods (COM)

Basic class
structure for
system.

Design solutions
encoded directly into a
programming
language

Amoui et al.
[2006]

Applying design
patterns; high level
architecture design

Software system Chromosome is a
collection of
supergenes,
containing
information of
pattern
transformations

Implementing design
patterns

Single-point
crossovers for both
supergene level
and chromosome
level, with
corrective function

Distance from
main sequence

Transformed
system, design
patterns used as
transformations to
improve
modifiability

New concept of
supergene used

Räihä et al.
[2008a]

Automating
architecture design

Responsibility
dependency
graph

Chromosome is a
collection of
supergenes,
containing
information of
responsibilities
and design
patterns

Mutations apply
architectural design
patterns and styles

A standard one-
point crossover
with corrective
function

Efficiency,
modifiability and
complexity

UML class
diagram depicting
the software
architecture

Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments
Räihä et al.
[2008b]

Automating CIM-
to-PIM model
transformations

Responsibility
dependency
graph and
domain model
(CIM model)

Chromosome is a
collection of
supergenes,
containing
information of
responsibilities
and design
patterns

Mutations apply
architectural design
patterns and styles

A standard one-
point crossover
with corrective
function

Efficiency,
modifiability and
complexity

UML class
diagram depicting
the software
architecture (PIM
model)

Räihä et al.
[2009]

Automating
architecture design

Responsibility
dependency
graph and
domain model

Chromosome is a
collection of
supergenes,
containing
information of
responsibilities
and design
patterns

Mutations apply
architectural design
patterns and styles

A standard one-
point crossover
with corrective
function

Efficiency,
modifiability,
complexity and
modifiability
related scenarios

UML class
diagram depicting
the software
architecture

Kessentini et
al. [2008]

Using PSO for
model
transformations

Source model,
target model and
mapping blocks

Integer vector N/A N/A Number of source
model constructs
that can be
transformed

Optimal
transformations

Particle Swarm
Optimization (PSO)
used as search
algorithm

Kim and
Park[2009]

Dynamic selection
of software
components

Softgoal
interdependency
graph, decision
variables

String of integers
representing
decision variables

Goes through each
gene and changes the
digit according to
mutation probability

Two-point
crossover

Quality attributes
given by user

Optimal
architectural
instance from the
set of all instances

Bodhuin et al.
[2007]

Automating class
clustering in jar
archives

A grouping of
classes of a
system

An integer array,
each gene is a
cluster of classes
allocated to the jar
represented by
integer

Changes the
allocation of a class
cluster to another jar
archive

Standard one-point Download cost of
jar archive

Optimal
packaging; finding
the subsets of
classes most likely
to be used together
(to be placed in
same jar archive)

Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments
Gold et al.
[2006]

Using GA in the
area of concepts

Hypothesis list
for concepts

One or more
segment
representations

A hypothesis location
is randomly replaced
within a segment pair

Segment pairs of
overlapping
locations are
combined, rest
copied

Strongest evidence
for segments and
hypothesis binding

Optimized concept
assignment

Hill climbing used as
well as GA

Goldsby and
Chang [2008];
Goldsby et al.
[2008]

Designing a system
from a behavioral
point of view

A class diagram,
optional state
diagram

A set of behavioral
instructions

Changes, removes or
adds an instruction

Self-replication Number of
executed tasks

UML state diagram
giving the
behavioral model
of system

No actual
evolutionary
algorithm used, but a
platform that is “an
instance of evolution”

Lutz [2001] Information theory
applied in software
design; high-level
architecture design

Software system Hierarchical
modular
decomposition
(HMD)

Three mutations
operating the module
tree for the HMD

A variant of tree-
based crossovers,
as used in GP, with
corrective function

1/complexity Optimal
hierarchical
decomposition of
system

3.2 Service-oriented architecture design

3.2.1. Basics

Web services are rapidly changing the landscape of software engineering, and service-

oriented architectures (SOA) are especially popular in business. One of the most

interesting challenges introduced by web services is represented by Quality of Service

(QoS)-aware composition and late-binding. This allows binding, at run-time, a service-

oriented system with a set of services that, among those providing the required features,

meet some non-functional constraints, and optimize criteria such as the overall cost or

response time. Hence, QoS-aware composition can be modeled as an optimization

problem. This problem is NP-hard, which makes it suitable for meta-heuristic search

algorithms. For more background on SOA, see, e.g., Huhns and Sting [2005]. The

following subsection describes several approaches that have used a GA to deal with

optimizing service compositions. Summarizing remarks on the different approaches are

given in the end, and the fundamentals of each approach are collected in Table 2.

3.2.2. Approaches

Canfora et al. [2005a] propose a GA to optimize service compositions. The approach

attempts to quickly determine a set of concrete services to be bound to the abstract

services composing the workflow of a composite service. Such a set needs both to meet

QoS constraints, established in the Service Level Agreement (SLA), and to optimize a

function of some other QoS parameters.

A composite service S is considered as a set of n abstract services {s1, s2,…, sn},

whose structure is defined through some workflow description language. Each

component sj can be bound to one of the m concrete services, which are functionally

equivalent. Computing the QoS of a composite service is made by combining

calculations for quality attributes time, cost, availability, reliability and customer

attraction. Calculations take into account Switch, Sequence, Flow and Loop patterns in

the workflow.

The genome is encoded as an integer array whose number of items equals to the

number of distinct abstract services composing the services. Each item, in turn, contains

an index to the array of the concrete services matching that abstract service. The mutation

operator randomly replaces an abstract service with another one among those available,

while the crossover operator is the standard two-point crossover. This can be seen as an

attempt to preserve building blocks, i.e., sequences of optimal service bindings. Abstract

services for which only one concrete service is available are taken out from the GA

evolution.

The fitness function needs to maximize some QoS attributes, while minimizing

others. In addition, the fitness function must penalize individuals that do not meet the

constraints and drive the evolution towards constraint satisfaction, the distance from

which is denoted by D. The fitness function is f = (w1Cost + w2Time)/ (w3Availability +

w4Reliability) + w5D. QoS attributes are normalized in the interval [0, 1). Although the

fitness function seems simple in this way, the actual calculations behind the different

attributes are complex. The values are achieved by calculating the quality value for each

attribute for each pattern in the workflow. The actual functions to define how these

values are calculated are not defined, and it would be interesting to see how, e.g.,

availability is achieved, as this would show the amout of information needed as input to

calculate the fitness value. The weights w1,…,w5 are positive reals. Normalizing the

fitness evaluators ensures that the weights have the true effect to the fitness value that

they are meant to have.

A dynamic penalty is experimented with, so that w5 is increased over the generations.

An elitist GA is used where the best two individuals are kept alive across generations.

Roulette wheel method is used for selection.

The GA is able to find solutions that meet the constraints, and optimizes different

parameters (here cost and time). Results show that the dynamic fitness does not

outperform the static fitness. Even different calibrations of weights do not help. The

convergence times of GA and Integer Programming (IP) [Garfinkel and Nemhauser,

1972] are compared for the (almost) same achieved solution. The results show that when

the number of concrete services is small, IP outperforms GA. For about 17 concrete

services, the performance is about the same. After that, GA clearly outperforms IP. Thus,

as SOA is most useful when the amount of services is large, it would seem that GA is a

worthwhile solution to optimizing the service-binding.

Canfora et al. [2005b] have continued their work by using a GA in replanning the

binding between a composite service and its invoked services during execution.

Replanning is triggered once it can be predicted that the actual service QoS will differ

from initial estimates. After this, the slice, i.e., the part of workflow still remaining to be

executed, is determined and replanned. The used GA approach is the same as earlier, but

additional algorithms are used to trigger replanning and computing workflow slices. The

GA is used to calculate the initial QoS-values as well as optimizing the replanned slices.

Experiments were made with realistic examples and results concentrate on the cost

quality factor. The algorithms managed to reduce the final cost from the initial estimate,

while response time increased in all cases. The authors end with a note that the trade-off

between response time and cost quality factors need to be examined thoroughly in the

future.

Jaeger and Mühl [2007] discuss the optimization problem when selecting services

while considering different QoS characteristics. A GA is implemented and tested on a

simulation environment in order to compare its performance with other approaches.

An individual in the implemented GA represents an assignment of a candidate for

each task and can be represented by a tuple. A population represents a set of task-

candidate assignments. The initial population is generated arbitrarily from possible

combinations of tasks and candidates. Mutation changes a particular task-candidate

assignment of an individual. Crossover is made by combining two particular task-

candidate assignments to form new ones and depends on the fitness value. The fitness

value is computed based on the QoS resulting from the encoded task-services assignment.

Jaeger and Mühl use the same fitness function as Canfora et al. [2005a; 2005b] in order

to get comparable results.

A trade-off couple between execution time and cost is defined as follows: the

percentage a, added to the optimal execution time, is taken to calculate the percentage b,

added to the optimal cost, with a + b = 100. Thus, the shorter the execution time is, the

worse will be the cost and vice versa. The constraint is determined to perform the

constraint selection on the execution time first. The aggregated cost for the composition

is increased by 20% and then taken as the constraint that has to be met by the selection.

This appears as an attempt to answer the problem noted by Canfora et al. [2005b] in their

later study.

Several variations of the fitness function are possible. Jaeger and Mühl use a

multiplication of the fitness to make the difference between weak and strong fitnesses

larger. When the multiplying factor is 4, it achieves higher QoS values than those with a

smaller factor; however, a factor of 8 does not achieve values as high. The scaled

algorithm performed slightly better than the one with a factor of 2, and behaved similarly

to the weighted algorithm. The penalty factor was also investigated, and it was varied

between 0.01 and 0.99 in steps of 0.01. The results show that a factor of 0.5 would result

in few cases where the algorithm does not find a constraint meeting solution. On the other

hand, solutions below 0.1 appear too strong, as they represent an unnecessary restriction

of the GA to evolve further invalid solutions. These different experiments on some very

basic parameters demonstrate the difficulty of optimizing the GA: even the more simple

choices are anything but straightforward.

The GA offers a good performance at feasible computational efforts when compared

to, e.g., bottom-up heuristics. However, this approach shows a large gap when compared

to the resulting optimization of a branch-and-bound approach or to exhaustive search. It

appears that the considered setup of values along with the given optimization goals and

constraints prevent a GA from efficiently identifying very near optimal solutions.

Zhang et al. [2006] implement a GA that, by running only once, can construct the

composite service plan according to the QoS requirements from many services

compositions. This GA includes a special relation matrix coding scheme (RMCS) of

chromosomes proposed on the basis of the characters of web services selection.

By means of the particular definition, it can simultaneously represent all paths of

services selection. Furthermore, the selected coding scheme can simultaneously denote

many web service scenarios that the one dimension coding scheme can not express at one

time.

According to the characteristic of the services composition, the RMCS is adopted

using a neighboring matrix. In the matrix, n is the number of all tasks included in services

composition. The elements along the main diagonal for the matrix express all the abstract

service nodes one by one and are arranged from the node with the smallest code number

to the node with the largest code number. The objects of the evolution operators are all

elements along the main diagonal of the matrix. The chromosome is made up of these

elements. The other elements in the matrix are to be used to check whether the created

new chromosomes by the crossover and mutation operators are available and to calculate

the QoS values of chromosomes. This appears to mainly combine the integer array and

the table of services linked to it, used by Canfora et al. [2005a], into one data structure.

The tuple representation chosen by Jaeger and Mühl [2007] does not seem that different

either, as a tuple can basically contain the information of what is represented by a column

and a row in a matrix.

The policy for initial population attempts to confirm the proportion of chromosomes

for every path to the size of the population. The method is to calculate the proportion of

compositions of every path to the sum of all compositions of all paths. The more there are

compositions of one path, the more chromosomes for the path are in the population.

The value of every task in every chromosome is confirmed according to a local

optimized method. The larger the value of QoS of a concrete service is, the larger the

probability to be selected for the task is. The roulette wheel selection is used to select

concrete services for every task.

The probability of mutation is for the chromosome instead of the locus. If mutation

occurs, the object path will be confirmed firstly whether it is the same as the current path

expressed by the current chromosome. If the paths are different, the object path will be

selected from all available paths except the current one. If the object is itself, the new

chromosome will be checked whether it is the same as the old chromosome. Same

chromosome will result in the mutation operation again. If the objects are different paths

from the current path, a new chromosome will be related on the basis of the object path.

A check operation is used after the invocations of crossover and mutation. If the

values of the crossover loci in two crossover chromosomes are all for the selected web

services, the new chromosomes are valid. Else, the new chromosomes need to be checked

on the basis of the relation matrix. Mutation checks are needed if changed from selected

web service to a certain value or vice versa.

Zhang et al. compared the GA with RMCS to a standard GA with the same data,

including workflows of different sizes. The used fitness function is as defined by Canfora

et al. [2004]. The coding scheme, the initial population policy and the mutation policy are

the differences between the two GAs. Results show that the novel GA outperforms the

standard one in terms of achieved fitness values. As the number of tasks grows, so does

the difference between fitness values (and performance time, in the favor of the standard

solution) between the two GAs. The weaknesses of this approach are thus long running

time and slow convergence. Tests on the initial population and the mutation policies

show that as the number of tasks grows, the GA with RMCS outperforms the standard

one more clearly. Thus it would seem that combining the information into a heavier data

structure, a matrix, increases execution time significantly. Also, as noted that the

improvement fitness values with the novel GA for larger task sets is achieved by testing

other improvement than the encoding, the true achievements are the ones that really differ

from previous approaches, rather than the new representation. Tests on the coding

scheme show that the novel matrix approach only achieves noticeably better fitness

values when the number of tasks is increased (although the improvement is not linear):

the fitness values for 10 tasks only differ by less than 1 %, the fitness values for 25 tasks

differ by approximately 30%, and the fitness values for 30 tasks by approximately 20%.

Another interesting point is the choice of parameters: Zhang et al. use 10 000 generations

and 400 individuals for a population in their tests. However, the standard GA seems to

achieve its optimum after 1000 generations and the one with the novel encoding after

3000 generations. Thus one wonders the need for such unusual parameter selections.

Zhang et al. report that experiments on QoS-aware web services selection show that

the GA with the presented matrix approach can get a significantly better composite

service plan than the GA with the one dimension coding scheme, and that the QoS

policies play an important role in the improvement of the fitness of GA.

Su et al. [2007] continue the work of Zhang et al. [2006] by proposing improvements

for the fitness function and mutation policy. An objective fitness function 1 (OF1) is first

defined as a sum of quality factors and weights, providing the user with a way to show

favoritism between quality factors. The sum of positive quality factors is divided by the

sum of negative quality factors. The second fitness function (OF2) is a proportional one

and takes into account the different ranges of quality value. The third fitness function

(OF3) combines OF1 and OF2, producing a proportional fitness function that also

expresses the differences between negative and positive quality factors. Thus Su et al.

seem to have noticed the problems with defining the fitness functions, as the fitness

function actually used by Canfora et al. [2005a; 2005b] includes similar improvements.

Four different mutation policies are also inspected. Mutation policy 1 (MP1) operates

so that the probability of the mutation is tied to each locus of a chromosome. Mutation

policy 2 (MP2) has the mutation probability tied to the chromosomes. Mutation policy 3

(MP3) has the same principle as MP1, except that now the child may be identical to the

parent. Mutation policy 4 (MP4) has the probability tied to each locus, and has an equal

selection probability for each concrete service and the “0” service.

Experiments with the different fitness functions suggest that OF3 clearly outperforms

OF1 and OF2 in terms of the reached average maximum fitness value. This is quite

unsurprising, as OF3 is the most developed fitness function. Experiments on the different

mutation policies show that MP1 gains the largest fitness values while MP4 performs the

worst.

Cao et al. [2005a; 2005b] present a GA that is utilized to optimize a business process

composed of many service agents (SAg). Each SAg corresponds to a collection of

available web services provided by multiple-service providers to perform a specific

function. Service selection is an optimization process taking into account the

relationships among the services. Better performance is achieved using GA compared to

using local service selection strategy.

A service selection model using GA is proposed to optimize a business process

composed of many service agents. A SAg corresponds to a collection of available web

services provided by multiple service providers to perform a specific function. When

only measuring cost, the service selection is equivalent to a single-objective optimization

problem.

An individual is generated for the initial population by randomly selecting a web

service for each SAg of the services flow, and the newly generated individual is

immediately checked whether the corresponding solution satisfies the constraints. If any

of the constraints is violated, then the generated individual is regarded as invalid and

discarded. The roulette wheel selection is used for individuals to breed.

Mutation bounds the selected SAg to a different web service than the original one.

After an offspring is mutated, it is also immediately checked whether the corresponding

solution is valid. If any constraints are violated, then the mutated offspring is discarded

and the mutation operation is retried.

A traditional single-point crossover operator is used to produce two new offspring.

After each crossover operation, the offspring are immediately checked whether the

corresponding solutions are valid. If any of the constraints is violated, then both offspring

are discarded and the crossover operation for the mated parents is retried. If valid

offspring still cannot be obtained after a certain number of retries, the crossover operation

for these two parents is given up to avoid a possible infinite loop.

Cao et al. take cost as the primary concern of many business processes. The overall

cost of each execution path can always be represented by the summation cost of its subset

components. For GA, integer encoding is used. The solution to service selection is

encoded into a vector of integers. The fitness function is defined as f = U – (costs of

service flows), if cost<U, and otherwise 0. The constant U should be selected as an

appropriate positive number to ensure the fitness of all good individuals get a positive

fitness value in the feasible solution space. On the other hand, U can also be utilized to

adjust the selection pressure of GA. This is a clever approach to give the developer a

simple way to adjust the selection process and appreciation of different solutions.

In the case study the best fitness of the population has a rapid increase at the

beginning of the evolution process and then convergences slowly. It means the overall

cost of the SAg is generally decreasing with the evolution process. For better solutions,

the whole optimization process can be repeated for a number of times, and the best one in

all final solutions is selected as the ultimate solution to the service selection problem.

3.2.3 Summarizing Remarks

Contrary to the studies relating to OO architecture design, the approaches to apply search

algorithms in SOA design are extremely similar. Nearly all studies use the same fitness

functions or they have made only small modifications to it. Also the basic representation

of the problem is very similar; although different definitions are used, the underlying

problem is always linking concrete services with abstract services. Improvements have

been attempted by creating different initial population and mutation policies; note, that

the actual mutation is still the same, but the way the mutation is applied is changed.

Additionally, there is no consensus in the encoding of the solution, although the problem

is the same, and some tests have been made to compare different encoding options. Thus

the main questions in this area seem to be: are there other problems in SOA where search

algorithms could be applied to, and can a truly optimal encoding be found to the currently

studied problem? Additionally, the fitness function deserves much more attention and

testing, as the developers of the fitness function used by all the studies say themselves

that the relationships and trade-offs between different quality attributes need to be

carefully studied. Results with dynamic fitness functions also interestingly did not

increase the fitness value. Räihä et al. [2008a; 2008b] experimented with dynamic

mutations, but discarded them in their latest study [Räihä et al., 2009]. This would

suggest that using dynamicity with GAs is a complex problem, demanding well-defined

operations and firm justifications for the use of such improvements before adding them to

the experiments.

