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1. Spline smoothing

Suppose that our aim is to model

yi = d(xi) + εi, i = 1, . . . , n,

where d is a smooth function and εi are iid

with E(εi) = 0 and V ar(εi) = σ2
ε .

The linear spline estimator is

d(xi) = β0 + β1xi +
K∑

k=1

uk(x− κk)+,

(x− κk)+ =

{
0, x ≤ κk

x− κk, x > κk

and κ1, . . . , κK are knots.

The curve d is now modeled by piecewise line

segments tied together at knots κ1, . . . , κK.



We can generalize the above equation to a

piecewise polynomial of degree p, but the

most common choices in practice are qua-

dratic (p = 2) and cubic (p = 3) splines.

For cubic splines we have

d(xi;β;u) = β0 + β1xi + β2x2
i + β3x3

i

+
K∑

k=1

uk(x− κk)
3
+,

where β = (β0, β1, β2, β3)
′, u = (u1, . . . , uk)

′

and 1, x, x2, x3, (x−κ1)
3
+, . . . , (x−κK)3+ are

called basis functions. Other possible choices

of basis functions include B-splines, wave-

let, Fourier Series and polynomial bases etc.



A natural cubic spline is obtained by assu-

ming that the function is linear beyond the

boundary knots.

The number (K) and location of knots κ1, . . . , κK

must be speci�ed in advance.

Coe�cients β and u can be estimated using

standard least squares procedures.

However, in some cases the estimated curve

tends to be a very rough estimate.

Our approach is to apply smoothing splines,

where the smoothing is controlled by a smoot-

hing parameter α.



Smoothing splines have a knot at each unique

value of x and the �tting is carried out by

least squares with a roughness penalty term.

2. Penalized smoothing

If x1, . . . , xn are points in [a, b] satisfying

a < x1, . . . , xn < b the penalized sum of squa-

res (PSS) is given as

n∑
i=1

{yi − d(xi)}2 + α
∫ b

a
{d′′(x)}2dx,

where

α
∫ b

a
{d′′(x)}2dx

is the roughness penalty (RP) term with α >

0.



Note that here α represents the rate of exc-

hange between residual error and local varia-

tion.

If α is very large the main component of PSS

will be RP and the estimated curve will be

very smooth.

If α is relatively small the estimated curve will

track the data points very closely.

If we de�ne a non-negative de�nite matrix

K = ∇∆−1∇′,

where ∇ and ∆ are certain functions of the



points x1, . . . , xn the PSS becomes as

PSS(K) = (y − d)′(y − d) + αd′Kd

and its minimum is obtained at

d̂ = (I + αK)−1y.

It can be shown (e.g. Green and Silverman,

1994) that d̂ is a natural cubic smoothing

with knots at the points x1, . . . , xn.

Note that the special form d̂ follows from the

chosen RP term

α
∫ b

a
{d′′(x)}2dx.



If we, for example, would use a discrete ap-

proximation

µi+1 − 2µi + µi−1

of the second derivative the PSS would be

(Demidenko, 2004)

PSS(QQ′) = (y − d)′(y − d) + αd′QQ′d,

where (n = 6)

Q =



1 0 0 0
−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2
0 0 0 1


.

Then the minimizer is

d̃ = (I + αQQ′)−1y.



Note that for �xed α the spline �t

d̂ = (I + αK)−1y = Sαy

is linear in y and the matrix Sα is known as

the smoother matrix.

The smoother matrix Sα has many interes-

ting properties discussed e.g. in Hastie, Tibs-

hirami and Friedman (2001), but here I brie�y

mention only the following :

1. Choosing the smoothing parameter:

CV (α) =
n∑

i=1

(
yi − d̂α(xi)

1− Sα(i, i)
)2,

where Sα(i, i) are diagonal elements of

Sα.



2. Estimation of the e�ective degrees of free-

dom

dfα = tr(Sα).

This can be compared to matrix

H = X(X ′X)−1X ′

in regression analysis (or in regression spli-

nes) in a sense that

tr(H)

gives the number of estimated parame-

ters (or the number of basis functions

utilized).



