Outi Raiha

Evolutionary Software Architecture
Design

DEPARTMENT OF COMPUTER SCIENCES
UNIVERSITY OF TAMPERE

D-2008-11

TAMPERE 2008

UNIVERSITY OF TAMPERE

DEPARTMENT OF COMPUTER SCIENCES

SERIES OF PUBLICATIONS D — NET PUBLICATIONS
D-2008-11, SEPTEMBER 2008

Outi Raiha

Evolutionary Software Architecture
Design

DEPARTMENT OF COMPUTER SCIENCES
FIN-33014 UNIVERSITY OF TAMPERE

ISBN 978-951-44-7505-4
ISSN 1795-4274

Abstract

This thesis experiments with a novel approach to applying genetic algorithms in software
architecture design by giving the structure of an architecture at a highly abstract level.
Previoudy in the literature, genetic algorithms are used only to improve existing
architectures. The structure and evaluation of software architectures and the principles
of meta-heuristic search agorithms are introduced to give a basis to understand the
implementation. Current research in the field of search-based software engineering is
explored to give a perspective to the implementation presented in this thesis. The chosen
genetic construction of software architectures is based on a model which contains
information of a set of responshbilities and dependencies between them. An
implementation using this model is presented, as well as test results achieved from a case
study made on a sketch of an electronic home control system. The test results show that
quality results can be achieved using the selected approach and that the presented
implementation is a good starting point for future research.

Key words and terms:. search-based software engineering, genetic algorithms, software
architecture, software design

Contents

IO 1 04 (0o [F o1 o o IO TR 1
2. SOftWare arChitECIUIES.ccoieiieiieie ettt et e e e e nee e 3
2.1. The gtructure of an architeCture............oooeeeiiiii i 3

2.2, Standard SOIULIONS........cooviiiiiiie i eneeas 5
2.2.1. DESIGN PALEINS ... eeieiiiieiieieeieeeesieeeeseee et e st e e st e s ree e sreeeenneeeenes 5

2.2.2. ArChiteCtUre StYIES........evieiieie ettt 7

2.3. Evaluating an arChiteCtUIec.eeeiiiieiiiie e 9
2.3.1. Evaluation USING MELIICS.......ccuiuieaiieeesieeesieeeeieeeseeeessneeesseeeeesneee e 9

2.3.2. Evaluation using human eXPertiSe.........cceeeeuererieeesneeesniieeesiee e 14

3. Metaheuristic search algorithms...........oooiiiiiiiie s 16
3.1, Genetic algorithmsS.........ooueiiiie e 16

G 01 I O = 0o o] o TR RTRRRRN 17

G I VU = 1 0] USRI 18

3.1.3. CrOSSOVETceeeieeeitiee e ettt e et e et e e e e e e e e e e nne e e e e e nsneaeeennneaaens 18

3.1 4. FtNESS FUNCHION......eiieiiiie e 20

3.1.5. SElECtioN OPEIaLOrc.eeieiieee et 20

3.1.6. Executing agenetic algorithm ... 21

3.2. Tabu search and smulated annealingccoceeeiiieriniie e 23
32,1, TaADU SBAICN. ... 23

3.2.2. Simulated anNEaINGccoueeiiiieiiie e 24

4. Search algorithms in software engineeringoocveeeiieeeieee e 26
4.1. Search algorithmsin software deSign.........ccceevcueeeiiiee e 26
4.1.1. SOFftWare CIUSLENING ...cocveeeiiieeiiee et sneee e 26

4.1.2. SySteMSINEEGIatioNeeeiiieeiiiee et eneee s 30

4.1.3. SysStemMS refaCtoriNg.......ueeiveeeiieie it naeee e 31

4.1.4. Architecture develOpmENtoooiiieiiieeiiiee e 34

4.2. Search algorithmsin software analysis and testing..........ccceveeeeiieeniiiiee e, 37

5. Genetic construction of software architeCtures............ccccoeceeeiiienien e, 40
5.1. Architecture repreSentation...........ceeiieeeeiiee e 40

5.2, IMULBLIONS.eiiiiiie ettt ettt e et e e snb e e s nne e e enne e e e 41

R A O 05 Y OO TP PRPPI 44

5.4, ArChiteCIUrE WSoeiiiiie e 47

6. IMPIEMENLALION.c.tiii ettt e e e e snseeesnreeeas 49
6.1. Presenting the PrograiM.........ooeee et s saee e 49
B.1. 1. SIIUCKUIE. ...ttt e e e e e e e nnneaeen 49

6.1.2. AlQOrItRMS.......eiiiie e 52

ST ST == 111<. (= £ VU 59

6.2. EVAUSLION MELIICS......eiiiiiieiiiie ettt e e 60

6.2.1. EffICIENCY ...ceiiiiiiiiie e 61

6.2.2. MOAIfIaDIlity......ccceeeeiie e 62

7. EXPEIMENES ...ttt ettt e st e e e b e e s ne e e e nnseeeenseeennneeeas 64

7.1, FtNessS develOpMENTeiiieie e 64

7.2, EXaMPIE SOIULIONSoeeiiiiecieie e 69

7.3. Remarkson adjusting the parameters............occeveeeiiee e 76

S T O] o U T TSRS 78

8.1, Presenting the reSUILS.........ev i 78

8.2, SUCCESS BVAIUBLION.eeiiiiiieiiiie ettt 79

8.3, FULUFE WOIK ...ttt et 80

REFEIEICES ...eeiiiiiiiee e e e e e e e e st e e e e e sa e e e e e nnsaeeeeennnes 82
Appendices

Appendix A: Case study data
Appendix B: Fitness study parameters
Appendix C: Example solutions’ parameters

1. Introduction

The most constant thing in the field of software engineering today is that the field is
changing. Software systems become larger and more complex, while at the same time
the mobile industry is growing rapidly, calling for new techniques and intricate systems
to be implemented with limited resources. As software enterprises become multinational,
the need for shared systems also grows. As the systems grow in complexity, so does the
need for highly talented software architects to keep the systems under control, which is
not an easy task especially when thinking of dynamic systems with constantly changing
architectures. Clearly, some kind of automated method is needed in order to aid the
design of such dynamic architectures by giving the human architects suggestions and
starting points which they can then fine-tune into quality software architectures.

What could such a method be? What can be used to evolve modifiable, reusable and
efficient software architectures from complicated sets of requirements, especialy if the
architectures need to conform to changes in their environments? A precedent to this
problem can be found in nature, where complex species have evolved from simple
organisms, and are constantly able to adapt to changes in the environment. The evolution
happens through generations with the idea of the survival of the fittest: the ones with the
ability to survive will be able to produce new offspring who will then inherit the
properties needed for survival. Changes in species also occur through mutations, which
are the key to survival when the change in environment is so drastic that rapid adaptation
is needed, but happen also constantly at a lower level. However, the adaptation “project”
with species takes perhaps hundreds of generations and years, which is not acceptable in
the field of software engineering. Fortunately, a simulation can be done quite fast to
achieve similar results with the use of genetic algorithms.

Genetic algorithms operate with analogies to evolution in biology. As in biology a
chromosome keeps the “solution” to the question as to how certain properties of a
species work, a solution to a software engineering problem can be modeled as a
“chromosome” in order for it to be operated by a genetic algorithm. This model is then
atered by mutations, which change one specific feature, and crossovers which, as in
nature, combine the characteristics of two individuals in their offspring.

Genetic algorithms are suitable for modifying software architectures as they too have
certain constants which can be implemented in various ways. An architecture is based on
the requirements as to what the software system is supposed to do. The basic
architecture deals with the question of how the operations related to the requirements
are divided into components. When further developing architectures, mechanisms such
as interfaces and inheritance can adso be added to the design. Thus, the set of
requirements and their positioning in the system represents the basic individual, which
then evolves as positions of requirements are changed and mechanisms are added. As

2

there is theoretically an exponential amount of possible designs for a system, the use of
genetic algorithms to solve the problemis justified.

The common feature with all the current research activities on applying search
algorithms to architecture design is that a reasonably good architecture is needed as a
starting point, and the search algorithm merely attempts to improve this architecture with
respective to some quality metrics. This means that considerable effort is needed before
the algorithm can be executed, and as the base solution can be assumed as a standard
one, this also somewhat limits the possible solutions the algorithm can reach. This
restriction decreases the innovativeness of the method: if given the algorithm “free
hands’, it might be able to reach solutions that a human designer might not find at al,
but still have a high quality. Thus, an approach that only needs the basic requirements
(responsihilities) of the system would both save the initial work and give the algorithm a
chance for a more thorough traverse through the possible solutions.

In my thesis, | have further developed the approach of starting only with a set of
responsibilities: this approach was first introduced in my Master’ s thesis [R&iha, 2008]. |
have derived a responsibility dependency graph which is then given as input to a genetic
algorithm, which will produce a suggestion for the architecture of the given system as a
UML class diagram. | begin my thesis by presenting the structure and current evaluation
methods of software architectures in Chapter 2. In Chapter 3 | describe meta-heuristic
search algorithms, and especially give a thorough presentation of genetic algorithms. The
current research involved with the application of meta-heuristic search algorithms in
software engineering is surveyed in Chapter 4. In Chapters 5 and 6 | present my
implementation, first from a logical point of view, as to how an architecture can be
modeled for a genetic algorithm, and then from a practical view by giving a detailed
description of the implementation and the evaluation metrics used. Results from tests
where the implemented algorithm was used on a model of an electronic home control
system are presented in Chapter 7, and in Chapter 8 | present the outcome of this thesis
and my concluding remarks.

2. Software architectures

Software architecture is defined by the |IEEE Standard 1471-2000 [IEEE, 2000] as “the
fundamental organization of a system embodied in its components, their relationships to
each other and to the environment, and the principles guiding its design and evolution”.
Thus, software architecture defines the general structure of the software. An architecture
should always be described or modeled somehow, otherwise it does not exist. In reverse
engineering one tries to detect the architecture of software from the source code by
looking at what kind of packages it has, and by generating class diagrams from the code.
Normally, the architecture of software is designed before the actual implementation, as it
is possible to efficiently evaluate the architecture, and thus point out possible weaknesses
of the software before beginning the implementation.

The structure of architecture and the evaluation metrics presented in this chapter will
be used in Chapter 5, where | present how architectures can be modeled in order to
manipulate them with a genetic algorithm, and in Chapter 6, where | discuss the
evaluation methods used in the implementation. The studies surveyed in Chapter 4 also
use many of the metrics presented here as well as concepts concerning architectural
quality.

2.1. Thestructure of an architecture

As stated, software architecture describes the components of a software and the
relationships between these components. We must now consider what can be thought of
as a component, and what as arelationship.

A software component is defined as an individual and independent software unit that
offers its services through well-defined interfaces [Koskimies ja Mikkonen, 2005]. This
definition requires that the topics of dependency, usage and size are also dedlt with.
Firstly, a component should never be completely dependent of another component. A
component can, however, be dependent on services that are provided by some other
components, thus requiring an interface to those components. Secondly, a component
can be taken to use as a single unit with no regard to other software units if the
component is ill provided the services it needs. Thirdly, there are no generd
restrictions to the size of a component. A component can be extremely small, providing
only a few simple services, or it can contain a whole application. If the component is
very big and forms a significant sub-system within itself, it may be in order to describe
the architecture of that single component, although normally an architecture description
does not consider what the components entail [Koskimies ja Mikkonen, 2005].

When thinking of object-oriented design, the basic component provides some kind of
functionality to the system and consists of classes. Classes can be defined as abstract and
they can be inherited from each other. Classes interact with one another by either

4

straightforwardly calling operations from other classes or through interfaces. The
simplest component may only include one class. Because of this close relationship
between components and classes, architectures are often described with UML class
diagrams. Other components that are often present in the system, but do not provide
much functionality, are components such as databases, hardware drivers and message
dispatchers.

One of the key points in software engineering is to separate what one wants to
accomplish (the functionality provided by components) and how to accomplishit. Thisis
applied to software components in such a way that the implementation of a service that a
component provides should be separated from the abstraction of the service
components should not be directly dependent on one another, but on the abstraction of
the service that the component provides [Koskimies ja Mikkonen, 2005]. The
abstraction is presented as an interface that provides access to services to the
components that require the services in question. This corresponds to the idea that
interfaces may be either provided or required.

Interfaces include all the information about a service: the service's name, its
parameters and their types and the type of the possible result [Koskimies ja Mikkonen,
2005]. Interfaces have developed from abstract classes into their own program units.
Abstract classes and interfaces are till interlinked; by inheriting several concrete classes
from an abstract class one can thus give severa implementations to one interface
[Koskimies ja Mikkonen, 2005]. One component or class can aso implement several
interfaces.

There are severa ways for components to interact with one another. Most of these
methods are fine-tuned ways of how interfaces are used in order to consider the needs of
a specific type of application. | will briefly present these communication methods, as for
the purpose of this thesis, it is more important to be aware that such methods exist and
possibly recognize them from an architecture design than to know all the ins and outs of
these communication methods and to able to actively implement them. | will describe the
methods as they are presented by Koskimies and Mikkonen [2005].

Firstly, the interfaces a component provides may be divided into more detailed role-
interfaces, each role-interface responding to the specia need of the component requiring
that interface, instead of keeping all the services of the providing component in one big
interface. Secondly, when addressed with the problem of multiple components using
each other and thus creating a complex net of dependencies, one can use a mediator to
handle the interaction between the components. Thus, al the components only depend
on this one mediator, which is often a specialized interface. Thirdly, an even more
powerful method than the basic interface is forwarding. This means that the component
receiving a request for a service does not provide that service itself, but forwards the
request to another component, which then acts on it. Fourthly, the interaction between

5

components can be based on events. We can now think that asking for a service is the
event itself, and providing a service is reacting to the event. The component creating the
event is now the source and the component reacting to it is the observer. In this case
both components are providing and requesting an interface to communicate with each
other: the source component provides an interface through which the observer can
register as a service provider, and the observer provides an interface through which its
services can be provided.

| end this section with a brief summary. An architecture is based on the idea of
components and the relationships between them. Components provide services that other
components may need. This results in a dependency between components which is
idedlly handled with interfaces: the component needing a service requires an interface,
which the component offering the service then provides by implementing that interface.
How the interface is built, i.e. what kind of communication method is used, depends on
the application and its requirements.

2.2. Standard solutions

When designing an architecture, there are some commonly used architecture styles and
design patterns that can be used as general guidelines for the architecture. These styles
and guidelines all have their positive and negative aspects, so one should think what the
main problems in the system are, and then study the implementation of styles and design
patterns that are generally known to solve those problems. One does not necessarily
need to categorize an architecture as a set of the known styles or patterns, but if it can be
categorized, it usually indicates good structure in the architecture.

2.2.1. Dedgn patterns

A design pattern is used to solve a particular problem in the architecture. Design
patterns often appear in several parts of an architecture, and one architecture can contain
severa different patterns. The list of design patterns made by Gamma et al. [1995] is
recognized as the current standard in design pattern classification. This list contains over
20 patterns, which can be divided into creational patterns, structural patterns and
behavioral patterns. For the purpose of this thesis it is not necessary to introduce them
all, and thus only a few of the most common or relevant patterns are described in more
detail.

Firstly, from the category of creational patterns, there are the factory method and the
abstract factory method, which are common design patterns when one has a lot of
components that work together or have a similar purpose. When applying the abstract
factory method, an interface should be provided for creating families of related or
dependent objects without actually specifying their concrete classes [Gamma et al.,
1995]. This means that two or more concrete classes that are responsible for similar
objects will implement the same interface, through which these families of objects can be

6

dealt with. In the factory method an interface is aso used for creating an object, but
deciding the class that the object represents is left to subclasses [Gamma et al., 1995].
This means that the objects of a certain family al inherit the “base-object” of that family
in order to ensure that they contain the required properties.

These design methods are presented together as they are closely linked: abstract
factory classes are commonly implemented with factory methods. Although the abstract
factory method and the factory method are very commonly used in current architecture
design, | can imagine that automatically producing an architecture where such a pattern
could be found is a great challenge. These design patterns rely on the recognition of
similarities between objects and the ability to group objects by some standards.
However, similarities between objects are difficult to express formally, but are rather
something that experts can simply see. Thus, to train an algorithm to find such abstract
similarities will definitely need fine-tuned definitions of the objects and relations
presented to the algorithm.

Secondly, there is the composite method, which is a structura pattern, in which
objects are composed into tree structures to represent part-whole hierarchies. A
composite also alows clients treat individual objects and compositions of objects
uniformly [Gammaet al., 1995]. The composite pattern defines hierarchies consisting of
primitive objects and composite objects. Primitive objects can form composite objects,
which in turn can form more complex composite objects, and so on recursively [Gamma
et al., 1995]. Vice versa, all composite objects can be broken down to primitive objects.
The composite method goes well with the responsibility based approach used in this
thesis, as al responsbilities can be thought of as primitive objects or services, which
form composites that other composites use.

Thirdly, there is the Facgade pattern, which has implemented in this work, and is
therefore especially interesting. The Fagade is a structural pattern, and its intention is to
provide a unified interface to a set of interfaces in a subsystem [Gamma et al., 1995].
This will make the subsystem easier to use through the higher-level interface defined by
the Fagade. Structuring a system into subsystems reduces complexity, and a common
design godl is to minimize dependencies between the defined subsystems [Gamma et al.,
1995]. A fagade can ad in achieving this goal, and its proper placement can be
effectively measured by metrics dealing with complexity and the number of connections
between classes.

Finaly, | present the Strategy pattern, which has also been implemented. The
Strategy pattern is a behavioral pattern, which encapsulates an algorithm, thus making it
interchangeable and independent of the using client. A Strategy pattern can be applied,
e.g., when different variants of an algorithm need to be defined or there are severd
related classes that only differ in their behavior [Gamma et a., 1995]. From the
perspective of responsibilities, a strategy can be seen as well-placed if the responsibility

7

is highly variable. For example, measuring the position of drapes can be executed with
different algorithms that have the same outcome. In this case, a Strategy pattern would
very well fit in the system.

As automating the design of an architecture mainly deals with the structure of an
architecture, structura patterns are logically the ones that are most likely to be found
from the resulting architecture. Thus, structural patterns are the most interesting pattern
group from the viewpoint of this thess. Overal, structura patterns dea with how
classes and objects are composed to form larger structures. Structural class patterns
commonly solve problems with clever inheritance to achieve interfaces for
implementations, and structural object patterns describe how objects can be composed to
achieve new functionalities [Gamma et a., 1995]. Other structural design patterns
besides the composite pattern are, for example, the adapter pattern. In this pattern, an
incompatible interface is converted to let such classes work together that could not
before because of the “wrong” type of the provided interface. Another example is the
bridge pattern, which builds a “bridge’ between an abstraction and its implementation,
so they can vary independently [Gamma et al., 1995].

2.2.2. Architecture styles

Architecture styles have the same purpose as design patterns: they are used to solve a
problem in the design of the architecture. It is often difficult to make a difference
between design patterns and architectural styles, but the general guideline is that while
design patterns are used at a particular subsystem in the architecture, architecture styles
solve a problem regarding the whole architecture [Koskimies ja Mikkonen, 2005]. As
with design patterns, it is not necessary to go through all possible architecture styles, so
only the most interesting ones from this thesis' point of view are described with more
detail.

Firstly, | present the layered architecture. A layered architecture is composed of
levels that have been organized into an ascending order by some principle of abstraction
[Koskimies ja Mikkonen, 2005]. Thisis usually done so that the parts of the system that
are closer to the user have a lower level of abstraction than the parts that are closer to
the application. Because the levels of abstraction can often be hard to identify, the levels
or layers in the architecture are deduced by how different components use services from
other components. A higher level in the architecture uses services from a lower level
[Koskimies ja Mikkonen, 2005]. However, layered architectures are rarely so
straightforward. It is quite common that alayer is Smply passed in a service cdl, and, for
example, aserviceisrequired at the fifth level that is provided at the third level. It isalso
possible that a lower layer needs to call a service from an upper layer. Thisis, however,
a sign of a serious problem in the architecture. Layered architectures are very common,
and can be used in amost any system [Koskimies ja Mikkonen, 2005]. The layered
architecture model encourages a minimized design in terms of dependencies, for in the

8

ideal case, any layer only depends on layers below itself. This kind of architecture model
is also very easy to understand, as it divides the system to subsections at a high level
[Koskimies ja Mikkonen, 2005]. The layered architecture is something that is very
interesting from my viewpoint and that of thinking through responshilities. When having
a network of responsbilities, we can quite smply begin forming layers by placing the
responsibilities that do not depend from any other responsibilities at the bottom layer,
and going on until at the top level are the respongbilities that have a very long
dependency path behind them.

Secondly, there is the pipes and filters architectural style. It consists of processing
units (filters) and the connections (pipes) between them that carry the information that
needs to be processed. The role of pipes is to passively transport data which the filters
will actively process. The pipes and filters architecture is good for the kind of system
where the purpose is to mainly develop and process a common dataflow [Koskimies ja
Mikkonen, 2005]. To implement the pipes and filters architecture it requires that each
processing unit can be implemented independently: a unit can not depend on any of the
other processing units, and must only be able to understand the data that is brought to it
to process. The smplest form of a pipes and filters architecture is a pipeline architecture,
where the data moves straightforwardly from one processng unit to another along a
straight “conveyer belt”. There are two ways in operating this “conveyer belt”, to push
or pull. If we choose to push, then the unit that first generates the data will push it to the
second unit for processing, which will then continue to push to the next processing unit
and so on, until the data reaches the fina unit needing the “end product”, i.e. the
completely processed data unit. If we choose to pull the data, then the final unit needing
the data will “pull” data from the processing unit preceding it, which will then call for the
data from its preceding unit, and so on [Koskimies ja Mikkonen, 2005]. A pipes and
filters architecture can be useful from this thesis's viewpoint if the responsibilities we
work with all dea with the same kind of data, and merely have more fine-tuned
responsibilities regarding that data, or if they can be arranged in quite a straightforward
line, i.e., if the dependency graph does not have any cycles and a unique ending point can
be identified.

Finally, an architecture style especially used in this thesis is the message dispatcher
architecture, where a group of components communicate with each other through a
centered message dispatcher. All the components have a common interface that contains
all the operations that are needed in order to send and receive messages to and from the
dispatcher [Koskimies ja Mikkonen, 2005]. It is important to notice that now the
components only communicate with the dispatcher: although they send and receive
messages to and from other components, no component can actually “see” the message’s
path past the dispatcher. Thus, no component actually knows where its messages will
end up or where the messages it has recelved originate from. A message dispatcher

9

architecture suits well in a situation where the system has a large number of components
that need to communicate with each other, but there is not much information of the
quality or quantity of the messages sent between components [Koskimies ja Mikkonen,
2005]. A message dispatcher architecture is defined by the set of components
communicating with each other, the messages with which the components communicate,
the operations with which components react to messages, the rules with which the
components and messages are registered to the system, the rules on how the dispatcher
forwards messages to components and the model of concurrency [Koskimies ja
Mikkonen, 2005].

Other common architecture styles are service oriented architectures, such as the
client-server architecture, where client components ask for the services they need from
the server components. Client-server architecture is often thought as a distributed
system. Other, more specialized architecture styles are for example the model-view-
controller architecture or the interpreter architecture.