Table 2. Studies in search-based service-oriented software architecture design

Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments

Canfora et al.
[2005a]

Service
composition with
respect to QoS
attributes

Sets of abstract
and concrete
services

Integer array,
whose size is the
number of abstract
services, each item
contains an index
to array of
concrete services

Randomly
replaces an
abstract service
with another

Standard two-
point crossover

Minimize cost and
time, maximize
availabity and
reliabiliy, meet
constraints, with
penalty

Optimized service
composition
meeting
constraints,
concrete services
bound to abstract
services

A dynamic penalty
was experimented
with

Canfora et al.
[2005b]

Replanning during
execution time

Sets of abstract
and concrete
services

Integer array,
whose size is the
number of abstract
services, each item
contains an index
to array of
concrete services

Randomly
replaces an
abstract service
with another

Standard two-
point crossover

Minimize cost and
time, maximize
availability and
reliability, meet
constraints

Optimized service
composition
meeting
constraints,
concrete services
bound to abstract
services

GA used to
calculate initial
QoS-value and
QoS-values
inbetween:
replanning is
triggered by other
algorithms

Jaeger and
Mühl [2007]

Service
assignment with
respect to QoS
attributes

Selection of
services and tasks
to be carried out

A tuple
representing an
assignment of a
candidate for a
task

Changes an
individual task-
candidate
assignment

Combining task-
candidate
assignments

Minimize cost and
time, maximize
availabity and
reliabiliy, meet
constraints, with
penalty

Tasks assigned to
services
considering QoS
attributes

A trade-off couple
between execution
time and cost is
defined

Author Approach Input Encoding Mutation Crossover Fitness Outcome Comments

Zhang et al.
[2006]

Task assignment
with relation to
QoS attributes

Selections of tasks
and services

Relation matrix
coding scheme

Standard, with
corrective function

Standard, with
corrective function

Minimize cost and
time, maximize
availability and
reliability, meet
constraints

Tasks assigned to
services
considering QoS
attributes

Initial population
and mutation
policies defined

Su et al. [2007] Task assignment
with relation to
QoS attributes

Selections of tasks
and services

Relation matrix
coding scheme

Standard, with
corrective function

Standard, with
corrective function

Minimize cost and
time, maximize
availability and
reliability, meet
constraints

Tasks assigned to
services
considering QoS
attributes

Initial population
and mutation
policies defined

Cao et al.
[2005a; 2005b]

Business process
optimization

Collections of web
services and
service agents
(SAg) composing
a business process

Integer encoding,
assigning a SAg to
a service

Changes the
service to which a
SAg is bound with
corrective function

Standard one-
point, producing
two new offspring
with corrective
function

Cost Services assigned
to service agents

3.3. Other

3.3.1 Background

In addition to purely designing software architecture, there are some factors that should

be optimized, regardless of the particularities of an architecture. Firstly, there is the

reliability-cost tradeoff. The reliability of software is always dependent on its

architecture, and the different components should be as reliable as possible. However, the

more work is put to ensure reliability of different components, the more the software will

cost. Wadekar and Gokhale [1999] implement a GA to optimize the reliability-cost

tradeoff. Secondly, there are some parameters, e.g., tile sizes in loop tiling and loop

unrolling, which can be optimized for all software architectures in order to optimize the

performance of the software. Che et al. [2000] apply search-based techniques for such

parameter optimization.

3.3.2 Approaches

Wadekar and Gokhale [1999] present an optimization framework founded on

architecture-based analysis techniques, and describe how the framework can be used to

evaluate cost and reliability tradeoffs using a GA. The methodology for the reliability

analysis of a terminating application is based on its architecture. The architecture is

described using the one-step transition probability matrix P of a discrete time Markov

chain (DTMC).

Wadekar and Gokhale assume that the reliabilities of the individual modules are

known, with Ri denoting the reliability of module i. It is also assumed that the cost of the

software consisting of n components, denoted by C, can be given by a generic expression

of the form: C = C1(R1) + C2(R2) + … + Cn(Rn) where Ci is the cost of component i and

the cost Ci depends monotonically on the reliability Ri. Thus, the problem of minimizing

the software cost while achieving the desired reliability is the problem of selecting

module reliabilities.

A chromosome is a list of module reliabilities. Each member in the list, a gene,

corresponds to a module in the software. The independent value in each gene is the

reliability of the module it represents, and the dependent value is the module cost given

by the module cost-reliability relation or a table known a priori. The gene values are

changed to alter the cost and reliability of a software implementation represented by a

particular chromosome.

Mutation and crossover operations are standard. To avoid convergence to a local

optimum as the population size increases, the mutation operation is used more frequently.

A cumulative-probability based basic selection mechanism is used for selection.

Chromosomes are ranked by fitness and divided into rank groups. The probability of

selection of chromosomes varies uniformly according to their rank group where

chromosomes in the first rank group have the largest probability. A new generation of the

population is created by selecting pimax/2 chromosomes, where pimax is maximum

population. If the cost reduction is less than or equal to % of the current best cost

number of times, the GA terminates. During any generation cycle if the cost reduction is

larger, the counter is reset to 0. The reduction percentage factor and the counter limit

 are parameters. This approach is one of the few alternatives used to terminate a GA, as

most studies presented use a straightforward generation number to terminate the

execution of the algorithm.

The fitness function is f = (-K/lnR)/C , where K is a large positive constant. The

fitness of solutions increases superlinearly with their reliability. The constant is used to

linearize the cost variation. The maximum fitness is directly proportional to K. An

intermediate value of gamma, = 1.5, allows the GA to distinguish between low-cost and

high-cost solutions, while selecting a sufficient number of high-cost high-reliability

solutions, that may generate the optimal high-reliability low-cost solution.

Wadekar and Gokhale compare the GA against exhaustive search. The results indicate

that the GA consistently and efficiently provides optimal or very close to optimal designs,

even though the percentage of such designs in the overall feasible design space is

extremely small. The results also highlight the robustness of the GA. However, the small

number of near-optimal solutions demonstrates that the fitness landscape is very

complex, again conforming to the need to extensively investigate the cost-reliability

trade-off. The case study results show how the GA can be effectively used to select

components such that the software cost is minimized, for various cost structures.

Che et al. [2003] present a framework for performance optimization parameter

selection, where the problem is transformed into a combinatorial minimization problem.

Many performance optimization methods depend on right optimization parameters to get

good performance for an application. Che et al. search for the near optimal optimization

parameters in a manner that is adaptable for different architectures. First a reduction

transformation is performed to reduce the program’s runtime while maintaining its

relative performance as regard to different parameter vectors. The near-optimal

optimization parameter vector based on the reduced program’s real execution time is

searched by GA, which converges to a near-optimal solution quickly. The reduction

transformation reduces the time to evaluate the quality of each parameter vector.

First some transformations are applied to the application, leaving the optimization

parameter vector to be read from a configuration file. Second, the application is complied

into executable with the native compiler. Then the framework repeatedly generates the

configure file with a different parameter vector selected by search and measures the

executable’s runtime.

The chromosome encoding for the GA is a vector of integer values, with each integer

corresponding to an optimization parameter of a solution. No illegal solutions are

allowed. The population has a fixed size. A simple integer value mutation is implemented

and an integer number recombination scheme is used for crossover. The fitness value

reflects the duality of an individual in relation to other individuals. The linear rank-based

fitness assignment scheme is used to calculate the fitness values. Selection for a new

generation is made by elitism and roulette wheel method. Test results show that the GA

can adapt to different execution environments automatically. For each platform, it always

selects excellent optimization parameters for 80% programs. Results show that the

number of individuals evaluated is far smaller than the size of solution space for each

program on each platform. The optimization time is also small.

4. SOFTWARE CLUSTERING

4.1 Basics

As software systems develop and are maintained, they tend to grow in size and

complexity. A particular problem is the growing number of dependencies between

libraries, modules and components within the modules. Software clustering (or

modularization) attempts to optimize the clustering of components into modules in such a

way that there are as many dependencies within a module as possible and as few

dependencies between modules as possible. This will enhance the understandability of a

system, which in turn will make it more maintainable and modifiable. Also, fewer

dependencies between modules usually results in better efficiency.

As components or modules (depending on the level of detail in the chosen

representation) can be depicted as vertices and dependencies between them as edges in a

graph, the software clustering problem can be traced back to a graph partitioning

problem, which is NP-complete. Genetic algorithms have successfully been applied to a

general graph partitioning problem [Bui and Moon, 1996; Shazely et al., 1998], and thus,

the related software clustering problem is most suitable for meta-heuristic search

techniques.

Although the basic problem is relatively simple to define and the goodness of a

modularization can be calculated based on the goodness of the underlying graph

partitioning, the nature of software systems provides challenges when defining the actual

fitness function for the optimization algorithm. Also, not all necessary information can be

encoded into a simple graph representation, and this presents another question to be

answered when designing a search-based approach for modularization. The following

subsection presents approaches using GAs, HC and SA to find good software

modularizations, after which summarizing remarks are presented and the fundamentals of

each study are collected in Table 3.

4.2. Approaches

Mancoridis et al. [1998] treat automatic modularization as an optimization problem and

have created the Bunch tool that uses HC and GA to aid its clustering algorithms. A

hierarchical view of the system organization is created based solely on the components

and relationships that exist in the source code. The first step is to represent the system

modules and the module-level relationships as a module dependency graph (MDG). An

algorithm is then used to partition the graph in a way that derives the high-level

subsystem structure from the component-level relationships that are extracted from the

source code. The goal of this software modularization process is to automatically

partition the components of a system into clusters (subsystems) so that the resultant

organization concurrently minimizes inter-connectivity while maximizing intra-

connectivity. This task is accomplished by treating clustering as an optimization problem

where the goal is to maximize an objective function based on a formal characterization of

the trade-off between inter- and intra-connectivity. Intuitively, intra-connectivity could be

seen as cohesion and inter-connectivity as coupling.

The clusters, once discovered, represent higher-level component abstractions of a

system’s organization. Each subsystem contains a collection of modules that either

cooperate to perform some high-level function in the overall system or provide a set of

related services that are used throughout the system. Intra-connectivity Ai of cluster i

consisting of Ni components and mi intra-edge dependencies as Ai = mi/Ni
2, bound

between 0 and 1. Interconnectivity measures the connectivity between two distinct

clusters. A high degree of inter-connectivity is an indication of poor subsystem

partitioning. Inter-connectivity Eij between clusters i and j consisting of Ni and Nj

components with eij inter-edge dependencies is 0, if i = j, and eij / 2*NiNj otherwise,

bound between 0 and 1. Modularization Quality (MQ) demonstrates the trade-off

between inter- and intra-connectivities, and it is defined for a module dependency graph

partitioned into k clusters as 1/k* ji
i E
kk

A
,*

2
1*

1
 if k>1, or A1, if k = 1.

The first step in automatic modularization is to parse the source code and build a

MDG. A sub-optimal clustering algorithm works as the traditional hill climbing one by

randomly selecting a better neighbor. The GA starts with a population of randomly

generated initial partitions and systematically improving them until all of the initial

samples converge. The GA uses the “neighboring partition” definition to improve an

individual, and thus only contains one mutation operator, which is the same one as used

with HC. Selection is done by randomly selecting a percentage of N partitions and

improving each one by finding a better neighboring partition. A new population is

generated by making N selections, with replacements for the existing population of N

partitions. Selections are random and biased in favor of partitions with larger MQs. The

algorithm continues until no improvement is seen for t generations, or until all of the

partitions in the population have converged to their maximum MQ, or until the maximum

number of generations has been reached. The partition with the largest MQ in the last

population is the sub-optimal solution.

Experimentation with this clustering technique has shown good results for many of

the systems that have been investigated. The primary method used to evaluate the results

is to present an automatically generated modularization of a software system to the actual

system designer and ask for feedback on the quality of the results. A case study was made

and the results were shown to an expert, who highly appreciated the result produced by

Bunch.

The validation of the method is interesting, as the original designer of a system should

be the one who knows the system best, and thus should be the best one to evaluate

designs of the system. It is also encouraging that the designers were open and admitted

that the tool was able to improve the design that they must have though of as optimal at

some point. This indicates that there truly is a place for software design tools if the

methods are well-defined enough.

Doval et al. [1999] have implemented a more refined GA in the Bunch tool, as it now

contains a crossover operator and more defined mutation and crossover rates. The

effectiveness of the technique is demonstrated by applying it to a medium-sized software

system. For encoding, each node in the graph (MDG) has a unique numerical identifier

assigned to it. These unique identifiers define which position in the encoded string will be

used to define that node’s cluster. Mutation and crossover operators are standard. A

roulette wheel selection is used for the GA, complemented with elitism. Fitness function

is based on the MQ metric. Crossover rate was 80% for populations of 100 individuals or

fewer and 100% for populations of a thousand individuals or more, varying linearly

between those values. Mutation rate is 0.004 log2(N). The MQ values for constant

population and generation values were smaller, but fairly close, within 10% to values

achieved with final values for population and generation.

The affect of the population size to crossover rate is interesting, especially in the

sense that with smaller populations the rate is smaller. Intuitively it would seem that with

larger populations there would be a higher chance that the population contains some

extremely poor individuals, the parts of which are not worthwhile to pass on to future

generations.

Mancoridis et al. [1999] have continued to develop the Bunch tool for optimizing

modularization. Firstly, almost every system has a few modules that do not seem to

belong to any particular subsystem, but rather, to several subsystems. These modules are

called omnipresent, because they either use or are used by a large number of modules in

the system. In the improved version users are allowed to specify two lists of omnipresent

modules, one for clients and another for suppliers. The omnipresent clients and suppliers

are assigned to two separate subsystems.

Secondly, experienced developers tend to have good intuition about which modules

belong to which subsystems. However, Bunch might produce results that conflict with

this intuition for several reasons. This is addressed with a user-directed clustering feature,

which enables users to cluster some modules manually, using their knowledge of the

system design while taking advantage of the automatic clustering capabilities of Bunch to

organize the remaining modules. Both user-directed clustering and the manual placement

of omnipresent modules into subsystems have the advantageous side-effect of reducing

the search space of MDG partitions. By enabling the manual placement of modules into

subsystems, these techniques decrease the number of nodes in the MDG for the purposes

of the optimization and, as a result, speed up the clustering process.

Finally, once a system organization is obtained, it is desirable to preserve as much of

it as possible during the evolution of the system. The integration of the orphan adoption

technique into Bunch enables designers to preserve the subsystem structure when orphan

modules are introduced. An orphan module is either a new module that is being

integrated into the system, or a module that has undergone structural changes. Bunch

moves orphan modules into existing subsystems, one at a time, and records the MQ for

each of the relocations. The subsystem that produces the highest MQ is selected as the

parent for the module. This process, which is linear with respect to the number of clusters

in the partition, is repeated for each orphan module. Results from a case study support the

added features.

The chosen additions clearly stem from real needs when modularizing software.

However, two of the three operations increase the power that the user has over Bunch,

thus decreasing the level of automation. Ideally the tool would be able to locate the

omnipresent modules themselves, and gain the same level of expertise via a fitness

function as experts, so that the user would not need to cluster anything beforehand. The

last improvement, however, is truly beneficial, as hardly any software system stays intact

during maintenance, and modules need to be added or modified. Automating the step of

finding the optimal place for a new module is a big step towards the ideal of automating

software design.

Mitchell and Mancoridis [2002; 2006; 2008] have continued to work with the Bunch

tool and have further developed the MQ metric. They define MQ as the sum of Clustering

Factors for each cluster of the partitioned MDG. The Clustering Factor (CF) for a cluster

is defined as a normalized ratio between the total weight of the internal edges and half of

the total weight of external edges. The weight of the external edges is split in half in order

to apply an equal penalty to both clusters that are connected by an external edge. If edge

weights are not provided by the MDG, it is assumed that each edge has a weight of 1. The

clustering factor is defined as

 CF = intra-edges / (intra-edges + ½* (inter-edges)).

The measurement is adjusted, as Mitchell and Mancoridis argue that the old MQ

tended to minimize the inter-edges that exited the clusters, and not minimize the number

of inter-edges in general. The representation also supports weights. This is an interesting

observation, as the original definition of the MQ metric makes no distinction to whether

an edge exits a cluster or not. Thus, one could ask whether the MQ metric was the sole

reason for the previous results, or if other improvements besides the newly defined MQ

metric also had a significant effect on obtaining the better quality results. The addition of

weights is also noteworthy, as previously the problem was not considered a multi-

objective one, while the addition of weights clearly indicates so.

 The HC algorithm for the Bunch tool has also been enhanced. During each iteration,

several options are now available for controlling the behavior of the hill-climbing

algorithm. First, the neighboring process may use the first partition that it discovers with

a larger MQ as the basis for the next iteration. Second, the neighboring process examines

all neighboring partitions and selects the partition with the largest MQ as the basis for the

next iteration. Third, the neighboring process ensures that it examines a minimum

number of neighboring partitions during each iteration. For this, a threshold n is used to

calculate the minimum number of neighbors that must be considered during each iteration

of the process. Experience has shown that examining many neighbors during each

iteration, so that n > 75%, increases the time the algorithm needs to converge to a

solution. This is quite intuitive, as each examination increases the run time of the

algorithm, and it is not likely that simply by examining several neighbors the algorithm

would suddenly find a steeper climb (i.e., converge faster).

It is observed that as n increases so does the overall runtime and the number of MQ

evaluations. However, altering n does not appear to have an observable impact on the

overall quality of the clustering results. A simulated annealing algorithm is also made for

comparison. Although the simulated annealing implementation does not improve the MQ,

it does appear to help reduce the total runtime needed to cluster each of the systems in

this case study.

Mitchell and Mancoridis [2003; 2008] continue their work by proposing an evaluation

technique for clustering based on the search landscape of the graph being clustered. By

gaining insight into the search landscape, the quality of a typical clustering result can be

determined. The Bunch software clustering system is examined. Authors model the

search landscape of each system undergoing clustering, and then analyze how Bunch

produces results within this landscape in order to understand how Bunch consistently

produces similar results. Studying the search landscape of any problem is very beneficial

when attempting to understand why certain changes to, e.g., the fitness function or the

operators, have the kind of effect they have on the results.

The search landscape is modeled using a series of views and examined from two

different perspectives. The first perspective examines the structural aspects of the search

landscape, and the second perspective focuses on the similarity aspects of the landscape.

The structural search landscape highlights similarities and differences from a collection

of clustering results by identifying trends in the structure of graph partitions. The

similarity search landscape focuses on modeling the extent of similarity across all of the

clustering results.

The results produced by Bunch appear to have many consistent properties. By

examining views that compare the cluster counts to the MQ values, it can be noticed that

Bunch tends to converge to one or two “basins of attraction” for all of the systems

studied. Also, for the real software systems, these attraction areas appear to be tightly

paced. An interesting observation can be made when examining the random system with

a higher edge density: although these systems converged to a consistent MQ, the number

of clusters varied significantly over all of the clustering runs. The percentage of intra-

edges in the clustering results indicates that Bunch produces consistent solutions that

have a relatively large percentage of intra-edges. Also, the intra-edge percentage

increases as the MQ values increase. It seems that selecting a random partition with a

high intra-edge percentage is highly unlikely. Another observation is that Bunch

generally improves the MQ of real software systems much more and that of random

systems with a high edge density. Number of clusters produced compared with number of

clusters in the random starting point indicates that the random starting points appear to

have a uniform distribution with respect to the number of clusters. The view shows that

Bunch always converges to a “basin of attraction” regardless of the number of clusters in

the random starting point.

