

Outi Räihä, Erkki Mäkinen and Timo Poranen

Using Simulated Annealing for
Producing Software Architectures

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

D‐2009‐2

TAMPERE 2009

UNIVERSITY OF TAMPERE
DEPARTMENT OF COMPUTER SCIENCES
SERIES OF PUBLICATIONS D – NET PUBLICATIONS
D‐2009‐2, APRIL 2009

Outi Räihä, Erkki Mäkinen and Timo Poranen

Using Simulated Annealing for
Producing Software Architectures

DEPARTMENT OF COMPUTER SCIENCES
FIN‐33014 UNIVERSITY OF TAMPERE

ISBN 978‐951‐44‐7690‐7
ISSN 1795‐4274

Using Simulated Annealing for Producing Software
Architectures

Outi Räihä
Tampere University of Technology

P.O.Box 553
FIN-33101 Tampere, Finland

+358-50-5342813

outi.raiha@uta.fi

Erkki Mäkinen
University of Tampere

Department of Computer Sciences
FIN-33014 University of Tampere,

Finland

em@cs.uta.fi

Timo Poranen
University of Tampere

Department of Computer Sciences
FIN-33014 University of Tampere,

Finland

tp@cs.uta.fi

ABSTRACT
Automatic design of software architecture by use of genetic
algorithms has already been shown to be feasible. A natural
problem is to augment – if not replace – genetic algorithms with
some other search method in the process of searching good
architectures. The present paper studies the possibilities of
simulated annealing in designing software architecture. We start
from functional requirements given as a graph of functional
responsibilities and consider two quality attributes, modifiability
and efficiency. It is concluded that simulated annealing as such
does not produce “natural” architectures, but it is useful as a
method of producing initial populations for genetic algorithms.

Categories and Subject Descriptors
D.2.10. [Software Engineering]: Design; D.2.11. [Software
Engineering]: Software Architectures

General Terms
Algorithms, Design, Experimentation

Keywords
Simulated annealing, search-based software design

1. INTRODUCTION
The ultimate goal of software engineering is to be able to
automatically produce software systems based on their
requirements. For the time being, we pass the synthesis of
executable programs, and concentrate on the automated
derivation of architectural designs of software systems. This is
possible because architectural design largely means the
application of known standard solutions in a combination that
optimizes the quality properties (like modifiability and
efficiency) of the software system. These standard solutions are
well documented as architectural styles [16] and design patterns

[6]. In addition, architectural design is guided by general
principles like decomposition and usage of interfaces.

Genetic algorithms (GAs) are shown to be a feasible method for
producing software architectures from functional requirements
[14, 15]. It is then natural to ask if other search methods are
capable of producing equally good architectures alone or in co-
operation with genetic algorithms. The purpose of the present
paper is to study the possibilities of simulated annealing in the
process of searching good architectures when functional
requirements are given.

Contrary to genetic algorithms, simulated annealing (SA) is a
local search method which intensively uses the concept of
neighborhood, i.e., the set of possible solutions that are near to
the current solution. The neighborhood is defined via the
transformations that change an element of the search space (in
our application, software architecture) to another. In our
application the transformations mean implementing a design
pattern or an architectural style.

This paper proceeds as follows. In Section 2 we sketch current
research in the field of search algorithms in software design that
is relevant for the present paper. In Section 3 we cover the basics
of implementing a simulated annealing algorithm. In Section 4
we introduce our method by defining the input for the SA
algorithm, the transformations and the evaluation function. In
Section 5 we present the results from our experiments related to
an e-home application. In Section 6 we discuss the findings and
in Section 7 we give a conclusion of our results.

2. RELATED WORK
Traditionally, search-based software engineering has focused on
problems like software clustering and refactoring, see, e.g., [5,
8]. More recently, approaches dealing with higher level
structural units, such as patterns, have gained more interest. For
example, Amoui et al. [1] have applied genetic algorithms for
finding the optimal sequence of design pattern transformations to
increase the reusability of a software system.