2.3. Evaluating an architecture

When evaluating a software architecture we must keep in mind that the architecture
under evaluation is, roughly stated, merely a picture of how the different components are
placed in the system and how they depend from one another. Thus, there is no absolute
method for evaluating an architecture; just as there is no absolute answer to the question
how good exactly a particular architecture is. Currently there are two kinds of methods
for software architecture evaluation. Firstly, there are metrics that can be used when one
knows the software in detail. These metrics often calculate the cohesion and coupling
between classes, so it must be known what kind of operations the classes include, and
how they are linked to each other. Secondly, there are methods to evauate the
architecture by the means of using the expertise of software engineers, going through
meetings and severa iterations when the architecture is broken down to pieces and the
analysts attempt to identify all the possible risks that can be related to the suggested
solution.

Whatever method is used to evaluate architecture, one thing must be kept in mind:
no architecture can be evaluated from an overal point of view. There are different
viewpoints or quality attributes for an architecture, such as efficiency or performance,
maintainability, reliability, security, movability, usability, availability, reusability and
modifiability [Koskimies ja Mikkonen, 2005]. The actual evaluation of an architecture is
the sum of evaluations of a combination of these viewpoints, and it is of course most
preferred if as many relevant viewpoints as possible have been considered.

2.3.1. Evaluation using metrics

Evaluating a software architecture using some kind of metrics system is often based on
the assumption that we are dealing with object-oriented design. Thus, metrics can be

10

used for different kinds of calculations of dependencies between and within classes,
which can give guidelines on how good a structure the architecture in question has.
Rosenberg and Hyatt [1997] define five different qualities that can be measured by
metrics for object-oriented design: efficiency, complexity, understandability, reusability,
and testability/maintainability. | will now introduce some metrics suites and definitions
that can be used when evaluating object-oriented designs.

The metrics suite by Chidamber and Kemerer [1994] is based on four principles that
rule object-oriented design process:. identification of classes (and objects), identification
of semantics of classes (and objects), identification of relationships between classes (and
objects) and implementation of classes (and objects). Based on these principles,
Chidamber and Kemerer [1994] present a metrics suite that consists of six different
metrics. weighted methods per class (WMC), depth of inheritance tree (DIT), number
of children (NOC), coupling between object classes (CBO), response for a class (RFC),
and lack of cohesion in methods (LCOM).

The WMC metric is defined as the sum of complexities of the methods within a
class. If al methods are equally complex, this is smply the amount of methods in a class.
It predicts how much time and effort is required to develop and maintain the class, how
much the children of the class are impacted by the class and how general the class is
[Chidamber and Kemerer, 1994]. These aspects relate to quality attributes such as
maintainability and reusability. Rosenberg and Hyatt [1997] point out that WMC also
indicates understandability.

DIT is self-defined as it is the length from a class node to the root of the inheritance
tree where the node is. If the class does not inherit any class, then DIT is zero. The
deeper aclassisin a hierarchy, the harder it is to predict its behavior, the more complex
the design will most likely become, and the greater the potential reuse for inherited
methods [Chidamber and Kemerer, 1994]. Thus, DIT predicts negative aspects of
complexity and maintainability but a postive aspect of reusability. According to
Rosenberg and Hyatt [1997], DIT primarily evaluates efficiency and reusability, but can
also be used as an indicator for understandability and testability.

NOC is as clear as DIT as it calculates how many classes inherit the class in
question. It aso predicts good reusability, but a high value warns of improper
abstractions of the parent class and indicates that a good deal of testing should be done
to the methods of the class [Chidamber and Kemerer, 1994]. In addition to testability,
NOC evaluates efficiency and reusahility [Rosenberg and Hyatt, 1997].

CBO is defined as the number of classes to which the class in question is coupled,
i.e.,, CBO for class A is |B| + |C|, where B is the set of classes that class A depends on,
and C isthe set of classes that depend on class A (where [X| stands for the cardinality of
X). A high CBO value indicates poor reusability, modularity and maintainability, and is

11

usually a sign of need for excessive testing [Chidamber and Kemerer, 1994]. CBO can
also be used as an evaluator for efficiency [Rosenberg and Hyatt, 1997].

RFC is defined as the size of the response set (RS) for the class, when the RS is the
union of the set of all methods in the class and the set of methods called by the methods
in the class. RFC contributes mainly in bringing out testing issues, but it also indicates
complexity [Chidamber and Kemerer, 1994]. According to Rosenberg and Hyatt [1997],
RFC evaluates understandability, maintainability and testability.

Finally, LCOM measures in what extend methods within the same class use the same
instance variables. LCOM is a count of method pairs with a similarity of zero, i.e., they
have no instance variables in common, minus the count of method pairs with a similarity
that is not zero. Cohesiveness is very desirable, as it promotes encapsulation; classes
with low cohesion should most probably be divided into two or more subclasses, and
low cohesion also indicates high complexity [Chidamber and Kemerer, 1994]. In
addition, LCOM evauates efficiency and reusability [Rosenberg and Hyatt, 1997].

In addition to the metrics by Chidamber and Kemerer, Rosenberg and Hyatt [1997]
present two additional metrics for evaluation at the method level, cyclomatic complexity
(CC) and size. CC is used to evaluate the complexity of an agorithm in a method. Quite
logically, CC measures mainly complexity, but is also related to all the other quality
attributes. The size of a method can be measured by several ways, e.g., by lines of code
or the number of statements. It evaluates mainly understandability, reusability and
maintainability.

A popular metric when dealing with the software or module clustering problem is the
modularization quality (MQ). There are several versions of this metric, but it is always
some kind of a combination of coupling and cohesion metrics, calculating the inter- and
intra-connectivities between and within clusters, respectively. A high MQ value indicates
high cohesion and low coupling. One version of the MQ metric is presented by Doval et
al. [1999], who begin by defining the intra-connectivity A; of cluster i as

A=l
where N; is the number of components and | is the number of relationships to and from
modules within the same cluster. A is 0 when no module is connected to another module
within the cluster, and 1 when each module in the cluster is connected to every module
in the same cluster. I nter-connectivity E;; between clustersi and j, consisting of N; and N,
components, respectively, with g; relationships between the modules of both clusters, is
defined as
E;=0 ,ifi=j, and

€.
Ei,j = & ,If i ;éj

12

[Doval et a., 1999]. MQ is now a combination of these connectivity measures. when a
modul e dependency graph is partitioned into k clusters,
MQ = A Jifk=1, and
ik:lA) éik,FlEi'j
k k(k-1)
2

The work by Doval et a. [1999] and the module clustering problem in which this metric
isused, is presented in Chapter 4.

When defining what a software architecture is, the principles guiding its evolution
were mentioned. Thus, it is natural that there should be metrics to evaluate the evolution
and refactoring of an architecture. Mens and Demeyer [2001] present such evolution
metrics, the main metric being the distance between classes. This metric is very flexible,
asthe distance it measures depends on what is needed, i.e., how far two classes are from
each other when considering, e.g., the number of methods, number of children or depth
of inheritance tree. The distance between classes is defined so that, when p(x) is the
property that is measured from class x, the distance between classesx and y is
P(X) G p(y)
p(X) E p(y)
Large distances between classes can indicate a complex system. Mens and Demeyer
[2001] aso discuss the emphasis of abstract methods and abstract classes in a system,
and point out that al abstract classes should be base classes.

Sahraoui et a. [2000] present a list of inheritance and coupling metrics, where the
smplest metrics are NOC, CBO and number of methods (NOM), which is a simpler
form of WMC, but the rest are more specialized extensions of the metrics presented
earlier. These include metrics such as class-to-leaf depth (CLD), number of methods
overridden (NMO), number of methods inherited (NMI), number of methods added
(NMA), specialization index (SIX), data abstraction coupling (DAC’), information-
flow-based inheritance coupling (IH-ICP), other class-attribute import coupling
(OCAIC), descendants method-method export coupling (DMMEC) and others method-
method export coupling (OMMEC). By analyzing the results given by these metrics, the
following operations can be administered to the system: creating an abstract class,
creating specialized subclasses and creating an aggregate class [Sahraoui et a., 2000].

Du Bois and Mens [2003] use a combination of the metrics defined above (number
of methods, CC, NOC, CBO, RFC and LCOM) in order to administrate a selection of
refactoring operations (extracting a method, encapsulating a field and pulling up a
method) to a system. Thus, this suite of metrics can be used to both evaluate the
existing system and to use those results to evolve a system. As can be seen, the metrics
suite presented by Chidamber and Kemerer [1994] acts as a good base for evaluating
architectures and evolving new metrics by using their six metrics as a starting point.

MQ:a Jifk> 1.

dist(x; y)=1-

13

Another way of measuring is related to the stable/instable and abstract/concrete
levels of the system, which is used by Amoui et a. [2006]; this is based on smply
counting the number of certain types of classes and dependencies.

Losavio et a. [2004] present 1SO quality standards for measuring architectures.
This model is somewhere in between pure metrics and evaluation using human expertise,
which is discussed further on. The ISO 9126-1 quality model’s characteristics are
functionality, reliability, usability, efficiency, maintainability and portability [Losavio et
a., 2004] — alist quite similar to the one presented by Rosenberg and Hyatt [1997]. In
the 1ISO model, the characteristics of quality are refined into sub-characteristics, which
are again refined to attributes, which are measured by metrics. Thus, the model needs
human expertise in making the refinements, but the end result is a measurable value
related to the architecture. As the characteristics have from three to five separately
measured sub-characteristics each, it is not practical to go through them al in the scope
of this paper. The most interesting quality measures being efficiency and maintainability,
I will now present some example metrics for measuring the sub-characteristics of these.

Efficiency is divided into time behavior, resource behavior and compliance. Let us
now investigate how time behavior is measured. Time behavior means the capability of
the software product to provide appropriate response time, processing time and
throughput rates under stated conditions [Losavio et al., 2004]. To measure this, one
must first identify al the components involved with functionality and the connections
between them. The attribute is then computed as the sum of the time behaviors of the
components and the time behaviors of the connections. The time behavior of a
component or a connection depends on the stimulus/event/functionality and the path
taken in the architecture to respond to a stimulus for a given functionality [Losavio et
al., 2004].

Maintainability is sub-categorized into analyzability, changeability, <tability,
testability and compliance. Let us take changeability and stability as examples.
Changeability is defined as the capahility of the software to enable implementation of
modifications, and stability is defined as the capability of the software to avoid
unexpected effects from modifications of the software. In order to measure these (and
testability), two additional sub-characteristics need to be added to the 1SO model
framework at architectura level: coupling and modularity [Losavio et a., 2004]. The
computations for changeability and stability need to be made for each couple of
connected components on the number of incoming/outgoing messages, and for each
component on the number of components depending on that component.

The examples of time behavior, changeability and stability are still something that
can be seen as metrics. the resulting values are something that can be computed, abeit
that it might not be easy. However, there are many sub-characteristics in the 1SO 9126-1
quality model when the “counting rule” does not contain any calculation and thus, the

14

result is not numeral. For example, functionality contains sub-characteristics such as
interoperability and security, where the attribute that is to be “measured” is the presence
of a certain mechanism. Thus, to “count” the attribute, one needs to identify whether the
mechanism is present in the system [Losavio et al., 2004]. This is another point (in
addition to the redefining steps) where the 1SO quality model can be seen as relying
more on human expertise than being a set of metrics that can be used for automated
evaluation of an architecture.

2.3.2. Evaluation using human expertise

When evauating an architecture there are three questions that should be answered in the
evaluation. Firstly, is the designed architecture suitable for the system in question?
Secondly, if there are severa options to choose an architecture from, which is the best
for the particular system and why? Thirdly, how good will different quality attribute
requirements be? [Koskimies ja Mikkonen, 2005]

These questions alone demonstrate the difference between using metrics to give
values to quality requirements and using human expertise: no metric can answer the
guestion “why” when discussing the positive and negative points of different
architectural options. Metrics may also give very good values to individua quality
requirements, but as a whole the architecture may not be at al suitable for the system in
guestion. Hence, although metrics can aid in architecture evaluation and are basically the
only way of automated evaluation, they cannot replace the evaluation of experts.

The most widely used and known method for architecture evauation is the
Architecture Tradeoff Analysis Method (ATAM) by Kazman et al. [2000]. Other known
architecture evaluation methods are the Maintenance Prediction Method by Jan Bosch,
which concentrates in evaluating maintainability, and the Software Architecture Analysis
Method developed in the Software Engineering Institute of Carnegie-Mellon University,
which is mainly used for evaluating quality attributes that are related to modifiability
[Koskimies ja Mikkonen, 2005]. As ATAM is the only method that can be used to
evaluate all quality attributes, it isthe one | will go into with more detail.

The main points of ATAM are to dlicit and refine a precise statement of the key
quality attribute requirements concerning the architecture, to elicit and refine precise
designing decisions for the architecture, and based on the two previous goals, to
evaluate the architectural design decisions to determine if they fulfill the quality attribute
requirements satisfactorily [Kazman et al., 2000]. The ATAM uses scenarios in order to
analyze whether the architecture fulfills al the necessary requirements and to see risks
involved in the architecture. The ATAM proceeds in nine steps. presenting the method
for the group of experts, presenting business drivers, presenting the architecture,
identifying architecture approaches, generating quality attribute utility tree, analyzing
architecture approaches, brainstorming and prioritizing scenarios, again analyzing
architecture approaches, and finally presenting the results [Kazman et al., 2000]. The

15

steps where we can say that the architecture is evaluated as in how good it is in the
ATAM are when the quality attribute utility tree is generated, architecture approaches
are analyzed and scenarios are brainstormed, so | will now concentrate on these steps.

When the architecture has been presented and the architecture styles have been
identified, a quality attribute utility tree is generated. This is done by €liciting the quality
attributes that relate to the particular system and then breaking them down to the level of
scenarios, which are shown with stimuli and responses and prioritized [Kazman et al.,
2000]. For each quality approach, the quality factor is divided into sub-factors. For
example, modifiability could be divided into GUI-modifications and algorithmic
modifications. For each of these sub-factors, detailed scenarios are described in order to
see how the sub-factor in question affects the architecture [Kazman et al., 2000]. For
example, GUI-modifications may have a scenario that if a new feature is added to the
application, the feature should be visible in the GUI within one day. These scenarios are
then prioritized according to how relevant they are to the system, how likely they are to
happen, and naturally, how critical they are for the quality attribute in question. Based on
the utility tree, experts can now concentrate on the high priority scenarios and analyze
architectural approaches that satisfy these scenarios.

While the utility tree is manufactured by a smaller group of specialized architecture
experts, a scenario brainstorming session involves al the stakeholders involved in the
project. The purpose of this session is to gather all the possible ideas and scenarios that
relate to the system and should be considered in the architecture [Kazman et a., 2000].

After the brainstorming of scenarios, all possible scenarios should be documented
either as aresult of the utility tree or the brainstorming sessions. The architecture experts
may now reanalyze the architecture styles that have been documented and discussed, and
perhaps even suggest a completely different solution if the brainstorming session brought
up many unexpected scenarios or the prioritizing of quality attributes was very different
from the one in the utility tree.

After al the steps of the ATAM, the outcomes of this method will include the
architectural approaches documented, the set of scenarios and their prioritization, the set
of attribute-based questions, the utility tree, risks and sensitivity and tradeoff points in
the architecture [Kazman et al., 2000].

As can be seen, the ATAM relies purely on human expertise, and the evaluation of
architecture happens while the architecture is actually being developed. Some basic
architectural approaches are first presented based on the known structure of the system,
and as the quality attributes requirements of the system become clearer, the architecture
undergoes severd iterations of analysis, while the architecture is being refined and
different approaches may be considered. The “goodness’ of the architecture can be
defined and measured by how well it satisfies the quality attribute requirements and how
“easlly” it responds to the scenarios related to the quality attributes.

16

3. Meta-heuristic search algorithms

Many sub-problems of several software engineering problems are known to be NP-hard.
For example software clustering, which is a special case of the general graph partitioning
problem, is NP-hard. In such cases, non-deterministic search agorithms are useful, as
they are often capable of finding good enough solutions from a large search space. The
characteristics that enable such good results are that they do not need to go through all
the possible solutions; yet by being non-deterministic, it is possible to recover from a
search path that seemed good in the beginning, but resulted in a bad solution.

There are certain terms that are common to most search agorithms;, the
neighborhood and fitness of a solution. Each solution can be regarded as a point in the
search space that needs to be explored. The neighborhood of a solution is the set of all
available solutions that can be reached with one technique-specific move from the
current solution. The concept of neighborhood is especially used in local search
algorithms, such as hill-climbing, tabu search and simulated annealing. The fitness of a
solution indicates how good the solution is. In rare cases, when the optimum is known,
one tries to get the fitness value as close to the optimum as possible. Since this is hardly
ever the casg, it is usually attempted to maximize or minimize a fitness function.

For the purpose of this thegis, it is necessary to understand how search algorithms
operate in order to understand the underlying concepts of the research presented in
Chapter 4, and the implementation presented in Chapters 5 and 6.

3.1. Geneticalgorithms

Genetic algorithms were invented by John Holland in the 1960s. Holland's original goal
was not to design application specific algorithms, but rather to formally study the ways
of evolution and adaptation in nature and develop ways to import them into computer
science. Holland's 1975 book Adaptation in Natural and Artificial Systems presents the
genetic algorithm as an abstraction of biological evolution and gives the theoretical
framework for adaptation under the genetic algorithm [Mitchell, 1994].

In order to explain genetic algorithms, some biological terminology needs to be
clarified. All living organisms consist of cells, and every cell contains a set of
chromosomes, which are strings of DNA and give the basic information of the particular
organism. A chromosome can be further divided into genes, which in turn are functional
blocks of DNA, each gene representing some particular property of the organism. The
different possihilities for each property, e.g. different colors of the eye, are called alleles.
Each gene is located at a particular locus of the chromosome. When reproducing,
Crossover occurs. genes are exchanged between the pair of parent chromosomes. The
offspring is subject to mutation, where single bits of DNA are changed. The fitness of an
organism is the probability that the organism will live to reproduce and carry on to the
next generation [Mitchell, 1996]. The set of individuals at hand at a given time is called a
population.

17

Genetic algorithms are a way of using the ideas of evolution in computer science.
When thinking of the evolution and development of species in nature, in order for the
species to survive, it needs to meet the demands of its surroundings. Such evolution is
achieved with mutations and crossovers between different individuals, while the fittest
survive and are able to participate in creating the next generation.

In computer science, genetic algorithms are used to find a good solution from a very
large solution set, the goal obviously being that the found solution is as good as possible.
To operate with a genetic algorithm, one needs an encoding of the solution, an initial
population, mutation and crossover operators, afithess function and a selection operator
for choosing the survivors for the next generation.

3.1.1. Encoding

As stated, the basis of genetics in nature is a chromosome. When applying this thought
to computer science and genetic algorithms, each individual in the search space, i.e. each
solution to the problem at hand, needs to be encoded so that it can be thought of as a
chromosome. The most common and traditional way of doing thisisto use a bit vector,
i.e.,, a string of ones and zeros [Mitchell, 1996]. Thus every bit in the chromosome
represents a gene in that locus, the alleles being one and zero. This has the advantage of
being very easy to interpret. Usually such encoding is used for combinatorial problems.
For example, if we want to get as close to a value x by summing numbers from one to
twenty, and using the minimal amount of numbers in the sum. We can now use a 20-bit
chromosome, where each number is represented in its respective locus in the
chromosome. If the alele in that locus is 1, the number is included in the sum, if O, then
not. Another way of using bits is when one is dealing with large scale numbers with tens
or hundreds of decimals. The hits can thus be used to give a binary representation of
such a number.

Another common way of forming a chromosome is to have a string of natural
numbers. Such solutions are good for permutation problems, for example the traveling
salesman problem (TSP) [Michaewicz, 1992]. The nodes in the graph are numbered
and the travel route will be the order of the nodes in the chromosome. By mutations the
places of the nodes can be switched, thus reforming the route.

Strings of bits are the most traditional way of encoding a chromosome, and some
sources call only such solutions pure genetic algorithms. In fact, there can be as many
ways to encode a chromosome, numeric and non-numeric, as there are algorithm
developers, as long as the same developer can keep in hand the required mutations and
crossovers so the solutions stay “legal”. Purists call genetic algorithms that use such
advanced coding styles evolutionary programs, rather than pure genetic algorithms.

18

3.1.2. Mutations

Mutations are a way of creating new individuals from the population at hand by
administering a minor change to one of the existing individuals by changing aleles in a
random locus. When the chromosome is represented by a bit vector, a basic mutation is
to change one bit from O to 1 or vice versa. For example, we could have a hit string
001100. By mutating this string in its third locus the result would be 000100. When the
string contains natural numbers, a mutation could be to switch the places of two
numbers. Whatever the mutations are, the result should aways till be a legitimate
individual, i.e., it should solve the defined problem. The more complex the encoding of
the chromosome is, the more there usually are possible mutations that can be applied and
the mutations may become more complex. It is aso possible to have a separate
“correction mutation” that will check the chromosome after a mutation to see that it still
solves the problem that it is supposed to. If the mutation has caused the chromosome to
become unnatural, i.e., it does not belong to the solution space anymore, corrective
actions will take place. Such actions don’'t necessarily just revert the mutation that
caused the problem, but might do even bigger changes to the chromosome.

There is always a defined probability how likely it is that the mutation in question
would be applied to an individual. This is called the mutation probability or mutation
rate [Mitchell, 1996]. As in nature, mutations are unwanted in most cases, thus the
mutation probabilities are usualy quite low. The mutation probabilities should be
thought of carefully, as both too high and too low probabilities will result in problems. If
the mutation probability is too high, one will end up wandering aimlesdy in the solution
space as the chromosomes mutate in high speed. If the mutation probability is too low,
then the population stays very similar from one generation to the next, i.e., there are not
enough of variation between individuals to ensure finding good enough solutions.

3.1.3. Crossover

The crossover operator is applied to two chromosomes, the parents, in order to create
two new chromosomes, their offspring, which combine the properties of the parents.
Like mutations, the crossover operator is applied to a certain randomly selected locus in
the chromosome. The crossover operator will then exchange the subsequences before
and after the selected locus to create the offspring [Mitchell, 1996; Michalewicz, 1992].
As an example, suppose we have chromosomes C;C.Cs...C, and bibbs...b,, and the
selected locusis in position k, k<n. The offspring would then be ¢,c;... b+ 1by. .. by and
b.b,...bBCy1Cks2...Cn. It IS ASO possible to execute a multi-point crossover, where the
crossover operator is applied to several loci in the parent chromosomes. Using the same
parents as in the previous example and a three-point crossover to loci i, j and k, the
resulting offspring would now be CiCp...Cb...D.10C. .. CaCibisabyen. .. by and
bib,...biC1.. .Cj-lebJ+1. .. b1 beCrs1Ciaz. .. Co.

19

The crossover operator has a crossover probability or crossover rate, which
determines how likely it is for the crossover operator to be applied to a chromosome, so
that the probability of a crossover increases in some correlation with the fitness-value of
the chromosome. For the crossover probability, there are two differences to the
respective probability of the mutations. Firstly, the crossover probability is in relation to
the fitness of the chromosome. The fitter the individual is, i.e., the more likely it will
survive to the next population, the bigger the chance it should be that its offspring will
also have a high fitness-value. Whether the offspring will actually have a higher fithess
value depends on how well the crossover-operation is defined. The most desirable
outcome is always that the crossover would generate chromosomes with higher fitness-
values than their parents or at least have a big probability of doing so. Unfortunately, this
can not always be guaranteed. Secondly, the term crossover rate is not aways the same
as crossover probability. In the case of a multi-point crossover operator, the crossover
probability determines the likelihood of the operation while the crossover rate
distinguishes the number of points at which the crossover takes place. [Mitchell 1996].