When examining the structural views collectively, the degree of commonality

between the landscapes for the systems in the case study is quite similar. Since the results

converge to similar MQ values, Mitchell and Mancoridis speculate that the search space

contains a large number of isomorphic configurations that produce similar MQ values.

Once Bunch encounters one of these areas, its search algorithms cannot find a way to

transform the current partition into a new partition with higher MQ. The main

observation is that the results produced by Bunch are stable. However, the true meaning

of the result is that the Bunch actually gets stuck to a local optimum, and cannot find a

way to escape that local optimum. This is naturally the problem for nearly all search

algorithms: a true global optimum is not even expected to be found. Doing this kind of

fitness landscape study should, however, aid in designing the algorithm so that it would

have a better chance of escaping the local optimum, as the fitness landscape reveals what

drives the algorithm to the particular basins of attractions that it chooses.

In order to investigate the search landscape further Mitchell and Mancoridis measure

the degree of similarity of the placement of nodes into clusters across all of the clustering

runs to see if there are any differences between random graphs and real software systems.

Bunch creates a subsystem hierarchy, where the lower levels contain detailed clusters,

and higher levels contain clusters of clusters. Results from similarity measures indicate

that the results for the real software systems have more in common than the results for

random systems do. Results with similarity measures also support the isomorphic “basin

of attraction” conjecture proposed.

Mitchell et al. [2000] have developed a two step process for reverse engineering the

software architecture of a system directly from its source code. The first step involves

clustering the modules from the source code into abstract structures called subsystems.

Bunch is used to accomplish this. The second step involves reverse engineering the

subsystem-level relations using a formal (and visual) architectural constraint language.

Using the reverse engineered subsystem hierarchy as input, a second tool, ARIS, is used

to enable software developers to specify the rules and relations that govern how modules

and subsystems can relate to each other. This again gives the user the possibility to use

his/her own expertise as a basis for the fitness function, so it is not based on metrics.

ARIS takes a clustered MDG as input and attempts to find the missing style relations.

The goal is to induce a set of style relations that will make all of the use relations well-

formed. A relation is well-formed if it does not violate any permission rule described by

the style; this is called the edge repair problem. The relative quality of a proposed

solution is evaluated by an objective function. The objective function that is designed into

the ARIS system measures the well-formedness of a configuration in terms of the number

of well-formed and ill-formed relations it contains. The quality measurement Q(C) for

configuration C gives a high quality score to configurations with a large number of well-

formed use relations and a low quality score to configurations with a large number of ill-

formed style relations or large visibility. Here, as in many other cases where some

external expertise is added, the actual fitness function seems simple (only calculating

sums and divisions), but much work is first needed by the user to define the input

variables, here rules, for the fitness function. Again, it raises the question: what kind of

automation is expected from a tool based on search algorithms? Is it good enough that the

algorithm only performs a small task and expects a lot of input, or should the algorithm

be better defined so that it actually diminishes the work load of the software designer

instead of increasing it?

Two search algorithms have been implemented to maximize the objective function:

HC and edge removal. The HC algorithm starts by generating a random configuration.

Incremental improvement is achieved by evaluating the quality of neighboring

configurations. A neighboring configuration Cn is one that can be obtained by a small

modification to the current configuration C. The search process iterates as long as a new

Cn can be found such that Q(Cn) > Q(C).

The edge removal algorithm is based on the assumption that as long as there exists at

least one solution to the edge repair problem for a system with respect to a style

specification, the configuration that contains every possible reparable relation will be one

of the solutions. Using this assumption, the edge removal algorithm starts by generating

the fully reparable configuration for a given style definition and system structure graph. It

then removes relations, one at a time, until no more relations can be removed without

making the configuration ill-formed. A case study is performed, where the results seem

promising as they give intuition to the nature of the system. This may be beneficial for

novice designers, who do not have very much knowledge of the system, but it should be

assumed that the developers who have to define the rules that the tool is based on already

have a mature idea of the system in order to be able to define those rules.

Mahdavi et al. [2003a; 2003b] show that results from a set of multiple hill climbs can

be combined to locate good “building blocks” for subsequent searches. Building blocks

are formed by identifying the common features in a selection of best hill climbs. This

process reduces the search space, while simultaneously ‘hard wiring’ parts of the

solution. Mahdavi et al. also investigate the relationship between the improved results

and the system size.

An initial set of hill climbs is performed and from these a set of best hill climbs is

identified according to some “cut off” threshold. Using these selected best hill climbs the

common features of each solution are identified. These common features form building

blocks for a subsequent hill climb. A building block contains one or more modules fixed

to be in a particular cluster, if and only if all the selected initial hill climbs agree that

these modules were to be located within the same cluster. Since all the selected hill

climbs agree on these choices, it is likely that good solutions will also contain these

choices.

The implementation uses parallel computing techniques to simultaneously execute an

initial set of hill climbs. From these climbs the authors experiment with various cut off

points ranging from selecting the best 10% of hill climbs to the best 100% in steps of

10%. The building blocks are fixed and a new set of hill climbs are performed using the

reduced search space. The principal research question is whether or not the identification

of building blocks improves the subsequent search.

A variety of experimental subjects are used. Two types of MDGs are used: first type

contains non-weighted edges, second type has weighted edges. The MQ values are

gathered after the initial and the final climbs, and compared for difference. Statistical

tests provide some evidence towards the premise that the improvement in MQ values is

less likely to be a random occurrence due to the nature of the hill climb algorithm. The

improvement is observed for MDGs with and without weighted edges and for all size

MDGs.

Larger MDGs show more substantial improvement when the best initial fitness is

compared with the best final fitness values. One reason for observing more substantial

improvement in larger MDGs may be attributed to the nature of the MQ fitness measure.

To overcome the limitation that MQ is not normalized, the percentage MQ improvement

of the final runs over the initial runs is measured. These statistical tests show no

significant correlation between size and improvement in fitness for both weighted and

non-weighted MDGs.

The increase in fitness, regardless of number of nodes or edges, tends to be more

apparent as the building blocks are created from a smaller selection of individuals. This

may signify some degree of importance for the selection process.

Results indicate that the subsequent search is narrowed to focus on better solutions,

that better clustering are obtained and that the results tend to improve when the selection

cut off is higher. These initial results suggest that the multiple hill climbing technique is

potentially a good way of identifying building blocks. Authors also found that although

there was some correlation between system size and various measures of the

improvement achieved with multiple hill climbing, none of these correlations is

statistically significant. These results would provide an interesting starting point to a

study where the building blocks achieved with multiple hill climbs could be used to

initialize the first population given to a genetic algorithm.

Harman et al. [2002] experiment with fitness functions derived from measures of

modules granularity, cohesion and coupling for software modularization. They present a

new encoding and crossover operator and report initial results based on simple

component topology. The new representation allows only one representation per

modularization and the new crossover operator attempts to preserve building blocks

[Salomon, 1998].

Harman et al. [2002] present the problem of finding a representation for

modularization so that “non-unique representations of modularizations artificially

increase the search space size, inhibiting search-based approaches to the problem”. In

their approach modules are numbered, and elements allocated to module numbers using a

simple look-up table. Component number one is always allocated to module number one.

All components in the same module as component number one are also allocated to

module number one. Next, the lowest numbered component, n, not in module one, is

allocated to module number two. All components into the same module as component

number n are allocated to module number two. This process is repeated, choosing each

lowest number unallocated component as the defining element for the module. This

representation must be renormalized when components move as the result of mutation

and crossover. The chosen method clearly saves resources and clarifies the search space

as there are no alternative representations for the same solution.

Harman et al.'s crossover operator attempts to preserve partial module allocations

from parents to children in an attempt to promote good building blocks. Rather than

selecting an arbitrary point of crossover within the two parents, a random parent is

selected and one of its arbitrarily chosen modules is copied to the child. The allocated

components are removed from both parents. This removal prevents duplication of

components in the child when further modules are copied from one or the other parent to

the child. The process of selecting a module from a parent and copying to the child is

repeated and the copied components are removed from both parents until the child

contains a complete allocation. This approach ensures that at least one module from the

parents is preserved (in entirety) in the child and that parts of other modules will also be

preserved. As it is not clarified how the modules are represented in the chromosome, it is

not, however, exactly clear how risky it would be to perform traditional crossovers with

the selected encoding. In fact, it seems perfectly possible to make such an encoding that

supports building blocks even with the traditional operators.

The fitness function maximizes cohesion and minimizes coupling. In order to capture

the additional requirement that the produced modularization has a granularity (number of

modules) similar enough to the initial granularity, a polynomial punishment factor is

introduced into the fitness function to reward solutions as they approach the target value

for granularity of the modularization. The granularity is normalized to a percentage. The

three fitness components are given equal weights.

A standard one-point crossover is also implemented for comparison. The GA with the

novel crossover outperforms the one with the traditional one, although it quickly becomes

trapped in local optima. This would suggest that the attempt to reserve building blocks

might actually be “too strong”, as the GA does not have any method to escape the local

optimum. Results also show that the novel GA is more sensitive to inappropriate choices

of target granularity than any other approach.

Harman et al. [2005] present empirical results which compare the robustness of two

fitness functions used for software module clustering: MQ is used exclusively for module

clustering and EVM [Tucker et al., 2001] has previously been applied to time series and

gene expression data. The clustering algorithm is based upon the Bunch algorithm

[Mancoridis et al., 1999] and redefined. Three types of MDGs were studied: real program

MDGs, random MDGs and perfect MDGs.

The primary findings are that searches guided by both fitness functions degrade

smoothly as noise increases, but EVM would appear to be the more robust fitness

function for real systems. Searches guided by MQ behave poorly for perfect and near-

perfect module dependency graphs (MDGs). The results of perfect graphs (MDGs) show

however, that EVM produces clusterings which are perfect and that the clusterings

produced stay very close to the perfect results as more noise is introduced. This is true

both for the comparison against the perfect clustering and the initial clustering. By

comparison, the MQ fitness function performs much worse with perfect MDGs.

Comparing results for random and real MDGs, both fitness functions are fairly robust.

Further results show that searches guided by MQ do not produce the perfect clustering for

a perfect MDG but a clustering with higher MQ values. This very strongly suggests that

fitness metrics indeed do not actually match what is truly desired of the solution.

These results highlight a possible weakness in MQ as a guiding fitness function for

modularization searches: it may be possible to improve upon it by addressing that issue.

The results show that EVM performs consistently better than MQ in the presence of noise

for both perfect and real MDGs but worse for random MDGs. The results for both fitness

functions are better for perfect or real graphs than random graphs, as expected. As the

real programs increase in size, there appears to be a decrease in the difference between

the performance of searches guided by EVM and those guided by MQ. The results show

that both metrics are relatively robust in the presence of noise, with EVM being the more

robust of the two.

This study is a significant indicator that fitness metrics should never be blindly

trusted. The problem here is particularly curious, as the developers of the MQ metric

showed the results (achieved with the aid of this metric) to actual software designers,

who were reported to give positive feedback. Thus, it could be assumed that the MQ

metric was based on real feedback from human designers. However, it still failed in

comparison to another metric and could not produce optimal results. These results

suggest that the quality requirements for software design problems are extremely difficult

to define, which in turn makes the definition of a proper fitness function a demanding

task.

Antoniol et al. [2003] present an approach to re-factoring libraries with the aim of

reducing the memory requirements of executables. The approach is organized in two

steps: the first step defines an initial solution based on clustering methods, while the

second step refines the initial solution with a GA. Antoniol et al. [2003] propose a GA

approach that considers the initial clusters as the starting population, adopts a knowledge-

based mutation function and has a multi-objective fitness function. Tests on medium and

large open source software systems have effectively produced smaller, loosely coupled

libraries, and reduced the memory requirement for each application.

Given a system composed by applications and libraries, the idea is to re-factor the

biggest libraries, splitting them into two or more smaller clusters, so that each cluster

contains symbols used by a common subset of applications (i.e., Antoniol et al. made the

assumption that symbols often used together should be contained in the same library).

Given that, for each library to be re-factored, a Boolean matrix MD is composed.

Antoniol et al. have chosen to apply the Silhouette statistic [Kaufman and Rousseeuw,

1990] to compute the optimal number of clusters for each MD matrix. Once the number

of clusters is known for each “old library”, agglomerative-nesting clustering was

performed on each MD matrix. This allows the identification of a certain number of

clusters. These clusters are the new candidate libraries. When given a set of all objects

contained into the candidate libraries, a dependency graph is built, and the removal of

inter-library dependencies can therefore be brought back to a graph partitioning problem.

The encoding is the achieved bit-matrix, where for each matrix point [x, y] has value 1

if the object y is used by the application or library defined by x, and 0 otherwise. The GA

is initialized with the encoding of the set of libraries obtained in the previous step. This

encoding method is well-chosen, as there is no need to make any unnecessary

transformation between two encodings, and the genetic operations can be easily defined

for a matrix.

The mutation operator works in two modes: normally, a random column is taken and

two random rows are swapped. When cloning an object, a random position in the matrix

is taken; if it is zero and the library is dependent on it, then the mutation operator clones

the object into the current library. Of course the cloning of an object increases both

linking and size factors, therefore it should be minimized. This GA activates the cloning

only for the final part of the evolution (after 66%) of generations in their case studies.

This strategy favors dependency minimization by moving objects between libraries; then,

at the end, remaining dependencies are attempted to remove by cloning objects. The

crossover is a one-point crossover: given two matrices, both are cut at the same random

column, and the two portions are exchanged. Population size and number of generations

were chosen by an iterative procedure.

The fitness function attempts to balance three factors: the number of inter-library

dependencies at a given generation, the total number of objects linked to each application

that should be as small as possible, and the size of the new libraries. A unitary weight is

set to the first factor, and two weights are selected using an iterative trial-and-error

procedure, adjusting them each time until the factors obtained at the final step are

satisfactory. The partitioning ratio is also calculated. Case study results show that the GA

manages to considerably reduce the amount of dependencies, while the partition ratio

stays nearly the same or slightly reduced. The proposed re-factoring process allows

obtaining smallest, loosely coupled libraries from the original biggest ones.

The selected fitness function would benefit from more enhanced techniques to deal

with multi-objectivity. Also, in multi-objective problems there usually are cases when

one goal may need to be emphasized at the cost of another goal. In this case there are no

such tests, as the weights are simply optimized for a general case. It would be interesting

to see what kinds of results are achieved, if, e.g., the size of libraries is shown

significantly more appreciation than the number of inter-library dependencies. If these

cases would produce interesting modularizations, then a Pareto optimal fitness function

would be good to experiment with.

Di Penta et al. [2005] build on these results and present a software renovation

framework (SRF), a toolkit that covers several aspects of software renovation, such as

removing unused objects and code clones, and refactoring existing libraries into smaller

ones. Refactoring has been implemented in the SRF using a hybrid approach based on

hierarchical clustering, GAs and hill climbing, also taking into account the developer’s

feedback. Most of the SRF activities deal with analyzing dependencies among software

artifacts, which can be represented with a dependency graph.

Software systems are represented by a system graph SG, which contains the sets of all

object modules, all software system libraries, all software system applications and the set

of oriented edges representing dependencies between objects. The refactoring framework

consists of several steps: 1. software systems applications, libraries and dependencies

among them are identified, 2. unused functions and objects are identified, removed or

factored out, 3. duplicated or cloned objects are identified and possibly factored out, 4.

circular dependencies among libraries are removed, or at least reduced, 5. large libraries

are refactored into smaller ones and, if possible, transformed into dynamic libraries, and

6. objects which are used by multiple applications, but which are not yet organized into

libraries, are grouped into new libraries. Step five, splitting existing, large libraries into

smaller clusters of objects, is now studied more closely.

The refactoring of libraries is done in the SRF in the following steps: 1. determine the

optimal number of clusters and an initial solution, 2. determine the new candidate

libraries using a GA, 3. ask developers’ feedback. The effectiveness of the refactoring

process is evaluated by a quality measure of the new library organization, the Partitioning

Ratio, which should be minimized.

The genome representation and mutations are as previously presented by Antoniol et

al. [2003]. Now, however, the developers may also give a Lock Matrix when they

strongly believe that an object should belong to a certain cluster. The mutation operator

does not perform any action that would bring a genome in an inconsistent state with

respect to the Lock Matrix. The crossover is the one point crossover, which exchanges

the content of two genome matrices around a random column.

The fitness function F should balance four factors: the number of inter-library

dependencies, the total number of objects linked to each application, the size of new

libraries and the feedback by developers. Thus, developer feedback is brought to the

fitness function as an additional element to those already presented by Antoniol et al.

[2003]. The fitness function F is defined to consist of the Dependency factor DF, the

Partitioning ratio PR, the Standard deviation factor SD and the Feedback factor FF. The

FF is stored in a bit-matrix FM, which has the same structure of the genome matrix and

which incorporates those changes to the libraries that developers suggested. Each factor

of the fitness function is given a separate real, positive weight. DF is given weight 1, as it

has maximum influence.

Di Penta et al. report that the presented GA suffers from slow convergence. To

improve its performance, it has been hybridized with HC techniques. In their experiment,

applying HC only to the last generation significantly improves neither the performance

nor the results, but applying HC to the best individuals of each generation makes the GA

converge significantly faster. In the case study, the GA reduces dependencies of one

library to about 5% of the original amount while keeping the PR almost constant. For

two other libraries, a significant reduction of inter-library dependencies is obtained while

slightly reducing PR in one and increasing the PR in the other. The addition of HC into

GA does not improve the fitness values, since GA also converges to similar results, when

it is executed on an increased number of generations and increased population size.

Noticeably, performing HC on the best individuals of each generation produces a drastic

reduction in convergence times. These results show that hybrid algorithms are a strong

candidate when attempting to improve the results of search-based approaches.

Huynh and Cai [2007] present an automated approach to check the conformance of

source code modularity to the designed modularity. Design structure matrices (DSMs) are

used as a uniform representation and they are automatically clustered and checked for

conformance by a GA. A design DSM and source code DSM work at different levels of

abstraction. A design DSM usually needs higher level of abstraction to obtain the full

picture of the system, while a source code DSM usually uses classes or other program

constructs as variables labeling the rows and columns of the matrix. Given two DSMs,

one at the design level and the other at the source code level, the GA takes one DSM as

the optimal goal and searches for a best clustering method in the other DSM that

maximizes the level of isomorphism between the two DSMs. One of the two DSMs is

defined as the sample graph, and the other one as a model graph, and finally a

conformance criterion is defined. This approach appears beneficial especially in the area

of program comprehension and validity checking (as well as purely increasing program

quality). Performing conformance checks on a large test set of programs could even

produce general ideas on where the programs generally differ from the initial design.

To determine the conformance of the source code modularity to the high level design

modularity the variables of the sample graph are clustered and thus a new graph is

formed, which is called the conformance graph. Each vertex of the conformance graph is

associated with a cluster of variables from the sample graph. The more conforming the

source code modularity is to the design modularity, the closer to isomorphic the

conformance graph and the model graph will be. In computing the level of isomorphism

between two graphs, the graph edit distance is computed between the graphs.