Simons and Parmee [17, 18] take use cases as the starting point
for system specification. Data is assigned to attributes and
actions to methods, and a set of uses is defined between the two
sets. The notion of class is used to group methods and
attributes. Each class must contain at least one attribute and at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8-12, 2009, Montréal, Canada.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

least one method. Design solutions are encoded directly into an
object-oriented programming language.

Räihä et al. [14] have taken a more advanced approach to
designing software architecture than Simons and Parmee [17] by
starting the design from a responsibility dependency graph and
developing the architecture further than the class distribution of
actions and data. A GA is used for the automation of design. In
this solution, each responsibility is represented by a supergene
and a chromosome is a collection of supergenes. The supergene
contains information regarding the responsibility, such as
dependencies of other responsibilities, and evaluated parameters
such as execution time and variability. Mutations are
implemented as adding or removing an architectural design
pattern or an interface or splitting or joining class(es).

Räihä et al. [15] have also applied genetic algorithms in model
transformations that can be understood as pattern-based
refinements. In MDA (Model Driven Architecture), such
transformations can be exploited for deriving a Platform
Independent Model from a Computationally Independent Model.
The approach uses design patterns as the basis of mutations and
exploits various quality metrics for deriving a fitness function.
They give a genetic representation of models and propose
transformations for them. The results suggest that genetic
algorithms provide a feasible vehicle for model transformations,
leading to convergent and reasonably fast transformation process.

Research has also been made on identifying concept boundaries
and thus automating software comprehension [7] and re-
packaging software [3], which can be seen as finding working
subsets of an existing architecture. Search-based software design
is widely covered in a survey by Räihä [13].

3. SIMULATED ANNEALING
The SA algorithm starts from an initial solution which is tried to
be improved during the annealing process by searching and
selecting other solutions from the neighborhood of the current
solution. There are several parameters that guide the annealing.
The search begins with initial temperature t0 and ends when the
temperature t is decreased to the frozen temperature t1, where

t1 t0. The temperature gives the probability of choosing
solutions that make the current solution worse. A solution that
worsens the current solution by , is accepted to be the new
current solution if a randomly generated real i is less than or
equal to e /t. If a solution improves the current solution, it is
accepted directly without a test. A constant r is used to determine
when temperature is decreased by multiplying the current
temperature by a cooling ratio , where 0 1.

The SA has been successfully applied for numerous
combinatorial optimization problems, for an instructive
introduction to the use of simulated annealing as a tool for
experimental algorithmics, see [9, 2]. The idea for combinatorial
optimization is generalized by Kirkpatrick et al. [10]. To
determine good parameters for a problem needs often
experimental analysis. There are also adaptive techniques for
detecting the parameters [11].

4. METHOD
We begin with a set of responsibilities (requirements) that can be
given some relative values regarding modifiability and efficiency.
Using the information given on the dependencies between the
responsibilities, this set is then formed into a responsibility
dependency graph. The graph is encoded as to a form that can be
processed by the selected search algorithm (implemented with
Java). The algorithm produces software architecture for the given
requirements by implementing selected architecture styles and
design pattern, and produces a UML class diagram as the result.

4.1 Responsibility Dependency Graph
A responsibility dependency graph gives the functional
requirements of the system in terms of responsibilities. A
responsibility is either a task to be carried out by the system (or
some part of it), or a data item that has to be managed by the
system (or some part of it). Each node in the graph represents a
responsibility, and each directed edge represents a dependency
between the two responsibilities. Here a dependency means that
the source responsibility relies on the target responsibility. In
order to evaluate the system after the model has been subjected
to transformation, some attributes of the responsibilities are also
given, such as variability, parameter size and time consumption.
The values for these attributes may be sometimes hard to
determine at the requirements analysis stage, but the more
accurately these can be estimated, the better will be the result.
The given values for the attributes are relative, rather than
absolute.