Example: Stem curve model - modelling the

degrease of stem diameter as a function stem

height.
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The e�ective number of degrees of freedom

dfα = tr(Sα=5) = 16.79628.

Note that if

α → 0, dfα → n

α →∞, dfα → 2
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Since dfα = tr(Sα) is monotone in α, we can

invert the relationship and specify α by �xing

df . For df = 4 this gives α = 3880.

This yields to model selection with di�erent

values for df , where more traditional criteria

developed for regression models maybe used.



3. Connection to mixed models

If we let

X = [1, x],

where x = (x1, . . . , xn)′ and by the special

form of ∇ we note that

X ′∇ = 0

and

(I+αK)−1 = X(X ′X)−1X ′+Z(Z ′Z+α∆−1)Z ′,

where Z = ∇(∇′∇)−1.

Then the solution of PSS(K) can be written

as

d̂ = Xβ̂ + Zû,



where

β̂ = (X ′X)−1Xy

and

û = (Z ′Z + α∆−1)−1Z ′y.

These estimates can be seen as (BLUP) so-

lutions of the mixed model

y = Xβ + Zu + ε,

where X and Z are de�ned before and

u ∼ N(0, σ2
u∆) and ε ∼ N(0, σ2I)

with smoothing parameter as a variance ratio

α = σ2

σ2
u
.



Note that we may always rewrite

y = Xβ + Z∗u∗ + ε,

where Z∗ = Z∆1/2 and u∗ = ∆−1/2u with

u∗ ∼ N(0, σ2
uI) and ε ∼ N(0, σ2I).

We can now use standard statistical software

for parameter estimation (e.g. LME in R or

Proc Mixed in SAS).



4. Application 1: Harvesting

4.1 Introduction Forest Harvesting

• The general objective in harvesting is to

maximize the value of timber obtained for

further processing.

• The optimization requires that several pha-

ses in the production chain are success-

fully combined.

• Trees are converted into smaller logs im-

mediately at harvest (Nordic countries).



• A great portion of the annual cut in Scan-

dinavia is nowadays accomplished by com-

puterized forest harvesters.

• Optimization of crosscutting is based:

a) on the assessment of the stem cur-

ve (degrease in diameter) and

b) on the given targets (price, volume,

demand etc.)
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4.2 Prediction of stem curves

• If the whole stem curve were known we

may apply techniques discussed e.g. in

Nasberg (1985) to �nd the optimal cut-

ting patterns of a stem.

• In practise stem is only partly known and

we must compensate the unknown part

of the stem by predictions.

• In the �rst cutting decision only about 4

meters of the stem known.



Figure: A forest harvester at work



Stem curves for 100 Spruces in Finland
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• Factors a�ecting to form of stem cur-

ve (site type, climate, genetical factors

etc.) di�cult or impossible to measure in

a harvesting situation.

• In forestry stem curve models are often

presented for relative heights (e.g Laasa-

senaho, 1982 and Kozak, 1988).

However:

� height is unknown for a harvester.

� height has in�uence to the form of the

complete curve.



� if measurement errors → model pa-

rameters can not be unbiasedly esti-

mated by standard methods (see e.g.

Nummi and Möttönen, 2004a).

� do not account for individual variation.

• Low degree polynomial models (e.g. Liski

and Nummi, 1995)

� The stem curve model (Spruce)

d = β0 + β1x + β2x2

�ts well to individual curves (butt mea-

surements dropped).



� Great variation of the estimates β̂0, β̂1

and β̂2 between di�erent stems.

� The second degree mixed model

yij = (bi0+β0)+(bi1+β1)xj+β2x2
j +εij

provides good predictions for Spruce

stem data.

• Spline-functions.



A Method for Stem Curve Prediction

Two phases:

• First predict diameter at 11 m and height

at 15 cm (the most valuable part of the

stem is predicted with high accuracy).

• Fit smoothing spline through known part

and predicted points.





• For hight (Schumacher model)

h = 1.3 + exp(β0 + β1
1

dbh
) + ε

and for diameter the linear regression

d = β0 + β1dbh + β2s + ε.

