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Thomas Bayes (1701-1761) was an English philosopher and
Presbyterian minister. In his later years he took a deep interest in
probability. He suggested a solution to a problem of inverse
probability. What do we know about the probability of success if the
number of successes is recorded in a binomial experiment? Richard
Price discovered Bayes’ essay and published it posthumously. He
believed that Bayes’ Theorem helped prove the existence of God.
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Bayesian paradigm:

posterior information = prior information + data information
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Bayesian paradigm:

posterior information = prior information + data information

More formally:
p(θ|y) ∝ p(θ)p(y|θ),

where ∝ is a symbol for proportionality, θ is an unknown
parameter, y is data, and p(θ), p(θ|y) and p(y|θ) are the density
functions of the prior, posterior and sampling distributions,
respectively.
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Bayesian paradigm:

posterior information = prior information + data information

More formally:
p(θ|y) ∝ p(θ)p(y|θ),

where ∝ is a symbol for proportionality, θ is an unknown
parameter, y is data, and p(θ), p(θ|y) and p(y|θ) are the density
functions of the prior, posterior and sampling distributions,
respectively.

In Bayesian inference, the unknown parameter θ is considered
stochastic, unlike in classical inference. The distributions p(θ)
and p(θ|y) express uncertainty about the exact value of θ. The
density of data, p(y|θ), provides information from the data. It
is called a likelihood function when considered a function of θ.
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In this course we use the R and BUGS programming languages.
BUGS stands for Bayesian inference Using Gibbs Sampling.
Gibbs sampling was the computational technique first adopted
for Bayesian analysis. The goal of the BUGS project is to
separate the ”knowledge base” from the ”inference machine”
used to draw conclusions. BUGS language is able to describe
complex models using very limited syntax.
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In this course we use the R and BUGS programming languages.
BUGS stands for Bayesian inference Using Gibbs Sampling.
Gibbs sampling was the computational technique first adopted
for Bayesian analysis. The goal of the BUGS project is to
separate the ”knowledge base” from the ”inference machine”
used to draw conclusions. BUGS language is able to describe
complex models using very limited syntax.

There are three widely used BUGS implementations:
WinBUGS, OpenBUGS and JAGS. Both WinBUGS and
OpenBUGS have a Windows GUI. Further, each engine can be
controlled from R. In this course we introduce rjags, the R
interface to JAGS.
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Let A1, A2, ..., Ak be events that partition the sample space Ω,
(i.e. Ω = A1 ∪A2 ∪ ...∪Ak and Ai ∩Aj = ∅ when i 6= j) and let
B an event on that space for which Pr(B) > 0. Then Bayes’
theorem is

Pr(Aj |B) =
Pr(Aj) Pr(B|Aj)∑k
j=1 Pr(Aj) Pr(B|Aj)

.
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Let A1, A2, ..., Ak be events that partition the sample space Ω,
(i.e. Ω = A1 ∪A2 ∪ ...∪Ak and Ai ∩Aj = ∅ when i 6= j) and let
B an event on that space for which Pr(B) > 0. Then Bayes’
theorem is

Pr(Aj |B) =
Pr(Aj) Pr(B|Aj)∑k
j=1 Pr(Aj) Pr(B|Aj)

.

This formula can be used to reverse conditional probabilities. If
one knows the probabilities of the events Aj and the
conditional probabilities Pr(B|Aj), j = 1, ..., k, the formula can
be used to compute the conditinal probabilites Pr(Aj |B).
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A disease occurs with prevalence γ in population, and θ
indicates that an individual has the disease. Hence
Pr(θ = 1) = γ, Pr(θ = 0) = 1− γ. A diagnostic test gives a
result Y , whose distribution function is F1(y) for a diseased
individual and F0(y) otherwise. The most common type of test
declares that a person is diseased if Y > y0, where y0 is fixed on
the basis of past data.
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A disease occurs with prevalence γ in population, and θ
indicates that an individual has the disease. Hence
Pr(θ = 1) = γ, Pr(θ = 0) = 1− γ. A diagnostic test gives a
result Y , whose distribution function is F1(y) for a diseased
individual and F0(y) otherwise. The most common type of test
declares that a person is diseased if Y > y0, where y0 is fixed on
the basis of past data. The probability that a person is
diseased, given a positive test result, is

Pr(θ = 1|Y > y0)

=
γ[1− F1(y0)]

γ[1− F1(y0)] + (1− γ)[1− F0(y0)]
.
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A disease occurs with prevalence γ in population, and θ
indicates that an individual has the disease. Hence
Pr(θ = 1) = γ, Pr(θ = 0) = 1− γ. A diagnostic test gives a
result Y , whose distribution function is F1(y) for a diseased
individual and F0(y) otherwise. The most common type of test
declares that a person is diseased if Y > y0, where y0 is fixed on
the basis of past data. The probability that a person is
diseased, given a positive test result, is

Pr(θ = 1|Y > y0)

=
γ[1− F1(y0)]

γ[1− F1(y0)] + (1− γ)[1− F0(y0)]
.

This is sometimes called the positive predictive value of test. Its
sensitivity and specifity are 1− F1(y0) and F0(y0).

(Example from Davison, 2003).