With the given representation of the problem, a GA is formulated with which the goal

is to find the clustering of sample graph vertices such that the conformance graph of these

clustered nodes is isomorphic, or almost isomorphic, to the model graph. This is a

projection. The algorithm first creates an initial population of random projections. The

fitness function is defined as f = –D – P – – , where D is the graph edit distance, P is a

penalty, and and provide finer differentiation between mappings with the same graph

edit distance. The last two functions allow configuring a sample graph so that it can be

clustered in different ways, each corresponding to how the design targeted DSM is

clustered. The dissimilarity function is used to calculate how separated components

from each directory grouping are. If a sample graph node attribute matches a name

pattern specified by the user but is not correctly mapped to the model graph vertex then

the fitness of the projection is reduced through . Interestingly, the fitness function only

measures negative aspects, quite differently to other fitness functions in modularization,

which usually attempt to maximize at least some quality value.

The GA is run on two DSM models of an example software. The experiments

consistently converge to produce the desired result, although the tool sometimes produces

a result that is not the desired view of the source code, even though the graphs are

isomorphic, i.e., the result conforms with the model. The experiment shows the feasibility

of using a GA to automatically cluster DSM variables and correctly identify links

between source code components and high level design components. The results support

the hypothesis that it is possible to check the conformance between source code structure

and design structure automatically, and this approach has the potential to be scaled for

use in large software systems.

4.3 Summarizing remarks

The majority of the studies relating to search-based software clustering have been done

with the Bunch tool, which has seen many improvements. This is very promising for

other approaches to search-based design as well, as the tool has been accepted for use in

the software engineering community. However, there are still many open questions in the

area of software modularization. What is a proper encoding to represent a modularization

problem? This question is especially highlighted by the study made by Harman et al.

[2002], as they point out the massive amount of redundant information in many

encodings. What is a proper fitness metric for modularizations? Again, the study

comparing the very popular MQ metric with another modularization metric (EVM),

showed that while the metric is robust (as already validated by its developers), it can be

outperformed. How can metrics be relied on then? Di Penta et al. [2005] have attempted

to enhance the performance of their tool by giving the developers a chance to formalize

their knowledge on quality. However, defining quality as a matrix form cannot be very

user-friendly.

As stated, the research on software clustering revolves quite strongly around Bunch or

the MQ metric. The main exception to this is the studies made by Antoniol et al., [2003]

and Di Penta et al. [2005] who use a matrix to encode the modularization and use matrix-

related or metrics instead of the MQ, and Hyunh and Cai [2007], who use a matrix and

then turn it into a graph, and use graph related metrics to evaluate the quality of a

proposed solution. Especially the approach by Hyunh and Cai [2007] is significantly

different to Bunch, as two modularizations are ultimately compared, while Bunch

attempts to ameliorate a poor modularization without a certain goal it is aiming towards.

Thus, there is much room in search-based software clustering for alternative methods, as

competition always makes each different approach strive towards even better solutions.

Table 3. Research approaches in search-based software clustering

Name Approach Input Encoding Mutation

Crossover Fitness Outcome Comments

Mancoridis et
al. [1998]

Automation of
partitioning
components of a
system into
clusters

System given as a
module
dependency graph
(MDG)

MDG N/A N/A Minimize inter-
connectivity,
maximize intra-
connectivity,
combined as
modulariztion
quality (MQ)

Optimized
clustering of
system

Doval et al.
[1999]

Automation of
partitioning
components of a
system into
clusters

MDG String of integers Standard Standard MQ Optimized
clustering of
system

Continued work
from Mancoridis et
al. [1998] by
implementing a
GA

Mancoridis et
al. [1999]

Automation of
partitioning
components of a
system into
clusters

MDG MDG N/A N/A MQ Optimized
clustering of
system

Continued work
from Mancoridis et
al. [1998];
characterisics of
modules taken into
account in
clustering
operations

Mitchell and
Mancoridis
[2002; 2006;
2008]

Automation of
partitioning
components of a
system into
clusters

MDG String of integers Standard Standard MQ as a sum of
clustering factors

Optimized
clustering of
system

Continued work
from Doval et al.
[2002]; new
definition of the
modularization
quality and an
enhanced HC
algorithm

Name Approach Input Encoding Mutation

Crossover Fitness Outcome Comments

Mitchell and
Mancoridis
[2003; 2008]

Automation of
partitioning
components of a
system into
clusters

MDG String of integers Standard Standard MQ, search
landscape

Optimized
clustering of
system

Continued work
from Mitchell
and Mancoridis
[2002; 2006;
2008]; search
landscape taken
into account

Mitchell et al.
[2000]

Automated reverse
engineering from
source code to
architecture

Source code of
application

N/A N/A N/A Quality based on
use and style
relations

Software
architecture

HC and edge
removal are used
as search
algorithms from
MDG to
architecture

Mahdavi et al.
[2003a; 2003b]

Automated
clustering of
system

MDG String of integers Standard Standard MQ Optimized
clusterinng of
system

Multiple hill
climbs are used
as search
algorithm;
building blocks
are preserved by
using parallel
hill climbs

Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments

Harman et al.
[2002]

New encoding and
crossover
introduced

System as
modules and
elements

Look-up table for
modules

Move component
from one module
to another

New
crossover,
preserves partial
module
allocations

Maximize
cohesion,
minimize coupling

Optimized
clustering

Harman et al.
[2005]

Comparison of
robustness
between two
fitness functions

Clustered system N/A N/A N/A MQ compared
against EVM

-

Antoniol et al.
[2003]

Cluster
optimization

System containing
applications and
libraries

Bit matrix Two random rows
of a column in
matrix are
swapped or an
object is cloned by
changing a value
from zero to one

A random column
is taken as split
point and contents
are swapped

Inter-library
dependencies,
number of object-
application links
and size of
libraries

Optimized
clustering, sizes
and dependencies
between libraries
diminished

Optimal number of
clusters is
calculated for a
matrix with the
Silhouette statistic

Di Penta et al.
[2005]

A refactoring
framework taking
into account
several aspects of
software quality
when refactoring
existing system.

Software system
as a system graph
SG

Bit matrix; each
library of clusters
is represented by a
matrix

Swapping two bits
in a column or
changing a value
from 0 to 1 (taking
into account
preconditions)

N/A Dependency
factor, partitioning
ratio, standard
deviation and
feedback

Refactored
libraries

HC and GA used.

Hyunh and Cai
[2007]

Conformance
check of actual
design to
suggested design

Design structure
matrices for
design and source
code (DSM)

Graph constructed
of DSM

N/A N/A Graph edit
distance, penalty
and differentiation
between graphs
with same
distance

Optimized
clustering of
actual design
conforming to
suggested design

5. SOFTWARE REFACTORING

5.1. Background

Software evolution often results in “corruption” in software design, as quality is

overlooked while new features are added, or the old software should be modified in order

to ensure the highest possible quality. At the same time resources are limited. Refactoring

and in particular the miniaturization of libraries and applications are therefore necessary.

Program transformation is useful in a number of applications including program

comprehension, reverse engineering and compiler optimization. A transformation

algorithm defines a sequence of transformation steps to apply to a given program and it is

described as changing one program into another. It involves altering the program syntax

while leaving it semantics unchanged. In object-oriented design, one of the biggest

challenges when optimizing class structures using random refactorings is to ensure

behavior preservation. One has to take special care of the pre- and post-conditions of the

refactorings.

There are three problems with treating software refactoring as a search-based

problem. First, how to determine which are the useful metrics for a given system. Second,

finding how best to combine multiple metrics. Third is that while each run of the search

generates a single sequence of refactorings, the user is given no guidance as to which

sequence may be best for their given system, beyond their relative fitness values.

In practice, refactoring (object-oriented software) can begin with simple restructurings of

the class structure and being very close to software clustering, and then move on to a

more detailed level of moving elements from one class to another. The lowest level of

refactoring already deals with code, as procedures are sliced to eliminate redundancy or

transformed in order to simplify the program or make it more efficient. The following

subsection presents approaches where search-based techniques have been used to

automatically achieve refactorings, as well as a study on a new method for evaluating the

fitness of a refactored software. Summarizing remarks are then presented, and the

fundamentals of each study are collected in Table 4.

5.2. Approaches

Seng et al. [2005] describe a methodology that computes a subsystem decomposition that

can be used as a basis for maintenance tasks by optimizing metrics and heuristics of good

subsystem design. GA is used for automatic decomposition. If a desired architecture is

given, e.g., a layered architecture, and there are several violations, this approach attempts

to determine another decomposition that complies with the given architecture by moving

classes around. Instead of working directly on the source code, it is first transformed into

an abstract representation, which is suitable for common object-oriented language.

In the GA, several potential solutions, i.e., subsystem decompositions, form a

population. The initial population can be created using different initialization strategies.

Before the algorithm starts, the user can customize the fitness function by selecting

several metrics or heuristics as well as by changing thresholds. The model is a directed

graph. The nodes of the graph can either represent subsystems or classes. Edges between

subsystems or subsystems and classes denote containment relations, whereas edges

between classes represent dependencies between classes. The approach is based on the

Grouping GA [Falkenaur, 1998], which is particularly well suited for finding groups in

data. For chromosome encoding, subsystem candidates are associated with genes and the

power set of classes is used as the alphabet for genes. Consequently, a gene is associated

with a set of classes, i.e., an element of the power set. This representation allows a one-

to-one mapping of geno- and phenotype to avoid redundant coding.

An adapted crossover operator and three kinds of mutation are used. The operators

are adapted so that they are non-destructive and preserve a complete subsystem candidate

as far as possible. The split&join mutation either divides one subsystem to two, or vice

versa. The operator splits a subsystem candidate in such a way that the separation in two

subsystem candidates occurs at a loosely associated point in the dependency graph.

Elimination mutation deletes a subsystem candidate and distributes its classes to other

subsystem candidate, based on association weights. Adoption mutation tries to find a

new subsystem candidate for an orphan, i.e., a subsystem candidate containing only a

single class. This operator moves the orphan to the subsystem candidate that has the

highest connectivity to the orphan. The chosen mutations support reversibility, i.e., a GA

can always backtrack its steps. The split&join mutation is obvious in this case, but also

the adoption mutation can be seen as a reverse operation for the elimination, if a new

subsystem can be created dynamically.

Initial population supports the building block theorem. Randomly selected connected

components of the dependency graph are taken for half the population and highly fit ones

for the rest. The crossover operator forms two children from two parents. After choosing

the parents, the operator selects a sequence of subsystem candidates in both parents, and

mutually integrates them as new subsystem candidates in the other parent, and vice versa,

thus forming two new children consisting of both old and new subsystem candidates. Old

subsystem candidates which now contain duplicated classes are deleted, and their non-

duplicated classes are collected and distributed over the remaining subsystem candidates.

Fitness function is defined as f = w1* cohesion + w2* coupling + w3* complexity + w4*

cycles + w5* bottlenecks. Again the fitness function is based on the two most used

metrics, cohesion and coupling, but introduces some new interesting concepts from OO

design, such as cycles and bottlenecks, which are more defined than the usual general

metrics.

For evaluation, a tool prototype has been implemented. Evaluation on the clustering

of different software systems has revealed that results on roulette wheel selection are only

slightly better than those of tournament selection. The adapted operators allow using a

relatively small population size and few generations. Results from a Java case study show

that the approach works well. Tests on optimizing subsets of the fitness function show

that only if all criteria are optimized, the authors are able to achieve a suitable

compromise with very good complexity, bottleneck and cyclomatic values and good

values for coupling and cohesion. Again, as the work here is very similar to optimal

software clustering, it can be questioned whether the metrics used in those studies, that

mainly calculate modified values for coupling and cohesion, are actually sufficient.

Seng et al. [2006] have continued their work by developing a search-based approach

that suggests a list of refactorings. The approach uses an evolutionary algorithm and

simulated refactorings that do not change the system’s externally visible behavior. The

source code is transformed into a suitable model – the phenotype. The genotype consists

of the already executed refactorings. Model elements are differentiated according to the

role they play in the system’s design before trying to improve the structure. Not all

elements can be treated equally, because the design patterns sometimes deliberately

violate existing design heuristics. The approach is restricted to those elements that respect

general design guidelines. Elements that deliberately do not respect them are left

untouched in order to preserve the developers conscious design decisions. The notion of

applying something that is known to somehow worsen the quality of a system is peculiar.

In a way this is natural, as there are always trade-offs when trying to optimize conflicting

quality values, but each decision should have a positive affect from some perspective.

Hence, it is odd that no quality evaluator has been found that would prevent the

elimination of these “deliberately violating” patterns.

The initial population is created by copying the model extracted from the source code

a selected number of times. Selection for a new generation is made with tournament

selection strategy. The optimization stops after a predefined number of evolution steps.

The source code model is designed to accommodate several object-oriented languages.

The basic model elements are classes, methods, attributes, parameters and local variables.

In addition, special elements called access chains are needed. An access chain models the

accesses inside a method body, because it is needed to adapt these references during the

optimization. If a method is moved, the call sites need to be changed. An access chain

therefore consists of a list of accesses. Access chains are hierarchical, because each

method argument at a call site is modeled as a separate access chain that could possibly

contain further access chains.

The model allows to simulate most of the important refactorings for changing the

class structure of a system, which are extract class, inline class, move attribute, push

down attribute, pull up attribute, push down method, pull up method, extract superclass

and collapse class hierarchy. The genotype consists of an ordered list of executed model

refactorings including necessary parameters. The phenotype is created by applying these

model refactorings in the order that is given by the genotype to the initial source code

model. Therefore the order of the model refactorings is important, since one model

refactoring might create the necessary preconditions for some of the following ones.

Mutation extends the current genome by an additional model refactoring; the length

of the genome is unlimited. Crossover combines two genomes by selecting the first

random n model refactorings from parent one and adding the model refactorings of parent

two to the genome. The refactorings from parent one are definitely safe, but not all model

refactorings of parent two might be applicable. Therefore, the model refactorings are

applied to the initial source code model. If a refactoring that cannot be executed is

encountered due to unsatisfied preconditions, it is dropped. Seng et al. argue that the

advantage of this crossover operator is that it guarantees that the externally visible

behavior is not changed, while the drawback is that it takes some time to perform the

crossover since the refactorings need to be simulated again. This approach is quite similar

to that of Amoui et al. [2006], discussed in Section 3, who approach the problem from a

slightly higher level by using architectural design patterns as refactoring, but similarly

search for the optimal transformation sequence.

Fitness is a weighted sum of several metric values and is designed to be maximized.

The properties that should be captured are coupling, cohesion, complexity and stability.

For coupling and cohesion, the metrics from Briand’s [2000] catalogue are used. For

complexity, weighted methods per class (WMC) and number of methods (NOM) are

used. The formula for stability is adapted from the reconditioning of subsystem

structures. Fitness = (weightm* (M(S) – Minit(S))/Mmax(S) – Minit(S). Before optimizing

the structure the model elements are classified according to the roles they play in the

systems design, e.g., whether they are a part of a design pattern.

Tests show that after approximately 2000 generations in a case study the fitness value

does not significantly change anymore. The approach is able to find refactorings that

improve the fitness value. Actually, this is to be expected, as it would be rather surprising

if it did not improve the fitness value, as then there would be something significantly

wrong with the GA. Thus, more importantly, in order to judge whether the refactorings

make sense, they are manually inspected by the authors, and from their perspective, all

proposed refactorings can be justified. As a second goal, the authors modify the original

system by selecting 10 random methods and misplacing them. The approach successfully

moves back each method at least once.

O’Keeffe and Ó Cinnéide [2004] have developed a prototype software engineering

tool capable of improving a design with respect to a conflicting set of goals. A set of

metrics is used for evaluating the design quality. As the prioritization of different goals is

determined by weights associated with each metric, a method is also described of

assigning coherent weights to a set of metrics based on object-oriented design heuristics.

The presented tool, Dearthóir, is a prototype for design improvement, as it

restructures a class hierarchy and moves methods within it in order to minimize method

rejection, eliminate code duplication and ensure superclasses are abstract when

appropriate. The refactorings are behavior-preserving transformations in Java code. The

refactorings employed are limited to those that have an effect on the positioning of

methods within an inheritance hierarchy. Contrary to most other approaches, this tool

uses simulated annealing to find close-to-optimum solutions to this combinatorial

optimization problem. In order for the SA search to move freely through the search space

every change to the design must be reversible. To ensure this, pairs of refactoring have

been chosen that complement each other. The refactoring pairs are: 1. move a method up

or down in the class hierarchy, 2. extract (from abstract class) or collapse a subclass, 3.

make a class abstract or concrete, and 4. change superclass link of a class.

The following method is intended to filter out heuristics that cannot easily be

transformed into valid metrics because they are vague, unsuitable for the programming

language in use, or dependent on semantics. Firstly, for each heuristic: define the

property to be maximized or minimized in the heuristic, determine whether the property

can be accurately measured, and note whether the metrics should be maximized or

minimized. Secondly, identify the dependencies between the metrics. Thirdly, establish

precedence between dependent metrics and a threshold where necessary: prioritize

heuristics. Fourthly, check that the graph of precedence between metrics is acyclic.

Finally, weights should be assigned to each of the metrics according to the precedences

and threshold.

 The selected metrics are: 1. minimize rejected methods (RM) (number of inherited

but unused methods), 2. minimize unused methods (UM), 3. minimize featureless classes

(FC), 4. minimize duplicate methods (DM) (number of methods duplicated within an

inheritance hierarchy), 5. maximize abstract superclasses (AS). Metrics should be

appreciated so that DM > RM > FC > AS, and UM > FC. Note that the used metrics are

much more specific to the needs of object-oriented design than the general structural

metrics that are commonly used. Also, the heuristic of defining the weights (and the

metrics) would be very beneficial for many studies, as assigning balanced weights can be

a very complex task, and the dependencies between different metrics and their affect to

the weights is rarely taken into account (at least so that it would be mentioned in the

studies).

Most of the dependencies in the graph do not require thresholds. However, a duplicate

method is avoided by pulling the method up into its superclass, which could result in the

method being rejected by any number of classes. Therefore a threshold value is

established for this dependency. O’Keeffe and Ó Cinnéide argue that it is more important

to avoid code duplication than any amount of method rejection; therefore the threshold

can be an arbitrarily high number.

A case study is conducted with a small inheritance hierarchy. The case study shows

that the metric values for input and output either become better or stay the same. In the

input design several classes contain clumps of methods, where as in the output design

methods are spread quite evenly between the various classes. This indicates that

responsibilities are being distributed more evenly among the classes, which means that

components of the design are more modular and therefore more likely to be reusable.

This in turn suggests that adherence to low-level heuristics can lead to gains in terms of

higher-level goals. Results indicate that a balance between metrics has been achieved, as

several potentially conflicting design goals are accommodated.

O’Keeffe and Ó Cinnéide [2006; 2008a] have continued their research by

constructing a tool capable of refactoring object-oriented programs to conform more

closely to a given design quality model, by formulating the task as a search problem in

the space of alternative designs. This tool, CODe-Imp, can be configured to operate using

various subsets of its available automated refactorings, various search techniques, and

various evaluation functions based on combinations of established metrics.