The building block hypothesis states that a genetic agorithm combines a set of sub-
solutions, or building blocks, to obtain the final solution. The sub-solutions that are kept
over the generations generally have an above-average fitness [Salomon, 1998]. The
crossover operator is especialy senstive to this hypothess, as an optimal crossover
would thus combine two rather large building blocks in order to produce an offspring
with a one-point crossover.

Where and how the crossover operator is used varies based on the application and
developer. Mitchell [1996] and Reeves [1995] consider that the selection operator
always selects parents, and thus all chromosomes selected to the next generation are
subjected to the crossover operator. The crossover probability then determines whether
areal crossover is performed, or whether the offspring are actually duplicate copies of
the actual parents. Michalewicz [1992], on the other hand, applies the crossover
probability when after selecting a new generation. The crossover probability of a
chromosome is compared to the “limit” probability defining whether the crossover is
performed. Chromosomes subjected to crossover are randomly paired, and offspring
produced — in this approach the crossover does not produce any duplicates. Both
approaches replace the parents with the resulting offspring.

For the rest of the thesis | have chosen to follow mostly Michalewicz's views, i.e.,
the crossover probability is used purely to choose parents from the existing population. |
have chosen a dlightly different approach however, by not replacing the parent
chromosomes with the offspring, but keeping both the parents and the offspring in the
population. | justify this with keeping with the concept of biology; parents rarely die off
because of producing offspring.

20

3.1.4. Fitnessfunction

In order to evaluate how good the different individuals in the population are, a fitness
function needs to be defined. A fitness function assigns each chromosome a value that
indicates how well that chromosome solves the given problem.

Genetic agorithms are usually used in an attempt to optimize complex multivariable
functions or non-numerical data [Mitchell, 1996]. Naturally, the more complex the
problem, the more complex the fitness function usually becomes. When the algorithm is
dedling with numerica data the fitness function can be detected from the actua
optimizing problem, albeit that the problem is intricate. Thus, the most difficult fitness
functions are the ones needed to evaluate non-numerical data, as the developer must find
other metrics or ways to find a numerical evaluation of non-numerical data. An example
of thisis provided by Mitchell [1996], who describes the problem of finding the optimal
sequence of amino acids that can be folded to a desired protein structure. The acids are
represented by the alphabet {A, ..., Z}, and thus no numerica vaue can be
straightforwardly calculated. The used fitness function calculates the energy needed to
bend the given sequence of amino acidsto the desired protein.

3.1.5. Selection operator

Since the number of individuals in a population always increases with the result of
crossovers, a selection operator is needed to manage the size of the population. The
selection operator will determine the individuals that will survive to the next generation,
and should thus be defined so that the ones with the best fitness are more likely to
survive in order to increase the average fitness of the population.

The simplest way of defining a selection operator is to use a purely elitist selection.
This selects only the “€elites’, i.e., the individuals with the highest fitness. Elitist selection
is easy to understand and simple to implement; one can simply discard the weakest
individuals in the population. However, dlitist selection isn't the best choice, as it may
very well result in getting stuck to alocal optimum.

Another and a more common way of defining the selection operator is to use a
fitness-proportionate selection, which can be implemented with a “roulette-wheel”
sampling [Mitchell, 1996; Michalewicz, 1992; Reeves, 1995]. Here, each individual is
given a dlice of the “wheel” that is in proportion to the “area’ that its fitness has in the
overal fitness of the population. This way, the individuals with higher fitnesses have a
larger area in the wheel, and thus have a higher probability of getting selected. The wheel
is then spun for as many times as there are individuals needed for the population.

In general, a fitness-proportionate selection operator can be defined by assigning a
probability of surviving, ps, to each individual, with coefficient f; to ensure that
individuals with better fitness values are more likely to be selected. Comparing the actual
values given by the fitness function is difficult, so these actual values should be used as
coefficients with caution. However, by examining the order of fitnesses it is possible to

21

employ the idea of survival of the fittest by having a linear relation between the order of
fitness and the coefficient.

A common selection operator is a crossing of the two methods presented above; the
survival of the very fittest is guaranteed by choosing the best individual with elitist
methods, while the rest of the population is selected with the probabilistic method in
order to ensure variety within the population. Some approaches aso use the tournament
technique to select the next generation [Blickle, 1996; Seng et al., 2005].

As mentioned in the presentation of the crossover operator, there are different
approaches to how to use the selection operator. Mitchell [1996] and Reeves [1995]
consider that the selection operator selects the individuals that are most likely to
reproduce, i.e., become parents. Michalewicz [1992] uses the selection operator in order
to find the fittest individuals for the next generation. Both approaches keep the same
selection probabilities for al individuals during the entire selection process, i.e., an
individual with a high fitness value may be selected to the next population more than
once.

For the rest of the thesis, as with the crossover operator, | follow mostly with
Michalewicz's views. However, also with selection, | take a different path by not
alowing multiple selections of the same chromosome. When applying this to the
roulette-wheel, the whed is adjusted after every spin by removing the area of the
selected individual, and recalculating the areas for the remaining population so that they
keep in proportion to itself.

3.1.6. Executing a genetic algorithm

The operation of a genetic algorithm can be examined through an example of the
knapsack problem. Say we have five items, each with a weight w; and a volume of v;.
The goal is to fit as much weight as possible to a backpack with a limited volume. The
candidate solutions can now be represented by a vector of 5 hits, where O represents not
picking the item represented by that gene, and 1 represents picking it. The items can be
arranged by volume, weight, or any other way, as long as it is clear which weight and
volume are connected to which index of the vector, i.e. which item is represented in
which locus. Suppose that in this example the items are as follows

locus w Vv
1 5 1
2 6 3
3 10 7
4 4 9
5 9 12.

Firstly, it must be agreed what the population size should be, and then initidize the
first population. If possible, some kind of heuristic method should be used when

22

generating the initial chromosomes, so that some fitness is already ensured in the first
population. If no heuristic can be applied to the problem in question, the chromosomes
are randomly generated, while keeping in mind that they must be valid. We may now
have a population of, say, five individuals, and the individuals can be the following:

A 00010
B 01100
C 10100
D 11100
E 10001.

By setting the target volume to 20, the fitness function f(x) can now be defined as
f(x) = >w(x), Y v(x) < 20.
Thus the fitnesses for the initial population would be: f(A) = 4, f(B) = 16, f(C) = 15, f(D)
=21 and f(E) = 14.

Secondly, the population is subjected to the crossover operator. The crossover
probability for each chromosome is now pf., p being the “standard” probability of a
crossover operation and f; the fitness coefficient. Suppose that chromosomes B and E
are subjected to crossover, with the crossover point being in locus 2. The resulting
offspring would then be BE = 01001 and EB = 10100, with fitnesses f(BE) = 15 and
f(EB) = 15.

Thirdly, the population is subjected to the mutation operator with the probability pm.
For this example, we define the mutation operator as the traditional one: changing the bit
value from 0 to 1 or from 1 to 0. We now assume that chromosome A is subjected to
mutation in locus 1, thus the result would be A’ = 10010, with f(A’) = 9. It isimportant
to notice that in this example we have a risk of achieving an illegal chromosome as the
result of a mutation. Since we have a volume limit of 20, no chromosome should
represent a set of items if the sum of their volumes surpasses 20. We now have two
options: either checking whether the mutation is possible before performing it or
constructing a correcting operator which will go through the results of mutations. Let us
assume that chromosome D is subjected to mutation in locus 5, producing the
chromosome D’ (11101). The sum volume of items represented by chromosome D is 11
and since the item represented by locus 5 has a volume of 12, the total volume would
now become 23, which isn't alowed. If we choose to check each mutation beforehand,
the mutation in chromosome D simply wouldn’'t happen, as it would be considered
unnatural.

Constructing a corrective operator is not straightforward. One example of a
corrective operator would be the following. Say chromosome D has been subjected to
mutation and the resulting chromosome D’ is now checked with the corrective operator.

23

First, the volume of the items represented by the chromosome is calculated, the sum of
volumes being 23. After that, the operator begins correcting the chromosome by simply
removing items in order to achieve a legal individual. The operator starts from the first
locus and systematically changes ones to zeros until the sum of volumes is once again
within acceptable limits. So, the operator would first achieve chromosome D’ (01101),
the sum volume of which is 22. Since the limit is still surpassed, another iteration is
needed. We now get D’’’ (00101), the sum volume of which is 19. The chromosome D’’’
is an acceptable individual and will replace the original chromosome D. The fitness of
chromosome D', f(D’"’), is 19, which is lower than the fitness of the origina
chromosome, but still above the average fitness in the population.

Finaly, the population is subjected to the selection operator, i.e., the individuals
surviving to the next generation are chosen. The size of the population is now 7, with the
individuals A’, B, C, D", E, BE, and EB. In this example we use a purely dlitist
selection operator, which simply drops two of the weakest individuals; they do not
survive to the next generation. Thus the next population will be B, C, D", BE and EB.

The population will go through as many generations of crossovers, mutations and
selections as is needed to achieve a good enough fitness value, or it is decided that the
generation number is high enough.

3.2. Tabu search and simulated annealing

While genetic algorithms use mutations and crossovers to constantly generate new
solutions, other meta-heuristic search algorithms have their own methods of trying to get
out of local optimums and reach the globa optimum of the search space. | will now
briefly describe the methods of tabu search and simulated annealing.

3.2.1. Tabu search
The word tabu or taboo is understood as something strictly forbidden and unacceptable.
Tabu search is named such as it proceeds by setting barriers or restrictions to guide the
search process. These restrictions operate, as Reeves[1995] describes, “in severa forms,
both by direct exclusion of certain search alternatives classed as ‘forbidden’, and also by
trandation into modified evaluations and probabilities of selection”. Tabu search is seen
as a sequence of moves from one possible solution to the best available alternative
[Clarke et al., 2003]. The search technique relies on flexible memory and a set of
intellectually chosen principles of problem solving. By remembering past search moves
from severa iterations and combining that information to the problem solving principles,
the search agorithm is able to see what directions are indeed tabu in the present
Situation.

When administering the tabu search, one starts from a random point x in the search
gpace. Next, the set of moves that are possible to perform at that point are determined,
the resulting set being the neighborhood of the current solution, N = {x;, X, ..., X,}. The

24

tabu rules are then applied to N, which is now reformulated to the set of available moves,
A = N\T, T being the set of rules that are declared tabu. In some special cases, a move
that is originally tabu, may become available if al the other available moves aren’t
satisfactory. The best available move x, from set A is then chosen. [Clarke et al., 2003]

The tabu rules and ways of determining the neighborhood of a solution vary greatly
between problems and applications. The common characteristics in tabu moves are
recency and repetition, i.e., moves that have recently been done or have been repeated
above the average amount are very likely to be declared tabu.

3.2.2. Simulated annealing

Simulated annealing is originaly a concept in physics. It is used when the cooling of
metal needs to be stopped at given points where the metal needs to be warmed a bit
before it can resume the cooling process. The same idea can be used to construct a
search agorithm. At a certain point of the search, when the fitness of the solution in
guestion is approaching a set value, the algorithm will briefly stop the optimizing and
revert to choosing a solution that is not the best in the current solution’s neighborhood.
This way getting stuck to a local optimum can effectively be avoided. Since the fitness
function in simulated annealing algorithms should always be minimized, it is usualy
referred to as a cost function [Reeves, 1995].

Simulated annealing optimally begins with a point x in the search space that has been
achieved through some heuristic method. If no heuristic can be used, the starting point
will be chosen randomly. The cost value ¢, given by cost function E, of point x is then
calculated. Next a neighboring value x; is searched and its cost value c; calculated. If ¢,
< ¢, then the search moves onto x;. However, even though c < ¢, there is still a small
chance, given by probability p that the search is alowed to continue to a solution with a
bigger cost [Clarke et al., 2003]. The probability p is a function of the change in cost
function AE, and a parameter T:

p=¢€

This definition for the probability of acceptance is based on the law of
thermodynamics that controls the smulated annealing process in physics. The origina
function is

p= ek ,
where t is the temperature in the point of calculation and k is Boltzmann's constant
[Reeves, 1995].

The parameter T that substitutes the value of temperature and the physical constant
is controlled by a cooling function C, and it is very high in the beginning of smulated
annealing and is slowly reduced while the search progresses [Clarke et a., 2003]. The
actual cooling function is application specific.

25

If the probability p given by this function is above a set limit, then the solution is
accepted even though the cost increases. The search continues by choosing neighbors
and applying the probability function (which is always 1 if the cost decreases) until a cost
value is achieved that is satisfactory low.

26

4. Search algorithmsin softwar e engineering

Search algorithms have been used widely in different fields of research, such as
engineering, business and financia and economic modeling [Clarke et a., 2003], and
recently there has been an increasing interest in implementing search algorithms in
software engineering as well. This particular field of research is known as search-based
software engineering. The areas where search algorithms are used can be divided into
four categories [Rela, 2004]: analysis, design, implementation and testing. In this chapter
| will explore how search agorithms are used in different areas of software engineering,
with an emphasis on software design. The research is presented from the algorithmic
viewpoint, accenting how fitness functions are defined and how the problem is modeled
for the algorithm.

4.1. Search algorithmsin software design

4.1.1. Software clustering

Software clustering or module clustering is a software engineering problem that is most
related with software architectures. The goal is to find the best grouping of components
to subsystems, i.e., the best clusters of an existing software system.

One way of representing a software system so that the representation is both
language independent and “presentable” to a search agorithm, is to transform the
structure of the system into a directed graph G. A partition of the graph G is a set of
non-overlapping clusters that cover al the nodes in the graph, and the goal is to partition
the graph so that the clusters represent meaningful subsystems. There are severad
viewpoint to defining the graph G, e.g. by considering modules and their relationships,
object creation, runtime method invocation or generating a module dependency graph
[Clarke et al., 2003].

When defining a fitness function for the clustering problem, the main question to be
answered is what constitutes a good partition of the software structure graph. The
goodness of a partition is usually measured with a combination of cohesion and coupling
metrics, one of the most popular metric being the modularization quality MQ, introduced
in Chapter 2, which combines these two metrics.

Clarke et a. [2003] present three different ways of dealing with the clustering
problem: hill-climbing, hill-climbing with simulated annealing and genetic algorithms.
The hill-climbing algorithm begins with a random partition m of the graph G, where
nodes represent modules in the system. The neighboring partitions m; (the neighborhood
being as defined in Chapter 3) are then examined in order to find a better rearrangement
of the origina partition. If a better solution my is found, i.e. MQ(m) > MQ(m), mis
stored as the best partition found so far. The process is iterated until the neighborhood
of the best found partition does not contain any partition with a better fitness value. The

27

hill-climbing solution can be varied by adjusting when it moves onto the next partition:
does it select the first solution with a bigger MQ-vaue, does it go through al the
neighboring solutions or does it search a set minimum amount of neighboring solutions.
The hill-climbing search technique can be associated with a cooling function used with
simulated annealing. Clarke et al. [2003] note that giving the algorithm this opportunity
to momentarily accept worse solutions fitness-wise has shown an improvement in
performance without jeopardizing the quality of the solutions.

Using a genetic algorithm for module clustering is quite straightforward: the main
challenge is to find a suitable encoding, after which traditional mutation and crossover
operators can be used. Defining these operations is, however, not so smple. Clarke et al.
[2003] introduce severa cases where the hill-climbing agorithm has outperformed
genetic algorithms, and the blame is usually placed with the encoding and crossover used
with the genetic algorithm.

Doval et a. [1999] have also studied the module clustering problem, and have used
the module dependency graph (MDG) mentioned in Subsection 2.3.1. The module
dependency classis defined as a directed graph that describes the modules (or classes) of
a system and their static inter-relationships using nodes and directed edges, respectively.
As with the more general software clustering problem presented by Clarke et a. [2003],
the goal is to find a “good” partition of the MDG. A good partition features quite
independent subsystems which contain modules that are highly inter-dependent [Doval et
a., 1999]. This definition of a good partition justifies the use of the MQ metric for the
fitness function: independent subsystems have low coupling, and high inter-dependency
signifies high cohesion.

Doval et a. [1999] have used a genetic agorithm approach for the optimization of
the module clustering problem. A numeral encoding is used, where each node N; is
assigned a unique number that specifies the locus with the information about that node’s
cluster, e.g. N; isin the first locus of the chromosome and N, is in the second locus. The
actual aleles are the numbers of clusters where the nodes representing the components
are assigned to. Formally, a chromosome is represented as a string S, which is defined as
S=5 %S ... Sy, Where N is the number of modules, i.e. the number of nodes in the
MDG, and s, (1< i <N) identifies the cluster that contains the ith node of the graph.
Doval et a. [1999] use a crossover rate of 80% for populations with 100 individuals or
less, and 100% for populations of a thousand individuals or more. The rate varies
linearly between those population values. The crossover function itself is the traditiona
one, i.e., it combines subsections of two parents from the left and right side of the
crossover point. The mutation changes the value of one gene to a new, randomly
generated value, thus moving the node represented by the locus in question to a new
cluster represented by the new value. Doval et al. [1999] have used their algorithm on
real systems, and stress the point of obtaining correct parameters (size of population,

28

number of generations and crossover and mutation rates) in order to achieve solutions
with a higher quality and to also improve the algorithm execution performance. Tests on
a real system with a documented MDG showed that Doval et a.’s [1999] algorithm
produced a graph quite similar to the rea one. The areas where the algorithm had the
most problems with were interface and library modules.

Harman et al. [2002] make their contribution to the modularization problem by
introducing a new representation for the modularization as well as a new crossover
operator that attempts to preserve building blocks. They approach the clustering
problem from a re-engineering point of view: after maintaining a system its
modularization might not be as good as it was when it was taken to use. Thus, Harman
et a. [2002] define their problem as searching the space of possible modularizations
around the current granularity, i.e., the number of modules a modularization uses, to see
if there exists a better alocation for the components.

Firstly, the new representation presented by Harman et al. [2002] ensures that each
modularization has a unique representation. A look-up table is used in order to alocate
components to numbered modules. It is aso defined that component number one is
always in module number one, as well as all components belonging to the same module.
Then, component n with the smallest number that is in a different module as component
number one is placed in module number two, and the process is repeated with
components in the same module as component n, and again for al modules smilarly
[Harman et al., 2002].

Secondly, Harman et al. [2002] present a new crossover, which does not choose a
random crossover point within the two parents, as crossover operators usually do, but a
random parent, and a random module from that parent, which is then copied on to the
child chromosome. The components in this module are then removed from the two
parentsin order to prevent clones of components, and the rest of the modules are copied
to the child chromosome in a similar fashion from one or the other parent. This kind of
crossover operator ensures that at least one of the modules from the parents is
completely preserved in the child, and supports the building block hypothesis.

Di Penta et al. [2005] introduce the Software Renovation Framework (SRF) that
attempts to remove unused objects and code clones and to refactor existing libraries into
smaller, more cohesive clusters. Genetic algorithms have been used especialy to help
with refactoring. The SRF worksin six steps [Di Penta et al., 2005]. Firstly, the software
system’s applications, libraries and dependencies among them are identified. Secondly,
unused functions and objects are identified and removed. Thirdly, duplicated and cloned
objects are identified and possibly factored out. Fourthly, circularly linked libraries are
identified and either removed or reduced. Fifthly, large libraries are refactored into
smaler ones. Finally, objects, that are used by many applications but are not yet

29

grouped, are grouped into new libraries. As the interest mainly lies with the use of
genetic agorithm, 1 will concentrate now on the fifth step and the refactoring.

The library refactoring itself is done in three steps: determining the ideal number of
clusters and an initial solution, determining the new candidate libraries with the use of a
genetic algorithm, and after asking for feedback (as can be seen, this is a semi-automated
form of using search algorithms, as human expertise is used in order to see how many
iterations are needed), the second step may be repeated. The encoding used by Di Penta
et a. [2005] is a bit matrix: each library is represented by a separate matrix, and the
combination of matrices, GM, represents the system. The crossover operator is defined
so that it changes the content of two matrices around the column defined as the
crossover point. Mutations may either move an object by interchanging two bits in a
randomly chosen column, or clone an object by taking a random position gm,, in the
matrix and changing its value to 1 if the bit in this position is zero, and the library
represented by the matrix depends on the object y [Di Penta et al., 2005]. The
probability of the moving mutation should aways be bigger than the probability of the
cloning mutation, as cloning is not recommended in general. The fitness function used by
Di Penta et a. [2005] consists of four different factors. the number of inter-library
dependencies in a given generation (the dependency factor DF), the total number of
objects linked to each application (the partitioning ratio PR, which should be
minimized), the size of new libraries (the standard deviation factor SDF), and the
feedback given by developers (the feedback factor FF). The FF is calculated as the
difference between the matrix GM developed by the algorithm and the feedback matrix
FM, which contains information of the changes suggested by developers in matrix form.
The overdl fitness function F is defined as F = DF(g)+w;PR(g)+wW.SDF(g)+wsFF(Q),
where w;, W, and w; are real-valued positive weight-factors. Di Penta et a. [2005] report
that tests with their SRF show very promising results especially with refactoring libraries
and thus reducing dependencies.

Seng et al. [2005] represent the system as a graph, where the nodes are either
subsystems or classes, and edges represent containment relations (between subsystems
or a subsystem and a class) or dependencies (between classes). The encoding used for
the genetic algorithm is to have each gene representing a subsystem, and each subsystem
is an element of the power set of classes. Seng et al. [2005] use three kinds of mutations:
the split & join mutation, the elimination mutation and the adoption mutation. The split
& join mutation either divides a subsystem into two smaller subsystems or combines two
existing subsystems into one. The subsystems are selected based on how strong their
relationship is in the origina dependency graph. The eimination mutation deletes a
subsystem candidate and distributes its classes to other subsystems. The adoption
mutation tries to find a new subsystem candidate for an orphan, that is, a subsystem with
only one class. The crossover operator works in five steps and produces two children

30

from two parents. Firstly, a sequence of subsystem candidates, i.e., a sequence of genes,
is selected from both parents. Secondly, the chosen sequences are integrated to the other
parent. Thirdly, existing genes (subsystems) containing classes that are now present in
the new, integrated sequence, are deleted. Fourthly, the classes that do not exist in the
new sequence (and were parts of the deleted subsystem), are collected. Fifthly, the
collected classes are distributed to other genes so that all classes will ill stay present in
the solution [Seng et a., 2005]. The fitness function is formed from a combination of
metrics for cohesion, coupling, complexity, cycles and bottlenecks. Bottlenecks are
subsystems that know about and are known by too many subsystems. A tournament
selection is used for selecting the new generation [Seng et al., 2005].

Seng et a. [2005] also believe in the building block theorem, and construct their
initial population accordingly. They bring solutions with high fitness values into the
initial population in order to ensure the presence of good building blocks from the very
beginning. As genetic algorithms demand diversity in order to get the best results, half of
the initial population is constructed from the highly fit solutions, and half from randomly
selected sets of connected components from the initial graph model.

Based on the tests by Seng et al. [2005] with large systems, e.g., the javax.swing
that contains over 1500 classes, this method of subsystem decomposing was a highly
successful one. The method was also fast, as the tournament technique used for selection
is much more efficient than the roulette wheel — although the roulette wheel produces
solutions with dlightly better fitness values.

