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ABSTRACT 
Automatic design of software architecture by use of genetic 
algorithms has already been shown to be feasible. A natural 
problem is to augment – if not replace – genetic algorithms with 
some other search method in the process of searching good 
architectures. The present paper studies the possibilities of 
simulated annealing in designing software architecture. We start 
from functional requirements given as a graph of functional 
responsibilities and consider two quality attributes, modifiability 
and efficiency. It is concluded that simulated annealing as such 
does not produce “natural” architectures, but it is useful as a 
method of producing initial populations for genetic algorithms. 

Categories and Subject Descriptors 
D.2.10. [Software Engineering]: Design; D.2.11. [Software 
Engineering]: Software Architectures 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
Simulated annealing, search-based software design 

1. INTRODUCTION 
The ultimate goal of software engineering is to be able to 
automatically produce software systems based on their 
requirements. For the time being, we pass the synthesis of 
executable programs, and concentrate on the automated 
derivation of architectural designs of software systems. This is 
possible because architectural design largely means the 
application of known standard solutions in a combination that 
optimizes the quality properties (like modifiability and 
efficiency) of the software system. These standard solutions are 
well documented as architectural styles [16] and design patterns 

[6]. In addition, architectural design is guided by general 
principles like decomposition and usage of interfaces.  

Genetic algorithms (GAs) are shown to be a feasible method for 
producing software architectures from functional requirements 
[14, 15]. It is then natural to ask if other search methods are 
capable of producing equally good architectures alone or in co-
operation with genetic algorithms. The purpose of the present 
paper is to study the possibilities of simulated annealing in the 
process of searching good architectures when functional 
requirements are given. 

Contrary to genetic algorithms, simulated annealing (SA) is a 
local search method which intensively uses the concept of 
neighborhood, i.e., the set of possible solutions that are near to 
the current solution. The neighborhood is defined via the 
transformations that change an element of the search space (in 
our application, software architecture) to another. In our 
application the transformations mean implementing a design 
pattern or an architectural style. 

This paper proceeds as follows. In Section 2 we sketch current 
research in the field of search algorithms in software design that 
is relevant for the present paper. In Section 3 we cover the basics 
of implementing a simulated annealing algorithm. In Section 4 
we introduce our method by defining the input for the SA 
algorithm, the transformations and the evaluation function. In 
Section 5 we present the results from our experiments related to 
an e-home application. In Section 6 we discuss the findings and 
in Section 7 we give a conclusion of our results. 

2. RELATED WORK 
Traditionally, search-based software engineering has focused on 
problems like software clustering and refactoring, see, e.g., [5, 
8]. More recently, approaches dealing with higher level 
structural units, such as patterns, have gained more interest. For 
example, Amoui et al. [1] have applied genetic algorithms for 
finding the optimal sequence of design pattern transformations to 
increase the reusability of a software system. 

Simons and Parmee [17, 18] take use cases as the starting point 
for system specification. Data is assigned to attributes and 
actions to methods, and a set of uses is defined between the two 
sets.   The notion of class is used to group methods and 
attributes. Each class must contain at least one attribute and at 
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least one method. Design solutions are encoded directly into an 
object-oriented programming language.  

Räihä et al. [14] have taken a more advanced approach to 
designing software architecture than Simons and Parmee [17] by 
starting the design from a responsibility dependency graph and 
developing the architecture further than the class distribution of 
actions and data. A GA is used for the automation of design. In 
this solution, each responsibility is represented by a supergene 
and a chromosome is a collection of supergenes. The supergene 
contains information regarding the responsibility, such as 
dependencies of other responsibilities, and evaluated parameters 
such as execution time and variability. Mutations are 
implemented as adding or removing an architectural design 
pattern or an interface or splitting or joining class(es).  

Räihä et al. [15] have also applied genetic algorithms in model 
transformations that can be understood as pattern-based 
refinements. In MDA (Model Driven Architecture), such 
transformations can be exploited for deriving a Platform 
Independent Model from a Computationally Independent Model. 
The approach uses design patterns as the basis of mutations and 
exploits various quality metrics for deriving a fitness function. 
They give a genetic representation of models and propose 
transformations for them. The results suggest that genetic 
algorithms provide a feasible vehicle for model transformations, 
leading to convergent and reasonably fast transformation process.  