• Models estimated from 50 earlier stems

(see Liski and Nummi, 1995).

• The length of the known part was 4 m.

• According to trail data and visual inspec-

tions we set α = 1



Test Data

• For details see (Koskela, Nummi, Wentzel,

Kivinen, 2006).

• Five stands from Southern Finland.

• Two species

� Pine: A(n=1226), B(n=565), C(n=185)

� Spruce: D(n=544), E(n=613).



Evaluation of prediction errors

MAE = (1/n)
∑
| yi − ŷi |

RMSE =
√

(1/n)
∑

(yi − ŷi)
2

MAPE = (1/n)
∑
| (yi − ŷi)/yi |

Stand
Met. Criter. A B C D E

(a) Spl. MAE 8.35 5.80 4.08 6.68 9.22
RMSE 13.16 9.21 6.68 11.12 14.58
MAPE 0.036 0.028 0.021 0.031 0.040

(b) Mix. MAE 15.23 11.48 8.65 14.09 14.87
RMSE 23.68 17.66 13.71 25.25 26.11
MAPE 0.070 0.058 0.046 0.069 0.070

(c) Koz. MAE 9.24 7.20 5.38 8.29 10.76
RMSE 13.73 10.67 8.46 12.68 16.13
MAPE 0.040 0.035 0.027 0.038 0.047

Also the sign test based on the individual

MAE values indicated that Spline method is

superior over Mixed model and Kozak model.







Some comments

• Kozak model and mixed model strictly tied to certain func-

tional forms.

� The form may not be �exible enough to describe the

stem curve

� Possibly discontinuity point after the known section.

• Irregular butt degrades predictions especially for mixed mo-

dels. Longer known part → better predictions.

• The form of the curve is determined by the stem height in

Kozak model. Biased parameter estimates if the height is

measured with error.

• Kozak model do not perceive the individual form variation.



5. Application 2: Growth Curves

5.1 Model and estimation

• The growth curve model (GCM) of Pottho� & Roy (1964)

Y = TBA′ + E,

where Y = (y1, y2, . . . , yn) is a matrix of obs.,

T and A are design matrices (within and between indivi-

dual),

B is a matrix of unknown parameters, and

E is a matrix of random errors.

• The columns of E are independently distributed as

ei ∼ N(0,Σ).

• Here I assume that

Σ = σ2R,

where R takes certain parsimonious covariance structure

with covariance parameters θ.



• Now we may write

Y = GA′ + E,

where G = (g1, . . . , gm) is the matrix of

mean curves.

• The GCM is a linear approximation

G = (g1, . . . , gm)
= (Tβ1, . . . , Tβm)
= TB.

• The aim here is to develop the methods

needed when G is approximated by more

�exible cubic smoothing splines.



• Penalized log-likelihood function

2l = −
1

σ2
tr[(Y ′ −AG′)R−1(Y ′ −AG′)′+

α(AG′)K(AG′)′]− n log |σ2R| − c.

• For given α, σ2 and R, the maximum is

obtained at

G̃ = (R−1 + αK)−1R−1Y A(A′A)−1.

• If R satis�es

RK = K,

this simpli�es to

Ĝ = (I + αK)−1Y A(A′A)−1.



• It is easily seen that

R = I (Independent),

R = I + σ2
d11′ (Uniform),

R = I + σ2
d′XX ′ (Linear1),

R = I + XDX ′ (Linear2)

satis�es the condition RK = K.

• This result can be compared to estima-

tion in linear models, when BLUE coinsi-

des with OLSE.



• We can write Ĝ as

ĝ = [(A′A)−1A′ ⊗ (I + αK)−1]y,

where ĝ = vec(Ĝ) and y = vec(Y ).

• Further

ĝ = (Im ⊗X)β̂∗ + (Im ⊗Z)û∗,

where

β̂∗ = [(A′A)−1A′ ⊗ Iq]β̂

and

û∗ = [(A′A)−1A′ ⊗ Iq]û.