CODe-Imp uses a two-level representation; the actual program to be refactored is

given as source code and represented as its Abstract Syntax Tree (AST) but a more

abstract model called the Java Program Model (JPM) is also maintained, from which

metric values are determined and refactoring preconditions are checked. The change

operator is a transformation of the solution representation that corresponds to a

refactoring that can be carried out on the source code.

The CODe-Imp calculates quality values according to the fitness function and effects

change in the current solution by applying refactorings to the AST as required by a given

search technique. Output consists of the refactored input code as well as a design

improvement report including quality change and metric information.

The refactoring configuration of the tool is constant throughout the case studies and

consists of the following fourteen refactorings. Push down/pull up field, push down/pull

up method, extract/collapse hierarchy, increase/decrease field security, replace

inheritance with delegation/replace delegation with inheritance, increase/decrease method

security, made superclass abstract/concrete. During the search process alternative designs

are repeatedly generated by the application of a refactoring to the existing design,

evaluated for quality, and either accepted as the new current design or rejected. As the

current design changes, the number of points at which each refactoring can be applied

will also change. In order to see whether refactorings can be made without changing

program behavior, a system of conservative precondition checking is employed.

The used search techniques include first-ascent HC (HC1), steepest-ascent HC (HC2),

multiple-restart HC (MHC) and low-temperature SA. For the SA, CODe-Imp employs

the standard geometric cooling schedule.

The evaluation functions are flexibility, reusability and understandability of the

QMOOD hierarchical design quality model [Bansiya and Davis, 2002]. Each evaluation

function in the model is based on a weighted sum of quotients on the 11 metrics forming

the QMOOD (design size in class, number or hierarchies, average number of ancestors,

number of polymorphic methods, class interface size, number of methods, data access

metric, direct class coupling, cohesion among methods of class, measure of aggregation

and measure of functional abstraction). Each metric value for the refactored design is

divided by the corresponding value for the original design to give the metric change

quotient. A positive weight corresponds to a metric that should be increased while a

negative weight corresponds to metric that should be decreased. It should be noted that

while the complexity of the problem grew, as the program representation became more

intricate, the number of refactorings (mutations) was more than doubled, this reflected on

the need for a significantly more complicated fitness function. The fitness function used

in the previous study only contained 5 metrics, while the current one contains 11 metrics

which are grouped into 3 different fitness functions.

All techniques demonstrate strengths. HC1 consistently produces quality

improvements at a relatively low cost, HC2 produces the greatest mean quality

improvements in two of the six cases, MHC produces individual solutions of highest

quality in two cases and SA produced the greatest mean quality improvement in one case.

Based on this it would seem that the SA is actually inferior to the different hill climbing

approaches, as it only outperformed them in one measure in one test case out of the six.

Combining the results of these different search algorithms would be interesting: is it

possible to produce such a hybrid that would preserve the strengths from all algorithms?

Inspection of output code and analysis of solution metrics provide some evidence in

favor of use of the flexibility metric and even stronger evidence for using the

understandability function. The reusability in present form is not found suitable for

maintenance because it resulted in solutions including a large number of featureless

classes. As these kinds of classes are not generally accepted in OO design (apart from

having “technical classes”), one might wonder whether some corrective function could be

used in order to prevent featureless classes from appearing to the design. Simple pre-and

post-conditions for mutations might very well help dealing with the problem. The authors

conclude that both local search and simulated annealing are effective in the context of

search-based software refactoring.

O’Keeffe and Ó Cinnéide [2007; 2008b] have further continued their work by

implementing also a GA and a multiple ascent HC (MAHC) to the CODe-Imp refactoring

tool and further testing the existing search techniques. The encoding, crossover and

mutation for the GA are similar to those presented by Seng et al. [2006], and the power of

the tool has been increased by adding a number of different refactorings available for use

in searching for a superior design.

The fitness function is an implementation of the understandability function from

Bansiya and Davis's [2002] QMOOD hierarchical design quality model consisting of a

weighted sum of metric quotients between two designs. This choice was clearly inspired

by the earlier study, where two other quality functions, flexibility and reusability, did not

perform as well in terms of actual quality enhancement. This design quality evaluation

function was previously found by the authors to result in tangible improvements to

object-oriented program design in the context of search-based refactoring.

Results for the SA support the recommendation of low values for the cooling factor,

since more computationally expensive parameters do not yield greater quality function

gains.

In summary, SA has several disadvantages: it is hard to recommend a cooling

schedule that will generally be effective, results vary considerably across input programs

and the search is quite slow. No significant advantage in terms of quality gain was

observed that would make up for these shortcomings. The GA has the advantage that it is

easy to establish a set of parameters that work well in the general case, but the

disadvantages are that it is costly to run and varies greatly for different input programs.

Again, no significant advantage in terms of quality gain was observed that would make

up for these shortcomings. Multiple-ascent HC stood out as the most efficient search

technique in this study: it produced high-quality results across all the input programs, is

relatively easy to recommend parameter for and runs more quickly than any of the other

techniques examined. Steepest ascent HC produced surprisingly high quality solutions,

suggesting that the search space is less complex than might be expected, but is slow when

considered its known inability to escape local optima. Results show MAHC to

outperform both SA and GA over a set of four input programs. As the genetic algorithm

is the most commonly used search technique, these results should stimulate more

comparisons between different algorithms. The search space for this problem was, after

all, quite large, when taking into account the high number of refactorings that could be

applied to a design. Thus, maybe the more refined hill climbing techniques could be

compared to the GA.

Quaum and Heckel [2009] apply the Ant Colony Optimization (ACO) [Dorigo, 1992]

for software refactoring. The software is represented as a class diagram with methods

and attributes, and the refactoring task is considered as a graph transformation problem,

which makes it suitable for ACO. In order to perform ACO, five things need to be

defined: 1. a set of components C and the edges between them, 2. a set of states as a

sequence of components belonging to C, 3. a set of candidate solutions S, with a subset of

feasible candidate solutions according to given constraints, 4. a non-empty subset (of S)

of optimal solutions, and 5. an evaluation associated to each candidate solution. Based

on this, Quaum and Heckel define a graph by associating the set of graph vertices to the

set of proposed transformations. Edges are associated with dependencies. The pheromone

and heuristic values are associated with the graph edges and are determined by partial

evaluations associated with incomplete candidate solutions.

The goal is to find an optimal set of transformations. These transformations are pre-

determined based on the given program (graph) and consider, e.g., moving methods and

alternating the class hierarchy. An ant begins with an empty solution from the start vertex

in the graph and then gradually checks the available refactoring steps in order to construct

a candidate solution. Initially, any random component from C is chosen and then the

partial evaluation function will guide the selection of the corresponding edge through the

pheromone values. The fitness value is calculated for each feasible sequence of

transformations after applying it on the source graph model, the basis for the fitness being

the cost of the transformation and the quality of the result. The approach is tested on a

small example system.

This approach demonstrates the use of yet another search technique, ACO, which is

especially suitable for graph problems. Other choices, however, raise questions

particularly on the generality of this approach. It is only tested on a small system, and all

the transformations are pre-defined, and dependent on the particular system. How can this

approach be generalized to be applied to any system without extensive work required to

define all possible transformations of that system, which is incredibly laborious, if the

system is large? Also, the details regarding fitness calculations are not very clear.

Jiang et al. [2008a] apply a set of search algorithms to program slicing in order to

locate dependence structures. They attempt to find the subsets from all possible sets of

program slices that reveal interesting dependence structures. A program is divided into

slices according to program points, which are the nodes of a System Dependency Graph

(SDG) [Horwitz et al., 1988]. In order to formulate the problem as a search problem, it is

instantiated as a set cover problem. With increasing program sizes a search-based

approach is extremely suitable for this type of problem.

A program is represented as a bit matrix, where rows indicate program slices and

columns indicate program points. The value in point i, j, is 1 if the slice based on criterion

i contains the program point j, and 0 if not. A solution should contain as many program

points as possible but should have minimum overlap, i.e., slices that contain the same

program points.

The fitness function is seen as a parameter to the overall approach of search-based

slicing, as choosing the fitness function depends on the properties of the slice set and

what the user considers as “interesting” when searching for dependencies. The fitness

function is based on metrics that calculate the Coverage and Overlap of the program.

Coverage measures how many program points out of all possible points the program

contains. Overlap measures the number of program points within the intersection a

slicing set. It can be divided in many ways, but Jiang et al. only consider Average, which

evaluates the percentage of overlapping program points based on pair-wise calculations,

and Maximum, which evaluates the maximum number of overlapping points based on

pair-wise calculations. Both Coverage and Overlap are given weights and then combined

for the overall fitness function. Although it is said that the user can define the fitness

function based on his/her own desires of what is “interesting”, it is left unclear whether

the definitions must rely on the presented metrics or whether the user can build any kind

of fitness function. Also, it is not clear how the properties of the slice set affect the choice

of fitness function.

Jiang et al. [2008a] implement HC, GA, a Greedy Algorithm [Naeimi et al., 2004]

and a Random Search algorithm. The GA uses a multi-point crossover and a standard bit

change as a mutation. Elitism and rank selection are used as selection methods. For HC, a

multiple restart HC is implemented in order to give it the same amount of computation

time as the other algorithms. A Greedy Algorithm constitutes of two sets: a solution set

and a candidate set, and three functions: selection, value-computing and solution

function. A solution is created out of the solution set and a candidate set represents all

possible elements that might be contained in a solution. Selection chooses the most

promising candidate to be added to the solution, value-computing function gives a value

for the solution and solution function checks whether the final solution has been reached.

Here the initial solution set is a binary string with each bit set to 0, and the candidate

solution set is made of all the slices. The value-computing function calculates the

program points in a solution and the selection function chooses the one with the best

coverage and smallest overlap.

An empirical study is made with six open source programs, and possible slices are

collected with a separate program from each program’s SDG. The program sizes vary

from 37 to 1008 program points. Every other algorithm except the Greedy Algorithm was

executed 100 times; the Greedy algorithm gives the same result every time and thus does

not need several test runs. For the fitness function using Average Overlap, the Greedy

Algorithm performs the best for all but one test case, where HC and GA perform the best.

Furthermore, it is seen that for smaller programs HC outperforms GA and Random

search. As the program size increases, GA starts to perform better, and wins over HC. For

the second fitness function where the Maximum Overlap was used, the results are similar

as with the first fitness function. However, in this case GA performs the best of the other

algorithms, and HC only beats Random search on the smallest test case. The Greedy

Algorithm also outperforms all others in terms of execution time. It is no surprise that the

Random Search is outperformed every time. However, it is naturally a bit disappointing

that the Greedy Algorithm was superior in every aspect, when compared to other search

methods.

Jiang et al. [2008a] make another study by only using the Greedy Algorithm for six

different large programs. As the previous study showed that the Greedy Algorithm

outperformed all other studied search algorithms, now it is tested how efficient it is in

decomposing a program into a set of slices. Results suggest that less than 20% of a

program can be used to decompose the whole program or function.

Jiang et al. [2008b] continue by applying a Greedy Algorithm to procedure splitting.

They attempt to split a procedure into two or more sub-procedures in order to improve

cohesion. The Greedy Algorithm is used to find close to optimal splitting points.

A slice is represented as a bit matrix. A matrix value is depends on whether a program

point (i.e., a node in the system’s SDG) belongs to a certain slice. The splitting algorithm

proceeds in four steps: 1. slice with respect to all nodes in SDG to find all static backward

slices, 2. find sets of slices with minimum overlap, 3. recover slice statements by

combining nodes that belong to a single statement, 4. make sub-procedures obtained

executable.

Results indicate that more than 20% of procedures in all six programs contain

independent sub-programs. Also, it would seem that most procedures are not splittable,

and the ones that are, can usually be split into only 2 or 3 sub-programs. Splittability

appears to correlate with the size of the program.

Fatiregun et al. [2004] use meta-heuristic search algorithms to automate, or partially

automate the problem of finding good program transformation sequences. With the

proposed method one can dynamically generate transformation sequences for a variety of

programs also using a variety of objective functions. The goal is to reduce program size,

but the approach is argued to be sufficiently general that it can be used to optimize any

source-code level metric. Random search (RS), hill climbing and GA are used.

An overall transformation of a program p to an improved version p’ typically consists

of many smaller transformation tactics. Each tactic consists of the application of a set of

rules. A transformation rule is an atomic transformation capable of performing the simple

alterations. To achieve an effective overall program transformation tactic many rules may

need to be applied and each would have to be applied in the correct order to achieve the

desired results.

In HC, an initial sequence is generated randomly to serve as the starting point. The

algorithm is restarted several times using a random sequence as the starting individual

each time. The aim is to divert the algorithm from any local optimum.

Each transformation sequence is encoded as an individual that has a fixed sequence

length of 20 possible transformations. An example individual is a vector of the

transformation numbers. In HC, the neighbor is defined as the mutation of a single gene

from the original sequence. Crossover is the standard one-point crossover. In addition to

transformations, cursor moves are also used. The tournament selection is used for

selecting mating parents and creating a single offspring, which replaces the worse of the

parents. The authors consider optimizing the program with respect to the size of the

source-code, i.e., LOC, where the aim is to minimize the number of lines of code as much

as possible. This metric is quite simple, and the effects are hardly arguable, if the length

of a line of code is somehow restricted.

The fitness is measured as the nominal difference in the lines of code between the

source program and the new transformed program created by that particular sequence.

This is evaluated by a process of five steps: 1. compute length of the input program, 2.

generate the transformation sequence, 3. apply the transformation sequence, 4. compute

the current length of the program, 5. compute the fitness, which is the difference between

steps 1 and 4.

Results show that GA outperforms both RS and HC. In cases where RS outperformed

GA and HC, it was noticed that GA and HC are not “moving” towards areas where

potential optimizations could be. Analyzing the GA, the authors believe that the GA

potentially kills off good subsequences of transformations during crossover. These results

are interesting as this would indicate that the selected (standard) crossover would not

support the preservation of building blocks. As discussed in Section 4, it may be that also

the encoding could be improved to preserve building blocks. All in all, examining the

fitness landscape and rethinking the encoding and crossover operators may be able to

improve the results achieved with the GA.

Williams [1998] implements several search algorithms in his REVOLVER system

that make program transformations in order to parallelize the program and thus lessen the

execution time. The idea is to transform loops in different ways, and as loops are the core

of the approach, they are numbered. HC, SA and GA are used, and most interestingly,

two different encodings are experimented with.

In the first encoding, Gene-Transformation (GT), each gene represents a

transformation that is applied to the system. The gene contains information what

transformation is applied, and the number of the loop it is applied to. Three different

mutations can be used: changing the transformation, changing the loop number or

changing both (i.e., the entire gene). Both one-point and two-point crossovers are

implemented. However, in the one-point crossover, the crossover points for the parent

chromosomes are chosen individually for each parent, as they might be of unequal length.

This approach is applied to HC, SA and GA.

In the second encoding, Gene-Statement (GS), each gene represents a statement in the

program, .e.g., an if- or a do-statement, and the chromosome thus represents the program

as a sequence of statements. The mutations that are applied are the chosen operations on

loops, and applying them to the program. This is actually quite odd, as only loop related

transformations are used, but there are only loops in some of the genes. Note, that a

mutation will alter the program, as, say, combining two loops will remove the statement

representing one of them, and thus shortens the chromosome by one gene. No crossover

is used in this representation, and the used algorithms are HC and evolutionary strategy

(ES), which is basically a GA, i.e., it has a population and selection, but without the

crossover.

The fitness function for both approaches is the actual execution time of the

transformed program, and tournament selection is used. In the tests the population size

was only 5 for the algorithms with populations, and the number of generations only 50.

These parameters seem incredibly low, as there is very little room for versatility in the

population, and there is very little time for development also. Thus, one wonders whether

the benefits of the GA are truly used in this approach.

Test results on five programs show that the ES and HC with the GS encoding

outperformed all other algorithms. The traditional GA appeared the worst. These results

further suggest that the population parameter chosen for the traditional GA should be

revised, as the GA cannot use its full potential. Interestingly, ES, which also had a

population, performed the best. The strength of the GS encoding is also very interesting,

considering there is much information in the genes that cannot be mutated. However, ES

did not have a crossover, and thus choosing parents is not an issue for this algorithm. All

in all, the algorithms were able to improve the execution times significantly.

Ryan and Ivan [1999] have taken a rather different approach to program

parallelization, as they encode the program in tree form and use genetic programming as

the search algorithm. They use GP in an unusual way, as it does not actually “program”,

but searches for the optimal transformations for the program, thus making this study a

design problem.

The program is considered as a sequence of instructions. The actual tree given by the

GP then comes from examining the atoms representing the instructions, and deciding on

transformations based on the type of the instruction. The GP works in two modes: atom

mode and loop mode. Each step begins in atom mode, and if the fond instruction is a

loop, the mode is switched. In atom mode, there are three classes of transformations. The

transformations in the first class split the sequence of instructions according to a given

percent, thus forking the execution of a program. The ones in the second class also split

the sequence of instructions, but with less effect, as the split point is always either after

the first of before the last instruction. The last class delays the execution of the program.

Each atom mode transformation is an internal node in a tree, and takes as input the

program segment before passing it onto the next transformation. The program segment

ultimately diminishes to one atom as transformations are applied. In loop mode the idea

is to parallelize each loop by executing each iteration on a different processor,

unfortunately, though, this raises issues with data dependencies. A significant operator in

loop mode is loop fusion, which combines consecutive loops.

The fitness function is a combination of fitness calculations from the atom mode and

the loop mode. For the atom mode the fitness is the execution time and the correctness of

the program. For loop mode the fitness is the number of successes for applied loop

operators. The initial results are promising; the approach is able to parallelize programs

and thus ameliorate them in terms of execution time.

The approach of Ryan and Ivan [1999] appears quite similar to that of Williams

[1998] in terms of the choosing loops as a key ingredient in the mutations. However,

Ryan and Ivan have taken atom transformations into account as traditional mutations,

while Williams has chosen to deal with non-loop structures only at the encoding stage.

The fitness function for both approaches is basically the same, as execution time is the

most important factor. It would be interesting to study the problem of program

parallelization also in terms of other quality factors and as a larger problem in the context

of, e.g., distributed systems.

Harman and Tratt [2007] show how Pareto optimality can improve search based

refactoring, making the combination of metrics easier and aiding the presentation of

multiple sequences of optimal refactorings to users. Intuitively, each value on a Pareto

front maximizes the multiple metrics used to determine the refactorings. Through results

obtained from three case studies on large real-world systems, it is shown how Pareto

optimality allows users to pick from different optimal sequences of refactorings,

according to their preferences. Moreover, Pareto optimality applies equally to sub-

sequences of refactorings, allowing users to pick refactoring sequences based on the

resources available to implement those refactorings. Pareto optimality can also be used to

compare different fitness functions, and to combine results from different fitness

functions.

 Harman and Tratt use the move method refactoring presented by Seng et al. [2006].