Prior and posterior distributions

Basic concepts

Bayes’ theorem

Example

Prior and
posterior
distributions

Example 1

Example 2

Decision theory

Bayes estimators

Example 1

Example 2

Conjugate priors

Noninformative
priors

Intervals

Prediction

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Model checking
and comparison

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 9 / 130

In a more general case, θ can take a finite number of values,
labelled 1, ..., k. We can assign to these values probabilites
p1, ..., pk which express our beliefs about θ before we have
access to the data. The data y are assumed to be the observed
value of a (multidimensional) random variable Y , and p(y|θ)
the density of y given θ (the likelihood function).
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In a more general case, θ can take a finite number of values,
labelled 1, ..., k. We can assign to these values probabilites
p1, ..., pk which express our beliefs about θ before we have
access to the data. The data y are assumed to be the observed
value of a (multidimensional) random variable Y , and p(y|θ)
the density of y given θ (the likelihood function). Then the
conditional probabilites

Pr(θ = j|Y = y) =
pjp(y|θ = j)

∑k
i=1 pip(y|θ = i)

, j = 1, ..., k,

summarize our beliefs about θ after we have observed Y .
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In a more general case, θ can take a finite number of values,
labelled 1, ..., k. We can assign to these values probabilites
p1, ..., pk which express our beliefs about θ before we have
access to the data. The data y are assumed to be the observed
value of a (multidimensional) random variable Y , and p(y|θ)
the density of y given θ (the likelihood function). Then the
conditional probabilites

Pr(θ = j|Y = y) =
pjp(y|θ = j)

∑k
i=1 pip(y|θ = i)

, j = 1, ..., k,

summarize our beliefs about θ after we have observed Y .

The unconditional probabilities p1, ..., pk are called prior

probablities and Pr(θ = 1|Y = y), ...,Pr(θ = k|Y = y) are called
posterior probabilites of θ.
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When θ can get values continuosly on some interval, we can
express our beliefs about it with a prior density p(θ). After we
have obtained the data y, our beliefs about θ are contained in
the conditional density,

p(θ|y) = p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ , (1)

called posterior density.
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When θ can get values continuosly on some interval, we can
express our beliefs about it with a prior density p(θ). After we
have obtained the data y, our beliefs about θ are contained in
the conditional density,

p(θ|y) = p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ , (1)

called posterior density.

Since θ is integrated out in the denominator, it can be
considered as a constant with respect to θ. Therefore, the
Bayes’ formula in (1) is often written as

p(θ|y) ∝ p(θ)p(y|θ), (2)

which denotes that p(θ|y) is proportional to p(θ)p(y|θ).
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A drug company would like to introduce a drug to reduce acid
indigestion. It is desirable to estimate θ, the proportion of the
market share that this drug will capture. The company
interviews n people and Y of them say that they will buy the
drug. In the non-Bayesian analysis θ ∈ [0, 1] and Y ∼ Bin(n, θ).
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A drug company would like to introduce a drug to reduce acid
indigestion. It is desirable to estimate θ, the proportion of the
market share that this drug will capture. The company
interviews n people and Y of them say that they will buy the
drug. In the non-Bayesian analysis θ ∈ [0, 1] and Y ∼ Bin(n, θ).

We know that θ̂ = Y/n is a very good estimator of θ. It is
unbiased, consistent and minimum variance unbiased.
Moreover, it is also the maximum likelihood estimator (MLE),
and thus asymptotically normal.
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A drug company would like to introduce a drug to reduce acid
indigestion. It is desirable to estimate θ, the proportion of the
market share that this drug will capture. The company
interviews n people and Y of them say that they will buy the
drug. In the non-Bayesian analysis θ ∈ [0, 1] and Y ∼ Bin(n, θ).

We know that θ̂ = Y/n is a very good estimator of θ. It is
unbiased, consistent and minimum variance unbiased.
Moreover, it is also the maximum likelihood estimator (MLE),
and thus asymptotically normal.

A Bayesian may look at the past performance of new drugs of
this type. If in the past new drugs tend to capture a proportion
between say .05 and .15 of the market, and if all values in
between are assumed equally likely, then θ ∼ Unif(.05, .15).

(Example from Rohatgi, 2003).
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Thus, the prior distribution is given by

p(θ) =

{
1/(0.15− 0.05) = 10, 0.05 ≤ θ ≤ 0.15
0, otherwise.
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Thus, the prior distribution is given by

p(θ) =

{
1/(0.15− 0.05) = 10, 0.05 ≤ θ ≤ 0.15
0, otherwise.

and the likelihood function by

p(y|θ) =
(
n

y

)
θy(1− θ)n−y.
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Thus, the prior distribution is given by

p(θ) =

{
1/(0.15− 0.05) = 10, 0.05 ≤ θ ≤ 0.15
0, otherwise.

and the likelihood function by

p(y|θ) =
(
n

y

)
θy(1− θ)n−y.

The posterior distribution is

p(θ|y) = p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ =

{
θy(1−θ)n−y

∫ 0.15
0.05 θy(1−θ)n−ydθ

0.05 ≤ θ ≤ 0.15

0, otherwise.
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Suppose that the sample size is n = 100 and y = 20 say that
they will use the drug. Then the following BUGS code can be
used to simulate the posterior distribution.

model{

theta ~ dunif(0.05,0.15)

y ~ dbin(theta,n)

}

Suppose that this is the contents of file Acid.txt at the home
directory. Then JAGS can be called from R as follows:

acid <- list(n=100,y=20)

acid.jag <- jags.model("Acid1.txt",acid)

acid.coda <- coda.samples(acid.jag,"theta",10000)

hist(acid.coda[[1]][,"theta"],main="",xlab=expression(theta))
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Figure 1: Market share of a new drug: Simulations from the
posterior distribution of θ.
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White pine is one of the best known species of pines in the
northeastern United States and Canada. White pine is
susceptible to blister rust, which develops cankers on the bark.
These cankers swell, resulting in death of twigs and small trees.
A forester wishes to estimate the average number of diseased
pine trees per acre in a forest.
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White pine is one of the best known species of pines in the
northeastern United States and Canada. White pine is
susceptible to blister rust, which develops cankers on the bark.
These cankers swell, resulting in death of twigs and small trees.
A forester wishes to estimate the average number of diseased
pine trees per acre in a forest.

The number of diseased trees per acre can be modeled by a
Poisson distribution with mean θ. Since θ changes from area to
area, the forester believes that θ ∼ Exp(λ). Thus,

p(θ) = (1/λ)e−θ/λ, if θ > 0, and 0 elsewhere
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White pine is one of the best known species of pines in the
northeastern United States and Canada. White pine is
susceptible to blister rust, which develops cankers on the bark.
These cankers swell, resulting in death of twigs and small trees.
A forester wishes to estimate the average number of diseased
pine trees per acre in a forest.