In our work, we have used an e-home [12] as an example system.
It contains 52 responsibilities and 90 dependencies between
them. A part of the responsibility dependency graph, depicting
the drape control component of the example system, is given in
Figure 1, where some sample properties (variability, parameter
size, time consumption) are marked in the nodes. The drapeState
node is marked with a thicker circle, as it is a data manager
responsibility. The CalculateOptimalDrape responsibility is a
good example of how and why the certain attributes are
evaluated: its variability is 3, as the optimal drape position can
be calculated differently in different houses and according to
different preferences. As it is a heavy operation, also its
parameter size (6) and time consumption (90) are among the
highest values of those shown here. Responsibilities with such
high attribute values play an important role when constructing
quality architecture as their placement has a bigger impact on the
quality value.

Figure 1. A fragment of the responsibility dependency graph

UI
2,2,10

StopDrape
Motor
1,1,50

RunDrape
Motor
1,2,60

Calculate
Optimal
Drape
3, 6, 90

drapeState

1,2,10

Measure
Drape

Position
1, 7, 80

ShowDrape
Position
1, 5, 70

4.2 Transformations
An architecture is transformed (i.e., one of its neighbors is
found) by implementing architecture styles and design patterns to
a given solution. In our approach, decomposition is also regarded
as an architectural pattern. The patterns we have chosen include
very high-level architectural styles [16] (dispatcher and client-
server), medium-level design patterns [6] (façade and mediator),
and low-level design patterns [6] (strategy and proxy). The
transformations are implemented in pairs of introducing or
removing a pattern. This ensures a wider traverse through the
search space, as while implementing a pattern might improve the
quality of architecture at one point, it might become redundant
over the course of development. The dispatcher architecture style
makes a small exception to this rule: the actual dispatcher must
first be introduced to the system, after which the responsibilities
can communicate through it. The transformations are the
following:

 split a class /merge two classes

 introduce/remove message dispatcher

 introduce/remove link to dispatcher

 introduce/remove server

 introduce/remove façade

 introduce/remove mediator

 introduce/remove strategy

 introduce/remove proxy.

However, it is possible that during a transformation, an existing
pattern may be broken. Because of this, after each
transformation, the resulting solution is subjected to a corrective
operation, which ensures that the architecture stays coherent. In
addition to ensuring that the patterns present in the system stay
coherent and “legal”, the corrective function also checks that the
model conforms to certain architectural laws. These laws demand
uniform calls between two classes (e.g., through an interface or a
dispatcher), and state some basic rules regarding architectures,
e.g., no responsibility can implement more than one interface.
These laws ensure that no anomalies are brought to the
architecture.

4.3 Evaluation
Selecting an appropriate evaluation function is probably the most
demanding task with any search algorithm application when
there is no clear value to measure in the solutions. In the case of
software architecture, evaluation is especially difficult. In real
world, evaluation of software architecture is almost always done
manually by human designers, and metric calculations are only
used as guidelines. However, for a search algorithm to be able to
evaluate the architecture, a purely numerical fitness value must
be calculated.

In a fully automated approach, no human interception is allowed,
and thus the evaluation function needs to be based on metrics.
The selection of metrics may be as arguable as the evaluations of
two different architects on a single software architecture. The
reasoning behind the selected metrics in this approach is that

they have been widely used and recognized to accurately measure
some quality aspects of software architecture. However, the
combination of metrics and multiple optimization is another
problem entirely, as not many quality values can be optimized
simultaneously.

The fitness function is based on software product metrics, most
of which are from the metrics suite introduced by Chidamber and
Kemerer [4]. These metrics, especially coupling and cohesion,
have been used as a starting point for the fitness function, and
have been further developed and grouped to achieve clear “sub-
functions” for modifiability and efficiency, both of which are
measured with a positive and negative metric. The biggest
modifications to the basic metrics include taking into account the
positive effect of interfaces and the dispatcher and client-server
architecture styles in terms of modifiability, as well as the
negative effect of the dispatcher and server in terms of efficiency.
A complexity metric is added to penalize having many classes
and interfaces as well as extremely large classes.