4.1.2. Systemsintegration

Systems integration resembles module clustering, only now the modules are known, and
the order in which they are incorporated to the system is what needs to be decided. As
the integration usually happens in an incremental way, and not all components are at use
at the same time, alot of stubs, i.e., components simulating the functionality of a missing
component, often need to be created [Clarke et al., 2003]. A stub is needed when a
component is integrated to the system and it uses another component that is still waiting
for integration, and the more stubs are needed, the more the integration process will
cost. Therefore, the usual solution is that components that are heavily used by other
component are introduced early to the system, and components that need a lot of other
components, are introduced last. Obviously some components are both heavily used and
use alot of other components, and timing the integration of these components is crucia
when attempting to achieve the optimal integration sequence, i.e., the order of
integrations which coststhe least [Clarke et al., 2003].

The order of integration of components can be presented as a permutation of the set
of components [Clarke et a., 2003], quite similarly to the TSP discussed in Chapter 3.
However, one needs to be careful when defining the crossover operator to a
permutation. A traditiona crossover where parts of the chromosomes are interchanged

31

would very probably produce an illegal solution. Thus, Clarke et al. [2003] present the
options of using order crossover or cycle crossover. Order crossover selects a random
crossover point, and then copies the left substring of one parent directly to the child
chromosome. The items that are not present in that substring are added in the order they
appear in the other parent. Cycle crossover on the other hand merges two chromosomes.
For mutations, Clarke et al. [2003] use the swap and shuffle operations. Swap changes
two genes of the chromosome, and shuffle produces a new permutation. When the
fitness function can be defined as the cost sum that would be associated with the solution
represented by a specific permutation, systems integration can clearly be subjected to
genetic algorithms. In order to apply hill-climbing and tabu search, a neighborhood must
also be defined. This can be straightforwardly done as follows: two solutions p and p’
are neighbors if and only if p’ can be generated by swapping two adjacent genes in p
[Clarke et al., 2003].

Le Hanh et al. [2001] present a very similar solution to the integration testing
problem. They stress that the testing of components that are being integrated should be
optimized. The chromosome representation is the same as defined by Clarke et al.
[2003], as is the swap mutation. The crossover operation is very similar to the order
crossover described by Clarke et al. [2003], only Le Hanh et a. [2001] have opted to
directly copy the right side of the first parent instead of the left side. Le Hanh et al.
[2001] use a simpler fitness function than Clarke et al. [2003], as they only calculate the
amount of stubs needed for each solution. The selection function of Le Hanh et al.
[2001] is quite unusual. The agorithm is run by first calculating the fitness of each
individual of the population. Two individuals with the best fitness values are then chosen
to produce the next generation by applying the crossover and mutation operators to
these two dlite solutions until there are enough individuals to form a population. One
might wonder whether this kind of selection operator really gives the best results. The
selection restricts the population to the neighborhoods of the two elite solutions, and
thus greatly increases the chances of the agorithm getting stuck to alocal optimum and
not finding the global optimum. However, Le Hanh et al. [2001] report very promising
results from their tests where the genetic algorithm was applied to rea-world systems,
such as javax.smng. They mention that the genetic algorithm is not very efficient, and
perhaps some adjustments should be made to their fitness function (such as adding the
cost of a stub — a metric used by Clarke et a. [2003]), but the quality of the solutions
was good, and the genetic algorithm approach could be easily modified to take into
account the complexity of the components.

4.1.3. Systemsrefactoring

Systems refactoring is a somewhat more delicate problem than module clustering. With
module clustering, it is more a question of efficiency, while the contents of a system still
stay the same. However, when refactoring a system, there is the risk of changing the

32

behavior of a system by, e.g., moving methods from a subclass to an upper class [Seng et
a., 2006]. This risk should be duly addressed, and the refactoring operations should
always be designed so that no illegal solutions will be generated or a corrective operation
is used to check that the systems behavior stays the same.

O’ Keeffe and O Cinneide [2004] define the refactoring problem as a combinatorial
optimization problem: how to optimize the weighting of different software metrics in
order to achieve refactorings that truly improve the system’s quality. O'Keeffe and O
Cinneide [2004] introduce four different kinds of refactoring mechanisms: moving a
method up or down in the class hierarchy, extracting or collapsing a class, making a class
abstract or concrete and changing the superclass link of a class. The metrics that are
used are regjected methods (RM, should be minimized), unused methods (UM, should be
minimized), featureless classes (FC, should be minimized), duplicate methods (DM,
should be minimized) and abstract superclasses (AC, should be maximized). It is aso
pointed out that as metrics for object-oriented design often conflict, the priority of
metrics should be made clear by a precedence graph and assign weights accordingly.
With the metrics introduced by O’ Keeffe and O Cinneide [2004], AC should have a
lower priority than FC, RM and UM should have a higher priority than FC, and DM
should have a higher priority than RM. Taking these priorities into account, some
guidelines are achieved for assigning the weights, which together with the actual metrics

form the fitness function f(d) = é w._metric,, (d) , where d is the design to be evaluated,

m=1
n is the number of metrics and w, is the weight assigned to the mth metric. Initial tests
show some promising results in using simulated annealing to improve the design of the
system subjected to refactoring [O’Keeffe and O Cinneide, 2004]. The combinatorial
optimization viewpoint should be noted as a general guideline for building any kind of
genetic algorithm, as the fitness function often consists of several metrics that contradict
each other.

Seng et al. [2006] have a similar approach as O’ Keeffe and O Cinneide [2004], as
they attempt to improve the class structure of a system by moving attributes and
methods and creating and collapsing classes. Seng et al. [2006] begin by extracting a
model of the system from its source code, the basic model elements being attributes,
methods, classes, parameters and local variables. In addition, an access chain is
presented in order to produce the best possible results. An access chain models the
accesses inside amethod body: this needsto be known in order to know the full effect of
moving a method [Seng et al., 2006]. A genetic algorithm is used to find the optimal
sequence of refactoring operations, thus the chromosome encoding is naturaly the
sequence of transformations, where each refactoring operation is located in one gene.
The sequence can be extended by mutation, which adds another refactoring operation to
the current sequence [Seng et al., 2006]. The crossover operator picks a subsequence,

33

from the first gene to gene k, from one parent and simply adds the whole sequence
represented by the other parent to the selected subsequence. The transformations are
then applied for the model. The firstly selected subsequence is aways legal, but with the
transformations specified after the crossover point it may be the case that the refactoring
operations proposed cannot be performed, and such operations are simply discarded
[Seng et a., 2006]. After the model has gone through the transformations specified by
the genome, its fitness is calculated. Seng et a. [2006] use a combination of the
following metrics for the fitness function: WMC, RFC, LCOM, infor mation-flow-based
coupling (ICP), tight class coheson (TCC), information-flow-based coheson (ICH),
and stability (ST). Weights are aso assigned to the metrics in order to focus on certain
aspects of the fitness function. The fitness of a solution is calculated by adjusting the
fitness achieved by metrics. The adjustments put the fitness value in perspective to the
metric-fitness of the initial solution and the metric-fitness of the solution with the
maximum metric values. Such a fitness function shows the relative improvement in
fitness values, which is easier to evauate than mere raw numerical values. Seng et al.
[2006] have achieved some very promising results. the class structure was clearly
improved, and there was low statistical spread and good convergence within the fitness
values. The fitness values also settled to a standard after some 2000 generation runs. The
metric values that improved the most in tests were ICH and ICP, both improving over
80% during refactoring.

O’ Keeffe and O Cinneide [2007] have continued their research with the use of the
representation and genetic operators introduced by Seng et al. [2006]. They introduce a
wider list of refactorings that can be applied to the system and by introducing more fine-
tuned fitness function metrics. The extended refactorings include operations that affect
the security of attributes and methods, i.e. changing it from private to protected or vice
versa, and changing a class from abstract to concrete or vice versa. O’ Keeffe and O
Cinneide [2007] use the following metrics. data access metric, which indicates cohesion
within a class, NOM, number of polymorphic methods, CBO, design size in classes, i.e.
the number of classesin the design, and average number of ancestors.

O'Keeffe and O Cinneide [2007] also compared the genetic algorithm to other
search algorithms: simulated annealing, multiple ascent hill climbing (MHC) and
stegpest ascent hill climbing (SAHC). They used a standard geometric cooling schedule
and alow starting temperature for the simulated annealing, and this technique proved to
be the worst of the tested four methods. Reasons for the low success of SAHC were its
very slowness and the facts that an effective cooling schedule is difficult to determine
and that there was much variance between results. MHC begins similarly to the regular
hill climbing algorithm discussed in Subsection 4.1.1. However, when the MHC
algorithm reaches a local optimum, it does not stop, but performs a predefined number
of random transformations to the solution. MHC then restarts the search from the

34

resulting solution; the number of restarts is given as a parameter. Both hill-climbing
approaches produced high quality results, and MHC outperformed even the genetic
algorithm approach by being extremely fast, while the SAHC technique was quite slow.

Harman and Tratt [2007] introduce a more user-centered method of applying
refactoring. They offer the user the option to choose from several solutions produced by
the search algorithm, and also point out that the user should be able to limit the kind of
solutions he wants to see, as he may only have limited resources for the actual
implementation of the suggested refactorings. The fitness functions of search-based
algorithms are also problematized, as they often present a complex combinatorial
problem, and Harman and Tratt [2007] attempt to achieve a solution where the search
wouldn't rely so heavily on perfectly formulated fitness functions.

The refactoring methods are the same as presented by Seng et al. [2006], and two
metrics are used to calculate the fitness of a solution: the well-known CBO and a new
metric, standard deviation of methods per class (SDMPC) [Harman and Tratt, 2007].
Two combinations of these metrics, f; = CBO*SDMPC and f, = CBO+SDMPC, are
then considered as options for the final fitness function.

Harman and Tratt [2007] present Pareto optimality to aid the evaluation and
selection of the results given by the fitness function. They define Pareto optimality as
follows. “In economics the concept a Pareto optima value is effectively a tuple of
various metrics that can be made better or worse. A value is Pareto optimal if moving
from it to any other value makes one of its constituent metrics worsg; it is said to be a
value which is not dominated by any other value. For any given set of values there will
be one or more Pareto optimal values. The subset of values that are al Pareto optimal is
termed the Pareto front of the set.” Harman and Tratt [2007] point out that the “true’
Pareto front for a search-based system is anaytically impossible and impractical to
search. Therefore, the front of Pareto optimal values that can be created through a series
of runsis considered to be an approximation of the “true’ Pareto front.

Pareto optimality is used when the user needs to choose the desired solution. It
might be difficult to see what solutions have atruly good combination of the two metrics
presented: by showing the solutions belonging to the Pareto front, the user can be sure
that these are indeed “good” solutions.

4.1.4. Architecture development

Program transformations for architecture development apply bigger modifications to the
system than simple refactoring operations. An example of program transformation is
implementing software design patterns to an architecture representation. In general,
program transformation is about changing the syntax of the program while keeping the
same semantics [Clarke et al., 2003]. This can be achieved by applying a series of
transformation steps. Thus, the solution that is searched for is the optimal sequence of
transformations. The fitness function, on the other hand, is a combination of code level

35

software metrics, as introduced in Chapter 2, to measure the quality of the resulting
architecture. Mutation operators feature e.g., replacing a transformation in the sequence,
shifting transformations or rotating the sequence by swapping the places of two
transformation steps. Program transformations can be used for maintenance and re-
engineering purposes as well as developing an initial architecture [Clarke et al., 2003].

Amoui et al. [2006] have attempted to implement software design patterns with the
help of genetic agorithms. Their goal is to use genetic algorithms to find the optimal
sequence of high level design pattern transformations to increase the reusability of a
software system. Amouli et al. [2006] introduce the concept of supergenes when defining
the encoding for the chromosomes. Each chromosome representing a series of design
transformation condsts of a set of supergenes, each of which represents a single
transformation. A supergene contains information of the pattern number implemented,
the package number and the classes that the pattern is applied to. Because each
supergene has different parameters, mutations and crossovers may result in invalid
supergenes: these are found and discarded [Amoui et al., 2006]. The crossover operator
has two different versions which can be used separately or together: one can either
administrate a crossover at supergene level, swapping the places of the supergenes
before and after the crossover point, or select two supergenes and apply a crossover at
gene level to these supergenes. The mutation operator mutates a random number of
genes inside a randomly chosen supergene. The fitness function used by Amoui et al.
[2006] measures the distance from the main sequence D, and is defined as

A+
\/E 3
_ AbstractClasses
where =
Total Classes
and | = Ce)
C.+C,

where C. is defined as number of classes whose elements are used by other classes, and
C, is the number of classes usng elements of the other classes [Seng et al., 2006].
Amoui et al.’s [2006] tests show that genetic algorithm finds better solutions in less time
than a random search of design transformations. Similar results have also been achieved
by Grunske [2006].

The performance of a software system comes down to how efficient the underlying
architecture is. In addition to optimizing the efficiency of an architecture in terms of
structure, there are still a set of parameters that can be optimized for any given
architecture. These parameters are related to optimization methods such as loop tiling,
loop distribution, loop unrolling and array padding optimization. Che et a. [2003]

36

present how these parameters can be optimized with a genetic algorithm by transforming
the parameter selection into a combinatorial minimization problem. They give a vector
containing the parameters to the application, and then execute the program in order to
test the runtime achieved with the given parameters. The vectors containing the
parameters are generated by a genetic algorithm, and their “goodness’ is evaluated by
the execution time, so that the less time it takes to run the program the better. The result
should be a set of near optimal parameters for different architectures. In order to do the
tests in reasonable time, Che et a. [2003] have done transformations to the initial code
of the application the runtime of which is being tested. The encoding used for the genetic
algorithm isa string of integers, the fitness function uses the knowledge on how high the
execution time of the individua is on the list of execution times of the population, and
selection is performed as a combination of elitist and roulette wheel selection.
Preliminary results show that extreme improvements can be achieved in execution time
using this approach for parameter optimization.

A different kind of approach is needed in developing service-oriented architectures
(SOA). In this case, software offers its functionality as a service, and in order to realize
more complex tasks, individual services need to be formed into compositions. When
designing SOA one hasto dea with two combinatorial problems: firstly, the combination
of services must complete the required task and secondly, the quality-of-service (QoS)
factors must be taken into account [Jaeger and MUhl, 2007]. Jaeger and MUhl [2007]
have studied the optimization of the resulting QoS of the composition using a genetic
algorithm. The agorithm identifies an assignment of service candidates to the tasks in
the composition considering the selection criteria, for which the QoS is considered. Each
individual handled by the algorithm represents an assgnment of a candidate for each
task, and is represented as a tuple. The fitness value for each individual is achieved by
calculating the QoS resulting from the encoded task-assignments. Qualities such as
availability, reputation, cost and time are used to calculate a fitness, as well as a penalty
factor if the solution fails to meet the given constraints [Jaeger and Muhl, 2007]. A
similar fitness function has been used in the work of Canfora et a. [2007], who map
concrete services to abstract services, and who have refined the calculation of the total
QoS by also examining workflow constructs, such as switches and loops, thus achieving
amore accurate value for the total QoS. The distance from constraint satisfaction (D) is
also calculated to determine whether the quality of a solution is acceptable. If D = 0, a
solution has been found, but the iteration may be continued to find a solution with an
even better fitness. The genetic agorithm outperformed Integer Programming in the
tests performed by Canfora et al. [2007] when the number of concrete services is hig,
thus showing that meta-heuristic search algorithms can also be used in the case of
service-oriented architectures.

37

4.2. Search algorithmsin software analysisand testing

In addition to design related software engineering problems, there are severa other fields
of software engineering where search algorithms have successfully been implemented,
e.g., testing, requirements engineering and project management. | will now present
some examples as to demonstrate how widely search agorithms can indeed be used in
the area of software engineering.

Search algorithms can be applied to the area of testing for they are convenient in
producing optimal test cases. These test cases can be divided into categories depending
on what kind of testing they are used for: structural testing, specification based testing or
testing to determine the worst case execution time [Clarke et a., 2003].

Structural test techniques determine the adequacy of a test set by considering the
structure of the code. Normally such techniques measure the coverage of source code,
i.e., the proportion of different constructs that are executed during testing, and full
coverage is usually expected. Coverage can be divided into three different categories:
statement coverage, branch coverage and path coverage [Clarke et a., 2003]. Fitness
functions may be defined according to what is measured: how many statements the test
case covers, how close to the correct branch does the test case get to, or how many
paths it covers and how close does it get to the paths it is supposed to cover.
Specification-based testing can be done with the use of pre- and post-conditions P and
Q, respectively, and forming a predicate C(P, Q) = Q V-P. A fault is detected if the
predicate C is false, and it can be examined with, for example, smulated annealing
[Clarke et al., 2003].

Genetic agorithms can quite straightforwardly be used in order to find minimal and
maximal execution times as the fitness function is easy to define to be dependent on the
execution time of the test case represented by the chromosome [Clarke et al., 2003].

In the cost estimation problem, the size of the application, usually measured in lines
of code or in function points, is examined in relation to the effort, which is usualy
measured in person-months [Clarke et a., 2003]. Search algorithms, and especially
genetic algorithms in this case, are used in order to find predictive functions for the
relation. The operators of a solution function include +, -, *, /, power, sgrt, square, log
and exp, which will allow approximation of amost any function likely to solve the
problem. The initial population is formed of a set of well-formed equations, to which the
normal operators of a genetic algorithm are applied [Clarke et a., 2003]. The fitness
function used to evaluate the resulting equation is the mean squared error,

1 ¢)

n- 2 Ia:l (Yi - yl)
The next generation is selected with the fitness-proportionate selection method [Clarke
et a., 2003]. The main benefit of using a genetic algorithm in cost estimation is the
achieved confidence in results; the algorithm explores solutions solely based on their

mse =

38

fitness values and does not constrain the form of the solution. Thus, even complex
evaluation functions have the possibility of being found and the final set of equations
provided by the genetic algorithm truly have the best predictive values [Clarke et al.,
2003].

Clarke et al. [2003] present that search algorithms can aso be used for requirements
phasing. The development of a system consists of iterative cycles of selecting a set of
requirements and implementing them, after which the system is presented to the
customer. Problems arise when there are several customers with different interests: not
al customers agree with what requirements should be implemented in the following
iteration. To find out the most valued requirements, they need to be weighted or
prioritized in some way by all customers. When the requirements have been scored in
some way, the problem becomes about finding the optimal set of requirements to
implement. However, this problem is an instance of the 0-1 knapsack problem, which is
known to be NP-hard, and thus makes it appropriate for search algorithms [Clarke et dl.,
2003]. A solution to the problem can be represented as a bit vector, bits representing the
presence or absence of a requirement, with the basic mutations and crossover operators
as discussed in Chapter 3. Neighbor proximity can be represented by the Hamming
distance. The fitness function will naturally be the sum of priorities, weights or votes
assigned to the requirements represented by a solution. This kind of encoding enables the
use of several different search algorithms [Clarke et al., 2003]. Unfortunately,
requirements are rarely simple and independent of one another: usually requirements
depend on other requirements, and implementing a requirement before the ones it
depends on have been implemented will greatly increase its cost. Also, customers may
not prioritize requirements using the same criteria, as others may value cost and others
development time. Thus, each requirement needs to be represented with a vector that
contains all the relevant information: cost, development time, dependencies, etc. This
complicates the problem as the fitness function needs to be refined, and it may now be
possible to generate illegal individuals, which need to be dedt with [Clarke et al., 2003].

A similar problem lies in the area of project management. When embarking on a
project, there are several conflicting desires. costs and duration should be minimized
while quality should be maximized, and human resources and the budget should be
managed optimally. Alba and Chicano [2007] have approached the project scheduling
problem with a genetic algorithm and they define the project scheduling problem as
follows. Costs associated with the employees and the project should be minimized as
well as the duration. The employee is regarded as a resource with several possible skills
and a sadlary, which is the cost of the employee. The employee aso has a maximum
dedication to the project, which tells how much time the employee can use for the
project. If the employee is presented with tasks requiring more time than his maximum

39

dedication, the employee is forced to work overtime, which results in a high risk of
errorsthat in turn lower the quality of the project as well as an increase in duration.

Alba and Chicano [2007] model the possible solutions as a dedication matrix,
encoded into a binary string, which is the representation used for the genetic agorithm.
The fitness function is calculated from the weighted cost and duration of the suggested
solution, and a substantia penalty is added if the solution is not feasble. The
performance of the genetic algorithm is tested by varying the number of tasks and
employees, the specia skills of the employees and the number of skills an employee has.
Results show that increasing the number of employees decreases the quality of the
solution, as it becomes more difficult to effectively assign tasks to employees. The same
result can be seen from the experiment with the number of tasks: the more tasks, the
more complex the problem. Reversely, the more skills an employee has, the easier the
problem becomesto solve.

Dick and Jha [1998] have applied a genetic algorithm to address the problem of co-
synthesizing hardware-software embedded systems. A co-synthesis system determines
the hardware and software processing elements (PE) that are needed and the links that
are used for a given embedded system. A co-synthesis system must carry out four tasks:
dlocation, assignment, scheduling, and performance evauation. The
alocation/assignment and scheduling are known to be NP-complete for distributed
systems, so the co-synthesis problem is an excellent candidate for search algorithms
[Dick and Jha, 1998]. The implementation by Dick and Jha [1998] optimizes price and
power consumption and heuristics are applied to allow multi-rate systems to be
scheduled in reasonable time. The system is represented as a combination of the
following data: cost, task graph, processing elements, communication links, constraints
and a PE allocation string. Solutions are grouped into clusters so that systems with the
same dlocation string belong to the same cluster. Mutations and crossovers can be
defined both at the cluster and the solution level. Dick and Jha's [1998] solution
provides the user with the Pareto-optimal set of architectures instead of the single “best”
solution, and has shown very promising results in solving co-synthesizing problems.

40

5. Genetic construction of softwar e ar chitectures

A software system is constructed to serve a specific purpose. In order to achieve the
desired outcome, the software needs to complete several tasks leading to the fina
solution. The tasks can be grouped into responshbilities. a responsibility describes a
logical function without giving specific details about the actual implementation. For
example, a web application may have a responsibility “update user registry”. This
responsibility holds tasks such as processing the data to be updated, checking the validity
of the user registry, and possible notifying of exceptions. The goa in this thesis is to
apply genetic algorithms in order to build an architecture for a system when its
responsibilities are given as a dependency graph. The basic architecture considers the
class divison of the responshilities, and interfaces, design patterns and a message
dispatcher are brought into the architecture as fine-tuning mechanisms. A set of
“architecture laws’ are also defined as to make sure that each produced solution could
actually be accepted by a human expert, and that no anomalies are present in the system.