The number of diseased trees per acre can be modeled by a
Poisson distribution with mean θ. Since θ changes from area to
area, the forester believes that θ ∼ Exp(λ). Thus,

p(θ) = (1/λ)e−θ/λ, if θ > 0, and 0 elsewhere

The forester takes a random sample of size n from n different

one-acre plots.

(Example from Rohatgi, 2003).
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The likelihood function is

p(y|θ) =
n∏

i=1

θyi

yi!
e−θ =

θ
∑n

i=1 yi∏
yi!

e−nθ.
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The likelihood function is

p(y|θ) =
n∏

i=1

θyi

yi!
e−θ =

θ
∑n

i=1 yi∏
yi!

e−nθ.

Consequently, the posterior distribution is

p(θ|y) = θ
∑n

i=1 yie−θ(n+1/λ)

∫∞
0 θ

∑n
i=1 yie−θ(n+1/λ)

.

We see that this is a Gamma-distribution with parameters
α =

∑n
i=1 yi + 1 and β = n+ 1/λ.
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The likelihood function is

p(y|θ) =
n∏

i=1

θyi

yi!
e−θ =

θ
∑n

i=1 yi∏
yi!

e−nθ.

Consequently, the posterior distribution is

p(θ|y) = θ
∑n

i=1 yie−θ(n+1/λ)

∫∞
0 θ

∑n
i=1 yie−θ(n+1/λ)

.

We see that this is a Gamma-distribution with parameters
α =

∑n
i=1 yi + 1 and β = n+ 1/λ. Thus,

p(θ|y) = (n+ 1/λ)
∑n

i=1 yi+1

Γ(
∑n

i=1 yi + 1)
θ
∑n

i=1 yie−θ(n+1/λ).
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The outcome of a Bayesian analysis is the posterior
distribution, which combines the prior information and the
information from data. However, sometimes we may want to
summarize the posterior information with a scalar, for example
the mean, median or mode of the posterior distribution. In the
following, we show how the use of scalar estimator can be
justified using statistical decision theory.

Let L(θ, θ̂) denote the loss function which gives the cost of
using θ̂ = θ̂(y) as an estimate for θ. We define that θ̂ is a Bayes

estimate of θ if it minimizes the posterior expected loss

E[L(θ, θ̂)|y] =
∫
L(θ, θ̂)p(θ|y)dθ.
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On the other hand, the expectation of the loss function over the
sampling distribution of y is called risk function:

Rθ̂(θ) = E[L(θ, θ̂)|θ] =
∫
L(θ, θ̂)p(y|θ)dy.
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On the other hand, the expectation of the loss function over the
sampling distribution of y is called risk function:

Rθ̂(θ) = E[L(θ, θ̂)|θ] =
∫
L(θ, θ̂)p(y|θ)dy.

Further, the expectation of the risk function over the prior
distribution of θ,

E[Rθ̂(θ)] =

∫
Rθ̂(θ)p(θ)dθ,

is called Bayes risk.



Statistical decision theory (continued)

Basic concepts

Bayes’ theorem

Example

Prior and
posterior
distributions

Example 1

Example 2

Decision theory

Bayes estimators

Example 1

Example 2

Conjugate priors

Noninformative
priors

Intervals

Prediction

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Model checking
and comparison

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 19 / 130

By changing the order of integration one can see that the Bayes
risk

∫
Rθ̂(θ)p(θ)dθ =

∫
p(θ)

∫
L(θ, θ̂)p(y|θ)dydθ

=

∫
p(y)

∫
L(θ, θ̂)p(θ|y)dθdy (3)

is minimized when the inner integral in (3) is minimized for
each y, that is, when a Bayes estimator is used.
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By changing the order of integration one can see that the Bayes
risk

∫
Rθ̂(θ)p(θ)dθ =

∫
p(θ)

∫
L(θ, θ̂)p(y|θ)dydθ

=

∫
p(y)

∫
L(θ, θ̂)p(θ|y)dθdy (3)

is minimized when the inner integral in (3) is minimized for
each y, that is, when a Bayes estimator is used.

In the following, we introduce the Bayes estimators for three
simple loss functions.
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Zero-one loss:

L(θ, θ̂) =

{
0 when |θ̂ − θ| < a

1 when |θ̂ − θ| ≥ a.
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Zero-one loss:

L(θ, θ̂) =

{
0 when |θ̂ − θ| < a

1 when |θ̂ − θ| ≥ a.

We should minimize

∫ ∞

−∞
L(θ, θ̂)p(θ|y)dθ =

∫ θ̂−a

−∞
p(θ|y)dθ +

∫ ∞

θ̂+a
p(θ|y)dθ

=1−
∫ θ̂+a

θ̂−a
p(θ|y)dθ,
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Zero-one loss:

L(θ, θ̂) =

{
0 when |θ̂ − θ| < a

1 when |θ̂ − θ| ≥ a.

We should minimize

∫ ∞

−∞
L(θ, θ̂)p(θ|y)dθ =

∫ θ̂−a

−∞
p(θ|y)dθ +

∫ ∞

θ̂+a
p(θ|y)dθ

=1−
∫ θ̂+a

θ̂−a
p(θ|y)dθ,

or maximize ∫ θ̂+a

θ̂−a
p(θ|y)dθ.
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If p(θ|y) is unimodal, maximization is achieved by choosing θ̂ to
be the midpoint of the interval of length 2a for which p(θ|y) has
the same value at both ends. If we let a→ 0, then θ̂ tends to
the mode of the posterior distribution. This equals the MLE if
p(θ) is ’flat’.
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If p(θ|y) is unimodal, maximization is achieved by choosing θ̂ to
be the midpoint of the interval of length 2a for which p(θ|y) has
the same value at both ends. If we let a→ 0, then θ̂ tends to
the mode of the posterior distribution. This equals the MLE if
p(θ) is ’flat’.