Dividing the evaluation function into sub-functions answers the
demands of the real world. Hardly any architecture can be
optimized from all quality viewpoints, but some viewpoints are
ranked higher than others, depending on the demands regarding
the architecture. By separating efficiency and modifiability,
which are especially difficult to optimize simultaneously, we can
assign a bigger weight to the more desired quality aspect. When
wi is the weight for the respective sub-function sfi, the evaluation
function f(x) for solution x can be expressed as

f(x) = w1 sf1 – w2 sf2 + w3 sf3 – w4 sf4 – w5 sf5.

Here, sf1 measures positive modifiability, sf2 negative
modifiability, sf3 positive efficiency, sf4 negative efficiency and
sf5 complexity. The sub-functions are defined as follows (|X|
denotes the cardinality of X):

sf1 = |interface implementors| + |calls to interfaces| +
(|calls through dispatcher| (variabilities of
responsibilities called through dispatcher)) – |unused
responsibilities in interfaces| 10,

sf2 = |calls between responsibilities in different classes,
that do not happen through a pattern|,

sf3 = (|dependingResponsibilities within same class|
 parameterSize + (|usedResponsibilities in same

class| parameterSize + |dependingResponsibilities in
same class| parameterSize)),

sf4 = ClassInstabilities + (|dispatcherCalls| +
|serverCalls|) callCosts, and

sf5 = |classes| + |interfaces|.

The multiplier 10 in sf1 means that having unused
responsibilities in an interface is almost an architecture law, and
should be more heavily penalized.

5. EXPERIMENTS
In this section we present the results from the preliminary
experiments done with our approach, using the example system

introduced in subsection 4.1. The calculated quality value for
each curve is the average value from five test runs.

The SA algorithm was run with different starting temperatures
and cooling ratios to determine what kind of effect they would
have on the quality of the produced architecture and the actual
UML diagrams. All tests were made with the constant r set to
20. The weights for all sub-functions of the quality evaluation
function were set to the same (i.e., all weights wi were set to 10).
The run time for tests with a starting temperature of 7500 and
cooling factor of 0.05 was approximately 15 minutes.

The “standard” starting temperature was chosen to be 7500 with
which the tests with different ratios were run and the “standard”
cooling ratio was chosen to be 0.05 with which tests with
different start temperatures were run.

Figure 2 depicts the quality curve of the “standard” test run with
starting temperature 7500 and cooling ratio 0.05. As can be seen,
the development of quality is quite slow in the beginning, but
develops rapidly after the temperature cools below 200. The
quality function also achieves very high values.

0.05 - 7500

-1.00E+09
0.00E+00
1.00E+09
2.00E+09
3.00E+09
4.00E+09
5.00E+09
6.00E+09
7.00E+09
8.00E+09

75
00

40
52

.7
0

20
80

.4
2

10
67

.9
7

54
8.

23

28
1.

43

14
4.

47

74
.1

6

38
.0

7

19
.5

4

10
.0

3

5.
15

2.
64

1.
36

Temperature

Q
ua

lit
y

SA

Figure 2. SA curve for slow annealing

In Figure 3 the cooling ratio was increased to 0.15, thus resulting
in faster annealing. In this case the development of the quality
curve is almost non-existent until the temperature cools down to
about 100, after which the curve begins to develop, and there is
an exceptionally rapid increase in the quality values after the
temperature cools down to about 5. The tests with cooling factor
0.15 took approximately 1-2 minutes.

0.15 - 7500

-2.00E+07
0.00E+00
2.00E+07
4.00E+07
6.00E+07
8.00E+07
1.00E+08
1.20E+08
1.40E+08
1.60E+08

75
00

46
05

.9
4

24
04

.3
3

12
55

.0
7

65
5.

16

34
2.

00

17
8.

52

93
.1

9

48
.6

5

25
.3

9

13
.2

6

6.
92

3.
61

1.
89

Temperature

Q
ua

lit
y

SA

Figure 3. SA curve for fast annealing

Different start temperatures

-1.00E+09
0.00E+00
1.00E+09
2.00E+09
3.00E+09
4.00E+09
5.00E+09
6.00E+09
7.00E+09
8.00E+09
9.00E+09

10
00

0

51
33

.4
2

25
03

.4
4

12
20

.8
7

59
5.

39

29
0.

35

14
1.