5.1. Architecturerepresentation

When using a genetic algorithm, the first thing needed is the encoding of individuals. The
encoding chosen for the implementation presented here follows the supergene idea given
by Amoui et a. [2006]. A chromosome consists of supergenes, each of which represents
one respongibility in the system. A supergene G; contains two kinds of information.
Firstly, there is the information given as input for the responsibility r;: the responsibilities
depending on it {ry, rz, ..., '}, itS name n;, execution time t;, parameter size p;,
frequency of use f;, type d; (functiona or data), call cost ¢; and variability vi. Secondly,
there is the information regarding the postioning of the responsbility r; in the
architecture, and for this, class and interface libraries need to be created in the
initialization. For a system of n responsibilities, a class library is defined as CL = {(C,,
1), (Cy, 2)...., (C,, n)}, s0 C; can be identified by the integer value i of the tuple (G, i).
The tuple notation is chosen so that the value k for class Cj, which represents the class
for gene G; can be mapped to the respective class (Cy, k) inthe classlibrary. An interface
library is similarly defined as IL = {(1.,1), (12,2), ..., (Inn)}, where |; is identified by the
integer value i of the tuple (l;, 1). As only one message dispatcher is allowed in the
system, there is no need for a dispatcher library. These identifiers are used in Gj, as it
contains information of the class(es) C; that the respective responshility r; belongs to,
the interface I; it implements and the group of responsibilities, RD;, it is communicating
with through its dispatcher D;, and the design pattern P; it is a part of. The encoding is
presented in Figure 1, which represents a chromosome with n responsihilities.

41

G G, Gz |.....|Gy
i [ty P2 fr M |dy €1 [V4|Class Interface|DispatchenRD, Pattern
21, Cy 1 D: | {ri, P
21,
My M1y

Figure 1. Chromosome encoding.

This encoding ensures that the dependency graph given asinput is never jeopardized,
as there is no mutation that would alter the set of depending responsibilities. It is aso a
smple way to store all the necessary information. As the encoding is responsibility-
centered, there is no need for separate encodings for, e.g., classes and interfaces. This
also ensures that each responsiility is present in the system, as the class property must
aways have a value belonging to the given class library. The crossover operation is also
safe regarding the basic structure and can be done as a traditional one-point crossover:
there is no risk of any responsibility being removed from the system or the dependencies
being broken as a result of crossover. A corrective operation is, however, needed to deal
with overlapping design patterns.

The weakness of this kind of encoding becomes apparent when the solution needs to
be visualized as a UML class diagram, and when class based quality metrics need to be
calculated. As the information is now needed from the perspective of the classes and
interfaces, extra effort is needed to extract it from the individual supergenes. However,
the class diagram only needs to be drawn once to visualize the final solution, and
operations calculating the different metrics also need information regarding each
responsibility, so the cost of a responsibility-centered model is not that much greater in
the end. As also the mutation operations truly benefit from the chosen encoding since the
architecture is fairly easily kept legal, the benefits clearly overcome the shortcomings of
the presented modeling method.

5.2. Mutations

Mutations transform the architecture in two ways: on system level, where the mutation
affects the entire chromosome and on responsibility level, where the mutation affects one
or more (in the case of design patterns) supergenes. Crossover is aso consdered as a
mutation in this implementation, but will be discussed separately as it is still implemented
as a traditional one-point crossover operation with a corrective function. The system
level mutations are introducing or removing a dispatcher to or from the system. They are
implemented by either adding or removing a “dummy” gene, and thus no actual mutation
index is needed. When a dispatcher is added, the “dummy” gene only has information in
the dispatcher locus — thus bringing the dispatcher to the system. When removing a

42

dispatcher from the system, it is first checked that no responsbility is using the
dispatcher, after which the “dummy” gene carrying the dispatcher is simply discarded.

In the responsibility level, supergene G;, representing responsbility r;, can be
subjected to the following mutations:

split the class C; in Gjinto classes Ciand Cy

merge two classes C;and C; where G isin G

introduce interfacely, (I, K) I IL, to G

remove interface I; from G

introduce a dispatcher connection to G

remove a dispatcher connection from G;

introduce a Strategy pattern to G; and G;

remove a Strategy pattern from G; and G;

introduce a Fagade pattern to a set of genesG = {G;, G,, ..., G}

remove a Fagade pattern froma set of genesG = {G;, G,, ..., G}

use variability

remove variahility.
The mutation index (i.e., index i) for these mutations is selected randomly, with a dight
ateration in the cases of introducing a strategy pattern and a dispatcher connection. As
these particular mutations are especially favorable to responsihilities with a relatively
high variability value, the probability of a responsbility being subjected to these
mutations grows linearly according to the responsibility ri’s variability value v;. After
each mutation, the system is checked against the architecture laws, and if anomalies are
found, they are corrected accordingly.

When splitting a class, the responsibilities located in C; are divided into two classes,
C and Ci. The gplit is done by checking good cutting points, i.e., if C; contains
responsibilities that depend on each other, they are kept together in the “old” class G
while the other responsibilities are moved to Cy. Merging two classes is the counter-
mutation for splitting classes: responsibilities from two different classes, Cx and C; are
placed in one class, C..

When introducing interface I to G, the interface I is first chosen randomly from the
library, after which the interface value of G; is set to k, thus implementing I through r;.
Removing an interface association is the counter-mutation, i.e., if r; is implementing the
interface |;, the interface value of G; thus being i, the implementation is removed by
setting the interface value to 0.

Introducing a dispatcher communication to r; will cause a depending responsibility r;
to communicate with r; through the dispatcher D; instead of being directly associated
with the class Ci. Removing a dispatcher communication will cause a depending
responsibility r; to communicate with the responsibility r; either directly or through an
interface I, if the responsibility in question implements one.

43

Introducing a Strategy pattern to responsibilities r; and r;, when r; depends on r; and
ri and r; are allocated to the same class Cj, will cause r; to move to its own class C; which
implements interface 1;, and to r; to call r; through the interface. A pattern instance is
created where information regarding r;, r;, C;, C; and |; is stored, and the pattern loci are
updated in genes G; and G;. Removing a strategy pattern will again move the two
responsibilities r; and r; to the same class and remove the interface |; from the system.
The pattern loci of the responsibilities are also set to null.

Introducing a Fagade pattern will cause a group of responsibilities to communicate
with a group of responshbilities forming several subsystems through a facade, i.e., a
technical class and itsinterface. It isfirst checked that the responsibility where the facade
should be implemented is indeed a part of a subsystem that could be called through a
fagade, or that it is a respongbility needing several subsystems, and could thus use a
facade. When the legality of the mutation is checked, all responsihilities that are used
through or using the facade are collected, as well as the classes they belong to and the
interfaces they implement. In addition, a random unused class and interface is assigned to
be the technical fagade class and interface. All this information is collected into a pattern
instance, and the pattern loci of the responsibilities involved with the fagcade are updated
with the new pattern instance. Naturally, if a responsbility is already a part of some
other pattern, it is not made a part of the Fagade, and if there are not enough “pattern-
free” responsibilities that satisfy the preconditions for implementing the fagade pattern,
the mutation cannot take place. Removing a Fagade pattern will null the pattern loci of
the respongbilities involved with the pattern, and remove the technical fagade class and
interface from the system.

Using variability in responsibility r; will create another class Ci and the interface I,
so that r; isnow in two classes, C; and C;: that both implement the interface I;. Removing
variability will remove the class C;..

The presented mutations alow different ways of communications between
responsibilities: direct associations between classes, communication through interfaces
(the different varieties of which were introduced in Chapter 2), and communication
through a dispatcher, which implicates that the message dispatcher architecture style
would be an appropriate choice for the system in question. The class structure is
modified by splitting and merging classes, and keeping sub-systems intact is encouraged
by checking for split points. Each mutation also has a counter-mutation, so every move
can be reversed in order to ensure the most flexible traverse through the search space.

The chosen mutations also conform to the idea of unit operations introduced by
Bass et al. [1998]. These operations are used to achieve architecture styles and design
patterns, and can be categorized to separation, abstraction, compression and resource
sharing. Merging and splitting a class are clearly analogous to compression and
separation, abstraction is achieved through abstract classes and interfaces, and resource

44

sharing can be done through a message dispatcher or an interface. It should be noted that
thisis arough analogy of unit operations to these mutations, and at a more detailed level
the unit operations are more complex, and, e.g., introducing an interface to a classis also
a case of separation, as it separates that particular class by “hiding” it behind the
interface. Bass et al. [1998] aso discuss the actual resources to be shared and make an
example of databases; this also justifies the incorporation of different types for
responsibilities, and thus identifying data in the system.

5.3. Crossover

The purpose of a crossover is to combine good properties from two individuals. A
crossover between two architectures can be implemented as a traditiona single-point
crossover. Figure 2 illustrates a crossover between chromosomes CR; and CR; at
crossover index k, the result being chromosomes CR;,; and CRy;.

CRl .

Gl e Gk Gk+1 e Gm
CR»,

Gl e Gk Gk+1 e Gn
CRlZ :

Gl e Gk Gk+1 e Gn
CRy;.

Gl e Gk Gk+1 e Gm

Figure 2. The crossover operation

The selected encoding and the way of performing a crossover operation ensure that
the architectures stay legal, as the supergenes stay intact during the crossover operation,
i.e,, no responshility can be dropped out of the system or be duplicated into two
different classes, and no interface becomes “empty”. The optimum outcome of a
crossover operation at index k would be that CR; has found good solutions regarding
interfaces and dispatchers and a clear structure for responsibilities from r; to ry, and CR;
contains good solutions for responsbilities from ry.; to ry in a system with n

45

responsibilities. Thus, the resulting chromosome CR;, would be a combination of these
solutions, and contain a good solution of the entire system.

Decisions regarding architecture style and patterns are kept during a crossover
operation, i.e., if a responshility uses the message dispatcher for communication, this
way of communication is maintained even after a crossover operation. Thus, a corrective
operation is needed to deal with missing dispatchers and overlapping patterns. The
former situation is presented in Figure 3, where the supergene G, and the supergene Gy
in chromosome CR; are separated during the crossover operation.

CRl :

Gl Gk Gk+1 ..Gn ..Gm_]_ Gm

Dk rj Dm

CR»,
Gl e Gk Gk+1 e Gn

CRlZ :
Gl e Gk Gk+1 e Gn

Dy 0

CRy;.
G_‘]_ can Gk Gk+l s Gn s Gm_l Gm

Dnm

Figure 3. Chromosome CR;, contains a gene needing a dispatcher (Gy) but not the gene
containing the dispatcher (Gy)

As a message dispatcher needs to be declared in the system so it can be used by the
responsibilities, a corrective operation is now needed. The correction is done by adding
the supergene G, to chromosome CR;,, the end result CR;> shown in Figure 4.

CRlZ’ :
Gl Gk Gk+1 Gn Gn+l

46

Dy 0 D
Figure 4. Corrected dispatcher usage.

The case of over-lapping patterns is described in Figure 5. In this example, the genes Gy
and Gn, in chromosome CR; are involved in the same pattern. After the crossover,
however, these genes are separated. Moreover, the chromosome with which CR;
produces offspring, CR,, already has a different pattern involving gene Gy For these
cases, an order of priority must be issued so the offspring can be corrected rightly.

CRl :

Gl Gk Gk+1 ..Gn ..Gm_]_ Gm

P P

CR..
Gl e Gk-l Gk Gk+1 e Gn

Pk Pk

CRlZ :
Gl e Gk Gk+1 e Gn

CRy;.
Gl e Gk.l Gk 3k+l e Gm_l Gm

| P .| P i
Figure 5. Overlapping patterns.

In order to deal with overlapping patterns, an order of importance must be
decided, and the left side of the chromosome is chosen to be the correct one. The
corrected offspring is depicted in Figure 6. Because of the chosen order of importance,
the corrective operation ends up adding a pattern to CR;» and removing one from CRy;.
This is achieved as when first checking the left side of CRy,, a pattern is found in gene
Gy. The chromosome is then altered so that the found pattern is made whole, i.e., al the
genes that should be involved with the pattern, as listed in the pattern field, should
contain this pattern. This results in adding the relevant information in the previoudy
empty pattern field in gene Gy, 1, thus achieving the new chromosome CR;>. When CR;;

a7

is taken under inspection, the left side of the chromosome does not give reason for any
modifications. However, as we begin to inspect the right side of the chromosome, a
pattern is found in gene Gn.1. In order to make this pattern legal, the left side would need
an update. However, as the left side should remain untouched, the actual outcome of the
correction isremoving the pattern in Gn,.1, as no pattern can only involve one gene.

CRiz
Gy | ... |Gy G+ .| Gm1 Gn
. .|P
CRar;
G | ...| Gua Gk Gker [on | Gma Gm
J Pk J Pk

Figure 6. Corrected patterns.

To summarize, the crossover operation combines two subsets of responsibilities with
their respective architectural structures by administering a one-point crossover. A
checking and correcting operation is needed in the case where there is a message
dispatcher present in the systems or there are overlapping patterns, but as this is a fairly
simple procedure, the benefits of the defined crossover operation clearly overcome these
minor disadvantages.

5.4. Architecturelaws

There are a group of “laws’ defined to make sure that there are no anomalies in the
proposed system. These laws mainly state some rules on how responsibilities can be
grouped to classes and how classes call each other through interfaces and the dispatcher.

Firstly, there are the rules regarding structure. By default, a responsibility is only
present in one class. A responsibility can be placed in more than one class only if its
variability is bigger than 1, and it has been subjected to the variability mutation. All
functional responsibilities that use a data responsibility must be in the same class as the
dataresponsihility. Thisrule is overridden in the case of patterns.

Secondly, there are rules regarding the interfaces. Each responsibility is only
allowed to implement one interface. Interface implementations are also restricted in the
way that only function-type responsibilities are allowed to implement an interface. Also,
it is forbidden that a class would call an interface it implements itself. Furthermore, two
classes cannot implement the same interface unless they both contain all the
responsibilities implementing the particular interface. This is actually only possible in the
case of varied responsibilities. An interface can aso only be implemented if at least one

48

responsibility using the interface is in a different class than the responsbilities
implementing the interface: no unused interfaces are alowed.

Findly, there are rules on how classes communicate. If responsibility r; in class A
calls responsibilities from class B, and one of the needed responsihilities implements
interface C, then all the responsibilities needed by r; that are located in class B must
implement the interface C. Also, if responsbility r; in class A calls responsibilities from
class B, and one of the needed responsibilities is called through the message dispatcher,
then all the responsibilities needed by r; that are located in class B must be called through
the dispatcher. Findly, if a responsibility that is called through an interface implements
interface C, the message dispatcher must call the interface instead of communicating
directly.

49

6. Implementation

6.1. Presenting the program

The implementation has been done with Java SE 1.5.0, and the core program
implemented handles the given data, executes the genetic agorithm, stores data of
fitness values and generates Java-files with javadoc-comments. These Java-files are then
given to UMLGraph 4.8 [UMLGraph, 2007], which in turn generates a .dot —file
containing information of the resulting class diagram. Finally, GraphViz_2.14
[GraphViz, 2007] is used to generate a Gl F-picture from the .dot descriptive file.

6.1.1. Structure

The implementation is aimed to be as smple as possible, and it straightforwardly follows
the execution of a genetic algorithm presented in Chapter 3. The modeling presented in
Chapter 5 has been implemented with the Cromosome and SuperGene classes, presented
in the class diagram of the implementation ‘Frankenstein’ in Figure 7. The SuperGene
class is an inner class of the Cromosome, keeping a tight analogy between the
implementation and the presented model. The Cromosome class holds all information of
the system as a whole — the class and interface libraries, used classes, interfaces and the
dispatcher, and the fitness value of the individual. It also has the crossover operation, the
mutation operations that affect the entire chromosome, such as introducing a dispatcher
to the system, and all the different fitness functions responding to the used quality
metrics. The fitness function is implemented in the Cromosome class instead of the
GeneticAlgorithm class in order to minimize calls between classes, as the fitness
functions need to constantly access the information contained in both the chromosome as
an entirety as well as its individual supergenes. The SuperGene class holds the
information stored in a gene, as presented in Chapter 5. It also contains the mutation
operations that affect an individual gene, such as introducing an interface, as well as
operations for accessing al the information stored in the gene. The Pattern class is used
as a base class to store all common information regarding design patterns, such as
responsibilities and classes involved with the pattern. Each design pattern is given a
gpecial class that is inherited from the Pattern class, as has been done with
StrategyPattern and FacadePattern classes here. These special pattern classes contain the
information that is only relevant for the specific pattern, such as a technical pattern class
in the case of afacade pattern. The GeneticAlgorithm class contains the basic operations
of the genetic algorithm — creating a population, handling a population and selecting the
next population. Other classes in the implementation are Frankenstein, which is the main
class, OutputDataHandler, which takes care of storing the fitness data,
InputDataHandler, which transforms the information given as input into a “base’

50

chromosome, and UML Generator, which transforms the information in the achieved best

solution into Java-files.

SuperGene

svecutonTie i
sarsnist €ize foLble
tecuensy it

arne - Shing
jereClzss: Ineger
sereieraze : neger
jereDipatchers LinkedlList
shetract” ass ieger

LinkedList< niegar=

s biles : kedList

[yoe: 7iny
allcost inf
ity int
satem ater

SuperGere(
rucaionSpiiCamponent{yenes : Linked_isf: void
ruaionhengeCo i anerts(y v
mucalionintioduceNfessegeDisaateerTcResnCnsh yigenes Linkelist i
nualonRemavellessageLispacer o Fespons i) vod
Lirkeilist<SuperCens», irtaf
ruratvtPemavelntcedgenes LinkedUsteSugerGene=) void
fas3"chespor LikesL
Linkedl
kel strege 7y vaid
setDeperdinRecponsib s it
setClass(chassumbe rtege):void
yetdencClass) ntzger
setibstrartDlass el iegers imid
Intege
solierave(nenalue nsga). vod
yetetace() neger
setDisaatthertiew\alL: Freger selecteeDispatcher nt void
dcCisgaltherCamiTun ation dicpaicher\maer [1eyer esponsiiyiumber nfzger) cid
setCam ruicatedResaonsititiss vl reger selectedSam mieator nf: v
lege, selecledDipalcher nf void
JetCamuiatedResaonsititis(: LinkecLis-teger
setParamele Szeinew3 2e; Coubla) vid
yetParamele Sze counle
setEsecutonTedenTine: infvaid
JetEsenutonTime): int
seffrequency(nenfrequzncy inf vt
yetFrequency(irt
sethamtaviian Sting-void
sethama0; trng
selTypsinenType: Stingy v
etz ting
58104l Cos newCallGust inf -voi
JetCal Cosi)cirt
setvarabliynzubarabily. in) void
setsarzhiy) 1t
satbenePatem(newPstim Faltr) vid
yetbencPatem{ Pater

ritiliss: ir) voic

*GuerGene=).voii
SupGetes,

inf cid
responsiailifes

SirategyPatiem

FacadePattern

rategyFatem{iascesUsed LnkedLisiegers, dessesUsirg, Linbed Jok egar=
espsUsedt LinkedList< tegzre respelsing LinkedListentzgers imerfares LinkedLitentzger)

FavatePatl (tazsesUsed LirkeiListatzgers, ¢ assess g LinkedLiskregersespaUsed Lnked i< rlegers,
tespsls ngLinkedLstnteger merares L nkedListenteger, classesLirkedList< egerr)

o i

!

fral STRA
iral FACADE int
patimlipe int
patemintertare int
patemName g
patimClassint
usingespons bilties: Lol st-teger-
usectR2sponsialfs LinkedListe rtegzr>
usincClassas LirkedListnteger

usedd> asses: Linkeclis Itege =
ietates e LinedListfeger-
lsssesiohed: Liriedlistintger

=5vin

Paltern

Patle)
getPatemTine] int
sotPatimTipa tpe n i

v ceCint
setPatimierte(ireraceint wid

InputDataHandler

)ity

o
setPatemiamene
getPatiemlassiint
setPatienc

A2 TN

seileights(f 3hing)Vzctor=Double>

inid
Linkedl st tegar

s Sting)vactor=Dot e

18 3ing, p'CbF Stirgromosoms

irkedListrigers

Cromosome

orosorT LinkedLtEurerbene>
useiClasses: Lincedl st <lntager

useite faces: Linked_ist <nteger

classas LinkeiList teger

inerfaoelct LinkedlListlteger=

disechers: Linkedisrtege
inbalProgatilties Linke:list<Doble
prabab es: LinkedLst <DoLile>
sbsraciClasses: Litked_isf sntegen>
useADispatcherntzger

crcsOverProaabilty - doutle

finess: dcuble

finessEficency: dautle

finesstiocitab ly:coublz

random :Random

Cromosormel;

Cromasome(giing pobabilif 1e)

langinC - nt

seffiessirenf tiess: dcuble)void
getitiess(): Jnuble

setfclfah 0F ness{newhiodness dcubliacic
oelicsiraalifinzse0DcLble

selEfcien:yF tnessinewEfFinece do.tle)yid
getEfcien:y tness i Doutle
aoi3zne(newcen: SupeGene, viid
oetoeneiiner nfisup2iGene
setteneinewbane: Superdens, ndex i i
petoenes(- Linedist

settenes(oenes Lin<edl st<Guaersane=)
getClasses (:Lnd st

inkedL

LitkedLis:<iteger=1cid

oelUsingClacses(. inkecLis=riege>
setlsingClacsesolasses LirkedListeger)oid
petUsedClasses(LinkedListinegers
setUserClasses(ilassesLineeList-htegerunit
getClasses rvobed) LrkecListheger
setClasses niohedplasses LinkedListiegeriucid
et facesuche:(:_inkedistertege
setme facesivchedirterases LinkedListeiiegero o

it ger-Jun

Frankenstein

- n{erys - Shing]). voic

UMLGenerator

[restedsvaFiesibasCramasome: Crernesome inlialResposiaiites - nl

Anay

GeneticAlgorithm

jrobaailly Couble
incedtumber Iveger

besFiress Dovkle
sesan3estinzss Dol

finesses: LindecList-Coublz>
sotecFilnesses : LinkedList <Jaublex
nedinesses: L st<Deh e
raborFinesses : Linked_sf <Ciusle>
prabaailfes Verti<dutle>

inceces Vartor <rtege >

tCraseaver: Vertrr

getUsedCasest) LinkerLst
oetUzedAbstracs(: L ecList
oetcenDisaathers iega1
getlsednerfaces): LinkedList
setlsedChasses(used: Linked-fs) vod
selUceddbstracts e LrkedLit) void
setUcedDisaathers(used: rleger)viid
setUcennetacesusai - Linkealist vid
setClasslbran(ilassamont:) voic
seliarecaLibayiefacemont int) 0
setDispatcharlibranyidspatsheramourtinf vk
nutston o catlevAbstantClass() void
nutston e eeErrpydbetract” ass) vid
nutston o ctessageCispatehai) vid
mutationam3veesssoeDisoatcher) void
nutation o cStategyPstam vt
nutatonemeSlategyPatem(iioid
nutaton <z v 3cadsPatm(aid
nutston Jsevaiabing e o
nutston eVt
setOgerctinPrbatilies(iinessd e i, papulatoTsize: ot
selecuan(rozatilty Doutle, muiaionRound i1t Irtege”
ualionCoice:int {: ntegar

nutstsiprchabily Dot e, yeneslace - nteger, infalResponsitilties: in muttionRoure: - Vet
rssover(one: Cromasames, b Crorosarre, i fsRespansi ies ir}): Veclor<Croosar e
chechiterazee(ntiazsonshiiies: i vnid

Ve, fin2seCho . in, st
ineszPositheMaifaoliritaiResaorsbiltes.n). do.ble
inessHegalfehiosiiail). doub e
finessPasitveEfciency(: double
finesshlegalieEficiency): doablz
hessCorplet(ritaRespens bilteciat: double

reitiltias:iny:void

it coublz

ImutateResut Yecor

lrcssmeResat - Vector

joremesomes Vecar <Cromosories

el - int

loestFtresses - ArragList-Coubls=
loestaluiicn Cramosome

random: Randem

jodn: OutputDataHardier

jcunertfifness :double

loesttverages LinkecList-LirkedList<Deuble=>

lgeBestalticn():Cremesome
Joe:Bestveragesi): LirkedListLinke:ListDaL e

1 leminsir

int, g

IranilePcpulaor sromsamese: ezt <Crortosame> welgfts :Vector <Cousle, posulat onsize - n rinfe” PAntAnce, finzsseoie int,
lgererafon™Lmaer it iritalResponsiil iz it teminatingenerctaior , probabiltFile Srng aflFrobs boolea):Vastor < Cramaseme
relePopulaionic > ormosam, populsfion3ize nf, prabailyFile Sting, aerProbe: aoclear: vertor

neraliorhumbe irt, a terPiobs: boolzar) :Veclor <Cromozomes

QutputDataHandler

et - Cramascme
rurentiness daukle
index it

yenes LinkedlList
tlasses Linkenlist
erator: _isttzracor

storef inessDzta(printer. Frin'¥irter, cromosar es - VeclorsGramascme=, finess2s :LinkedList <Double=, jeneration i .wadf

Figure 7. Class diagram of ‘ Frankenstein’

The process of ‘Frankenstein' is described in the sequence diagram in Figure 8.