Absolute error loss: L(θ, θ̂) = |θ̂ − θ|. In general, if X is a
random variable, then the expectation E(|X − d|) is minimized
by choosing d to be the median of the distribution of X. Thus,
the Bayes estimate of θ is the posterior median.
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If p(θ|y) is unimodal, maximization is achieved by choosing θ̂ to
be the midpoint of the interval of length 2a for which p(θ|y) has
the same value at both ends. If we let a→ 0, then θ̂ tends to
the mode of the posterior distribution. This equals the MLE if
p(θ) is ’flat’.

Absolute error loss: L(θ, θ̂) = |θ̂ − θ|. In general, if X is a
random variable, then the expectation E(|X − d|) is minimized
by choosing d to be the median of the distribution of X. Thus,
the Bayes estimate of θ is the posterior median.

Quadratic loss function: L(θ, θ̂) = (θ̂ − θ)2. In general, if X is a
random variable, then the expectation E[(X − d)2] is minimized
by choosing d to be the mean of the distribution of X. Thus,
the Bayes estimate of θ is the posterior mean.
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We continue our example of the market share of a new drug.
Using R, we can compute the posterior mean and median
estimates, and various posterior intervals:

summary(acid.coda)

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

0.1357622 0.0121584 0.0001216 0.0002253

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

0.1050 0.1294 0.1390 0.1453 0.1496
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From Figure 1 we see that the posterior mode is 0.15.
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From Figure 1 we see that the posterior mode is 0.15.

If we use Beta(α, β), whose density is

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, when 0 < θ < 1,
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From Figure 1 we see that the posterior mode is 0.15.

If we use Beta(α, β), whose density is

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, when 0 < θ < 1,

as a prior, then the posterior is

p(θ|y) ∝ p(θ)p(y|θ) ∝ θα+y−1(1− θ)β+n−y−1.

We see immediately that the posterior distribution is
Beta(α+ y, β + n− y).
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From Figure 1 we see that the posterior mode is 0.15.

If we use Beta(α, β), whose density is

p(θ) =
1

B(α, β)
θα−1(1− θ)β−1, when 0 < θ < 1,

as a prior, then the posterior is

p(θ|y) ∝ p(θ)p(y|θ) ∝ θα+y−1(1− θ)β+n−y−1.

We see immediately that the posterior distribution is
Beta(α+ y, β + n− y).

The posterior mean (Bayes estimator with quadratic loss) is
(α+ y)/(α+ β + n). The mode (Bayes estimator with zero-one
loss when a→ 0) is (α+ y − 1)/(α+ β + n− 2), provided that
the distribution is unimodal.
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We now continue our example of estimating the proportion of
diseased trees. We derived that the posterior distribution is
Gamma(

∑n
i=1 yi + 1, n+ 1/λ). Thus, the Bayes estimator with

a quadratic loss function is the mean of this distribution,
(
∑n

i=1 yi + 1)/(n+ 1/λ). However, the mean and mode of a
gamma distribution do not exist in closed form.
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We now continue our example of estimating the proportion of
diseased trees. We derived that the posterior distribution is
Gamma(

∑n
i=1 yi + 1, n+ 1/λ). Thus, the Bayes estimator with

a quadratic loss function is the mean of this distribution,
(
∑n

i=1 yi + 1)/(n+ 1/λ). However, the mean and mode of a
gamma distribution do not exist in closed form.

Note that the classical estimate for θ is the sample mean ȳ.
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Computations can often be facilitated using conjugate prior

distributions. We say that a prior is conjugate for the likelihood
if the prior and posterior distributions belong to the same
family. There are conjugate distributions for the exponential
family of sampling distributions.
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Computations can often be facilitated using conjugate prior

distributions. We say that a prior is conjugate for the likelihood
if the prior and posterior distributions belong to the same
family. There are conjugate distributions for the exponential
family of sampling distributions.

Conjugate priors can be formed with the following simple steps:

1. Write the likelihood function.
2. Remove the factors that do not depend on θ.
3. Replace the expressions which depend on data with

parameters. Also the sample size n should be replaced.
4. Now you have the kernel of the conjugate prior. You can

complement it with the normalizing constant.
5. In order to obtain the standard parametrization it may be

necessary to reparametrize.
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Let y = (y1, ...yn) be a sample from Poi(θ). Then the likelihood
is

p(y|θ) =
n∏

i=1

θyie−θ

yi!
∝ θ

∑
yie−nθ.
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Let y = (y1, ...yn) be a sample from Poi(θ). Then the likelihood
is

p(y|θ) =
n∏

i=1

θyie−θ

yi!
∝ θ

∑
yie−nθ.

By replacing
∑
yi and n, which depend on the data, with the

parameters α1 and α2, we obtain the conjugate prior

p(θ) ∝ θα1e−α2θ,

which is Gamma(α1 + 1, α2) distribution. If we reparametrize
this distribution so that α = α1 + 1 and β = α2 we obtain the
prior Gamma(α, β).
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Assume that y = (y1, ..., yn) is a random sample from Unif(0, θ).
The the density of a single observation yi is

p(yi|θ) =
{

1
θ 0 ≤ yi ≤ θ,
0, otherwise,
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Assume that y = (y1, ..., yn) is a random sample from Unif(0, θ).
The the density of a single observation yi is

p(yi|θ) =
{

1
θ 0 ≤ yi ≤ θ,
0, otherwise,

and the likelihood of θ is

p(y|θ) =

{
1
θn , 0 ≤ y(1) ≤ ... ≤ y(n) ≤ θ,

0, otherwise,

=
1

θn
I{y(n)≤θ}(y) I{y(1)≥0}(y),

where IA(y) denotes an indicator function obtaining value 1
when y ∈ A and 0 otherwise.