• The spline solution of the model Y =

GA′ + E can be expressed as the BLUP

of the mixed model

Y = (XB∗ + ZU∗)A′ + E,

where(
vec(u∗)

ei

)
∼ N

(
0,

(
σ2

u(A
′A)−1 ⊗∇ O

O σ2R

))
.

• For large α the mean spline approaches

XB∗A′ and it is not in�uenced by any

particular choice of α.

• We may utilize "the �xed part"XB∗A′ to

extract rough features of the curves.



• In fact since X = (1, x)

E(yi) = ai1(b011+b11x)+· · ·+aim(b0m1+b1mx)

is a sum of straight lines and if

ai = (0, . . . ,1,0, . . . ,0)′

we have

b0j1 + b1jx.

• For smooth curves we may assume that

these lines roughly re�ects the average

development of individuals summarized by

splines.



5.2. Some ideas of testing

• We restrict our attention to the "�xed

part"XB∗A′.

• The variance-covariance matrix of β̂∗ is

Cov(β̂∗) = [(A′A)−1 ⊗ σ2(X ′R−1X)−1],

which does not depend on the spline fea-

tures of the mean curve.

• Consider the general linear hypothesis

H0 : CB∗L = O,

where C and L are r×2 and m×c matrices

with ranks r and c, respectively.



• It can be shown that under H0

Q = tr[{σ2C(X ′R−1X)−1C ′}−1 ·CB̂∗L·

{L′(A′A)−1L}−1 · (CB̂∗L)′] ∼ χ2
cr.

• Parameters σ2 and R unknown (estima-

ted) → distribution of Q is only approxi-

mate.



6. Application 3: Covariance Mo-

delling

• In modi�ed Cholesky decomposition (MCD)

we decompose

HΣH ′ = W

or

Σ−1 = H ′WH,

H is a uniq. lower dg with 1's as dg and

W is a uniq. dg with positive dg.

• H and W have easy interpretation.



• The below-diagonal entries of H can be

interpreted as negatives of the autoregres-

sive coe�cients, φjk, in

ŷj = µj +
q−1∑
k=1

φjk(yk − µk).

• Diagonal entries of W are innovation va-

riances

σ2
j = Var(yj − ŷj),

where j = 1, . . . , q.



Note that

Hy =
1 0 0 . . . 0

−φ21 1 0 . . . 0
−φ31 −φ32 1 . . . 0
... ... ... ... . . .

−φq1 −φq2 −φq3 . . . 1




y1
y2
y3
...
yq

 =


ε1
ε2
ε3
...
εq


where (ε1, . . . , εq)′ = ε is a vector of pre-

diction errors and

Var(ε) = diag(σ2
1, . . . , σ2

q ) = W .

So the matrix H diagonalises the cova-

riance matrix Σ.



• When Σ is unstructured, the non-redundant

entries of H and log W are unconstrai-

ned and the dimension of the parameters

space can be reduced.

• New estimate is positive de�nite.

• Let

logσ2
j = ν(zj, λ)

and

φjk = η(zjk, γ),

where ν(., .) and η(., .) are functions of

covariates zj and zjk and λ and γ are

parameters.



Example: Growth curves of bulls

168 and 40 Ayrshire and Finncattle bulls mea-

sured once per month during one year.

2 4 6 8 10 12

10
0

20
0

30
0

40
0

50
0

168 Ayrshire Bulls

Measuring point

W
ei

gh
t(

kg
)

2 4 6 8 10 12

10
0

20
0

30
0

40
0

50
0

40 Finncattle Bulls

Measuring point

W
ei

gh
t(

kg
)



The sample covariance matrix gives MCD for

Finncattle bulls

Ĥ =


1 0 0 . . . 0

−0.584 1 0 . . . 0
−0.194 −0.945 1 . . . 0

... ... ... . . . ...
0.221 −0.421 0.088 . . . 1


and

diag(Ŵ ) = (48.254,24.209,12.656 . . . ,65.497)

plots of non-redundant elements of Ĥ and

log(σ̂2
1), . . . , log(σ̂2

q ) give
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