51

Inputs andler

GeneticAlgarithm |

OutputDataHandler

createBaseq

' '
createlnitialPopulationg |

:
:
.
:
: — :
: apuiation .
S S popwiation
:

'
' '
! handlePopulationd 1

mutated

rmutation g

storeFitnessData

selectHexdP opulation(
T
'

i nextPopulation T
Bemm o L
H H ;

'
| getBestSolutiong

i i
H H
v i
! bestChromosorne !
e e I =

createdavaFilesd

I I
I I
i i
' ' ' '
H 1 1 1
V I fileList I |
R e e e R T -
H i i i [
' I I I I
I

Figure 8. Sequence diagram for ‘ Frankenstein’

First, a “base” chromosome is created by the InputDataHandler, which returns a
Cromosome type model of the given set of responsihilities. This Cromosome instance
contains al the information concerning responsbilities given in the input. The
chromosome representation is then given to GeneticAlgorithm so that an initial
population can be created. The population is created in such away that two special cases
— al responsibilities in the same class and all responsibilities in different classes — are put
in the population by default to ensure variability in the population. Other individuals are
created randomly. In this stage, only the libraries described in Chapter 5 are set, and a
random class is chosen for each respongbility. Interfaces, dispatchers and abstract
classes are only incorporated through mutations; they are not present in the initial
population.

After the initial population has been created, the actua agorithm can begin to
process the chromosomes. The GeneticAlgorithm class communicates with the
Cromosome class to mutate, crossover and calculate the fitness of each individual in
turn. After the whole population is dealt with, fitness data is stored and the selection for
the next population can begin. After an individua is selected, its mutation probabilities
are adjusted in relation to its fitness value in the population (from now on, this will be
referred to as an individual’s fitness order). The selected next population is returned to
the main class, which will again cal the GeneticAlgorithm to handle it. This cycle
continues until the termination condition is met. Finaly, the best solution is picked up,
and UML Generator is called to produce a representation of the solution.

52

6.1.2. Algorithms

So far | have presented the overall structure and flow of the implementation. | will now
give more detalled descriptions of the most important algorithms within the
implementation: the overall structure of the genetic algorithm, creating a population,
crossover, mutate, selection and setting the probabilities. The mutate operation will
select a mutation from the ones presented in Chapter 5. | will give examples of four
specific mutations: splitting a class, introducing an interface, removing a dispatcher from
the entire system and introducing a strategy pattern. The other mutations are quite
smilar, and the logic behind their implementation can be seen from the example
algorithms.

Algorithm 1 presents the general genetic algorithm. Random mutation indexes and
probabilities are set and the chromosome is subjected to mutation. The mutate operation
returns the initial chromosome to crossover Chromosome if the chromosome should be
subjected to crossover. If the chromosome is mutated, it still has a chance to be
subjected to crossover: the second mutation is only effective, if the chosen mutation is
the crossover operation (as discussed in Chapter 5, crossover is thought of as a mutation
as well). The fitness value of the chromosome is calculated after the mutation. After all
the chromosomes have been dealt with, it is known which chromosomes are subjected to
crossovers, which are done in pairs. The fitness values of the offspring are then
calculated, after which the fitness values of the entire population can be sorted. The next
population can now be selected.

Algorithm 1 geneticAlgorithm

Input: base chromosome b, dlitisminteger e, population size p
Output: best chromosome after termination condition
chromosomes - createPopulation(b)
do
foreach chromosome in chromosomes
p - randomDouble
i = randominteger
crossover Chromosome = mutate(chromosome, i, p)
if crossover Chromosome == null then
p - randomDouble
i = randominteger
crossover Chromosome = mutate(chromosome, i, p)
end if
if NOT crossover Chromosome == null then
toCrossing.add(crossover Chromosome)
end if
fitness— fitness(chromosome)
fitnesses.add(fitness)
end for
while toCrossing.length > 1do
offspring - crossover(toCrossing[0], toCrossing[1])
chromosomes.add(offspring)

53

fitness— fitness(offspring)

fitnesses.add(fitness)

remove processed chromosomes from toCrossing

end while

sort(fithesses)

fitnessBackUp - fitnesses

chromosomes - selection(chromosomes, fithesses, fithessBackUp, p, €)
while NOT terminationCondition;
getBestSolution(chromosomes)

Algorithm 2 describes the creation of the initial population, already discussed in
Subsection 6.1.1. The initial population is created by copying genes from the given base
chromosome, and then giving each responsibility a class to which it is located. The
special cases of having only one class, or having each responsibility in its own class, are
created before any other individuals.

Algorithm 2 createPopulation

Input: base chromosome b, population size s
Output: linked list chromosomes containing the chromosomes that form the population
¢ - copy(b)
set same classfor all genesinc
setlibraries(c)
chromosomes.add(c)
d = copy(b)
set adifferent classfor al genesind
setLibraries(d)
chromosomes.add(d)
fori—- 1tos2do
e - copy(b)
set arandom classfor all genesine
setlibraries(e)
chromosomes.add(e)
end for

The crossover-operator is described in Algorithm 3. Both “children” first receive
copies of genes from one parent, and at the crossover point locus, the parent from which
the genes are copied is changed. However, mere copying is not enough, as discussed in
Chapter 5; the use of a dispatchers must be checked. If the first part of the child needs a
dispatcher, but it is not available in the parent providing the part after the crossover
point, then the dispatcher is introduced to the system through a forced mutation.

Algorithm 3 crossover

Input: chromosomes one and two

Output: chromosomes onechild and twochild
i = randominteger
onechildDispatcher = 0
twochildDispatcher = 0

forj- Otoido
onechild.geneAt[j] = one.geneAt][j]
twochild.geneAt[j] = two.geneAt][j]
if one.geneAt[K] contains Dispatcher then
onechildDispatcher = 1
end if
if two.geneAt[Kk] contains Dispatcher then
twochildDispatcher = 1
end if
end for
for k= i +1totwo.length-1do
onechild.geneAt[K] = two.geneAt[K]
end for
for m- i +1toonelength-1 do
twochild.geneAt[m] = one.geneAt[m]
end for
if onechildDispatcher == 1 AND NOT (two contains Dispatcher) then
mutationl ntroduceM essageDispatcher (onechild)
end if
if twochildDispatcher == 1 AND NOT (one contains Dispatcher) then
mutationl ntroduceM essageDi spatcher (twochil d)
end if

The general mutation is presented in Algorithm 4: this operation merely finds out
the mutation that responds to the given probability, and passes along the chromosome.

Algorithm 4 mutate

Input: integer i, the mutation index, double p, the mutation probability, chromosome ¢
Output: cif subjected to crossover, ese null

mutationChoice — sdectMutation(i, p)

mutation(c, mutationChoice)

As presented in Chapter 3, each mutation has a probability with which a
chromosome is subjected to it. In the selection process, the crossover is also regarded as
amutation. As no chromosome can be subjected to more than one mutation during each
generation, the sum of probabilities, given as percentages, should be 100%, as one
mutation should indeed be chosen. As mutations should have fairly low probabilities in
order to keep the evolving of solutions under control, a “null” mutation is used in order
to bring the sum of percentages to 100. If the “null” mutation is chosen, the
chromosome will remain asit was.

The selection of a mutation is presented in Algorithm 5. The principle is the same
“roulette wheel” selection as in selecting chromosomes for the next population: the size
of a “dot” in the “wheel” is determined by the probability of the respective mutation.
The list of probabilities is gone through, and when the “dot” which includes the given
probability value is found, the id-number of the corresponding mutation operation is
returned.

55

Algorithm 5 sdectMutation
Input: doublevalue probability p
Output: integer id mutationChoice
for m- 0O to probabilities.length do
if p < probabilities[m] AND m== 0 OR p > probabilities [m-1]
mutationChoice = m+1
end if
end for

Splitting a class by a mutation is described in Algorithm 6. The class Cy of gene g,
holding responsibility ry, is found out, and a new class is selected randomly. The if-
statement is for selecting the split points discussed in Chapter 5; responsbilities
depending on one another are kept in the same class, and other responsiilities are
moved to the randomly selected new class.

Algorithm 6 mutationSplitClass
Input: geneg
n- g.getClass()
r - randominteger
foreach genesgincdo
if sg.getClass() == n AND NOT(sg depends on g) then
sg.setClass(r)
end if
end for

Introducing an interface to a responsibility is presented in Algorithm 7, and it is
quite straightforward as well. The interface to be implemented is selected randomly.
Then it is checked that the responsibility that should be implementing the interface is of
the type ‘function’, and does not belong to a class that is already implementing the
chosen interface.

Algorithm 7 introducel nterface
Input: geneg
n - randominteger
if g.type=="‘function’ then
if NOT exists gene ge:: ge.class == g.class AND exists gene gn:: gn.Interface==n AND
geusesgnthen
g.setinterface(n)
end if
end if

The mutation that removes a dispatcher, as presented in Algorithm 8, differs from
the previous mutations in the way that its target is the chromosome, not an individua
gene. It isfirst checked that the chromosome even contains a dispatcher. If a dispatcher
is found, the default assumption is that no responsbility is using the dispatcher. The

56

genes are then iterated through, and if any of them uses the dispatcher for
communication, removing of the dispatcher is not possible.

Algorithm 8 removeDispatcher

Input: chromosomec
if ¢ contains Dispatcher then
usedDispatcher -~ false
foreach genegincdo
if g uses Dispatcher then
usedDispatcher - true
end if
end for
if usedDispatcher == falsethen
dg ~ g.dispatcherGene
g.remove(dg)
end if
end if

Algorithm 9 introduceStrategy
Input: geneg
if NOT g used through a pattern then
if existsgd:: gd usesg AND gd.class == g.class AND NOT gd uses Pattern then
n - random Integer
g.setClass(n)
p - Strategy pattern instance
g.setUsedPattern(p)
gd.setUsingPattern(p)
end if
end if

The process of introducing a strategy pattern is given in Algorithm 9. It is first
checked, whether the gene to be mutated still has “free” pattern fields: if the
responsibility in question is already used through some other mutation, Strategy pattern
cannot be implemented on top of the previous pattern. Also, if all responsibilities that use
the selected responsibility already use some other needed responsibility through a
pattern, the Strategy cannot be introduced. However, if suitable responsibilities are
found, implementing the pattern is quite simple. The gene used through the Strategy
pattern is assigned a new class, and a pattern instance is created, where information of
the using and used genes are stored, as well as information of the classes and interfaces
linked to the pattern. After the mutations, the fitness values of chromosomes are
calculated, after which a new generation can be selected, as described in Algorithm 10.
The method used for selection is the “roulette wheel”: each chromosome is given a dlice
of the “wheel” with respect to its fitness order. Before any other chromosome is
selected, the best ones are automatically selected through elitism. After this, the dots are
calculated for the “roulette wheel”, and a random probability is generated. Much like in

57

the mutation selection, the chromosome “owning” the slot responding to that probability
is selected to the next generation. The selection process is repeated until the number of
chromosomes selected for the next generation is equivalent to the given population size.

Algorithm 10 selection
Input: list of chromosomes, cl, list of fitnesses, fl, sorted lists of fitnesses, sfl, population size
integer s, number of dlites, integer eliteAmount
Output: alist of chromosomes ncl
for i = 0 to eliteAmount do
fitness - Sfl[i]
nextFitnesses.add(fitness)
j ~ flindexOf(fitness)
c- clfj]
nextGeneration.add(c)
cl.remove(c)
fl.remove(fitness)
end for
for k= Otos-diteAmount do
wheelAreas - setWhed Areas(fitnesses)
i = randomDouble]0...1]
chromosomeFound - false
for m- 0 to wheel Areas.length do
if i <wheelAreasim] AND m== 0OR i > wheelAreas [m-1]
chromosomeFound - true
goodness = sfl.indexOf(fl[m])
setProbabilities(chromosome, goodness,)
nextFitnesses.add(fl[m])
nextGeneration.add(cl[m])
sfl.remove(fl[m])
fl.remove(m)
cl.remove(m)
end if
end for

After a chromosome has been selected to the next generation, its mutation
probabilities are set according to its fitness order, as described in Algorithm 11. The
setting of the probabilities is done at this point to avoid calculating the fitness value
twice during the process of handling a population. The probabilities are set so that if the
chromosome’s fitness order is in the “better half” of fitnesses, the probability of
crossover is increased in relation to the fitness order. If the fitness order of the
chromosome belongs to the “lower haf”, the probability of the crossover is halved.
Since the sum of mutation probabilities should be 100%, the probabilities of the
mutations must be decreased in relation to the increase in the crossover probability. The
crossover probability is the last one in the list of probabilities in order to ease the
execution of this algorithm. We also use dynamic mutations to take better advantage of
the different levels of the implemented design patterns. In the early stages of

58

development, the dispatcher style is favored, as it is a high-level design decision. In the
middle stages (after 1/3 of the generations), the fagade pattern is more favorable, asit is
a middle-level design pattern, and we assume that point the major decisions regarding
the core architecture (including the decisions of using certain architectural styles) should
have been made. At this point, the probability of introducing a message dispatcher to the
system is decreased, and the probability of using a fagade pattern is increased
respectively. After the algorithm has proceeded through another 1/3 of the generations,
another shift is made in favoring certain patterns. At this point the architecture should be
at the last stages of development and the design decisions should be focused on low-
level details. Thus, the probability of implementing a fagade pattern is decreased and the
probability of implementing a strategy pattern is increased respectively.

Algorithm 11 setProbabilities

Input: chromosome c, order of fitness fo, list of probabilities pl, population size integer s,
generation number g, terminating generation t, Boolean first alteration b1, Boolean second
alteration b2
Output: altered list of probabilities pl
if g>t/3 AND g<=2t/3 AND NOT b1 then
dp = c.newDispatcherProbability
fp = c.introduceFacadeProbability
diff = dp/3
ndp - dp —diff
nfp = fp + diff
c.setDispatcherProbability(ndp)
c.setFacadeProbability(nfp)
end if
if g>2t/3 AND NOT b2 then
fp = c.introduceFacadeProbability
sp = c.introduceStrategyProbability
diff = fp/3
nfp = fp —diff
nsp - sp + diff
c.setFacadeProbability(nfp)
C.setStrategyProbability(nsp)
end if
if fo < s/2 then
multiplier = 1/fo
crossoverprobability = pl.last —pl [pl.length-2]
probabilityChange — crossover probability* multiplier
crossover probability = crossoverprobability + probabilityChange
mutations - pl.length -1
pl[pl.length-2] = pl.last — crossoverprobability
for i = 0O to mutations do
altering — probabilityChange/mutations
pl[i] = pl[i] —altering
end for
end if
if fo>= g2 then

59

crossoverprobability - pl.last —pl [pl.length-2]
probabilityChange - crossoverprobability/2
crossover probability = crossoverprobability/2
mutations - pl.length -1
pl[pl.length-2] = pl.last — crossoverprobability
for i = O to mutations do
altering — probabilityChange/mutations
pl[i] = pl[i] + altering
end for
end if

6.1.3. Parameters

The input for the implementation is the dependency graph of the responshilities in the
system as well as performance information of the responsibilities. The graph is given as
an adjacency list, which makes it possible to present the information in a simple text-file,
where each responsibility is represented by one line. The output isa UML class diagram,
which is constructed of the best solution remaining in the final generation. Fitness data is
also stored throughout the generations in a separate file so that the development of
fitness values can be monitored.

For the genetic algorithm, there are two types of adjustable parameters. the common
parameters for any genetic algorithm implementation and the parameters where the
nature of the problem needs to be considered. The common parameters include the size
of the population, the termination condition (often either tied to the fitness value or to
the number of generations), the level of elitism and how the order of fitness affects the
crossover rate. When choosing the level of elitism one should keep in mind that the level
should be high enough to ensure that the solutions truly evolve by having the best
material to develop from, but at the same time there should be enough room for
selection through probability, in order to ensure a free enough traverse through the
search space. As for the effect of the fitness order to the crossover probability, the
current solution ensures a perfect relation between the order of fitness and the increase
in the crossover probability. Other implementations are also possible, as long as the
following requirements are met. Firstly, the probabilities should be kept under control,
i.e.,, there must still be a possbility for at least some mutations after increasing the
probability of the crossover. Secondly, increasing the probability of the crossover should
have some logical relation to the fitness order. Thirdly, the probability of crossover
should not be raised for the worst solutions, but rather deducted, as it can be assumed
that they have poor material that should not be passed on to the next generation.

The problem specific parameters are the weights assigned to different fitness
evaluators (quality metrics) and the probabilities given to different mutations. The fitness
weights can be given freely, but in order to ensure that the relation between metricsis as
intended, the ranges of the different quality metrics should be taken into account when

60

assigning the weights. When assigning weights, one should remember to think of what
characteristics are most valued, as it is extremely difficult to optimize all quality aspects
a the same time. In this implementation, | have used three different evaluation criteria,
two of which have both a negative and a positive evaluator, thus giving a total of five
evaluators. The ranges of these five evaluators have been taken into account so that the
user does not have to consider the different ranges when assigning weights, as the “raw”
values have been given multipliers to achieve same ranges for all evaluators. The
restrictions to mutation probabilities have been discussed in Subsection 6.1.2, and adding
the combinatorial problem of optimizing these probabilities alongside with the fitness
weights resultsin a very complex task of parameter optimization.

6.2. Evaluation metrics

There are two different types of characteristics that can and should be evaluated in the
produced architecture: the basic structure, i.e., how the responsibilities have been
divided into classes and how many associations there are between classes, and the fine-
tuning mechanisms, i.e., the use of interfaces and the message dispatcher. Since no
particular pattern should be appreciated just for being a pattern, design patterns are
valued based on the modifiability they bring to the system, which is largely credited to an
increased usage of interfaces and a decrease in amount of connections between classes.
As presented in Chapters 2 and 4, there are severa structure evaluation metrics which
have been successfully combined and used as a fitness function for genetic agorithms
processing architectures. As for the evaluation of interfaces and using the dispatcher,
there are no metrics found so far for pure numerical measurement. Thus, metrics for
these fine-tuning mechanisms needed to be constructed based on the information at hand
of software architectures.

For the literature based structure metrics, the analogy is used that each responsibility
is equivalent to one operation in a class, and each class is a module or component,
depending on what is used in the metric. As the concept of a responsibility is highly
abstract, this most probably will not be the case if the system under construction would
actually be implemented, but as there is no knowledge of what kind of operations each
responsibility entails, this analogy seems justified enough.

| have chosen to measure the quality of a produced system in terms of modifiability
and efficiency, with an added penalty for complexity. Modifiability and efficiency have
both a postive and a negative sub-fitness. The sub-fitness functions are based on the
metrics introduced in Chapter 2, although they have been combined and modified to
achieve clear entities for measuring these selected quality values. The overal fitness is
achieved by combining al sub-fitnesses, as described in Algorithm 12. As every sub-
fitness has its own weight, the more desired quality can be weighted over the other, and
thus achieve, e.g., a highly modifiable solution which may, however, lack in efficiency.
Balancing the weights is especiadly important when measuring modifiability and

61

efficiency, as they are very much counter-qualities: highly modifiable architectures are
rarely efficient, and efficient architectures are not especially modifiable.

In addition to modifiability and efficiency, a complexity sub-fitness has been
constructed. It calculates the amount of classes and interfaces and penalizes especialy
large classes.

Algorithm 12 fitness

Input: chromosomec, list of weights wi
Output: double valuefitness

fitness~ W [0]*positiveModifiability(c) - wi[1]* negativeModifiability (c) +
wi[2]* positiveEfficiency(c) - wi[3]* negativeEfficiency(c) - wi[4]*complexity (c)

The different ranges of the sub-fitness functions have been taken into account, and
the values are adjusted so that the differences in end values of the fitnesses are solely
caused by the weights given by user.

6.2.1. Efficiency

The efficiency of an architecture has much to do with structure, and how responsibilities
are grouped to classes. Hence, common software metrics can very well be used to
especialy evauate the positive efficiency of an architecture. Naturaly, if the positive
efficiency evaluator achieves very low values, it can be deduced that the architecture
under evaluation is not very efficient. However, it is clearer to also construct a separate
sub-fitness to evaluate those factors that have only a negative effect to the architecture,
such as using the message dispatcher.

The positive efficiency sub-fitness is a combination of the cohesion metric
[Chidamber and Kemerer, 1994], and evaluation of the grouping of responsibilities in
classes. The grouping of responsiilities is good if there are many responsibilities in the
same class that need a common responsibility, or many responsibilities that are needed by
the same responsibilities are grouped in the same class. Furthermore, | have used the
information-flow based approach [Seng et al., 2006] by multiplying the amount of
connections with the parameter size relating to the called responsbility. Using the
information-flow based version of cohesion serves two purposes. firstly, it is a standard
quality metric, which increases the reliability of the results. Secondly, the evaluation of
the structure is more detalled, and the information given of the responsibilities is better
used, as the information-flow based metrics use the parameter size to evaluate the
“heaviness’ of a dependency between two responsihilities. The positive efficiency fitness
can be expressed as Y (#(dependingResponsibilities within same class)* parameterSize +
> #(usedResponsihilities in same class) * parameterSize + #(dependingResponsibilities in
same class) * parameterSize)).

The negative efficiency sub-fitness is a combination of the instability metric, as
defined by Seng et al. [2006], and the amount of dispatcher connections. Ingtability is

62

well-suited for evaluating automatically generated architectures, as it is designed to
measure the quality of the entire system. Amoui et al. [2006] have successfully used it as
a part of their fitness function when evaluating architectures after the implementation of
design patterns. Having the instability metric as an evaluator in an early stage will give a
better base for further development. The negative effect of the dispatcher is further
emphasized by multiplying the dispatcher connections with the call costs of those
responsibilities that are called through the dispatcher. The negative efficiency sub-fitness
can be expressed as Y ClassInstabilities + #(dispatcherCalls) * Y callCosts.

As the re-grouping of individual metrics gives an even more powerful way to
control the outcome as there was in my previous research [R&iha, 2008], the grouping of
efficiency related metrics can be seen justified.

6.2.2. Modifiability

Although modifiability also deals with structure, and especially how much components
depend on one another, an even bigger factor is the use of the message dispatcher and
interfaces, as they effectively hide operations and thus highly increase modifiability.
Thus, positive modifiability can be calculated as a result of using these fine-tuning
mechanisms, and negative modifiability can be seen when components are highly
dependable.