Example: Uniform likelihood (cont)

Basic concepts

Bayes’ theorem

Example

Prior and
posterior
distributions

Example 1

Example 2

Decision theory

Bayes estimators

Example 1

Example 2

Conjugate priors

Noninformative
priors

Intervals

Prediction

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Model checking
and comparison

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 28 / 130

Now, by removing the factor I{y(1)≥0}(y), which does not
depend on θ, and replacing n and y(n) with parameters we
obtain

p(θ) ∝ 1

θα
I{θ≥β}(θ)

=

{
1
θα , when θ ≥ β,
0, otherwise.

This is the kernel of the Pareto distribution.
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Now, by removing the factor I{y(1)≥0}(y), which does not
depend on θ, and replacing n and y(n) with parameters we
obtain

p(θ) ∝ 1

θα
I{θ≥β}(θ)

=

{
1
θα , when θ ≥ β,
0, otherwise.

This is the kernel of the Pareto distribution.The posterior
distribution

p(θ|y) ∝ p(θ)p(y|θ)

∝
{

1
θn+α , when θ ≥ max(β, y(n))

0, otherwise.

is also a Pareto distribution.
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When there is no prior information available on the estimated
parameters, noninformative priors can be used. They can also
be used to find out how an informative prior affects the
outcome of the inference.
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When there is no prior information available on the estimated
parameters, noninformative priors can be used. They can also
be used to find out how an informative prior affects the
outcome of the inference.

The uniform distribution p(θ) ∝ 1 is often used as a
noninformative prior. However, this is not fully unproblematic.
If the uniform distribution is restricted to an interval, it is not,
in fact, noninformative. For example, the prior Unif(0, 1),
contains the information that θ is in the interval [0.2, 0.4] with
probability 0.2. This information content becomes obvious
when a parametric transformation is made. The distribution of
the transformed parameter is no more uniform.
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Another problem arises if the parameter can obtain values in an
infinite interval. In such a case there is no proper uniform
distribution. However, one can use an improper uniform prior
distribution. Then the posterior is proportional to the
likelihood.
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Another problem arises if the parameter can obtain values in an
infinite interval. In such a case there is no proper uniform
distribution. However, one can use an improper uniform prior
distribution. Then the posterior is proportional to the
likelihood.

Some parameters, for example scale parameteres and variances,
can obtain only positive values. Such variables are often given
the improper prior p(θ) ∝ 1/θ, which implies that log(θ) has a
uniform prior.
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Another problem arises if the parameter can obtain values in an
infinite interval. In such a case there is no proper uniform
distribution. However, one can use an improper uniform prior
distribution. Then the posterior is proportional to the
likelihood.

Some parameters, for example scale parameteres and variances,
can obtain only positive values. Such variables are often given
the improper prior p(θ) ∝ 1/θ, which implies that log(θ) has a
uniform prior.

Jeffreys has suggested giving a uniform prior for such a
transformation of θ that its Fisher information is a constant.
Jeffreys’ prior is defined as p(θ) ∝ I(θ) 1

2 , where I(θ) is the
Fisher information of θ. That this definition is invariant to
parametrization, can be seen as follows:
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Let φ = h(θ) be a regular, monotonic transformation of θ, and
its inverse transformation θ = h−1(φ). Then the Fisher
information of φ is

I(φ) =E

[(
d log p(y|φ)

dφ

)2
∣∣∣∣∣φ
]

=E

[(
d log p(y|θ = h−1(φ))

dθ

)2
∣∣∣∣∣φ
] ∣∣∣∣
dθ

dφ

∣∣∣∣
2

=I(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣
2

.
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Let φ = h(θ) be a regular, monotonic transformation of θ, and
its inverse transformation θ = h−1(φ). Then the Fisher
information of φ is

I(φ) =E

[(
d log p(y|φ)

dφ

)2
∣∣∣∣∣φ
]

=E

[(
d log p(y|θ = h−1(φ))

dθ

)2
∣∣∣∣∣φ
] ∣∣∣∣
dθ

dφ

∣∣∣∣
2

=I(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣
2

.

Thus, I(φ) 1
2 = I(Θ)

1
2

∣∣∣ dθdφ
∣∣∣.
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Let φ = h(θ) be a regular, monotonic transformation of θ, and
its inverse transformation θ = h−1(φ). Then the Fisher
information of φ is

I(φ) =E

[(
d log p(y|φ)

dφ

)2
∣∣∣∣∣φ
]

=E

[(
d log p(y|θ = h−1(φ))

dθ

)2
∣∣∣∣∣φ
] ∣∣∣∣
dθ

dφ

∣∣∣∣
2

=I(θ)
∣∣∣∣
dθ

dφ

∣∣∣∣
2

.

Thus, I(φ) 1
2 = I(Θ)

1
2

∣∣∣ dθdφ
∣∣∣.

On the other hand, p(φ) = p(θ)
∣∣∣ dθdφ
∣∣∣ = I(Θ)

1
2

∣∣∣ dθdφ
∣∣∣, as required.
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Binomial distribution

The Fisher information of the binomial distribution parameter
θ is I(θ) = n/[(θ(1− θ)]. Thus, the Jeffreys prior is
p(θ) ∝ [θ(1− θ)]−1/2, which is the Beta(1/2,1/2) distribution.
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Binomial distribution

The Fisher information of the binomial distribution parameter
θ is I(θ) = n/[(θ(1− θ)]. Thus, the Jeffreys prior is
p(θ) ∝ [θ(1− θ)]−1/2, which is the Beta(1/2,1/2) distribution.

The mean of the normal distribution

The Fisher information for the mean θ of the normal
distribution is I(θ) = n/σ2. This is independent of θ, so that
Jeffreys’ prior is constant, p(θ) ∝ 1.
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Binomial distribution

The Fisher information of the binomial distribution parameter
θ is I(θ) = n/[(θ(1− θ)]. Thus, the Jeffreys prior is
p(θ) ∝ [θ(1− θ)]−1/2, which is the Beta(1/2,1/2) distribution.