Research has also been made on identifying concept boundaries 
and thus automating software comprehension [7] and re-
packaging software [3], which can be seen as finding working 
subsets of an existing architecture. Search-based software design 
is widely covered in a survey by Räihä [13]. 

3. SIMULATED ANNEALING 
The SA algorithm starts from an initial solution which is tried to 
be improved during the annealing process by searching and 
selecting other solutions from the neighborhood of the current 
solution. There are several parameters that guide the annealing. 
The search begins with initial temperature t0 and ends when the 
temperature t is decreased to the frozen temperature t1, where 

t1 t0. The temperature gives the probability of choosing 
solutions that make the current solution worse. A solution that 
worsens the current solution by , is accepted to be the new 
current solution if a randomly generated real i is  less  than  or  
equal to e /t. If a solution improves the current solution, it is 
accepted directly without a test. A constant r is used to determine 
when temperature is decreased by multiplying the current 
temperature by a cooling ratio , where 0 1. 

The SA has been successfully applied for numerous 
combinatorial optimization problems, for an instructive 
introduction to the use of simulated annealing as a tool for 
experimental algorithmics, see [9, 2]. The idea for combinatorial 
optimization is generalized by Kirkpatrick et al. [10]. To 
determine good parameters for a problem needs often 
experimental analysis. There are also adaptive techniques for 
detecting the parameters [11].  

4. METHOD 
We begin with a set of responsibilities (requirements) that can be 
given some relative values regarding modifiability and efficiency. 
Using the information given on the dependencies between the 
responsibilities, this set is then formed into a responsibility 
dependency graph. The graph is encoded as to a form that can be 
processed by the selected search algorithm (implemented with 
Java). The algorithm produces software architecture for the given 
requirements by implementing selected architecture styles and 
design pattern, and produces a UML class diagram as the result. 

4.1 Responsibility Dependency Graph 
A responsibility dependency graph gives the functional 
requirements of the system in terms of responsibilities. A 
responsibility is either a task to be carried out by the system (or 
some part of it), or a data item that has to be managed by the 
system (or some part of it). Each node in the graph represents a 
responsibility, and each directed edge represents a dependency 
between the two responsibilities. Here a dependency means that 
the source responsibility relies on the target responsibility. In 
order to evaluate the system after the model has been subjected 
to transformation, some attributes of the responsibilities are also 
given, such as variability, parameter size and time consumption. 
The values for these attributes may be sometimes hard to 
determine at the requirements analysis stage, but the more 
accurately these can be estimated, the better will be the result. 
The given values for the attributes are relative, rather than 
absolute.  

In our work, we have used an e-home [12] as an example system. 
It contains 52 responsibilities and 90 dependencies between 
them. A part of the responsibility dependency graph, depicting 
the drape control component of the example system, is given in 
Figure 1, where some sample properties (variability, parameter 
size, time consumption) are marked in the nodes. The drapeState 
node is marked with a thicker circle, as it is a data manager 
responsibility. The CalculateOptimalDrape responsibility is a 
good example of how and why the certain attributes are 
evaluated: its variability is 3, as the optimal drape position can 
be calculated differently in different houses and according to 
different preferences. As it is a heavy operation, also its 
parameter size (6) and time consumption (90) are among the 
highest values of those shown here. Responsibilities with such 
high attribute values play an important role when constructing 
quality architecture as their placement has a bigger impact on the 
quality value. 

Figure 1. A fragment of the responsibility dependency graph 
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4.2 Transformations 
An architecture is transformed (i.e., one of its neighbors is 
found) by implementing architecture styles and design patterns to 
a given solution. In our approach, decomposition is also regarded 
as an architectural pattern. The patterns we have chosen include 
very high-level architectural styles [16] (dispatcher and client-
server), medium-level design patterns [6] (façade and mediator), 
and low-level design patterns [6] (strategy and proxy). The 
transformations are implemented in pairs of introducing or 
removing a pattern. This ensures a wider traverse through the 
search space, as while implementing a pattern might improve the 
quality of architecture at one point, it might become redundant 
over the course of development. The dispatcher architecture style 
makes a small exception to this rule: the actual dispatcher must 
first be introduced to the system, after which the responsibilities 
can communicate through it.  The transformations are the 
following: 

 split a class /merge two classes 

 introduce/remove message dispatcher 

 introduce/remove link to dispatcher 

 introduce/remove server 

 introduce/remove façade 

 introduce/remove mediator 

 introduce/remove strategy 

 introduce/remove proxy. 