60

69
.0

5

33
.6

8

16
.4

2

8.
01

3.
91

Temperature

Fi
tn

es
s 5000

7500
10000

Figure 4. SA curves for different starting temperatures

Different starting temperatures with cooling factor 0.05 were
also tested, and the quality curves for temperatures 10000, 7500
and 5000 are shown in Figure 4. As can be seen, the quality
curves for all start temperatures end quite close to one another,
and based on this there does not seem to be a clear advantage to
start from an exceptionally high temperature, as similar end
quality value can be achieved with lower temperatures.
In addition to examining only SA, we combined the SA algorithm
to our previous implementation of GA [13]. Notice that the test
runs depicted in Figures 2-4 use the same fitness function as the
genetic algorithm used in the rest of the paper (and the same
used in our previous tests [13, 14]).
First a test was run where the best individual achieved with the
GA was given as a base for the SA. GA was run with a
population size 100 and 250 generations. As seen in Figure 5, the
quality curve of the GA portion of the test run achieves very low
quality values compared to all the test runs made with the SA.

GA - SA

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

Generation

Q
ua

lit
y

GA

Figure 5. GA curve to be used as a base for SA

Notice that the initial quality is actually same for the GA as for
the SA tests, although the initial fitness values of the SA tests
seem to begin closer to zero. This is due to the fact that the SA
reaches such high quality values that the ranges for the curves
are quite different, and small differences can not be seen in the
SA graphs. The SA was run with a cooling factor 0.15 and a
starting temperature of 2500. The fast annealing and low starting
temperature were chosen as the idea was that the GA should
have already done some basic work with achieving a quality

architecture, and thus there should not be a need to give the SA
algorithm excessive time to operate with the architecture.

GA -SA

-5.00E+06
0.00E+00
5.00E+06
1.00E+07
1.50E+07
2.00E+07
2.50E+07
3.00E+07

Te
m

pe
ra

tu
re

15
35

.3
1

80
1.

44

41
8.

36

21
8.

39

11
4.

00

59
.5

1

31
.0

6

16
.2

2

8.
46

4.
42

2.
31

1.
20

Temperature

Q
ua

lit
y

SA

Figure 6. SA curve when best result from the GA used as a

base solution
Figure 6 shows the quality curve for SA portion of the GA-SA
test. As can be seen, the quality values stay very low for quite a
long time, and only start to noticeably increase after the
temperature has cooled down to approximately 30. After this the
quality values start to significantly increase, but the end values
are much lower than those achieved with plain SA. The runtime
of the GA was approximately 1-2 minutes, and as runtime of the
SA another minute, this experiment was quite fast.
Finally, tests were made were the result of a SA run was used as
a base for the start population given for the GA. Again, the
cooling factor for the SA was set to 0.15 and the starting
temperature at 2500, as now the genetic algorithm would
continue to develop and it was not necessary to even attempt a
near-perfect solution only through the SA approach.

SA-GA

-2.00E+07
0.00E+00
2.00E+07
4.00E+07
6.00E+07
8.00E+07
1.00E+08

Te
m

pe
ra

tu
re

15
35

.3
1

80
1.

44

41
8.

36

21
8.

39

11
4.

00

59
.5

1

31
.0

6

16
.2

2

8.
46

4.
42

2.
31

1.
20

Temperature

Q
ua

lit
y

SA

Figure 7. SA curve to be used as a base for GA

Figure 7 shows the quality curve for the SA portion of the test
runs. As can be seen, there is rapid development at a very late
stage, but the quality values stay relatively low compared to
other simulated annealing runs made with slower annealing or
higher starting temperatures. However, the quality values are
already higher at this point than in Figure 7 with the approach
where the GA was used as a base for the simulated annealing.

Figure 8 shows the curve of the GA portion of the SA-GA test.
The quality values start to develop immediately, and seem to
reach an optimum quite early, only after some 75 generations.

SA-GA

0.00E+00

2.00E+09

4.00E+09

6.00E+09

8.00E+09

1.00E+10

0 19 38 57 76 95 11
4

13
3

15
2

17
1

19
0

20
9

22
8

24
7

Generation

Q
ua

lit
y

GA

Figure 8. GA curve when the SA result is used as a base for
the start population.