The mean of the normal distribution

The Fisher information for the mean θ of the normal
distribution is I(θ) = n/σ2. This is independent of θ, so that
Jeffreys’ prior is constant, p(θ) ∝ 1.

The variance of the normal distribution

Assume that the variance θ of the normal distribution N(µ, θ)
is unknown. Then its Fisher information is I(θ) = n/(2θ2), and
Jeffreys’ prior p(θ) ∝ 1/θ.
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Whe have seen that it is possible to summarize posterior
information using point estimators. However, posterior regions
and intervals are usually more useful. We define that a set C is
a posterior region of level 1− α for θ if the posterior probability
of θ belonging to C is 1− α:

Pr(θ ∈ C|y) =
∫

C
p(θ|y)dθ = 1− α.
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Whe have seen that it is possible to summarize posterior
information using point estimators. However, posterior regions
and intervals are usually more useful. We define that a set C is
a posterior region of level 1− α for θ if the posterior probability
of θ belonging to C is 1− α:

Pr(θ ∈ C|y) =
∫

C
p(θ|y)dθ = 1− α.

In the case of scalar parameters one can use posterior intervals
(credible intervals). An equi-tailed posterior inteval is defined
using quantiles of the posterior. Thus, (θL, θU ) is an
100(1− α)% interval if Pr(θ < θL|y) = Pr(θ > θU |y) = α/2.
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Whe have seen that it is possible to summarize posterior
information using point estimators. However, posterior regions
and intervals are usually more useful. We define that a set C is
a posterior region of level 1− α for θ if the posterior probability
of θ belonging to C is 1− α:

Pr(θ ∈ C|y) =
∫

C
p(θ|y)dθ = 1− α.

In the case of scalar parameters one can use posterior intervals
(credible intervals). An equi-tailed posterior inteval is defined
using quantiles of the posterior. Thus, (θL, θU ) is an
100(1− α)% interval if Pr(θ < θL|y) = Pr(θ > θU |y) = α/2.

An advantage of this type of interval is that it is invariant with
respect to one-to-one parameter transformations. Further, it is
easy to compute.
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A posterior region is said to be a highest posterior density

region (HPD region) if the posterior density is larger in all
points of the region than in any point outside the region. This
type of region has the smallest possible volume. In a scalar
case, an HPD interval has the smallest length. On the other
hand, the bounds of the interval are not invariant with respect
to parameter transformations, and it is not always easy to
determine them.
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A posterior region is said to be a highest posterior density

region (HPD region) if the posterior density is larger in all
points of the region than in any point outside the region. This
type of region has the smallest possible volume. In a scalar
case, an HPD interval has the smallest length. On the other
hand, the bounds of the interval are not invariant with respect
to parameter transformations, and it is not always easy to
determine them.

Example. Cardiac surgery data. Table 1 shows mortality rates
for cardiac surgery on babies at 12 hospitals. If one wishes to
estimate the mortality rate in hospital A, denoted as θA, the
simpliest approach is to assume that the number of deaths y is
binomially distributed with parameters n and θA where n is the
number of operations in A. Then the MLE is θ̂A = 0, which
sounds too optimistic.
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If we give a uniform prior for θA, then the posterior distribution
is Beta(1,48), with posterior mean 1/49. The 95% HPD interval
is (0,6.05)% and equi-tailed interval (0.05,7.30)%. Figure 2
shows the posterior density. Another approach would use the
total numbers of deaths and operations in all hospitals.

Table 1: Mortality rates y/n from cardiac surgery in 12 hospitals
(Spiegelhalter et. al, BUGS 0.5 Examples Volume 1, Cambridge:
MRC Biostatistics Unit, 1996). The numbers of deaths y out of
n operations.

A 0/47 B 18/148 C 8/119 D 46/810
E 8/211 F 13/196 G 9/148 H 31/215
I 14/207 J 8/97 K 29/256 L 24/360
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Figure 2: Posterior density of θA when the prior is uniform. The
95% HPD interval is indicated with vertical lines and 95% equi-
tailed interval with red colour.
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The following BUGS and R codes can be used to compute the
equi-tailed and HPD intervals:

model{

theta ~ dbeta(1,1)

y ~ dbin(theta,n)

}

hospital <- list(n=47,y=0)

hospital.jag <- jags.model("Hospital.txt",hospital)

hospital.coda <- coda.samples(hospital.jag,"theta",10000)

summary(hospital.coda)

HPDinterval(hospital.coda)

#Compare with exact upper limit of HPD interval:

qbeta(0.95,1,48)

[1] 0.06050341
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If we wish to predict a new observation ỹ on the basis of the
sample y = (y1, ...yn), we may use its posterior predictive

distribution. This is defined to be the conditional distribution
of ỹ given y:

p(ỹ|y) =
∫
p(ỹ, θ|y)dθ

=

∫
p(ỹ|y, θ)p(θ|y)dθ,

where p(ỹ|y, θ) is the density of the predictive distribution.



Posterior predictive distribution

Basic concepts

Bayes’ theorem

Example

Prior and
posterior
distributions

Example 1

Example 2

Decision theory

Bayes estimators

Example 1

Example 2

Conjugate priors

Noninformative
priors

Intervals

Prediction

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Model checking
and comparison

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 38 / 130

If we wish to predict a new observation ỹ on the basis of the
sample y = (y1, ...yn), we may use its posterior predictive

distribution. This is defined to be the conditional distribution
of ỹ given y:

p(ỹ|y) =
∫
p(ỹ, θ|y)dθ

=

∫
p(ỹ|y, θ)p(θ|y)dθ,

where p(ỹ|y, θ) is the density of the predictive distribution.