However, it is possible that during a transformation, an existing 
pattern may be broken. Because of this, after each 
transformation, the resulting solution is subjected to a corrective 
operation, which ensures that the architecture stays coherent. In 
addition to ensuring that the patterns present in the system stay 
coherent and “legal”, the corrective function also checks that the 
model conforms to certain architectural laws. These laws demand 
uniform calls between two classes (e.g., through an interface or a 
dispatcher), and state some basic rules regarding architectures, 
e.g., no responsibility can implement more than one interface.  
These laws ensure that no anomalies are brought to the 
architecture.  

4.3 Evaluation 
Selecting an appropriate evaluation function is probably the most 
demanding task with any search algorithm application when 
there is no clear value to measure in the solutions. In the case of 
software architecture, evaluation is especially difficult. In real 
world, evaluation of software architecture is almost always done 
manually by human designers, and metric calculations are only 
used as guidelines. However, for a search algorithm to be able to 
evaluate the architecture, a purely numerical fitness value must 
be calculated.  

In a fully automated approach, no human interception is allowed, 
and thus the evaluation function needs to be based on metrics. 
The selection of metrics may be as arguable as the evaluations of 
two different architects on a single software architecture. The 
reasoning behind the selected metrics in this approach is that 

they have been widely used and recognized to accurately measure 
some quality aspects of software architecture. However, the 
combination of metrics and multiple optimization is another 
problem entirely, as not many quality values can be optimized 
simultaneously. 

The fitness function is based on software product metrics, most 
of which are from the metrics suite introduced by Chidamber and 
Kemerer [4]. These metrics, especially coupling and cohesion, 
have been used as a starting point for the fitness function, and 
have been further developed and grouped to achieve clear “sub-
functions” for modifiability and efficiency, both of which are 
measured with a positive and negative metric. The biggest 
modifications to the basic metrics include taking into account the 
positive effect of interfaces and the dispatcher and client-server 
architecture styles in terms of modifiability, as well as the 
negative effect of the dispatcher and server in terms of efficiency. 
A complexity metric is added to penalize having many classes 
and interfaces as well as extremely large classes. 

Dividing the evaluation function into sub-functions answers the 
demands of the real world. Hardly any architecture can be 
optimized from all quality viewpoints, but some viewpoints are 
ranked higher than others, depending on the demands regarding 
the architecture. By separating efficiency and modifiability, 
which are especially difficult to optimize simultaneously, we can 
assign a bigger weight to the more desired quality aspect. When 
wi is the weight for the respective sub-function sfi, the evaluation 
function f(x) for solution x can be expressed as   

f(x) = w1 sf1  – w2 sf2 + w3  sf3 – w4  sf4 – w5  sf5. 

Here, sf1 measures positive modifiability, sf2 negative 
modifiability, sf3 positive efficiency, sf4 negative efficiency and 
sf5 complexity. The sub-functions are defined as follows (|X| 
denotes the cardinality of X): 

sf1 = |interface implementors| + |calls to interfaces| + 
(|calls through dispatcher|  (variabilities of 
responsibilities called through dispatcher)) – |unused  
responsibilities in interfaces|  10,  

sf2 = |calls between responsibilities in different classes, 
that do not happen through a pattern|, 

sf3 =  (|dependingResponsibilities within same class| 
 parameterSize + ( |usedResponsibilities in same 

class|  parameterSize + |dependingResponsibilities in 
same class|  parameterSize)),  

sf4 =  ClassInstabilities + (|dispatcherCalls| + 
|serverCalls|)  callCosts, and 

sf5 = |classes| + |interfaces|. 

The multiplier 10 in sf1 means that having unused 
responsibilities in an interface is almost an architecture law, and 
should be more heavily penalized. 

5. EXPERIMENTS 
In this section we present the results from the preliminary 
experiments done with our approach, using the example system 



introduced in subsection 4.1. The calculated quality value for 
each curve is the average value from five test runs.  

The SA algorithm was run with different starting temperatures 
and cooling ratios to determine what kind of effect they would 
have on the quality of the produced architecture and the actual 
UML diagrams. All tests were made with the constant r set to 
20. The weights for all sub-functions of the quality evaluation 
function were set to the same (i.e., all weights wi were set to 10). 
The run time for tests with a starting temperature of 7500 and 
cooling factor of 0.05 was approximately 15 minutes. 