As mentioned, positive modifiability comes from the use of the dispatcher and
interfaces. More specifically, the more connections between different responsibilities are
handled through the dispatcher or interfaces, the more modifiable the architecture is. As
there is no metric defined in the literature that would measure the effect of introducing
interfaces to an architecture, such a metric had to be defined in order to prevent
completely random incorporations of interfaces to the system. The logic behind the
calculations is that an interface is most beneficia if there are many users for it. Asthere
are no empty interfaces, i.e., an interface needs to be implemented by a responsibility
belonging to the system, it can be concluded that an interface is well-placed if the
responsibility implementing the interface in question is used by many other
responsibilities. This increases reusability: changes to such a highly used responsihility
have great impact on a system, and there is a big risk that the depending responsibilities
may not get what they need from the changed responsibility. Thus, placing the needed
responsibility behind an interface ensures that it will still service properly the
responsibilities that need it even after it has been updated. The interface quality metric
also considers how well the interface is implemented. A penalty is given for unused
responsihilities in interfaces.

Thus, the positive modifiability sub-fitness can be calculated as a sum of
responsibilities implementing interfaces, calls between responsibilities through interfaces
and calls through the dispatcher multiplied by the variability factor of the called

63

responsibility, while taking in the account that unused responsibilities in interfaces are
not appreciated. The positive modifiability sub-fitness can be expressed as #(interface
implementors) + #(calls to interfaces) + (#(calls through dispatcher) * Y (variabilities of
responsibilities called through dispatcher)) — #(unused responsihilities in interfaces)* 10.
The multiplier 10 comes from unused responsibilities being nearly an architecture law,
and thus the punishment should be grave.

The negative modifiability sub-fitness, as mentioned, comes from the amount of
dependencies between different classes. As certain connections are already calculated in
the efficiency sub-fitnesses, and there should be as little over-lapping between the
different sub-fitnesses as possible, the actual sub-fitness for modifiability is quite smple,
as it can expresse as #(calls between responsibilities in different classes). This actually
captures the essence of both the coupling and RFC metrics [Chidamber and Kemerer,
1994]. These are both standard quality metrics, and using such highly recognized metrics
increases the reliahility of the results and confidence in the fitness function.

The contribution here is a new grouping of the underlying calculations, e.g.,
interface and dispatcher connections to achieve a clearer division of how different sub-
fitnesses affect the fitness function as a whole. Since valuing highly the chosen
modifiability sub-fitnesses produces solutions with a significantly increased amount of
dispatcher connections and interfaces, as opposed to using a small weight to positive
modifiability or appreciating efficiency, the chosen regrouping of different basic metrics
can be seen as a success.

7. Experiments

In order to test how the fitness values of solutions develop and what kind of solutions
are produced, the implementation should be tested with data that resembled a red
system. For this purpose, example data for an electronic home control system was
sketched.

The electronic home control system contains five main subsystems: logging in and
user registry, temperature regulation, drape regulation, music system and coffee
machine. The different subsystems may also contain smaller subsystems, e.g., the music
system contains the speaker driver and the music file system. The main subsystems are
connected to each other through a common user interface and main controller
responsibilities, and the whole system has altogether 42 functional responsibilities and 10
data responsibilities with 90 dependencies between them. The detailed data set is given
in Appendix A. | will now present both data from the development of the fitness curve
in different cases, as well as some example solutions. The parameters for the fitness
studies are given in Appendix B and the parameters for each example solution are given
in Appendix C.

7.1. Fitness development

First, it was necessary to ensure that al the test runs have a similar fitness curve. That is,
although architectures with the same fitness value may vary greatly, the development in
overal architecture quality should be the same in every run to be able to somehow
evaluate the end results. Figure 9 depicts the fitness curves of five test runs, all made
with the same parameters, which are given in Tables 2 and 3 in Appendix B. The same
mutation probabilities, given in Table 2, and weights, given in Table 3, were also used
for tests, the results of which are shown in Figures 10 and 11. The actua curves are
calculated as the average fitnhess values of the 10 best individuals in each generation.
Thus, the curve shows how the fitness of the best individuals develops. As can be seen,
the trends of the curvesin Figure 9 are very similar, and thus averages of test runs can be
confidently used to analyze the implementation. The following curves are calculated as
the average of five tests.

65

2000 —
0 PG DA LN ';&MW
LR R AR R H'H TR Mﬂmw”””m\ LT NPT TIT % T T I O T T T 0 7 A T T 0T 90 0 0T T T i Tl
o000 L 21 41,67 817101 121 141 161 181 201 221 241
2 J;}df —
& A
2 4000 / 7 T3
% 6000 y 4 T4
' 5
-8000 1/
-10000

Generation

Figure 9. Fitness development of five test runs

Second, the effect of basic parameters, the size of population and number of
generations, should be analyzed. In Figure 10, the fitness curves with different
populations are shown. As can be seen, the fitness curve achieves higher values when the
size of population is increased.

4000

2000

0 7 A O 0T T T

2000 L 22 85106 127 148 169 190 211 232 p=50

/ / — p=100
-4000 / / _ p=150
-6000

-8000

Fitness

-10000
Generation

Figure 10. Different population sizes

The increase in fitness values is logical, as a bigger population makes it possible to
have more variation within one generation of individuals. Thus, there is a bigger chance
that a higher number of exceptionally good individuals are present in the population at
the same time. Thisin turn reflects directly to the fitness curve in Figure 10, as it depicts
the average development of the best individuals' fitness values.

66

6000

4000 ,-—-"‘N
2000
o000 1 /107 213 319 425 531 637 743 849 955 g=1000

-4000 -
-6000
-8000
-10000

Fitness

Generation

Figure 11. Fitness development over generations

The curve in Figure 11 shows the development of fitness values over 1000
generations. As can be seen, the fitness values develop very rapidly, and begin to achieve
positive fitness values quite early, after only 100 generations. The development speed
then slows down, but still stays significant up until around 750 generations. After this
the development is quite stagnant, although till positive. This kind of development is
customary for genetic algorithms when the fitness function is well defined. As this
approach is novel in the way that architecture needs to be built completely ‘from
scratch’, the rapid development during the first 100 generations is exceptionally
noticeable: alegitimate architecture can be achieved after minimal genetic processing.

Third, it is interesting to examine the effect of weighting one of the chosen quality
aspects over the other. The used weights are given in Tables4 and 5 in Appendix B.

3000
2000 D
1000

0 N R T T AT
-1000 24—47—F6~92

-2000 -
-3000
-4000
-5000
-6000
-7000

—— Modifiability
Efficiency

Fitness

Generation

Figure 12. Modifiability weighted over efficiency

67

In Figure 12, modifiability is weighted over efficiency. The curves are ‘normed’, i.e.,
the values are adjusted so that they represent the true development of the sub-fitnesses,
without the weights affecting the vaues. These curves represent the separated
modifiability and efficiency curves of the individuals with the highest overall fitness in the
population. When the modifiability and efficiency curves are separated, it can clearly be
seen how difficult it is to achieve a solution that would be valued by both quality
attributes. Weighting modifiability results in a ‘normal’ modifiability sub-fitness curve.
However, the efficiency sub-fitness curve develops in a haphazard manner and actually
worsens throughout the generations. As modifiability is valued, those solutions with a
high modifiability sub-fitness survive for next generations, and in particular, make to the
top of each generation. Such solutions have many dispatcher connections and a high
usage of interfaces — these architectural decisions give a very negative efficiency value,
and thus the development of the modifiability and efficiency curvesis as can be expected.

In Figure 13, the opposite situation where efficiency is valued highly over
modifiability is depicted. These curves differ drastically from the previous case, as there
is hardly any development in either the efficiency or the modifiability curve, but they
both remain quite stable. The biggest difference is that the efficiency curve achieves very
high values from the very beginning and does develop a little, while the modifiability
curve never achieves positive values and remains quite steadily around -500.

3000
2500 Y i

1500

(2]
g —— Modifiabilit
g 1000 - _ y
T —— Efficiency

500 -

0 0 0 0 OO A T A g
500 L 24 47,70 93 116 139 162 185 208.231
e TN o
-1000

Generation

Figure 13. Efficiency weighted over modifiability

The reason for this kind of behavior on the fithess curves can be found within the
initial population. The initial population has no instances of the message dispatcher, no
interfaces and has a specia individual where all responsibilities are in the same class.
These individuals have an extremely high efficiency value, and thus are highly
appreciated. As the crossover probability increases and mutation probabilities decrease
with such fit individuals, highly efficient offspring are easy to produce early on in the

68

development. Also, with a population of 100, there are always so many highly efficient
individuals that no individual with a high modifiability value could ever reach the top of
the population. When the efficiency values are so high to begin with, it is also simply not
even possible for the algorithm to develop the solutions in such a way that the fithess
values would increase significantly.

As discussed in Chapter 6, | have used dynamic mutations to enhance the
development of architecture by trying to take into account the level of detail of the
applied patterns. | have compared the fitness curves achieved with these dynamic
mutations to the traditional static mutations, where the mutation probabilities stay the
same throughout the generations. The fitness curves with these different mutation
probabilities are shown in Figure 14. The used parameters given in Tables 2 and 3 in
Appendix B.

4000

2000

1 30 88 117 146 175 204 233
-2000 —— Dynamic probabilities

-4000 /
-6000

-8000

Fitness

— Static probabilities

-10000

Generation

Figure 14. Different mutation rate applications

As can be seen, there is a dight difference in the behavior of the fitness curves. When
dynamic mutations are used, the fitness values do not develop as steadily around 100-
200 generations, but ascend in the end while. With static probabilities, however, the
fitness curve is much more of the traditional kind: the values develop steadily and then
seem to reach an optimum, as the values tend to stabilize around 1000. The period
where the static mutation probabilities overcome the dynamic probabilities is the
‘middle’ section of generations, where the medium-level patterns, Fagade in this
implementation, is favored. When the change in mutation probabilities begin to favor the
low-level design patterns, in this case Strategy, the development of fitness values turns is
more again more significant. One explanation of why this is so, is that the selected
middle-level pattern is not easy to apply in the example system. In fact, there are very
few places where the application of a fagade would be appropriate in the e-home
example. Thus, when the Fagade pattern is favored but there is nowhere to apply it,

69

these results in many unchanged individuals, which in turn would result in the dow
development of fitness values. As the Strategy pattern is much easier to apply, favoring
it and putting less emphasis on the implication of the Fagade brings more variation to the
populations and thus facilitates the more rapid development of the fitness curve.

7.2. Example solutions

Raw numerical fitness data does not reveal much of a produced solution: the fitness
values merely benefit the analysis of how the vaues evolve, and ensuring that there is
variance within the population. Statistics of the amount of classes or interfaces used does
not reveal much of the structure either, apart from special cases when the number of
classes is very smal or very big, and likewise with the use of interfaces. In order to
somehow evaluate the “goodness’ of the produced solution, one needs a visualization to
see how the responsibilities are distributed, how the patterns and dispatcher are used,
and how clear the presented solution is overall. Thus, when evaluating the goodness of a
solution from a class diagram, the evaluation is bound to be subjective, and people from
different backgrounds may appreciate different things. | have evaluated the goodness of
the solution based on three things: the structure, the use of patterns, and the use of
dispatcher. The structure should be clear: there should not be a complex web of
dependencies. Patterns should be used so that they clearly benefit the architecture and
the structure should not suffer extensively. The dispatcher should also be used “with a
thought”; the amount of connections to a dispatcher should remain reasonable and the
connections should add a minimal amount of complexity to the system.

| will now present some example solutions achieved with the presented
implementation. As these solutions demonstrate, it is difficult to achieve a solution,
which could be appreciated from all viewpoints — normally a maximum of two of the
three evaluation criteria (structure, patterns, dispatcher) have been satisfied. Thus, | have
chosen examples which depict a good architecture from some viewpoint. Naturally, the
goal isto achieve a combination of these solutions, so that the architecture would have a
high overall quality that can be seen instantly with expert eyes.

In Figure 15, an example with quite a clear structure is shown. Here the different
subsystems have been separated from each other, with the exception of the drape
regulation system, and the responsibilities of individual subsystems have been well
grouped. For instance, the coffee machine system has one big class with many
responsibilities, from which several responsibilities have been extracted and put behind
strategy-interfaces to support variability. The same design decisions have been made
with the user registry subsystem — athough in this case, some responsibilities belonging
to the drape regulation system have been “falsely” combined in the same class with the
user registry responsibilities. Also, the music system has been effectively combined with
the speaker driver responsibilities. The user interface and main controller have been
Situated in their own classes, which call the other responsibilities. Thisis a very clear and

70

good design decision, as there is no need to combine these special responsibilities with
anything else. This solution is fairly simplistic, as the only design pattern used is
Strategy.

A similar solution is presented in Figure 16, which also has some big classes, quite
aclear structure, and efficiently uses the Strategy pattern. Especially notableis the use of
Strategy in the cases of measuring temperature and drape positions (Strategyl at the
very left side, and Strategy4 at the bottom right): these are operations that can quite
naturally be varied depending on the circumstances and data at hand, and separating such
operations behind an interface through Strategy, greatly increases the modifiability of the
system.

71

Mt Function

Funchion

Chis6

T sectmehwarm)

Classss

oo Fameion |

g o |

o Famin]

o Famion |

Funstion

Pt |

T showdrpos(

Casein

1\ pwdcheck() : Fanction

 pichosenmusic(: Funcion

Cels) . Funclur

Tsettemprocm () - Functon

msrts mprr() - Fanction

Figure 15. Example solution 1.

72

uopung

uonaun 3 : soddipmoys +
uopouny : (Junsaunseaw +

eieq aigadeip+ [~
[Tt

Spaaepa)
caaeyEwD

Uoiaun - aajjones +

uopauny : (1aiemas +

uonaun - Qsoddipsw+

65SSEID

i

uoRaUn g ; (AMasop +
uogauny : Qumuedo +

el sleigIalem +
9885810

/
/

I

uonaun 3 : (soddipis +

uonauny : (amasop +
uoouny : (uado +

uopuny : (baLEsnppe +

uoauny : (hasopwsd +

8gsElD

9zsselD

V
\
v

4

Uaijoun ;| QISP E +

8855810
/
’

uonuny - (soddipmos + oAU : QlRSNWUILPE +
Gleoepa] vekbaiens
REEOTENTE) «a2eLiB U

uoguny : (lesyawpmols +

uopuny : (baizsnppe +

uonouny : (patopusd +

QiBzeng
«aaeyau

pesseln

PEDT ageoepa| yibaieng azavepau
«asepia caaepiaw cavepizun woaepiein
7 L
[
/ \
) i
)
! 1
! uonoung ; (UWEIMadfeD + | uonaun 4 - (zzngbuu + uonauny : (dipidoajes + uojaung : (ULIEMSW +
/
s '
) [|gsseln gissel cesseln
) T \ D !
| | | v v
| I . !)
| | 4/ \ 1 \
' Y . Y 4 Y
\ Uonauny - (JUWEIR2ED + \ uonauny - zzngbun + onoun g - (dipidodjes + UonauNg - (e +
\ \
' v
\ Gekbarens czaepau] peaepau]
\ 4\ CEECVEITTE «adejajule REELVEITES
\
N
~ ,/
~

Uonauny : (yougadors +
uoaUN S (UNERIW e +
wopung : (updyappe +
uopUn : (aleas +
uogaun : (aayooias +

— L2 uonauny - Quweyssya +
uonaun 4 : (ybypsto +

uoaun 3 Oojowdspdois +
uoyauny : (rojowdipuns +

ejeq : SRISANP +
EJEQ BIBISHI +

[t

\
|

i

uogauny : (e st +
uogauny: Qubjpsio

petbeieng
«adepiaD

uogoun s (e yawpmols +

SBzjens
«sdepiEUD

uogauny - (yougodors +

M
uoyaun 4 +
uogpuny : (hojowdipuns +

Uy (ougouEs +

ogaepa|

zyeoepa)
Cadeyaw>

<asepiau

0755810

N
N
\

Y

UoauN3 : (UILBINESS +

seaepEy|
<asepiau

uopuny - (WBussmas +

uoaun 3 Qspaisnuupe +

Epsseln

uogauny : (Bauzsnaw +

uojaun 3 - Qspaisnuupe +

uogouny : (pmsdbuya +
uopaun 3 : (Beussnpe +

uogaun : (junwpefie +

eleq © @Quesn +

siABaieng
«sdepiED

£5sel0
1
|

uonauny : (osnunpid +

Uonun | Q1alfo 00 +

Uoyaun g Qyosaeaues +
uogauny : (Juossieapas +

eleq © apigialeal +

isseln
[

v

Uonaun 3 Qyosaeaias +
uopauny : (uossleaUEs +

LcaaeyEu|
<aoeyiam>

uopauny : Quooidwayas +

eieq eeisduar

agsse|n

uoouny - Quooiduwayas +

uoouny © (udwapsw +

ezevepa|
a0y

Sgsselg

uogauny : (spaisnumoys +

el oupsnW 4+

L65E10

|
I
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
I
|
uopauny : (B asnias +
uogouny - (aussn aw +
uogauny : (Jpmsdbuya +
uopaun 3 : (Bavasme +

]
Casepiaw

-

4
l
V

|

1

Y

uogoung - (asnunpd +

Oz
«aaEyBM

uorpun g 0 Aedorsnwdors +
uayaun 3 : Qsidsomisnu +
uopaun - (aisnuaso yoid +

ElEQ GOSN +
Lgsseln

Uopauny : aIsnuUESOR|d +

uomaun 3 : ORedorsnwdors +

Lezepal)
caaepieu>

geavepa|
<adepau>

uogang : (jacejsapizsn +
uoouny: (nydsasooyo +

eeq aigioreas +
vessel

v

uoauny - (udwasw +

1Bieng
EE

uoyauny - Qs

s 0duws1fuya +

5

sel)

i
[

uonaun3 : OsieodwalBuga +

zeavepa)
ez

Figure 16. Example solution 2.

73

A solution that takes good advantage of the message dispatcher is depicted in
Figure 17. Here the structure is not as clear as in Figures 15 and 16, and there are more
dependencies between classes as in the solution in Figure 15. However, the solution is
more modifiable, as many calls happen through the dispatcher, and thus the classes are
not directly dependent on each other. For example, a good design decision in this case
has been to put the water control subsystem behind the dispatcher, thus aleviating the
dependency between the coffee machine and the water control. The benefits and
shortcomings of using a message dispatcher architecture style are not straightforward.
The positive effect in modifiability and the negative effect in efficiency are easy to see,
but how the dispatcher affects the structure, the “beauty”’, of the solution, is more
complicated. A well-placed message dispatcher may actually simplify the structure, and
different components can easily be separated from the class diagram. A badly-placed
dispatcher, on the other hand, can make the solution extremely messy, if there are many
connections to and from the dispatcher and the class division of the responsibilities is not
extremely successful. The solution shown in Figure 17 is somewhere between these
extremes:. the basic structure is successful enough so the use of message dispatcher does
not make the solution completely incomprehensible, while some connections to the
dispatcher clearly do more harm than good. In this case, the solution could benefit from
either removing some connections to the dispatcher, or actualy adding more
connections, as the connections between classes would become more unified, and the
dispatcher more central in the solution.

The Facade design pattern is not very often seen in the proposed solutions, as
there are few places where it can be implemented in the example system. Also, as it adds
complexity by bringing technical classes to the design, one might question the use of
both a fagcade and a dispatcher in the same system. Figure 18 shows a solution where the
Facade pattern has been used efficiently. Here, the user interface and the main controller
call the fagade interface instead of calling several responsibilities belonging to the many
subsystems that these special responsibilities control. However, in this case the structure
is not very good — there are many small classes and responsibilities from non-related
subsystems have been grouped in the same class, e.g., class 24 contains responsibilities
from the water control subsystem and the music system. The message dispatcher has also
been brought to the system and used very inefficiently: only one responsibility uses the
dispatcher to call two responsibilities through one interface.

74

[Sopmuns Presyeugmmons +

aroo1)

Figure 17. Example solution 3.

75

Uomoun 3

uonauny

Figure 18. Example solution 4.

76

7.3. Remarkson adjusting the parameters

During the hundreds of test runs, some details about individual parameters and their
relations to each other came apparent. | will now discuss the most remarkable findings of
the tests.

Firstly, it could be seen that the fitness metrics have more influence to the final
solution than the mutation probabilities. This came apparent when after nearly tripling
the probability of using a dispatcher, the amount of dispatchers or their users did not
significantly increase. Affect of the modifiability quality metric could, however, be seen
instantly. Another point to make of mutation probahilities is that the probability of the
crossover operation had a bigger effect, and after first starting with a crossover
probability of 10%, in the end it was lowered down to 4%, which gave noticeably better
results. The biggest probabilities are for splitting and merging classes, as they deal with
the structure of the system. This has proven to be a good decison in optimizing the
probabilities, as structured solutions are indeed achieved: if the probabilities of the fine-
tuning mechanisms would be overpowering, the solutions would most likely be more
randomly implementing the mechanisms, and the structure would rely heavily on
randomized class division given in the creation of the initial population. The probabilities
of bringing a dispatcher to the system and introducing a Fagade pattern are also quite
high. Thus giving a large probability for bringing the dispatcher to the system gives the
algorithm a better chance to actually implement the mutations it chooses. The same
applies for the fagade mutation: implementing a facade requires quite a specific situation
in the system, and thus often fails. Giving a larger probability will enhance the chances of
actually achieving a Fagade pattern in the system.

Secondly, there is the balancing problem. Naturally, the best solution would be
efficient, modifiable, and smple. Thus, al the different fitnesses should be valued.
However, finding real weights with which solutions that have an overall quality is not at
al straightforward. Although the different ranges of the sub-fitnesses have been taken
into account, some sub-fitnesses are still easier to affect, and thus achieve higher values
with less work. For example, the positive modifiability and negative efficiency both
measure the amount of dispatcher connections, and the overall values of these sub-
fitnesses have been balanced so that the values are in the same range. However, when
measuring the negative efficiency of a system, the number of dispatcher connections is
multiplied with the cal cost of the needed responshbility. This means that a single
dispatcher connection has more effect in the efficiency than in positive modifiability.
Thus, the weight for positive modifiability must be substantially higher than the weight
for negative efficiency if one wants to achieve solutions that use the dispatcher
effectively.

77

Balancing the weights is a difficult combinatorial optimization task also from the
viewpoint of achieving solutions that would not have any big weaknesses. “Heavy”
weights easily “cover” each other: a high positive value in some area may “cover” a high
negative value, and leave the final value higher than that of other solutions which may
have more balanced values, thus resulting in a solution with both very desirable and very
undesirable qualities.

A particular balancing problem is in the structure, as the optimum solution would
include medium-sized classes. However, the current metrics favor either very large
(efficiency and complexity) classes or very small classes (modifiability). Large classes
achieve high values from both positive efficiency and complexity, while small classes
including only one or two responsibilities receive very small penaties from negative
modifiability, hence keeping the overall fitness value quite high even though the positive
metric value also stays small. This is actualy a reverse stuation of the “covering”
discussed earlier: in this case both the positive and the negative values stay so small that
the overal fitness value will still remain within the average and survive through many
generations.