It is easy to simulate the posterior predictive distribution.
First, draw simulations θ1, ..., θL from the posterior p(θ|y), then,
for each i, draw ỹi from the predictive distribution p(ỹ|y, θi).
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Assume that we have a coin with unknown probability θ of a
head. If there occurs y heads among the first n tosses what is
the probability of a head on the next throw?
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Assume that we have a coin with unknown probability θ of a
head. If there occurs y heads among the first n tosses what is
the probability of a head on the next throw?

Let ỹ = 1 (ỹ = 0) indicate the event that the next throw is a
head (tail). If the prior of θ is Beta(α, β), then

p(ỹ|y) =
∫ 1

0
p(ỹ|y, θ)p(θ|y)dθ

=

∫ 1

0
θỹ(1− θ)1−ỹ θ

α+y−1(1− θ)β+n−y−1

B(α+ y, β + n− y)
dθ

=
B(α+ y + ỹ, β + n− y − ỹ + 1)

B(α+ y, β + n− y)

=
(α+ y)ỹ(β + n− y)1−ỹ

α+ β + n
.
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Thus, Pr(ỹ = 1|y) = (α+ y)/(α+ β + n). This tends to the
sample proportion y/n as n→ ∞, so that the role of the prior
information vanishes. If n = 10 and y = 4 and prior parameters
α = β = 0.5 (Jeffreys’ prior), the posterior predictive
distribution can be simulated with BUGS as follows:

model{

theta ~ dbeta(alpha,beta)

y ~ dbin(theta,n)

ynew ~ dbern(theta)

}

coin <- list(n=10,y=4,alpha=0.5,beta=0.5)

coin.jag <- jags.model("Coin.txt",coin)

coin.coda <- coda.samples(coin.jag,c("theta","ynew"),10000)

summary(coin.coda)
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Next we will consider some simple single-parameter models. Let
us first assume that y = (y1, ...yn) is a sample from a normal
distribution unknown mean θ and known variance σ2. The
likelihood is then

p(y|θ) =
n∏

i=1

1√
2πσ2

e−
1

2σ2 (yi−θ)2

∝ e−
1

2σ2

∑n
i=1(yi−θ)2

∝ e−
n

2σ2 (θ−ȳ)2 .
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Next we will consider some simple single-parameter models. Let
us first assume that y = (y1, ...yn) is a sample from a normal
distribution unknown mean θ and known variance σ2. The
likelihood is then

p(y|θ) =
n∏

i=1

1√
2πσ2

e−
1

2σ2 (yi−θ)2

∝ e−
1

2σ2

∑n
i=1(yi−θ)2

∝ e−
n

2σ2 (θ−ȳ)2 .

By replacing σ2/n with τ20 , and ȳ with µ0, we find a conjugate
prior

p(θ) ∝ e
− 1

2τ2
0
(θ−µ0)2

,

which is N(µ0, τ
2
0 ).
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With this prior the posterior becomes

p(θ|y) ∝ p(θ)p(y|θ)

∝ e
− 1

2τ20
(θ−µ0)2

e−
n

2σ2 (θ−ȳ)2

∝ exp

{
−1

2

(
1

τ20
+

n

σ2

)(
θ2 − 2

1
τ20
µ0 +

n
σ2 ȳ

1
τ20

+ n
σ2

θ

)}

∝ exp

{
− 1

2τ2n
(θ − µn)

2

}
,
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With this prior the posterior becomes

p(θ|y) ∝ p(θ)p(y|θ)

∝ e
− 1

2τ20
(θ−µ0)2

e−
n

2σ2 (θ−ȳ)2

∝ exp

{
−1

2

(
1

τ20
+

n

σ2

)(
θ2 − 2

1
τ20
µ0 +

n
σ2 ȳ

1
τ20

+ n
σ2

θ

)}

∝ exp

{
− 1

2τ2n
(θ − µn)

2

}
,

where

µn =

1
τ20
µ0 +

n
σ2 ȳ

1
τ20

+ n
σ2

and τ2n =

(
1

τ20
+

n

σ2

)−1

.
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Thus, the posterior distribution is N(µn, τ
2
n).
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Thus, the posterior distribution is N(µn, τ
2
n).

The inverse of variance is called precision. We see that

posterior precision = prior precision + data precision

where the prior precision is 1/τ20 and data precision n/σ2 (the
inverse of the variance of the sample mean).
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Thus, the posterior distribution is N(µn, τ
2
n).

The inverse of variance is called precision. We see that

posterior precision = prior precision + data precision

where the prior precision is 1/τ20 and data precision n/σ2 (the
inverse of the variance of the sample mean).

The posterior mean is a weighted average of the prior mean µ0
and sample mean ȳ where the weights are the corresponding
precisions. When n→ ∞ (or when τ20 → ∞), the role of the
prior information vanishes. Thus, for large values of n,
approximately θ|y ∼ N(ȳ, σ2/n).
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Next, we determine the posterior predictive distribution of a
new observation ỹ. The joint posterior distribution of θ and ỹ is

p(θ, ỹ|y) = p(θ|y)p(ỹ|y, θ)

∝ exp

{
− 1

2τ2n
(θ − µn)

2 − 1

2σ2
(ỹ − θ)2

}
.
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Next, we determine the posterior predictive distribution of a
new observation ỹ. The joint posterior distribution of θ and ỹ is

p(θ, ỹ|y) = p(θ|y)p(ỹ|y, θ)

∝ exp

{
− 1

2τ2n
(θ − µn)

2 − 1

2σ2
(ỹ − θ)2

}
.

Since the exponent is a quadratic function of θ and ỹ, their
joint distribution is bivariate normal. Consequently, the
marginal distribution p(ỹ|y) is univariate normal, and it is
sufficient to determine its mean and variance.
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Using the rules of iterated mean and variance, we obtain that

E(ỹ|y) = E[E(ỹ|y, θ)|y] = E[θ|y] = µn,

and
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Using the rules of iterated mean and variance, we obtain that

E(ỹ|y) = E[E(ỹ|y, θ)|y] = E[θ|y] = µn,

and

Var(ỹ|y) = E[Var(ỹ|y, θ)|y] + Var[E(ỹ|y, θ)|y]
= E[σ2|y] + Var[θ|Y ]

= σ2 + τ2n.
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Using the rules of iterated mean and variance, we obtain that

E(ỹ|y) = E[E(ỹ|y, θ)|y] = E[θ|y] = µn,

and

Var(ỹ|y) = E[Var(ỹ|y, θ)|y] + Var[E(ỹ|y, θ)|y]
= E[σ2|y] + Var[θ|Y ]

= σ2 + τ2n.