The “standard” starting temperature was chosen to be 7500 with 
which the tests with different ratios were run and the “standard” 
cooling ratio was chosen to be 0.05 with which tests with 
different start temperatures were run.  

Figure 2 depicts the quality curve of the “standard” test run with 
starting temperature 7500 and cooling ratio 0.05. As can be seen, 
the development of quality is quite slow in the beginning, but 
develops rapidly after the temperature cools below 200. The 
quality function also achieves very high values. 
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Figure 2.  SA curve for slow annealing 

 
In Figure 3 the cooling ratio was increased to 0.15, thus resulting 
in faster annealing. In this case the development of the quality 
curve is almost non-existent until the temperature cools down to 
about 100, after which the curve begins to develop, and there is 
an exceptionally rapid increase in the quality values after the 
temperature cools down to about 5. The tests with cooling factor 
0.15 took approximately 1-2 minutes. 
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Figure 3. SA curve for fast annealing 

 

Different start temperatures
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Figure 4. SA curves for different starting temperatures 

 
Different starting temperatures with cooling factor 0.05 were 
also tested, and the quality curves for temperatures 10000, 7500 
and 5000 are shown in Figure 4. As can be seen, the quality 
curves for all start temperatures end quite close to one another, 
and based on this there does not seem to be a clear advantage to 
start from an exceptionally high temperature, as similar end 
quality value can be achieved with lower temperatures. 
In addition to examining only SA, we combined the SA algorithm 
to our previous implementation of GA [13]. Notice that the test 
runs depicted in Figures 2-4 use the same fitness function as the 
genetic algorithm used in the rest of the paper (and the same 
used in our previous tests [13, 14]). 
First a test was run where the best individual achieved with the 
GA was given as a base for the SA. GA was run with a 
population size 100 and 250 generations. As seen in Figure 5, the 
quality curve of the GA portion of the test run achieves very low 
quality values compared to all the test runs made with the SA.  
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Figure 5. GA curve to be used as a base for SA 

 
Notice that the initial quality is actually same for the GA as for 
the SA tests, although the initial fitness values of the SA tests 
seem to begin closer to zero.  This is  due to the fact  that  the SA 
reaches such high quality values that the ranges for the curves 
are quite different, and small differences can not be seen in the 
SA graphs. The SA was run with a cooling factor 0.15 and a 
starting temperature of 2500. The fast annealing and low starting 
temperature were chosen as the idea was that the GA should 
have already done some basic work with achieving a quality 



architecture, and thus there should not be a need to give the SA 
algorithm excessive time to operate with the architecture. 
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Figure 6. SA curve when best result from the GA used as a 

base solution 
Figure 6 shows the quality curve for SA portion of the GA-SA 
test. As can be seen, the quality values stay very low for quite a 
long time, and only start to noticeably increase after the 
temperature has cooled down to approximately 30. After this the 
quality values start to significantly increase, but the end values 
are much lower than those achieved with plain SA. The runtime 
of the GA was approximately 1-2 minutes, and as runtime of the 
SA another minute, this experiment was quite fast. 
Finally, tests were made were the result of a SA run was used as 
a base for the start population given for the GA. Again, the 
cooling factor for the SA was set to 0.15 and the starting 
temperature at 2500, as now the genetic algorithm would 
continue to develop and it was not  necessary to even attempt a 
near-perfect solution only through the SA approach. 
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Figure 7. SA curve to be used as a base for GA 

 
Figure 7 shows the quality curve for the SA portion of the test 
runs. As can be seen, there is rapid development at a very late 
stage, but the quality values stay relatively low compared to 
other simulated annealing runs made with slower annealing or 
higher starting temperatures. However, the quality values are 
already higher at this point than in Figure 7 with the approach 
where the GA was used as a base for the simulated annealing.  

Figure 8 shows the curve of the GA portion of the SA-GA test. 
The quality values start to develop immediately, and seem to 
reach an optimum quite early, only after some 75 generations.  
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Figure 8. GA curve when the SA result is used as a base for 
the start population. 
 