Three systems are used in the case study, all non-trivial real-world systems. The search

algorithm itself is a non-deterministic non-exhaustive hill climbing approach. A random

move method refactoring is chosen and applied to the system. The fitness value of the

updated system is then calculated. If the new fitness value is worse than the previous

value, the refactoring is discarded and another one is tried. If the new fitness value is

better than the previous, the refactoring is added to the current sequence of refactorings,

and applied to the current system to form the base for the next iteration. A cut-off point is

set for checking neighbors before concluding that a local maximum is reached. The end

result of the search is a sequence of refactorings and a list of the before and after values

of the various metrics involved in the search.

Two metrics are used to measure the quality: coupling and standard deviation of

methods per class (SDMPC). Coupling (CBO) is from Briand’s [2000] catalogue. The

second metric, SDMPC, is used to act as a ‘counter metric’ for coupling. An arbitrary

combination of the metrics is used, the fitness function being SDMPC*CBO. The new

fitness function improves the CBO value of the refactored system while also improving

the SDMPC of the system. All the points on a Pareto front are, in isolation, considered

equivalently good. In such cases, it might be that the user may prefer some of the Pareto

optimal points over others.

The concept of a Pareto front is argued to make as much sense with subsets of data as

it does for complete sets. Harman and Tratt also stress the importance of knowing how

many runs a search-based refactoring system will need to achieve a reasonable Pareto

front approximation. Furthermore, developers are free to execute extra runs of the system

if they feel they have not yet achieved points of sufficient quality on the front

approximation. Pareto optimality allows determining whether one fitness function is

subsumed by another: broadly speaking, if fitness function f produces data which, when

merged with the data produced from function f’, contributes no points to the Pareto front

then we know that f is subsumed by f’. Although it may not be immediately apparent,

Pareto optimally confers a benefit potentially more useful than simply determining

whether one fitness function is subsumed by another. If two fitness functions generate

different Pareto optimal points, then they can naturally be combined to single front.

Pareto optimality is shown to have many benefits for search-based refactoring, as it

lessens the need for “perfect” fitness functions. This would make Pareto optimality an

approach that should be considered for any optimization problem with conflicting goals.

5.3 Summarizing remarks

The approaches to search-based refactorings can be divided into the following groups:

refactoring the program at class level, refactoring the program at procedure level, and

refactoring pieces of code. The most studies have been performed on refactoring at class

level, and they are all quite similar, and actually end up using the same operations for the

search algorithm. For the other aspects only one or two studies have been made, and this

suggests that there is much room for competing approaches. The most advanced results

have been achieved with refactorings at class level, while studies in program

transformations have achieved both good and not so good results.

When examining the refactoring problems, one notable characteristic is that Seng et

al. [2006] attempt to preserve building blocks from the very beginning, and several other

studies have later built on the operators introduced by them. The mutation selection by

Seng et al. [2006] also appears popular. The complexity of the refactoring problem at

class level was most pointedly demonstrated by O’Keeffe and Ó Cinneide [2006; 2008a],

who had a list of 14 mutations and 11metrics, and Quaum and Heckle [2009], who had to

pre-define mutations according to the specific system. Considering that there can be even

more general refactorings in addition to those presented by O’Keeffe and Ó Cinneide,

and that they could be combined with system specific mutations, the search space for an

optimal refactoring sequence will soon become incredibly large.

The approaches to search based refactoring also seem advanced in the aspect that

there have already been several studies that compare different search algorithms and

fitness functions. As for the search algorithms, different hill climbing applications are

clearly very efficient and able to produce high quality results. Interestingly, simulated

annealing has been outperformed by other algorithms, although one might argue that it is

more “sophisticated” than at least the basic hill climbing. All in all, there are very few

approaches that use simulated annealing, and no breaking results have been achieved

with it. The studies in fitness functions further support the notion of complexity in this

problem area. There have O’Keeffe and Ó Cinnéide [2004] have considered the problem

of finding an appropriate fitness function so important that they have developed a

heuristic for balancing different weights, and Harman et al. [2007] have introduced the

Pareto optimality concept to this field, as software design is indeed an area where trade-

offs and compromises need to be made. As for the other studies, the variety of metrics

quality evaluators shows that a refined method for deciding on an appropriate fitness

function is truly needed. The only area where consensus can be found is program

transformations, where quality can quite simply be measured in terms of run time and

correctness or size of the program.

Table 4. Research approaches in search-based software refactoring

Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments

Seng et al. [2005] Optimizing
subsystem
decomposition for
maintenance

Model of system
as a graph,
extracted from
source code

Genes represent
subsytem
candidates

Split&join,
elimination and
adoption

Two children
from two
parents,
integrating
crossover

Cohesion,
coupling,
complexity,
bottlenecks and
cycles

Source code
extracted from
resulting model

Seng et al. [2006] Refactoring a
software system
with a wide set of
operations

Model of system,
extracted from
source code, with
access chains

Ordered list of
refactorings

Common class
structrure
refactorings, the
list is extended
with a suggested
transformation

Minimize
rejected,
duplicated and
unused methods
and featureless
classes and
maximize
abstract classes

Refactored
software system

SA used as search
algorithm,
introducing a
heuristic for
weighting
conflicting quality
goals

O'Keeffe and Ó
Cinnéide [2004]

Automating
software
refactoring

Software system N/A Restructure class
hiearchy and
method moves,
mutations in
counter-pairs in
order to reverse a
move

N/A Minimize rejected,
duplicated and
unused methods
and featureless
classes and
maximize abstract
classes

Refactored
software system

SA used as search
algorithm,
introducing a
heuristic for
weighting
conflicting quality
goals

O'Keeffe and Ó
Cinnéide [2006;
2008a]

Automating
software
refactoring

System as Java
source code

N/A Refactorings
regarding
visibility, class
hierarchy and
method placement

N/A Reusability,
flexibility and
understandability

Refactored code
and design
improvement
report

Three variations of
hill climbing and
SA used as search
algorithms

Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments

O'Keeffe and Ó
Cinnéide [2007;
2008b]

Comparison
between different
search techniques

System as Java
source code

Ordered list of
refactorings [Seng
et al., 2006]

Common class
structrure
refactorings, the
list is extended
with a suggested
transformation
[Seng et al., 2006]

A random set of
transformations
from one parent
chosen, the
transformations
of the other
added to that list
[Seng et al.,
2006]

Understandability Refactored code
and design
improvement
report

GA and multiple
ascent hill climb
implemented

Qayum and
Heckel [2009]

Refactoring graph
structure

Class diagram N/A A set of
refactorings
defined for each
individual
problem

N/A Partial fitness
evaluations, cost
and quality

A sequence of
refactorings

ACO used as search
algorithm

Jiang et al.
[2008a]

Locating
dependence
structures with
slicing,
comparing
different search
techniques

Source code

Two-dimensional
bit matrix

A random bit flip
to offspring

Multi-point
crossover

Coverage and
Overlap, which is
divided to average
and maximum

Optimal set of
program slices

HC, GA, Random
search and Greedy
algorithm
implemented;
fitness function is
used as a parameter

Jiang et al.
[2008b]

Splitting
procedures

Source code

Two-dimensional
bit matrix

Change bit

N/A Overlap Optimal set of
procedure slices
without overlap

Greedy algorithm
used

Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments

Fatiregun et al.
[2004]

Program
refactoring on
source code level

Source code Integer vector
containing
transformation
numbers

Standard Standard one-
point

Size of source code
(LOC)

A sequence of
program
transformations

Random search, HC
and GA are used

Williams [1998] Program
parallelization

Source code Two alternate
encodings:
GT includes a
three symbol
abbreviation of
transformation
and a loop
number,
GS includes an
encoded
statement

Applying one of 6
transformations,
changing
transformation or
loop number

One-point and
two-point,
individual
crossover points

Execution time Transformed
program

HC, GA, SA and ES
implemented

Ryan and Ivan
[1999]

Program
parallelization

Source code Tree structure of
transformations

Applying atom or
loop level
tranformation

N/A Execution time,
correctness, loop
transformation
success

Transformed
program,
transformation
sequence

GP used as
algorithm

Harman and Tratt
[2007]

Pareto optimality
used for multi-
objective
optimization

Software system N/A Move method N/A Coupling and
standard deviation
of methods per
class

A sequence of
refactorings

HC used as search
algorithm

6. SOFTWARE QUALITY

Software quality assessment has become an increasingly important field. The complexity

caused by object-oriented methods makes the task more important and more difficult. An

ideal quality predictive model can be seen as the mixture of two types of knowledge:

common knowledge of the domain and context specific knowledge. In existing models,

one of the two types is often missing. During its operating time, a software system

undergoes various changes triggered by error detection, evolution in the requirements or

environment changes. As a result, the behavior of the software gradually deteriorates as

modifications increase. This quality slump may go as far as the entire software becoming

unpredictable.

Software quality is a special concern when automatically designing software systems,

as the quality needs to be measured with metrics and in pure numerical values. The use of

metrics may even be argued, as they cannot possibly contain all the knowledge that an

experienced human designer has. Sahraoui et al. [2000] have investigated whether some

object-oriented metrics can be used as an indicator for automatically detecting situations

where a particular transformation can be applied to improve the quality of a system. The

detection process is based on analyzing the impact of various transformations on these

object-oriented metrics using quality estimation models.

Sahraoui et al. have constructed a tool which, based on estimations on a given design,

suggests particular transformations that can be automatically applied in order to improve

the quality as estimated by the metrics. Roughly speaking, building a quality estimation

model consists of establishing a relation of cause and effect between two types of

software characteristics. Firstly, internal attributes which are directly measureable, such

as size, inheritance and coupling, and secondly, quality characteristics which are

measurable after a certain time of use such as maintainability, reliability and reusability.

To study the impact of the global transformations on the metrics, first the impact of each

elementary transformation is studied and then the global impact is derived. A case study

is used for the particular case of the diagnosis of bad maintainability by using the values

of metrics for coupling and inheritance as symptoms. Based on the results of this study,

Sahraoui et al. argue that using metrics is a step toward the automation of quality

improvement, but that experiments also show that a prescription cannot be executed

without a validation of a designer/programmer.

The use of evolution metrics for fitness functions has especially been studied [Mens

and Demeyer 2001; Harman and Clarke, 2004]. If one looks at the whole process of

detecting flaws and correcting them, metrics can help automating a large part of it.

However, the results of the experiments show that a prescription cannot be executed

without a validation of a designer or programmer. This approach cannot capture all the

context of an application to allow full automation.

Some approaches regarding software quality have also been made with search-based

techniques. Bouktif et al. [2002; 2004] aim at predicting software quality of object-

oriented systems with GAs, and Vivanco and Jin [2007] have implemented a GA to

identify possible problematic software components. Bouktif et al. [2006] have also

implemented a SA to combine different quality prediction models. Summarizing remarks

are presented in the end, and the fundamentals of each approach are collected in Table 5.

6.1 Search-based approaches

Bouktif et al. [2002; 2004] study the prediction of stability at object-oriented class level

and propose two GA based approaches to solve the problem of quality predictive models:

the first approach combines two rule sets and the second one adapts an existing rule set.

The predictive model will take the form of a function that receives as input a set of

structural metrics and an estimation of stress, and produces as output a binary estimation

of the stability. Here, stress represents the estimated percentage of added methods in a

class between two consecutive versions.

The model encoding for the GA that combines rule sets is based on a decision tree.

The decision tree is a complete binary tree where each inner node represents a yes-or-no

question, each edge is labeled by one of the answers, and terminal nodes contain one of

the classification labels from a predetermined set. The decision making process starts at

the root of the tree. When the questions at the inner nodes are of form “Is x > a?”, the

decision regions of the tree can be represented as a set of isothetic boxes in an n-

dimensional space (n = number of metrics). For the GA representation, these boxes are

enumerated in a vector. Each gene is a (box, label) pair, and a vector of these pairs is the

chromosome. The complexity of quality as a concept is directly shown in the complexity

of the encoding. No simple integer vector can be used to represent quality estimations.

An interesting research question is to determine what is the minimal information needed

in order to evaluate or predict quality.

Mutation is a random change in the genes that happens with a small probability. In

this problem, the mutation operator randomly changes the label of a box. To obtain an

offspring, a random subset of boxes from one parent is selected and added to the set of

boxes of the second parent. The size of the random subset is v times the number of boxes

of the parent where v is a parameter of the algorithm. By keeping all the boxes of one of

the parents, completeness of the offspring is automatically ensured. To guarantee

consistency, the added boxes are made predominant (the added boxes are “laid over” the

original boxes). A level of predominance is added as an extra element to the genes. Each

gene is now a three-tuple (box, label, level). The boxes of the initial population have level

1. Each time a predominant box is added to a chromosome, its level is set to 1 plus the

maximum level in the hosting chromosome. To find the label of an input vector x (a

software element), first all the boxes containing x are found, and x is assigned the label of

the box that have the highest level of predominance.

To measure the fitness a correctness function is used; the function calculates the

number of cases that the rule correctly classifies divided by the total number of cases that

the rule classifies. The correctness function is defined as C = 1 - training error. By using

the training error for measuring the fitness, it is found that the GA tended to “neglect”

unstable classes. To give more weight to data points with minority labels, Youden’s

[1961] J-index is used. Intuitively, the J-label is the average correctness per label. If one

has the same number of points for each label, then J = C. As seen, the actual fitness

evaluations for quality seem simple, which is surprising when compared to the

complicated metric combinations used to evaluate quality in all the various GA

implementations already presented. However, here the most work is needed for defining

the rules that need to be satisfied and questions that need to be answered.

With a GA for adapting a rule set, an existing rule set is used as the initial population

of chromosomes, each rule of the rule set being a chromosome and each condition in the

rule as well as the classification label being a gene. Each chromosome is attributed a

fitness value, which is C*t, where t is the fraction of cases that the rule classifies in the

training set. The weight t allows giving rules that cover a large set of training cases a

higher chance of being selected.

Parents for crossover are selected with roulette wheel method. A random cut point is

generated for each parent, i.e., the cut-points are different for each parent. Otherwise, the

operation is a traditional one-point crossover. By allowing chromosomes within a pair to

be cut at different places, a wider variety is allowed with respect to the length of the

chromosomes. The chromosomes are then mutated. The mutation of a gene consists of

changing the value to which the attribute encoded in the gene is compared to a value

chosen randomly from a predefined set of values for the attribute (or class label, in case

the last gene is mutated). The new chromosomes are scanned and trimmed to get rid of

redundancy in the conditions that form the rules that they encode. Inconsistent rules are

attributed a fitness value of 0 and will eventually die. A fixed population size is

maintained. Elitism is performed when the population size is odd. This consists of

copying one or more of the best chromosomes from one generation to the next. Before

passing from one generation to another, the performance of combined rules to one rule

set is evaluated.

In the experimental setting, to build experts (that simulate existing models), stress and

18 metrics (belonging to coupling, cohesion, complexity and inheritance) are used.

Eleven object-oriented systems are used to “create” 40 experts. For the combining GA,

the elitist strategy is used, where the entire population apart from a small number of

fittest chromosomes is replaced. The test results show that the approach of combining

experts can yield significantly better results than using individual models. The adaptation

approach does not perform as well as the combination, although it gave a slight

improvement over the initial model in one case. The authors believe that using more

numerous and real experts on cleaner and less ambiguous data, the improvement will be

more significant. It is quite inspiring that approach of combining experts produced the

more promising results. If it can be assumed that experts in both initial populations have

the same amount of knowledge, it would seem that merely adapting an expert would be a

smaller task to perform than successfully combining the knowledge from two different

experts. Thus the results are very positive when considering what the GA is capable of.

Bouktif et al. [2006] have continued their research by applying simulated annealing to

combine experts. Their approach attempts to reuse and adapt quality predictive models,

each of which is viewed as a set of expertise parts. The search then aims to find the best

subset of expertise parts, which forms a model with an optimal predictive accuracy. The

SA algorithm and a GA made for comparison were defined for Bayesian classifiers

(BCs), i.e., probabilistic predictive models.

An optimal model is built of a set of experts, each of which is given a weight. Each

individual, i.e., chunk, of expertise is presented by a tuple consisting of an interval and a

set of conditional probabilities. Transitions in the neighborhood are made by changing

probabilities or interval boundaries. A transition may also be made by adding or deleting

a chunk of expertise. The fitness function is the correctness function.

For evaluation, the SA needs two elements as inputs: a set of existing experts and a

representative sample of context data. Results show a considerable improvement in the

predictive accuracy, and the results produced by the SA are stable. The values for GA

and SA are so similar that the authors do not see a need to value one approach over the

other. Results also show that the accuracy of the best produced expert increases as the

number of reused models increases and that good chunks of expertise can be hidden in

inaccurate models. Again the results achieved with SA encourages further usage of

different search algorithms apart from GA, or even combining and making more hybrid

approaches in order to increase quality in search based approaches to software design.

Vivanco and Jin [2007] present initial results of using a parallel GA as a feature

selection method to enhance a predictive model’s ability to identify cognitively complex

components in a Java application. Linear discriminant analysis (LDA) can be used as a

multivariate predictive model.

It is theorized that the structural properties of modules have an impact on the

cognitive complexity of the system, and further on, that modules that exhibit high

cognitive complexity result in poor quality components. Again, this is in line with the

assumption already made by Lutz [2001], that the simpler a design, the better. A

preliminary study is carried out with a biomedical application developed in Java.

Experienced program developers are asked to evaluate the system. Classes labeled as low

are considered easy to understand and use, while a high ranking implied the class is

difficult to fully comprehend and would likely take considerable much more effort to

maintain. Source code measurements, 63 metrics for each Java class, are computed using

a commercial source code inspection application. To establish a baseline, all the available

metrics are used with the predictive model. The Chidamber and Kemerer [1994] metrics

suite is used to determine if the model would improve. Finally, the GA is used to find

alternate metrics subsets. Using the available metrics with LDA, less than half of the Java

classes are properly classified as difficult to understand. The CK metrics suite performs

slightly better. Using GA, the LDA predictive model has the highest performance using a

subset of 32 metrics. The GA metrics correctly classify close to 100% of the low, nearly

half of the medium and two thirds of the high complexity classes.

Vivanco and Jin are most interested in finding the potentially problematic classes with

high cognitive complexity. A two-stage approach is evaluated. First, the low complexity

classes are classified against the medium/high complexity classes. The GA driven LDA

highly accurately identifies the low and medium/high complexity classes with a subset of

24 metrics. When only the medium complexity classes are compared to high complexity,

a GA subset of 28 metrics results in extremely high accuracy for the medium complexity

classes and in identifying the problematic classes. In all GA subsets, metrics that cover

Halstead complexity, coupling, cohesion, and size are used, as well as program

readability metrics such as comment to code ratios and the average length of method

names.

This study is extremely interesting as it ties known software metrics with human

expertise and compares how metrics perform when trying to correctly classify objects. It

is noteworthy that from 63 different metrics the optimal outcome was achieved with 24-

32 metrics, which is less than half of all metrics available. Although there is naturally

overlap between different metrics, it is interesting to see that many of them do not seem

to correctly evaluate the program. The found metrics cohesion, coupling and complexity

support the current fitness function choices to a certain points. However, many fitness

functions only calculate 2-5 different metrics, while the optimum was reached with over

20. In addition, several metrics need the source code, and thus make them unsuitable for

more high-level problems.