The quality values are also higher than in any other test done
with either GA or simulated annealing. This suggests that using
simulated annealing as a basis for genetic algorithm would be an
exceptionally promising branch of research to continue in terms
of software architecture design. The drawback to this approach
is, however, that the runtime for each test was the highest of all,
as each run took over an hour.

6. DISCUSSION
In Section 5 we presented the quality curves of different
experiments made with the simulated annealing algorithm.
However, as discussed in Section 4.3, evaluating software
architecture is extremely difficult, and even more so when the
evaluation must rely on raw numbers. Thus, the actual UML
graphs given as output should also be examined to get a
wholesome idea of whether the results with extreme quality
values are actually good. The evaluation of these graphs is bound
to be subjective, but some general guidelines were used as to
whether to consider one design better than the other. Firstly, use
of patterns should be “sensible”. Secondly, there should not be
any “god classes”, nor should each responsibility be in a class of
its own, but some sensible grouping should be seen. Finally, and
most importantly, the dependencies between classes must be
“structured”. Failing in the first two points will definitely result
in an overall messy graph, if the dispatcher is used without
caution, there are patterns used everywhere and each
responsibility is in a class of its own. This will produce a graph
that will also fail in the third point and will be extremely
unpleasant to interpret.

When examining the graphs achieved by using only simulated
annealing, it could be seen that the high quality values were
achieved by excessive use of the dispatcher architecture style.
Especially in the test runs were the starting temperature was
10000 (and the cooling factor 0.05), nearly every dependency
between the responsibilities was communicated through the
message dispatcher, the responsibilities were nearly all in their
own classes, and there was heavy use of the proxy and strategy
patterns. With lower starting temperatures the use of the
dispatcher was somewhat more restricted, and in the tests with a
temperature of 5000, some bigger classes could already be seen,
which clarified the graph to some extent as there were not as
many dependencies.

As for the different cooling factors, slower annealing seems to
favor the message dispatcher style, while the tests with a larger
cooling factor (i.e., faster annealing) favored the strategy and
proxy patterns more. The dispatcher was also used, but not as
much, and the relative amount of the other patterns was bigger.

The graphs achieved with using a GA base and continuing to
develop that solution with the simulated annealing were
inconsistent in quality. Some graphs were extremely “messy”,
while a few contained some structure. This could be seen as a
result from the GA solution containing larger classes, as was
seen in results obtained by using only GA. This also reflects the
fundamental problem of using software metrics: although the
used metrics, modifiability and efficiency, gained steadily
improving values as measured by the fitness function, the overall
“goodness” of the solutions as evaluated by a human observer
did not improved accordingly. That is, the metrics do not always
catch something essential in the architectures.

Finally, the approach using SA as a base for GA, which gave the
highest quality values, also performed the best from all the
approaches using SA. Using the GA to refine the solution
achieved by the SA had a “structuring” effect on the architecture.
Responsibilities were better grouped in classes, the proxy and
strategy patterns that were used were clear, and although the
message dispatcher was still very central in the solutions, the
connections through it were more “structured”, and the overall
appearance of the UML graph was noticeably better than in the
results achieved with plain simulated annealing.

7. CONCLUSIONS
We have presented an approach that uses SA in software
architecture design. A responsibility dependency graph is given
as input and architecture styles and design patterns are used as
transformations when searching for a better solution in the
neighborhood. The solution is evaluated with regard to quality
and efficiency. The experimental results achieved with this
approach show that although extremely high quality values are
achieved with this approach, their “true” quality as evaluated by
examining the UML class diagrams is not actually as good.
However, when combining the solution achieved with SA with a
GA implementation, the actual quality of the produced solutions
increases as well as the calculated metric values. This would
suggest that further work should be done with studying the
combination of these two algorithms in software architecture
design. Studying the definition of evaluation functions for
simulated annealing and genetic algorithm should be done as
well, as using the same function apparently gives quite different
types of solutions when using the different algorithms.