The quality values are also higher than in any other test done 
with either GA or simulated annealing. This suggests that using 
simulated annealing as a basis for genetic algorithm would be an 
exceptionally promising branch of research to continue in terms 
of software architecture design. The drawback to this approach 
is, however, that the runtime for each test was the highest of all, 
as each run took over an hour. 

6. DISCUSSION 
In Section 5 we presented the quality curves of different 
experiments made with the simulated annealing algorithm. 
However, as discussed in Section 4.3, evaluating software 
architecture is extremely difficult, and even more so when the 
evaluation must rely on raw numbers. Thus, the actual UML 
graphs given as output should also be examined to get a 
wholesome idea of whether the results with extreme quality 
values are actually good. The evaluation of these graphs is bound 
to be subjective, but some general guidelines were used as to 
whether to consider one design better than the other. Firstly, use 
of patterns should be “sensible”. Secondly, there should not be 
any “god classes”, nor should each responsibility be in a class of 
its own, but some sensible grouping should be seen. Finally, and 
most importantly, the dependencies between classes must be 
“structured”. Failing in the first two points will definitely result 
in an overall messy graph, if the dispatcher is used without 
caution, there are patterns used everywhere and each 
responsibility is in a class of its own. This will produce a graph 
that will also fail in the third point and will be extremely 
unpleasant to interpret. 

When examining the graphs achieved by using only simulated 
annealing, it could be seen that the high quality values were 
achieved by excessive use of the dispatcher architecture style. 
Especially in the test runs were the starting temperature was 
10000 (and the cooling factor 0.05), nearly every dependency 
between the responsibilities was communicated through the 
message dispatcher, the responsibilities were nearly all in their 
own classes, and there was heavy use of the proxy and strategy 
patterns. With lower starting temperatures the use of the 
dispatcher was somewhat more restricted, and in the tests with a 
temperature of 5000, some bigger classes could already be seen, 
which clarified the graph to some extent as there were not as 
many dependencies.  



As for the different cooling factors, slower annealing seems to 
favor the message dispatcher style, while the tests with a larger 
cooling factor (i.e., faster annealing) favored the strategy and 
proxy patterns more. The dispatcher was also used, but not as 
much, and the relative amount of the other patterns was bigger.  

The graphs achieved with using a GA base and continuing to 
develop that solution with the simulated annealing were 
inconsistent in quality. Some graphs were extremely “messy”, 
while a few contained some structure. This could be seen as a 
result from the GA solution containing larger classes, as was 
seen in results obtained by using only GA. This also reflects the 
fundamental problem of using software metrics: although the 
used metrics, modifiability and efficiency, gained steadily 
improving values as measured by the fitness function, the overall 
“goodness” of the solutions as evaluated by a human observer 
did not improved  accordingly. That is, the metrics do not always 
catch something essential in the architectures. 

Finally, the approach using SA as a base for GA, which gave the 
highest quality values, also performed the best from all the 
approaches using SA. Using the GA to refine the solution 
achieved by the SA had a “structuring” effect on the architecture. 
Responsibilities were better grouped in classes, the proxy and 
strategy patterns that were used were clear, and although the 
message dispatcher was still very central in the solutions, the 
connections through it were more “structured”, and the overall 
appearance of the UML graph was noticeably better than in the 
results achieved with plain simulated annealing. 

7. CONCLUSIONS 
We have presented an approach that uses SA in software 
architecture design. A responsibility dependency graph is given 
as input and architecture styles and design patterns are used as 
transformations when searching for a better solution in the 
neighborhood. The solution is evaluated with regard to quality 
and efficiency. The experimental results achieved with this 
approach show that although extremely high quality values are 
achieved with this approach, their “true” quality as evaluated by 
examining the UML class diagrams is not actually as good. 
However, when combining the solution achieved with SA with a 
GA implementation, the actual quality of the produced solutions 
increases as well as the calculated metric values. This would 
suggest that further work should be done with studying the 
combination of these two algorithms in software architecture 
design. Studying the definition of evaluation functions for 
simulated annealing and genetic algorithm should be done as 
well, as using the same function apparently gives quite different 
types of solutions when using the different algorithms.  

Our future work attend to these questions as well as deriving real 
test cases to further evaluate the approach, and adding more 
design patterns to cover a larger search space of possible 
architectures. We also plan to implement a multi-objective 
fitness function primarily for the GA implementation. 
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