6.2 Summarizing remarks

The presented studies on software quality estimation show that correctly evaluating

software is anything but easy. However, although the amount of studies is small, they are

all very recent, and thus shows promise that search-based approaches can also be used in

this sub-are of software design. Finding a search algorithm for quality estimation can also

be seen as a developed way of tackling the problem of finding an optimal fitness

function. In other words, in the future it might be possible to use a fitness function (i.e., a

search algorithms) to find an optimal fitness function for each individual software design

problem. Using search algorithms for quality estimations, the current fitness function, is

the first step in this direction.

Table 5. Studies in search-based software quality enhancement

Name Approach Input Encoding Mutation Crossover Fitness Outcome Comments

Bouktif et al.
[2002;2004]

Combining two
rule sets vs.
adapting a rule set
with GA in quality
prediction models

Decision tree

Combination: box,
label -pairs from
decision tree

Adaptation: one
rule is one
chromosome, each
condition in the
rule is a gene

Combination:
change of label

Adaptation:
change value of
attribute encoding

Combination: a
random set of
boxes from one
parent added to
the other and
level of
predominance
added to gene
(box, label, level)

Adaptation:
standard one-
point, parents
selected with
roulette-wheel
method

Correctness Optimal rule set

Bouktif et al.
[2006]

Combining
software quality
prediction
models, i.e.,
experts

Set of example
models and
context data

Range and
conditional
probabilities

Modify range or
probability or add
or remove an
expert

N/A Correctness Optimal model
combined of sub-
optimal models

SA used

Vivanco and
Jin [2007]

Identification of
complex
components

Software system N/A N/A N/A OO metrics Classes divided
according to
complexity levels

7. FUTURE WORK

From the search-based approaches presented here, software clustering and software

refactoring (i.e., re-design) appear to be at the most advanced stage. Thus, most work is

needed with actual architecture design, starting from requirements and not a ready-made

system. Also, search-based application of, e.g., design patterns, should be investigated

more. Another branch of research should be focused on quality metrics. So far the quality

of a software design has mostly been measured with cohesion and coupling, which

mostly conform to the quality factors of efficiency and modifiability. However, there are

many more quality factors, and if an overall stable software system is desired, more

factors should be taken into account in evaluation, such as reliability and stability. Also,

as demonstrated with the MQ metric in Section 4, metrics that have seemed good in the

beginning may prove to be inadequate when investigated further. Fortunately, it seems

that most of the work presented here is the result of developing research that is still

continuing. The following research questions should and could very well be answered in

the foreseeable future:

- What kind of architectural decisions are feasible to do with search-based

techniques?

Research with search-based software architecture design is at an early stage, and not

all possible architecture styles and design patterns have been tested. Some architectural

decisions are more challenging to implement automatically than others, and in some

cases it may not be possible at all. The possibilities should be mapped to effectively

research the extent of search-based designs capabilities.

- What is a sufficient starting point to being software architecture design with search-

based technique?

So far requirements with a limited set of parameters have been used to build software

architecture, or a ready system has been improved. Some design choices need very

detailed information regarding the system in order to effectively evaluate the change in

quality after implementing a certain design pattern or architecture style. The question of

what information is needed for correct quality evaluation is not by any means easily

answered.

- What would be optimal representation, crossover and mutation operators regarding

the software modularization problem?

Much work has been done with software modularization, and the chromosome

encoding, crossover and mutation operators vary greatly. Optimal solutions would be

interesting to find. As discussed throughout the survey, the chosen encoding significantly

affects the result of mutation and crossover operations and also has a big impact on run

time for the algorithm. There are also several options for crossover, where some maintain

building blocks better than others.

- What would be optimal representation, crossover and mutation operators regarding

the software refactoring problem?

Much research has been done with software refactoring, and the chromosome

encoding, crossover and mutation operators vary greatly. Especially the set of mutations

is interesting, as they define how greatly the software can be refactored. An optimal

encoding might enable a larger set of mutations, thus giving the search-based algorithm a

larger space to search for optimal solutions.

- What metrics could be seen as a “standard” for evaluating software quality?

The evaluation of quality, i.e., the fitness function, is a crucial part of evolutionary

approaches to software engineering. Some metrics, e.g., coupling and cohesion, have

been widely used to measure quality improvements at different levels of design.

However, these metrics only evaluate a small portion of quality factors, and there are

several versions of even some very “standard” metrics. Metrics by, e.g., Briand [2000]

and Chidamber and Kemerer [1994] can be considered as some kind of standards.

However, all software metrics are constantly subjected to criticism, as their correctness is

challenged. Thus, by the author’s view, as there are several versions of even the most

common metrics and there is no agreement that metrics even measure the right things at

the moment, no metric set can currently be seen as standard. Thus, a well-validated

metric set would be extremely beneficial, if it is possible to conduct such a set. It very

well may be that the present metrics simply don’t suffice, and in that case other directions

must be taken to evaluate quality, as has already been demonstrated in some of the work

covered in this survey.

- How can metrics be grouped to achieve more comprehendible quality measures?

Metrics achieve clear values, but if a human designer would attempt to use a tool in

the design process, notions such as “efficiency” and “modifiability” are more

comprehendible than “coupling” and “cohesion”. Thus, being able to group sets of

metrics to correspond to certain real-world quality values would be beneficial when

making design tools available for common use.

8. CONCLUSIONS

This survey has presented on-going research in the sub-fields of search-based software

design. There has been much progress in the sub-fields of software modularization and

refactoring, and very promising results have been achieved. A more complex problem is

automatically designing software architecture from requirements, but some initial steps

have already been taken in this direction as well. Figure 3 shows the timeline of the

presented studies, and it very effectively demonstrates the increasing interest in the area

during the very past years. There has been immense increase in the area of OO design

and refactoring, while clustering, the first application in the area, has not sparked new

research interest.

Amount of studies per year and subarea

0

2

4

6

8

10

12

14

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Quality
Refactoring
Clustering
Other high level design
SOA design
OO design

Fig. 3. Timeline for studies in search-based design

The surveyed research shows that metrics, such as cohesion and coupling can

accurately evaluate some quality factors, as the achieved, automatically improved

designs, have been accepted by human designers. However, many authors also report

problems: the quality of results is not as high as wished or expected, and many times the

blame is placed with a less than optimal encoding and crossover operators. Extensive

testing of different encoding options is practically infeasible, and thus inspiration could

be found in those solutions that have produced the most promising results. As a whole,

software (re-)design seems to be an appropriate field for the application of meta-heuristic

search algorithms, and there is much room for further research.

ACKNOWLEDGMENTS

The author would like to thank Professor Erkki Mäkinen for his helpful comments when

writing this survey. This work was partially done for the Darwin project, funded by the

Academy of Finland.

REFERENCES
AFZAL, W., TORKAR, R., AND FELDT, R. 2008. A systematic mapping study on non-functional search-based
software testing. In: Proceedings of SEKE 2008, 488 – 493.
AFZAL, W., TORKAR, R., AND FELDT, R. 2009. A systematic review of search-based testing for non-functional
system properties. Information and Software Technology, 51(6), 2009, 57 – 83.
AHUJA, S.P. 2000. A genetic algorithm perspective to distributed systems design. In: Proceedings of the
Southeastcon 2000, 2000, 83 – 90.
ALANDER, J.T., MANTERE, T., AND MOGHADAMPOUR, G. 1997. Testing software response times using a genetic
algorithm. In: Proceedings of the 3rd Nordic Workshop on Genetic Algorithms and their Applications (3NWGA),
1997, 293 – 298.
ALBA, E., AND CHICANO, F. 2007. Ant colony optimization for model checking, In: Proceedings of the
11thInternational Conference on Computer Aided Systems Theory (EUROCAST 2007), 2007, 523 – 530.
ALBA, E., AND TROYA, J.M. 1996. Genetic algorithms for protocol validation. In: Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN’96), 1996, 870 – 879.
AMOUI,, M., MIRARAB, S., ANSARI, S. AND LUCAS, C. 2006. A genetic algorithm approach to design evolution
using design pattern transformation, International Journal of Information Technology and Intelligent
Computing 1 (1, 2), June/ August, 2006, 235 – 245.
ANTONIOL, G., DI PENTA, M. AND HARMAN, M. 2004. Search-based techniques for optimizing software project
resource allocation. In: Proceedings of the 2004 Conference on Genetic and Evolutionary Computation
(GECCO’04), 2004, 1425 – 1426.
ANTONIOL, G., DI PENTA, M. AND NETELER, M. 2003. Moving to smaller libraries via clustering and genetic
algorithms. In: Proceedings of the Seventh European Conference on Software Maintenance and Reengineering
(CSMR'03), 2003, 307 – 316.
ARCURI, A., AND YAO, X. 2008. A novel co-evolutionary approach to automatic software bug fixing. In:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC’08), 2008, 162 – 168.
BAGNALL, A.J., RAYWARD-SMITH, V.J., AND WHITTLEY, I.M. 2001. The next release problem, Information and
Software Technology, 43 (14), 2001, 883 – 890.
BASS, L., CLEMENTS, P., AND KAZMAN, R. 1998. Software Architecture in Practice, Addison-Wesley, 1998.
BODHUIN, T., DI PENTA, M., AND TROIANO, L. 2007. A search-based approach for dynamically re-packaging
downloadable applications, In: Proceedings of the Conference of the Center for Advanced Studies on
Collaborative Research (CASCON’07), 2007, 27 – 41.
BOUKTIF, S., AZAR, D., SAHRAOUI, H., KÉGL, B. AND PRECUP, D. 2004. Improving rule set based software
quality prediction: a genetic algorithm-based approach, Journal of Object Technology, 3(4), April 2004, 227 –
241.
BOUKTIF, S., KÉGL, B. AND SAHRAOUI, H.2002. Combining software quality predictive models: an evolutionary
approach. In: Proceedings of the International Conference on Software Maintenance (ICSM’02), 2002, 385 –
392.
BOUKTIF, S.. SAHRAOUI, H. AND ANTONIOL, G. 2006. Simulated annealing for improving software quality
prediction, In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), 1893 –
1900.
BOWMAN, M., BRIAND, L.C., AND LABICHE, Y. 2008. Solving the class responsibility assignment problem in
object-oriented analysis with multi-objective genetic algorithms, Technical report SCE-07-02, Carleton
University.
BRIAND, L., WÜST, J., DALY, J., PORTER, V. 2000. Exploring the relationships between design measures and
software quality in object oriented systems. Journal of Systems and Software, 51, 2000, 245 – 273.
BUDGEN, D. 2003. Software Design. Pearson, 2003.
BUI , T.N., AND MOON, B.R. 1996. Genetic algorithm and graph partitioning, IEEE Transactions on Computers,
45(7), July 1996, 841 – 855.
CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VILLANI, M.L. 2004. A lightweight approach for QoS-aware
service composition. In: Proceedings of the ICSOC 2004 – short papers. IBM Technical Report, New York,
USA.
CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VILLANI, M.L. 2005a. An approach for qoS-aware service
composition based on genetic algorithms, In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) 2005, June 2005, 1069–1075.
CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VILLANI, M.L. 2005b. QoS-aware replanning of composite
web services, In: Proceedings of IEEE International Conference on Web Services (ICWS’05) 2005, 2005, 121–
129.
CAO, L., LI , M. AND CAO, J. 2005a. Cost-driven web service selection using genetic algorithm, In: LNCS 3828,
2005, 906 – 915.

CAO, L., CAO, J., AND LI, M. 2005b. Genetic algorithm utilized in cost-reduction driven web service selection,
In: LNCS 3802, 2005, 679 – 686.
CHAO, C., KOMADA, J., LIU, Q., MUTEJA, M., ALSALGAN, Y.,.AND CHANG, C. 1993. An application of genetic
algorithms to software project management, In: Proceedings of the 9th International Conference on Advanced
Science and Technology, 1993, 247 – 252.
CHE, Y., WANG, Z., AND LI, X. 2003. Optimization parameter selection by means of limited execution and
genetic algorithms, In: APPT 2003, LNCS 2834, 2003, 226 – 235.
CHIDAMBER, S.R., AND KEMERER, C.F. 1994. A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20 (6), 1994, 476 – 492.
CLARK, J.A., AND JACOB, J.J. 2000.Searching for a solution: engineering tradeoffs and the evolution of provably
secure protocols, In:Proceedings of the 2000 IEEE Symposium on Security and Privacy, 2000, 82 – 95.
CLARKE, J., DOLADO, J.J., HARMAN, M., HIERONS, R.M., JONES, B., LUMKIN, M., MITCHELL, B., MANCORIDIS,
S., REES, K., ROPER, M., AND SHEPPERD, M. 2003.Reformulating software engineering as a search problem,
IEE Proceedings - Software, 150 (3), 2003, 161 – 175.
COHEN, M.B., COLBOURN, C.J., AND LING, A.C.H. 2003.Augmenting simulated annealing to build interaction
test suites, In: Proceedings of the 14th International Symposium on Software Reliability Engineering, 2003,
394– 405.
COOPER, K.D., SCHIELKE, P.J., AND SUBRAMANIAN, D. 1999.Optimizing for reduced code space using genetic
algorithms, In: Proceedings of the ACM SIGPLAN 1999 Woskhop on Languages, Compilers and Tools for
Embedded Systems (LCTES’99), 1999, 1 – 9.
CRAMER, N. 1985. A representation for the adaptive generation of simple sequential programs, In: Proceedings
of the International Conference on Genetic Algorithms and their Applications, Carnegie-Mellon University, 183
– 187.
DEB, K. 1999. Evolutionary algorithms for multicriterion optimization in engineering design, In: Proc.
Evolutionary Algorithms in Engineering and Computer Science (EUROGEN’99), 135 – 161.
DI PENTA, M., NETELER, M., ANTONIOL, G. AND MERLO, E. 2005. A language-independent software renovation
framework, The Journal of Systems and Software, 77, 2005, 225 – 240.
DÍAZ, E., TUYA, J., BLANCO, R., AND DOLADO, J., 2008. A tabu search algorithm for structural testing,
Computers & Operations Research, 35 (10), 2008, 3052 – 3072.
DORIGO, M. 1992. Optimization, Learning and Natural Algorithms, Ph.D. thesis, Dipartimento di Elettronica,
Politecnico di Milano, 1992.
DOLADO, J.J., AND FERNANDEZ. L. 1998. Genetic programming, neural networks and linear programming in
software project estimation, In: Proceedings of International Conference on Software Process Improvement,
Research, Education and Training (INSPIRE III), 1998, 157 – 171.
DOVAL, D., MANCORIDIS, S., AND MITCHELL, B.S., 1999. Automatic clustering of software systems using a
genetic algorithm, In: Proceedings of the Software Technology and Engineering Practice, 1999, 73 – 82.
EL-FAKIH, K.,YAMAGUCHI, H., AND V.BOCHMANN, G.,1999. A method and a genetic algorithm for deriving
protocols for distributed applications with minimum communication cost, In: Proceedings of the 11th
International Conference on Parallel and Distributed Computing and Systems (PDCS’99), 1999, 863 – 868.
EVETT, M.P.,KHOSHGOFTAAR, T.M., CHIEN, P-D., AND ALLEN, E.B., 1999. Using genetic progr,amming to
deterine software quality, In: Proceedings of the 12th International Floridy Artificial Intelligence Research
Society Conference (FLAIRS’99), 1999, 113 – 117.
FALKENAUR, E. 1998. Genetic Algorithms and grouping problems, Wiley, 1998.
FATIREGUN, D., HARMAN, M. AND HIERONS, R. 2003. Search based transformations. In: Proceedings of the
2003 Conference on Genetic and Evolutionary Computation (GECCO’03), 2003, 2511 – 2512.
FATIREGUN, D., HARMAN, M. AND HIERONS, R. 2004. Evolving transformation sequences using genetic
algorithms. In: Proceedings of the 4th International Workshop on Source Code Analysis and Manipulation
(SCAM 04), Sept. 2004, 65 – 74.
FATIREGUN, D., HARMAN, M. AND HIERONS, R. 2005. Search-based amorphous slicing. In: Proceedings of the
124th International Working Conference on Reverse Engineering (WCRE’05), 2005, 3 – 12.
FELDT, R. 1998. Generating multiple diverse software versions with genetic programing. In: Proceedings of the
24th EUROMICRO Conference, 1998, 387 – 394.
FERGUSON, R., AND KOREL, B. 1995. Software test data generation using the chaining approach. In:
Proceedings of the IEEE International Test Conference on Driving Down the Cost of Test, 1995, 703 – 709.
FISCHER, K.F. 1977.A test case selection method for the validation of software maintenance modifications, In:
Proceedings of International Computer Software and Applications Conference (COMPSAC’77), 1977, 421-426.
FISCHER, K.F., RAJI, F., AND CHRUSCICKI, A. 1981.A methodology for retesting modified software, In
Proceedings of National Telecommuncations Conference (NTC’81), 1981, 1-6.
FONSECA, C., AND FLEMING, P. 1995.An overview of evolutionary algorithms in multi-objective optimization,
Evolutionary Computation, 3(1), 1995, 1-16.
GAMMA, E., HELM, R., JOHNSON, R. AND VLISSIDES, J. 1995. Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.
GARFINKEL, R., AND NEMHAUSER, G.L. 1972. Integer Programming, John Wiley and Sons, 1972.
GLOVER, F.1986. Future paths for Integer Programming and Links to Artificial Intelligence, Computers and
Operations Research, 5, 1986, 533 – 549.