Our future work attend to these questions as well as deriving real
test cases to further evaluate the approach, and adding more
design patterns to cover a larger search space of possible
architectures. We also plan to implement a multi-objective
fitness function primarily for the GA implementation.

8. REFERENCES
[1] Amoui, M., Mirarab, S., Ansari, S., and Lucas, C. “A

genetic algorithm approach to design evolution using design
pattern transformation”, International Journal of

Information Technology and Intelligent Computing 1, 2006,
pp. 235-245.

[2] Aragon, C.R., Johnson, D.S., McGeoch, L.A., and Schevon,
C. “Optimization by simulated annealing: An experimental
evaluation; part II, graph coloring and number partitioning”,
Operations Research, 39(3), 1991, pp. 378-406.

[3] Bodhuin, T., Di Penta, M., and Troiano, L. A search-based
approach for dynamically re-packaging downloadable
applications, In: Proceedings of the Conference of the center
for advanced studies on collaborative research
(CASCON’07), 2007, pp. 27-41.

[4] Chidamber, S.R., and Kemerer, C.F. “A metrics suite for
object oriented design.” IEEE Transactions on Software
Engineering 20(6), 1994, pp. 476-492.

[5] Clarke, J., Dolado, J.J., Harman, M., Hierons, R. M., Jones,
B., Lumkin, M., Mitchell, B., Mancoridis, S., Rees, K.,
Roper, M., and Shepperd, M. Reformulating Software
Engineering as a Search Problem, IEE Proceedings -
Software, 150 (3), 2003, pp. 161-175.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley. 1995.

[7] Gold, N., Harman, M., Li., Z., and Mahdavi, K. A search
based approach to overlapping concept boundaries. In
Proceedings of the 22nd International Conference on
Software Maintenance (ICSM 06), 2006, pp. 310-319.

[8] Harman, M., Hierons, R., and Proctor, M. A new
representation and crossover operator for search-based
optimization of software modularization. In: Proceedings of
the Genetic and Evolutionary Computation
Conference(GECCO 2002), 2002,pp. 1351–1358.

[9] Johnson, D. S., Aragon, C.R., McGeoch, L. A., and
Schevon, C. “Optimization by simulated annealing: An
experimental evaluation; part I, graph partitioning”
Operations Research, 37(6), 1989, pp. 865-892.

[10] Kirkpatrick, S., Gelatt, C., and Vecchi, M. Optimization by
simulated annealing, Science, 220, 1983, pp. 671-680.

[11] van Laarhoven, P. J. M., and Aarts, E. Simulated Annealing:
Theory and Applications, Kluwer, 1987.

[12] Räihä, O. Evolutionary Software Architecture Design,
University of Tampere, Department of Computer Sciences,
Report D-2008-11, 2008.

[13] Räihä, O. A survey on search-based software design.
University of Tampere, Department of Computer Sciences,
Report D-2009-1, 2009.

[14] Räihä, O., Koskimies, K., and Mäkinen, E. Genetic
Synthesis of Software Architecture, In: Proceedings of The
7th International Conference on Simulated Evolution and
Learning (SEAL’08), 2008, Springer LNCS 5361, pp. 565-
574.

[15] Räihä, O., Koskimies, K., Mäkinen, E., and Systä, T.
Pattern-Based Genetic Model Refinements in MDA, In:
Proceedings of the Nordic Workshop on Model-Driven

Engineering (NW-MoDE’08), Reykjavik, Iceland. University
of Iceland, 2008, pp. 129-144.

[16] Shaw, M. and Garlan, D. Software Architecture -
Perspectives on an Emerging Discipline, Prentice Hall,
1996.

[17] Simons, C.L. and Parmee, I.C. Single and multi-objective
genetic operators in object-oriented conceptual software
design. In: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO’07), 2007, pp. 1957-
1958.

[18] Simons, C.L. and Parmee, I.C. A cross-disciplinary
technology transfer for search-based evolutionary
computing: from engineering design to software engineering
design, In: Engineering Optimization 39 (5) 2007, pp. 631-
648.