On a more detailed level, there are some restrictions regarding the fitness weights
that should be considered. Firstly, the weights of complexity and positive efficiency
should be quite similar, and quite low in relation to other metrics. Otherwise the number
of classes will be very small, and the modifiability fitness will not be able to develop. At
worst the solution only consists of a single class. Secondly, there is a delicate balance
between negative efficiency and positive modifiability. The welght of postive
modifiability should be at least five times higher than that of negative efficiency if one
wants many users for the message dispatcher. Finally, the weight for negative
modifiability should be kept within the same range as the weights for efficiency, but can
be dlightly higher. These observations are in the case when al quality metrics are used
for evaluation.

To conclude: there are no absolute rules as to how the weights can be assigned, as
they have a “see-saw” effect. By valuing some quality, another quality is hard to achieve.
Rather, it should be attempted to balance the weights in such a way that no quality is
completely overshadowed, thus making such a solution able that is somehow valued by
all the quality aspects.

78

8. Conclusions

8.1. Presentingtheresults

| have presented a novel approach to software architecture design in the field of search-
based software engineering. In this thesis | have taken a more abstract approach than the
research done in the field so far as the structure of a software system is merely based on
the concept of responshilities, and no information of actua operations is known.
Another contribution is to experiment with building a completely new architecture and
not merely moving pieces in a ready-made system as done previously (see Chapter 4).

The results presented in Chapter 7 show that it is possible to design software
architectures with this approach. Sensible solutions are achieved, and they can be
controlled with the selection of fitness metrics — meaning that the construction of the
architecture does indeed follow certain logic and is not completely random. The
solutions mainly fell into two categories, either they had a good structure or they
efficiently used design patterns and the dispatcher architecture style. This is natural, as
when weighting efficiency, the structure was kept quite simple, and while weighting
modifiability, design patterns and the dispatcher were vary much favored. Naturaly,
when neither quality aspect was weighted over the other, solutions were achieved that
could be categorized as “somewhere in between”, i.e., solutions with a good structure
and some usage of interfaces and maybe one connection to the dispatcher, or good usage
of the fine-tuning mechanisms and some structure. However, atruly good solution is one
where the quality can be seen instantly — an average solution does not provide any new
insights, asits biggest strength is actually its lack of weaknesses.

From the point of architecture design and architecture evauation, the
implementation presented here provides a strong starting point for further development
where the common “laws’ concerning architectural design can be taken more into
account, thus ensuring quality solutions more consistently. In traditional architecture
design, the software architect has the requirements for the system, and attempts to piece
the respective operations together so the solution reaches high values when “measured”
by some quality attributes. In this approach, the genetic algorithm actually evaluates a
large number of architectures simultaneously, thus traversing through solutions a human
architect would not have the time or the imagination to think of. Hence, as these initial
tests already show that the implementation is able to find solutions greatly valued even
after human anaysis, this approach could affectively cut down the time used in
architecture design as well as provide innovative solutions either as a starting point for
further design or asready architectures.

From the point of search-based software engineering and especialy software design
with the help of meta-heuristic search algorithms, this thesis clearly makes a contribution

79

to the field. Asthe starting point is raw data, and not a ready architecture, this approach
gives the implementation a significantly freer traverse through the search space, thus
resulting in more innovative solutions. When given a ready architecture, it can be
assumed that the architecture is aready of good quality. Thus, it might prove quite
difficult to find such modifications to the architecture that would actually improve the
fitness value. The higher level of abstractness in architecture representation also provides
a better starting point for constructing architectures, as the logical entities in software
systems do not aways straightforwardly follow the structural or operationa entities.

To conclude, the most important overall result of this thesis is that the approach
taken here appears reasonably successful. An architecture can be designed with the help
of a genetic algorithm with only abstract level knowledge of the architecture’ s contents
and with no ready starting point.

8.2. Successevaluation

As discussed, the implementation was successful in proving that the selected approach
was a good one. The produced solutions were also successful in either providing a good
structure or good usage of communication mechanisms in the architecture. | will now
discuss the main contributors to the success and also what could ill be improved.

Firstly, the very basic elements needed for the algorithm to operate proved to be well
chosen. That is, the modeling, mutations and crossover discussed in Chapter 5, provided
the kind of basis for the agorithm to operate that it was possible to modify the
architecture in such ways that would provide quality solutions.

Secondly, the fitness metrics proved to be very powerful, as weighting one fitness
value over another showed instantly in the produced solutions. It should be emphasized
that enhancing the fitness values by taking into account interfaces and dispatchers was
not based on anything found in the literature, but was constructed by logically evaluating
where these mechanisms would be best used. The grouping of different fitness metrics
into clear sub-fitnesses proved to be powerful, thus making it a contribution of its own.

Finally, there is obviously much that can still be improved. The ultimate goal would
be to consistently find solutions that are good from every quality aspect. Currently
solutions with a high quality in any aspect are not consistent, and hardly any solutions
are found with a good overal quality. Another improvement area lies within the
“legality” of the produced architecture. The major reasons for not receiving even better
results at this stage lies in the optimization problem with different fitness metrics.
Naturaly, the mutation probabilities also have impact in the solution, but as the
implementation provided solutions from both “quality categories’ by using the same set
of probabilities, it is safe to assume that some sort of optimum combination of mutation
probabilities has actually been found. As a result, further development lies more within
the set of fitness weights in terms of parameter optimization.

80

Ovedll, it can be stated that the work was successful. The main research question
was whether the selected approach would even be possible and sufficient enough to
produce quality software architectures. Asthis was achieved, and there are clear views as
to which direction the research could be taken, the implementation can indeed be viewed
as successful, and the approach deemed possible.

8.3. Futurework

The work presented in this thesis has been a follow-up to the work done in my Master’s
thesis, as the basic implementation has been taken further by introducing “architecture
laws’, design patterns, a more refined fitness function, and parameterizing mutation
probabilities and other variables regarding the genetic algorithm. As the results have
significantly improved from those introduced previously, there are even more grounds to
further continue the work. There are till many ways with which the current
implementation can be further developed and improved.

Firstly, the fine-tuning mechanisms can be put to better use by introducing more
architecture styles and design patterns to the model. Naturally, the more mutations are
introduced, the more the solution space grows. However, when the algorithm is not
restricted to only a minimal amount of options in developing the architecture, the
chances of finding a solution that is very close to the optimal increase significantly.

Secondly, more metrics should be considered, as evaluating an architecture from
merely three quality viewpoints is hardly the case in a rea world stuation. As
incorporating more “architecture laws’ would also take care of some basic structura
decisions, the existing metrics could also be adjusted to more effectively evauate the
structural decisions that are actually made by mutations and crossover.

Thirdly, the evaluation can be improved by making the fitness function dynamic. It
could only evaluate the structure in the first generations, and then begin to evaluate the
usage of fine-tuning mechanisms when they sufficiently exist in the architecture. Asthese
mechanisms are not present in the initial population, this kind of adjusted fitness function
could provide more quality structures.

Fourthly, another meta-heuristic search agorithm could be implemented in order to
make a comparison between its results and the results provided by the genetic algorithm.
If it is possible to model an architecture and achieve good results from, e.g., an
implementation with simulated annealing, it could be researched whether the strengths of
both the new and initial algorithm implementations could be combined.

Finally, the quality of the implementation can be improved by producing information
of the solution in a format that can be easily modified, such as XMI.

To conclude: the work and results presented in this thess are the beginning in a
research approach with many possibilities. The basis has been made by producing a
model and initial operations which can be further developed and combined to achieve
significant resultsin the field of search-based software engineering.

81

Refer ences

[Alba and Chicano, 2007] E. Alba and J.F. Chicano, Software project management with
GAs, Information Sciences 177, 2007, 2380-2401.

[Amoui et al., 2006] M. Amoui, S. Mirarab, S. Ansari and C. Lucas, A genetic algorithm
approach to design evolution using design pattern transformation, International
Journal of Information Technology and Intelligent Computing 1 (1, 2), June/
August, 2006, 235-245.

[Bass et a., 1998] L. Bass, P. Clements and R. Kazman, Software Architecture in
Practice, Addison-Wesley, 1998.

[Blickle, 1996] T. Blickle, Evolving compact solutions in genetic programming: a case
study In: H. Voigt, W. Ebeling, |I. Rechenberg, and H. Schwefel (eds.), Parallel
Problem Solving from Nature IV, Proceedings of the International Conference
on Evolutionary Computation, LNCS 1141, 1996, 564-573.

[Burgess, 1995] C.J. Burgess, A genetic agorithm for the optimisation of a
multiprocessor computer architecture, In: GALESA'95, 1st I|EE/IEEE
International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, |EE Conference Publication 414, Sept. 1995, 39-
44

[Canfora et d., 2005] G. Canfora, M. Di Penta, R. Esposito, M. L. Villani, An approach
for qoS-aware service composition based on genetic algorithms, In. GECCO
2005: Proceedings of the Genetic and Evolutionary Computation Conference,
June 2005, 1069-1075.

[Che et al., 2003] Y. Che, Z. Wang and X. Li, Optimization parameter selection by
means of limited execution and genetic algorithms, In: X. Zhou et a. (Eds):
APPT 2003, LNCS 2834, 2003, 226-235.

[Chidamber and Kemerer, 1994] S.R. Chidamber and C.F. Kemerer, A metrics suite for
object oriented design. |IEEE Transactions on Software Engineering 20 (6),
1994, 476-492.

[Clarke et al., 2003] J. Clarke, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M.
Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper and M. Shepperd,
Reformulating Software Engineering as a Search Problem, 1EE Proceedings -
Software, 150 (3), 2003, 161-175.

[Di Pentaet a., 2005] M. Di Penta, M. Neteler, G. Antoniol and E. Merlo, A language-
independent software renovation framework, The Journal of Systems and
Software 77, 2005, 225-240.

[Dick and Jha, 1998] R.P. Dick and N.K. Jhia, MOGAC: A multiobjective genetic
algorithm for the co-synthesis of hardware-software embedded systems. |EEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems 17 (10),

82

Oct. 1998, 920-935.

[Doval et a., 1999] D. Doval, S. Mancoridis and B.S. Mitchell, Automatic clustering of
software systems using a genetic agorithm, In: Proceedings of the Software
Technology and Engineering Practice, 1999, 73-82.

[Du Bois and Mens, 2003] B. Du Bois and T. Mens, Describing the impact of
refactoring on interna program quality. In: Proceedings of the International
Workshop on Evolution of Large-Scale Industrial Software Applications 2003,
37-48.

[GraphViz, 2007] http://www.graphviz.org, checked 17.1.2008.

[Gammaet al., 1995] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[Grunske, 2006] L. Grunske, Identifying "good" architectural design alternatives with
multi-objective optimization strategies. In: Proceeding of the 28th International

Conference on Software Engineering, Shanghai, China, 2006, 849 - 852.

[Harman et a., 2002] M. Harman, R. Hierons and M. Proctor, A new representation and
crossover operator for search-based optimization of software modularization. In:
GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, July 2002, 1351-1358.

[Harman and Tratt, 2007] M. Harman and L. Tratt, Pareto optima search based
refactoring at the design level, In: GECCO 2007: Proceedings of the Genetic
and Evolutionary Computation Conference, 2007, 1106-1113.

[IEEE, 2000] IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. |EEE Standard 1471-2000, 2000.

[Jaeger and MUhl, 2007] M.C. Jaeger and G. MUhl, QoS-based selection of services: the
implementation of a genetic agorithm, In T. Braun, G. Carle and B. Stiller
(Eds)): Kommunikation in Vertellten Systemen (KiVS) 2007 Workshop: Service-
Oriented Architectures und Service-Oriented Computing, VDE Verlag, March
2007, 359-371.

[Kazman et a., 2000] R. Kazman, M. Klein and P. Clements, ATAM: Method for
architecture evaluation, Carnegie-Mellon University, Technical report CMU/SEI-
2000-TR-004, August 2000.

[Koskimies ja Mikkonen, 2005] K. Koskimies ja T. Mikkonen, Ohjelmistoarkkitehtuurit.
Talentum, 2005.

[Le Hanh et d., 2001] V. Le Hanh, K. Akif, Y. Le Traon and JM. Jézéquel, Selecting
an efficient OO integration testing strategy: an experimental comparison of actual
strategies. In: J. Lindskov Knudsen (Ed.): ECOOP 2001, LNCS 2072, 2001,
381-401.

[Losavio et a., 2004] F. Losavio, L. Chirinos, A. Matteo, N. Lévy and A. Ramdane-
Cherif, ISO quality standards for measuring architectures. The Journal of

http://www.graphviz.org

83

Systems and Software 72, 2004, 209-223.

[Mens and Demeyer, 2001] T. Mens and S. Demeyer, Future trends in evolution metrics,
In: Proc. Int. Workshop on Principles of Software Evolution, 2001, 83-86.

[Michalewicz, 1992] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolutionary Programs. Springer-Verlag, 1992.

[de Miguel et a.,2000] M. de Migudl, T. Lambolais, S. Piekarec, S. Betgé-Brezetz and
J, Péquery, Automatic generation of simulation models for the evaluation of
performance and reliability of architectures specified in UML, In: Revised Papers
from the Second International Workshop on Engineering Distributed Objects,
LNCS 1999, 2000, 83-101.

[Mitchell, 1996] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1996.

[O' Keeffe and O Cinnéide, 2004] M. O'Keeffe and M. O Cinnéide, Towards automated
design improvements through combinatorial optimization, In: Workshop on
Directions in Software Engineering Environments (WoDiSEE2004), W2S
Workshop -26™ International Conference on Software Engineeering, 2004, 75-
82.

[O’ Keeffe and O Cinnéide, 2007] M. O’'Keeffe and M. O Cinnéide, Getting the most
from search-based refactoring In: GECCO 2007: Proceedings of the Genetic and
Evolutionary Computation Conference, 2007, 1114-1120.

[Raihg, 2008] O. Réiha, Applying Genetic Algorithms in Software Architecture Design,
University of Tampere, Department of Computer Sciences, M.Sc. Thesis,
February 2008.

[Reeves, 1995] C. R. Reeves, Modern Heuristic Techniques for Combinatorial
Problems. McGraw-Hill Book Company, 1995.

[Rela, 2004] L. Rela, Evolutionary computing in search-based software engineering,
Lappeenranta University of Technology, Department of Information Technology,
M.Sc. Thesis, 2004.

[Rosenberg and Hyatt, 1997] L. Rosenberg and L. Hyatt, Software quality metrics for
object-oriented design, available as
http://satc.gsfc.nasa.gov/support/ CROSS APR97/00cross.PDF, checked
12.9.2007.

[Sahraoui et al., 2000] H.A. Sahraoui, R. Godin and T. Micdli, Can metrics help bridging
the gap between the improvement of OO design quality and its automation? In:
Proc. of the International Conference on Software Maintenance (ICSV ’00),
154-162, available as
http://www.iro.umontreal.ca/~sahraouh/papers/ CSM00.pdf, checked 12.9.2007.

[Salomon, 1998] R. Salomon, Short notes on the schema theorem and the building block
hypothesis in genetic algorithms, In: Evolutionary Programming VII, LNCS
1447, 1998, 113-122.

http://satc.gsfc.nasa.gov/support/CROSS_APR97/oocross.PDF
http://www.iro.umontreal.ca/~sahraouh/papers/ICSM00.pdf

84

[Seng et al., 2005] O. Seng, M. Bauyer, M. Biehl and G. Pache, Search-based
improvement of subsystem decomposition, In: GECCO 2005: Proceedings of the
Genetic and Evolutionary Computation Conference, 2005, 1045 — 1051.

[Seng et al., 2006] O. Seng, J. Stammel and D. Burkhart, Search-based determination of
refactorings for improving the class structure of object-oriented systems, In:
GECCO 2006: Proceedings of the Genetic and Evolutionary Computation
Conference, 2006, 1909-1916.

[UMLGraph, 2007] http://www.umlgraph.org, checked 17.1.2008.

http://www.umlgraph.org

Appendix A
Case study data

The electronic home control system case study data. If the Depending responsibilities
column has the value 0, then no responsibility uses the corresponding responsibility i.
Type “f” stands for “functional” and “d” for “data’. Groups of functional responsibilities
forming a subsystem are separated by a bolded line.

Respons- Depending |[Execu- Param- Fre- |Vari- (Call |Name Type
bility responsi- [tion eter guency |ability |cost
number pilities time Sze

(ms)
1 2,5 30 5.0 2 1 30 pswdcheck f
2 3,4,6,7,47 | 40 6.0 1 1 40 regadmin f
3 48 30 6.0 1 1 30 actuserreg f
4 3 30 6.0 1 1 30 adduserreg f
5 48 50 8.0 1 1 50 chngpswd f
6 48 60 2.0 1 1 60 rmvuserreg f
7 438 70 5.0 1 1 70 setuserrgt f
8 47,48 40 8.0 3 1 40 settemproom |f
9 8,10 60 4.0 3 2 60 msrtemprtr f
10 48 20 4.0 3 1 20 chngtempCels |f
11 8 50 1.0 2 2 50 setheateron f
12 8 50 1.0 1 2 50 setheateroff |f
13 14,47 70 9.0 5 2 70 adminmusicls |f
14 15 90 9.0 5 3 90 showmusicls |f
15 17 70 6.5 5 1 70 pickmusic f
16 13,17,20 | 110 10.0 5 1 110 jadminmusicfl |f
17 438 100 8.5 5 1 100 |plchosenmusic |f
18 17 60 3.0 1 2 60 choosespkr f
19 17 60 3.5 5 1 60 musictospkrs |f
20 48 50 3.0 1 1 50 stopmusicplay |f
21 24 80 7.0 3 1 30 measuresun |f
22 23,24 80 7.0 3 1 80 msrdrppos f
23 47 70 5.0 3 1 70 showdrppos |f
24 25,26 90 6.5 3 3 90 calcoptdrp f

25 438 60 2.0 2 60 rundrpmotor |f
26 48 50 1.0 2 50 stopdrpmotor |f
27 31,32,37, | 110 105 110 |showcffmchstat |f
47
28 48 40 5.0 2 3 40 chscffglt f
29 438 40 5.0 2 3 40 chscffamnt f
30 28,29 50 6.0 2 1 50 calccffwtramnt |f
31 30 50 3.5 2 1 50 setcoffee f
32 30 50 3.5 2 1 50 Ssetwater f
33 32 50 2.5 2 1 50 msrwtramnt |f
34 31 30 2.0 2 1 30 addcffprtn f
35 33 30 1.0 2 2 30 openwtr f
36 33 30 1.0 2 2 30 closewtr f
37 438 70 2.0 2 2 70 startcffmch f
38 37 70 3.5 2 1 70 setcffmchwarm |f
39 48 50 2.0 2 1 50 stopcffmch f
40 39 20 2.0 2 1 20 ringbuzz f
41 12,345, |10 2.0 7 1 10 userDB d
6,7
42 16,17,19 | 10 2.0 3 1 10 musicDB d
43 13,14,15 | 10 2.0 3 1 10 musiclnfo d
44 21,2223 | 10 2.0 3 1 10 drapeState d
45 27,28,29, |10 2.0 5 1 10 cffState d
31, 32, 34,
38, 39, 40
46 8,9 10 2.0 3 1 10 tempState d
47 0 10 2.0 3 2 10 controller f
438 0 10 2.0 14 2 10 userinterface |f
49 11,12 10 2.0 2 1 10 heater State d
50 35,36 10 2.0 2 1 10 waterState d
51 18 10 2.0 1 1 10 speakerState |d
52 25,26 10 2.0 2 1 10 drpMtrState |d

Table 1. Case study responsibility set.

Fitness study parameters

Appendix B

Sub-fitness Weight

Positive modifiability 10
Negative modifiability 10
Positive efficiency 10
Negative efficiency 10
Complexity 10

Table 3. Fitness weights.

Sub-fitness Weight

Positive modifiability 100
Negative modifiability 50
Positive efficiency 5
Negative efficiency 5
Complexity 5

Mutation Probability
Split class 0.08
Merge classes 0.06
Connect dispatcher 0.1
Remove dispatcher 0.04
Introduce interface 0.02
Remove interface 0.03
Introduce new

dispatcher 0.09
Remove empty

dispatcher 0.03
Introduce Facade 0.15
Remove Facade 0.02
Introduce Strategy 0.1
Remove Strategy 0.02
Use variability 0.08
Remove variability 0.06
Null 0.08
Crossover 0.04

Table 4. Fitness weights when
modifiability overweighted.

Table 2. Mutation parameters

Sub-fitness Weight

Positive modifiability 5
Negative modifiability 5
Positive efficiency 100
Negative efficiency 50
Complexity 5

Table 5. Fitness weights
when efficiency overweighted.

Appendix C
Example solutions’ parameters

Example solution 1

Mutation Probability

Split class 0.09 Sub-fitness Weight
Merge classes 0.06 Positive modifiability 45
Connect dispatcher 0.13 Negative modifiability 15
Remove dispatcher 0.03 Positive efficiency 10
Introduce interface 0.02 Negative efficiency 5
Remove interface 0.03 Complexity 8
Introduce new

dispatcher 0.1 Table 8. Fitness weights
Ezga?zﬁe?mpty 0.03 for example solution 1.
Introduce Facade 0.13

Remove Facade 0.02

Introduce Strategy 0.08

Remove Strategy 0.02

Use variability 0.08

Remove variability 0.06

Null 0.08

Crossover 0.04

Table 7. Mutation probabilities
for example solution 1.

Example solution 2

Sub-fitness Weight

Positive modifiability 20
Negative modifiability 15
Positive efficiency 5
Negative efficiency 5
Complexity 10

Mutation Probability
Split class 0.08
Merge classes 0.06
Connect dispatcher 0.1
Remove dispatcher 0.04
Introduce interface 0.02
Remove interface 0.03
Introduce new

dispatcher 0.09
Remove empty

dispatcher 0.03
Introduce Facade 0.15
Remove Facade 0.02
Introduce Strategy 0.1
Remove Strategy 0.02
Use variability 0.08
Remove variability 0.06
Null 0.08
Crossover 0.04

Table 9. Mutation probabilities

for example solution 2.

Table 10. Fitness weights
for example solution 2.

Example solution 3

Sub-fitness Weight

Positive modifiability 45
Negative modifiability 15
Positive efficiency 15
Negative efficiency 2
Complexity 8

Mutation Probability
Split class 0.08
Merge classes 0.06
Connect dispatcher 0.1
Remove dispatcher 0.04
Introduce interface 0.02
Remove interface 0.03
Introduce new

dispatcher 0.09
Remove empty

dispatcher 0.03
Introduce Facade 0.15
Remove Facade 0.02
Introduce Strategy 0.1
Remove Strategy 0.02
Use variability 0.08
Remove variability 0.06
Null 0.08
Crossover 0.04

Table 11. Mutation probabilities

for example solution 3.

Table 12. Fitness weights
for example solution 3.

Example solution 4

Sub-fitness Weight

Positive modifiability 45
Negative modifiability 15
Positive efficiency 10
Negative efficiency 5
Complexity 8

Mutation Probability
Split class 0.08
Merge classes 0.06
Connect dispatcher 0.1
Remove dispatcher 0.04
Introduce interface 0.02
Remove interface 0.03
Introduce new

dispatcher 0.09
Remove empty

dispatcher 0.03
Introduce Facade 0.15
Remove Facade 0.02
Introduce Strategy 0.1
Remove Strategy 0.02
Use variability 0.08
Remove variability 0.06
Null 0.08
Crossover 0.04

Table 13. Mutation probabilities

for example solution 4.

Table 14. Fitness weights
for example solution 4.