GLOVER, F. W. AND KOCHENBERGER, G.A. (eds.) .2003.Handbook of Metaheuristics, International Series in
Operations Research & Management Science 57, Springer, 2003.
GOLD, N. 2001. Hypothesis-based concept assignment to support software maintenance. In: Proceedings of the
22nd International Conference on Software Maintenance (ICSM 01), 2001, 545 – 548.
GOLD, N., HARMAN, M., LI AND, Z., AND MAHDAVI, K. 2006. A search based approach to overlapping concept
boundaries. In: Proceedings of the 22nd International Conference on Software Maintenance (ICSM 06), USA
Sept. 2006, 310 – 319.
GOLDSBY, H. AND CHENG, B.H.C. 2008. Avida-mde: a digital evolution approach to generating models of
adaptive software behavior. In: Proceedings of the Genetic Evolutionary Computation Conference (GECCO
2008), 2008, 1751 – 1758.
GOLDSBY, H., CHANG, B.H.C., MCKINLEY, P.K., KNOESTER, D., AND OFRIA, C.A. 2008. Digital evolution of
behavioral models for autonomic systems. In: Proceedings of 2008 International Conference on Autonomic
Computing, 2008, 87 – 96.
HARMAN, M. 2007.The current state and future of search based software engineering, In: Proceedings of the
2007 Future of Software Engineering (FOSE’07), 342 – 357.
HARMAN, M., HIERONS, R. AND PROCTOR, M. 2002. A new representation and crossover operator for search-
based optimization of software modularization. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002), July 2002, 1351–1358.
HARMAN, M., HU, L., HIERONS, R., WEGENER, J., STHAMER, H., BARESEL, A., AND ROPER, M. 2004.
Testabillity transformation. IEEE Transactions on Software Engineering, 30(1), January 2004, 3-16.
HARMAN, M., ANSOURI, S.A. AND ZHANG. J. 2009. Search based software engineering: a comprehensive
review. Technical report TR-09-03, King’s College, London, United Kingdom. 2009.
HARMAN, M., SWIFT, S. AND MAHDAVI, K. 2005. An empirical study of the robustness of two module
clustering fitness functions. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2005), USA, June 2005, 1029 – 1036.
HARMAN, M. AND JONES, B.F. 2001. Search based software engineering. Information and Software Technology
2001, 43(14), 833 – 839.
HARMAN, M., AND CLARK, J. 2004. Metrics are fitness functions too. In: 10th International Software Metrics
Symposium (METRICS 2004), USA Sept. 2004, 58 – 69.
HARMAN, M. AND TRATT, L. 2007. Pareto optimal search based refactoring at the design level, In: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’07), 2007, 1106 – 1113.
HARMAN, M. AND WEGENER, J. 2004. Getting results with search-based approaches to software engineering. In:
Proceedings of the ICSE 2004, 728 – 729.
HARTMANN, J. AND ROBSON, D.J. 1989. Revalidation during the software maintenance phase. In: Proceedings
of the 1989 Conference on Software Maintenance,IEEE Press, 1981, 70 – 80.
HOLLAND, J.H. 1975. Adaption in Natural and Artificial Systems. MIT Press, Ann Arbor, 1975.
HORWITZ, S., REPS, T., AND BINKLEY, D.W. 1988. Interprocedural slicing using dependence graphs. In:
Proceedings of ACM SIGPLAN Notices, 25 (6), 1988, 35– 46.
HUHNS, M., AND SINGH, M. 2005. Service-oriented computing: Key concepts and principals. IEEE Internet
Computing, Jan-Feb 2005, 75 – 81.
HUYNH, S. AND CAI, Y. 2000. An Evolutionary approach to software modularity analysis, In: Proceedings of
the First international workshop on Assessment of Contemporary Modularization Techniques ACoM’07, ICSE
Workshops, May 2007, 1 – 6.
JAEGER, M.C. AND MÜHL, G. 2007. QoS-based selection of services: the implementation of a genetic
algorithm, In: T. Braun, G. Carle and B. Stiller (Eds.): Kommunikation in Verteilten Systemen (KiVS) 2007
Workshop: Service-Oriented Architectures und Service-Oriented Computing, VDE Verlag, March 2007, 359 –
371.
JIANG, T., GOLD, N., HARMAN, M. AND ZHENG, L. 2008a. Locating dependence structures using search-based
slicing, Information and Software Technology, 50, 2008, 1189 – 1209.
JIANG, T., HARMAN, M. AND HASSOUN, Y. 2008b. Analysis of Procedure Splittability, In: Proceedings of the
15th Workshop on Reverse Engineering, 2008, 247 – 256.
JOHNSON, C.2007, Genetic programming with fitness based on model checking, In: Proceedings of the 10th
European Conference on Genetic Programming,,2007, 114 – 124.
JONES, B., STHAMER, H-H. AND EYRES, D.E. 1996, Automatic structural testing using genetic algorithms,
Software Engineering Journal, 11 (5),1996, 299 – 306.
KAUFMAN, L. AND ROUSSEEUW, P. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley,
1990.
KENNEDY, J. AND EBERHART, R.C. 1995. Particle swarm optimization, In: Proceedings of the IEEE
International Conference on Neural Networks, 1995, 1942 – 1948.
KESSENTINI, M., SAHRAOUI, H. AND BOUKADOUM, M. 2008. Model transformation as an optimization problem,
In: Proceedings of the ACM/IEEE 11th International Conference on Model Driven Engineering Languages and
Systems (MODELS’08), 2008, 159 – 173.
KIM, D., AND PARK, S.2009. Dynamic architectural selection: a genetic algorithm approach, In: Proceedings of
the 1st Symposium on Search-Based Software Engineering, 2009, 59 – 68.
KIRKPATRICK, S., GELATT, C., AND VECCHI, M. 1983. Optimization by simulated annealing, Science, 220, 1983,

671– 680
KOZA, J.R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection,
MIT Press, 1992.
LANGE, R., AND MANCORIDIS, S. 2007. Using code metric histograms and genetic algorithms to perform author
identification for software forensics. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO’07), 2007, 2082– 2089.
LI, H., AND LAM, C.P. 2005. An ant colony optimization approach to test sequence generation for statebased
software testing. In: Proceedings of the 5th International Conference on Quality Software (QSIC’05), 2005,
255– 264.
LOSAVIO, F., CHIRINOS, L., MATTEO, A., LÉVY, N., AND RAMDANE-CHERIF, A. 2004. ISO quality standards for
measuring architectures. The Journal of Systems and Software, 72, 2004, 209 – 223.
LUTZ, R. 2001. Evolving good hierarchical decompositions of complex systems, Journal of Systems
Architecture, 47, 2001, 613 – 634
MAHDAVI, K., HARMAN, M., AND HIERONS, R. 2003a. A multiple hill climbing approach to software module
clustering, In: Proceedings of ICSM 2003, 315 – 324.
MAHDAVI, K., HARMAN, M. AND HIERONS, R. 2003b. Finding building blocks for software clustering In: LNCS
2724, 2003, 2513 – 2514.
MANCORIDIS, S. MITCHELL, B.S., CHEN, Y.-F., AND GANSNER, E.R. 1999. Bunch: A clustering tool for the
recovery and maintenance of software system structures. In: Proceedings of the IEEE International Conference
on Software Maintenance, 1999, 50 – 59.
MANCORIDIS, S., MITCHELL, B.S., RORRES, C., CHEN, Y.-F. AND GANSNER, E.R. 1998. Using automatic
clustering to produce high-level system organizations of source code. In Proceedings of the International
Workshop on Program Comprehension (IWPC’98), USA, 1998, 45 – 53.
MANSOUR, N. AND EL-FAKIH, K. 1999. Simulated annealing and genetic algorithms for optimal regression
testing. Journal of Software Maintenance: Research and Practice 11, (1), 1999, 19-34.
MANTERE, T. AND ALANDER, J.T. 2005. Evolutionary software engineering: a review. Applied Soft Computing
5, (3), 2005, 315-331.
MARTIN, R.C. 2000. Design Principles and Design Patterns, available at http://www.objectmetor.com.
MCMINN, P. 2004. Search-based software test data generation: a survey. Software Testing, Verification and
Reliability, 14(2), 105 – 56.
MENS, T., AND DEMEYER, S., 2001. Future trends in evolution metrics, In: Proceeding of the International.
Workshop on Principles of Software Evolution, 2001, 83 – 86.
MICHALEWICZ, Z. 1992. Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-Verlag,
1992.
MILLER, W., AND SPOONER, D.L., 1976. Automatic generation of floating-point test data, IEEE Transactions on
Software Engineering 2(3), 1976, 223 – 226.
MINOHARA, T., AND TOHMA, Y. 1995. Parameter estimation of hyper-geometric distribution software reliability
growth model by genetic algorithms, In: Proceedings of the 6th Symposium on Software Reliability
Engineering, 1995, 324 – 329.
MITCHELL, B. 2002. A Heuristic Search Approach to Solving the Software Clustering Problem. Ph. D. Thesis,
Drexel University, Philadelphia, January 2002.
MITCHELL, B.S., AND MANCORIDIS, S. 2002. Using heuristic search techniques to extract design abstractions
from source code. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002),
USA, July 2002, 1375 – 1382.
MITCHELL, B.S., AND MANCORIDIS, S. 2003. Modeling the search landscape of metaheuristic software
clustering algorithms, In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2003), 2003, 2499 – 2510.
MITCHELL, B.S. AND MANCORIDIS, S. 2006. On the automatic modularization of software systems using the
Bunch tool, IEEE Transactions on Software Engineering, 32 (3), March 2006, 193 – 208.
MITCHELL, B.S., AND MANCORIDIS, S. 2008. On the evaluation of the Bunch search-based software
modularization algorithm, Soft Computing, 12(1), 2008, 77 – 93.
MITCHELL, B.S., MANCORIDIS, S., AND TRAVERSO, M. 2000. Search based reverse engineering, In: Proceedings
of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE’02) 2002,
431 – 438.
MITCHELL, B.S., MANCORIDIS, S., AND TRAVERSO, M. 2004. Using interconnection style rules to infer software
architecture relations, In: Proceedings of the 2004 Conference Genetic and Evolutionary Computation
(GECCO’04), 2004, 1375 – 1387.
MITCHELL, M. 1996. An Introduction to Genetic Algorithms. MIT Press, 1996.
MONNIER, Y., BEAUVAIS, J-P., AND DÉPLANCHE, A-M. 1998. A genetic algorithm for, scheduling tasks in real-
time distributed system In: Proceedings of the 24th EUROMICRO Conference (EUROMICRO’98), 1998, 20708
– 20714.
NAEIMI, H., AND DEHON, A.. 2004. A greedy algorithm for tolerating defective crosspoints in NanoPLA design,
In: Proceedings of the International Conference on Field-Programmable Technology (ICFPT2004), 2004, 49 –
56.
NISBET, A.1998. GAPS: a compiler framework for genetic algorithm (GA) optimised parallelisation, In:

Proceedings of the International Conference and Exhibition on High-Performance Computing and Networking
(HPCN’98), 1998, 987 – 989.
O’KEEFFE , M., AND Ó CINNÉIDE, M. 2004. Towards automated design improvements through combinatorial
optimization, In: Workshop on Directions in Software Engineering Environments (WoDiSEE2004), W2S
Workshop -26th International Conference on Software Engineering, 2004, 75 – 82.
O’KEEFFE, M., AND Ó CINNÉIDE, M. 2006. Search-based software maintenance, In: Proceedings of CSMR
2006, 249 – 260.
O’KEEFFE, M., AND Ó CINNÉIDE, M. 2007. Getting the most from search-based refactoring In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’07), 2007, 1114 – 1120.
O’ KEEFFE , M., AND Ó CINNÉIDE, M. 2008a. Search-based refactoring for software maintenance, Journal of
Systems and Software, 81 (4), April 2008, 502 – 516.
O’ KEEFFE , M., AND Ó CINNÉIDE, M. 2008b. Search-based refactoring: an empirical study, Journal of Software
Maintenance and Evolution: Research and Practice, 20, August 2008, 345 – 364.
PEI, M., GOODMAN, E.D., GAO, Z., AND ZHONG, K. 1994. Automated software test data generation using a
genetic algorithm, available at: www.egr.msu.edu/~pei/paper/GApaper94-02.ps..
QUAUM, F., AND HECKEL, R. 2009. Local search-based refactoring as graph transformation, In: Proceedings of
the 1st Symposium on Search-Based Software Engineering, 2009, 43-46.
RÄIHÄ, O. 2008. Genetic Synthesis of Software Architecture, University of Tampere, Department of Computer
Sciences, Lic. Phil. Thesis, September 2008.
RÄIHÄ, O., KOSKIMIES, K., AND MÄKINEN, E. 2008a. Genetic synthesis of software architecture, In:
Proceedings of the 7th International Conference on Simulated Evolution and Learning (SEAL’08), December
2008, Melbourne, Australia. LNCS 5361,565 – 574.
RÄIHÄ, O., KOSKIMIES, K., AND MÄKINEN, E. 2009. Scenario-based genetic synthesis of software architecture,
In: Proceedings of the 4th International Conference on Software Engineering Advances (ICSEA´09), September
2009, Porto, Portugal. IEEE Computer Society Press, to appear.
RÄIHÄ, O., KOSKIMIES, K., MÄKINEN, E., AND SYSTÄ, T. 2008b. Pattern-based genetic model refinements in
MDA, In: Proceedings of the Nordic Workshop on Model-Driven Engineering (NW-MoDE’08), Reykjavik,
Iceland. University of Iceland, August 2008, 129 – 144, to appear in Nordic Journal of Computing.
RAMIREZ, A.J., KNOESTER, D.B., CHENG, B.H.C., AND MCKINLEY, P.K.. 2009. Applying genetic algorithms to
decision making in autonomic computing systems, In: Proceedings of the Nordic 6th International Conference
on Autonomic Computing (ICAC’09), 2009, to appear.
REEVES, C.R. (ed.). 1995. Modern Heuristic Techniques for Combinatorial Problems. McGraw-Hill, 1995.
RYAN, C. 1999. Automatic Re-engineering of Software Using Genetic Programming. Kluwer Academic
Publishers, 1999.
RYAN, C., AND IVAN, L. 1999. Automatic parallelization of arbitrary programs, In: Proceedings of
EUROGP’99, LNCS 1598, 1999, 244-254.
SAHRAOUI, H.A., GODIN, R., AND MICELI, T. 2000. Can metrics help bridging the gap between the improvement
of OO design quality and its automation? In: Proceedings of the International Conference on Software
Maintenance (ICSM ’00), 2000, 154 – 162.
SALOMON, R. 1998. Short notes on the schema theorem and the building block hypothesis in genetic algorithms,
In: Evolutionary Programming VII, LNCS 1447, 1998, 113 – 122.
SCHOEHAUER, M., AND XANTHAKIS, S. 1993. Constrained ga optimization In: Proceedings of the 5th
International Conference on Genetic Algorithms (ICGA ’93), 1993, 573 – 580.
SENG, O., BAUYER, M., BIEHL, M., AND PACHE, G. 2005. Search-based improvement of subsystem
decomposition, In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’05), 2005,
1045 – 1051.
SENG, O., STAMMEL, J., AND BURKHART, D. 2006. Search-based determination of refactorings for improving
the class structure of object-oriented systems, In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’06), 2006, 1909–1916.
SHAN, Y., MCKAY, R.I., LOKAN, C.J., AND ESSAM, D.L. 2002. Software project effort estimation using genetic
programming, In: Proceedings of the 2002 IEEE International Conference on Communications, Circuits and
Systems and West Sino Expositions, 2002, 1108 – 1112.
SHANNON, C.E. 1948. The mathematical theory of communications. Bell System Technical Journal, 27 (379 –
423), 623 – 656.
SHAW, M., AND GARLAN, D.1996. Software Architecture - Perspectives on an Emerging Discipline. Prentice
Hall, 1996.
SHAZELY, S., BARAKA, H., AND ABDEL-WAHAB, A. 1998. Solving graph partitioning problem using genetic
algorithms. In: Midwest Symposium on Circuits and Systems, 1998, 302 – 305.
SHYANG, W., LAKOS, C., MICHALEWICZ, Z., AND SCHELLENBERG, S. 2008. Experiments in applying
evolutionary algorithms to software verification. In: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’08), 2008, 3531 – 3536.
SINCLAIR, M. C., AND SHAMI, S.H. 1997. Evolving simple software agents: comparing genetic algorithm and
genetic progrraming performance. In: Proceedings of the 2nd International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications (GALESIA’97, 1997, 421 – 426.
SIMONS, C. L., AND PARMEE, I.C. 2007a. Single and multi-objective genetic operators in object-oriented

conceptual software design. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’07), 2007 1957 – 1958.
SIMONS, C.L., AND PARMEE, I.C. 2007b. A cross-disciplinary technology transfer for search-based evolutionary
computing: from engineering design to software engineering design, Engineering Optimization, 39 (5) 2007,
631 – 648.
SIMONS, C.L., AND PARMEE, I.C. 2008. User-centered, evolutionary search in conceptual software design, In:
Proceedings of the IEEE Congress on Evolutionary Computarion (CEC´08), 2008, 869 – 876.
SIVANANDAM, S.N. AND, DEEPA, S.N. Introduction to Genetic Algorithms. Springer, 2007
SSBSE, 2009, http://www.ssbse.org, checked 17.6.2009.
SU, S., ZHANG, C., AND CHEN, J. 2007. An improved genetic algorithm for web services selection, In: LNCS
4531, 2007, 284 – 295.
TRACEY, N., CLARK, J., AND MANDER., K. 1998. Automated program flaw findign using simulated annealing.
In: Proceedings of the 1998 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’98), 1998, 73 – 81.
TUCKER, A., SWIFT, S., AND LIU, X.. 2001. Grouping multivariate time series via correlation. IEEE Transactions
on Systems, Man, and Cybernetics. Part B: Cybernetics, 31(2), 2001, 235 – 245.
TZERPOS V., HOLT R.C., MoJo: A distance metric for software clusterings. In: Proc. of IEEE Working
Conference on Reverse Enginerring, 1999, 187 – 195.
VIVANCO, R.A., AND JIN, D. 2007. Selecting object-oriented source code metrics to improve predictive models
using a parallel genetic algorithm In: Proceedings of OOPSLA’07, 2007, 769 – 770.
WADEKAR, S. AND GOKHALE, S. 1999. Exploring cost and reliability tradeoffs in architectural alternatives using
a genetic algorithm, In: Proceedings of the 10th International Symposium on Software Reliability Engineering,
1999, 104 – 113.
WILLIAMS, K. 1998. Evolutionary algorithms for automatic parallelization. Ph.D. thesis, Department of
Computer Science, University of Reading, UK. 1998.
WIRFS-BROCK, R.J. AND JOHNSON, R.E. 1990. Surveying current research in object-oriented design,
Communications of the ACM 33(9), 1990, 104 – 124.
XANTHAKIS, S., ELLIS, C., SKOURLAS, C., LE GALL, A., KATSIKAS, S., AND KARAPOULIS, S. 1992. Application
of genetic algorithm to software testing, In: Proceedings of the 5th International Conference on Software
Engineering and Applications, 1992, 625 – 636.
YANG, L. JONES, B.F., AND YANG, S.-H. 2006. Genetic algorithm based software integration with minimum
software risk, Information and Software Technology 48(3), 2006, 133 – 141.
YAU, S.S. AND TSAI, J.-P. 1986. A survey of software design techniques, IEEE Transactions on Software
Engineering 12(6), 1986, 713 – 721.
YOO, S., AND HARMAN, M. 2007. Pareto efficient multi-objective test case selection, In: Proceedings of the
2007 International Symposium on Software Testing and Analysis (ISSTA’07) , 2007, 140-150.
YOUDEN, W.J. 1961. How to evaluate accuracy. In: Materials Research and Standards, ASTM, 1961.
ZHANG, C., SU, S., AND CHEN, J. 2006. A novel genetic algorithm for qos-aware web services selection, In:
LNCS 4055, 2006, 224 – 235.
ZHANG, C., SU, S., AND CHEN, J. 2006. A novel genetic algorithm for qos-aware web services selection, In:
LNCS 4055, 2006, 224-235.
ZHANG, Y., HARMAN, M., AND MANSOURI, S.A. 2007. The multi-objective next release problem, In:
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO’07), 2007, 1129
– 1137.
ZHANG, Y., FINKELSTEIN, A., AND HARMAN, M. 2008. Search based requirements optimisation: existing work
& challenges, In: Proceedings of the 14th International Working Conference, Requirements Engineering:
Foundation for Software Quality (REFSQ’08), 2008, 88 – 94.
ZLOCHIN, M., BIRATTARI, M., MEULEAU, N. AND DORIGO, M. 2004. Model-based search for combinatorial
optimization: a critical survey, Annals of Operations Research 131, 2004, 373 – 395.