Thus, the posterior predictive distribution is

p(ỹ|y) = N(ỹ|µn, σ2 + τ2n).
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The Poisson distribution is often used to model rare incidents,
such as traffic accidents or rare diseases. For a vector
y = (y1, ..., yn) of iid observation, the likelihood is

p(y|θ) =
n∏

i=1

θyi

yi!
e−θ ∝ θ

∑
yie−nθ.
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The Poisson distribution is often used to model rare incidents,
such as traffic accidents or rare diseases. For a vector
y = (y1, ..., yn) of iid observation, the likelihood is

p(y|θ) =
n∏

i=1

θyi

yi!
e−θ ∝ θ

∑
yie−nθ.

Given that the prior distribution is Gamma(α, β), the posterior

p(θ|y) ∝ p(θ)p(y|θ)
∝ θα−1e−βθθ

∑
yie−nθ

∝ θα+
∑

yi−1e−(β+n)θ

is Gamma(α+
∑
yi, β + n).
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The negative binomial distribution. When the prior and
posterior distributions can be written in closed form, the
marginal likelihood p(y) can be computed using the formula

p(y) =
p(y|θ)p(θ)
p(θ|y) .
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The negative binomial distribution. When the prior and
posterior distributions can be written in closed form, the
marginal likelihood p(y) can be computed using the formula

p(y) =
p(y|θ)p(θ)
p(θ|y) .

For example, if y is a single observation from Poi(θ), then

p(y) =

θy

y! e
−θ · βα

Γ(α)θ
α−1e−βθ

(β+1)α+y

Γ(α+y) θ
α+y−1e−(β+1)θ

=

(
α+ y − 1

y

)(
β

β + 1

)α( 1

β + 1

)y

,

which is Neg-Bin(α, β), the negative binomial distribution.
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On the other hand,

p(y) =

∫
p(y|θ)p(θ) =

∫
Poi(y|θ)Gamma(θ|α, β)dθ,

implying that the negative binomial distribution is a compound

distribution where the Poisson distribution is compounded
using the Gamma distribution as a weight distribution.
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On the other hand,

p(y) =

∫
p(y|θ)p(θ) =

∫
Poi(y|θ)Gamma(θ|α, β)dθ,

implying that the negative binomial distribution is a compound

distribution where the Poisson distribution is compounded
using the Gamma distribution as a weight distribution.

In many applications, the data are distributed as

yi ∼ Poi(xiθ),

where the xi are known values of an explanatory variable. In
epidemiology, xi is called exposure of the ith unit. With prior
distribution Gamma(α, β), the posterior becomes
Gamma(α+

∑
yi, β +

∑
xi).
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Year Fatal Passenger Death
accidents deaths rate

1976 24 734 0.19
1977 25 516 0.12
1978 31 754 0.15
1979 31 877 0.16
1980 22 814 0.14
1981 21 362 0.06
1982 26 764 0.13
1983 20 809 0.13
1984 16 223 0.03
1985 22 1066 0.15

Table 2: Worldwide airline fatalities 1976-85. Death rate is pas-
senger deaths per 100 million passenger miles. Source: Statistical
Abstract of the United States.
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In Table 2, the death rate is di = yi/xi where yi is the number
of passenger deaths and xi the ’exposure’ given in 100 million
passenger miles. Thus xi = yi/di. Assuming the model
yi ∼ Poi(θxi), the rate θ can be estimated using BUGS as
follows:

model{

theta ~ dgamma(alpha,beta)

for(i in 1:n){

y[i] ~ dpois(theta*x[i])

}

}

air <- list(n=10,y=deaths,x=deaths/rate,alpha=0.01,beta=0.01)

...

2.5% 25% 50% 75% 97.5%

0.1182 0.1201 0.1210 0.1220 0.1239
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In a Poisson process having intensity θ, the number of events in
a time interval of length τ follows the Poisson distribution with
parameter τθ. Further, the waiting time between two Poisson
events follows the exponential distribution Exp(θ), and the
waiting time until the nth event is Gamma(n, θ).
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In a Poisson process having intensity θ, the number of events in
a time interval of length τ follows the Poisson distribution with
parameter τθ. Further, the waiting time between two Poisson
events follows the exponential distribution Exp(θ), and the
waiting time until the nth event is Gamma(n, θ).

The exponential distribution can also be used to model life
times of objects that do not wear out, since in this model the
expected remaining life time is independent of the time the
object has already survived.
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In a Poisson process having intensity θ, the number of events in
a time interval of length τ follows the Poisson distribution with
parameter τθ. Further, the waiting time between two Poisson
events follows the exponential distribution Exp(θ), and the
waiting time until the nth event is Gamma(n, θ).

The exponential distribution can also be used to model life
times of objects that do not wear out, since in this model the
expected remaining life time is independent of the time the
object has already survived. If Y ∼ Exp(θ), then

Pr(Y ≤ y|Y > y0) =
Pr(y0 < Y ≤ y)

Pr(Y > y0
=

Pr(Y ≤ y)− Pr(Y ≤ y0)

Pr(Y > y0)

=
(1− e−θy)− (1− e−θy0)

e−θy0

= 1− e−θ(y−y0),

which is the exponential distribution function starting at y0.
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Bayesian analysis. Let y = (y1, ..., yn) be a random sample form
Exp(θ) and let Gamma(α, β) be the prior. Then the posterior is

p(θ|y) ∝ p(θ)p(y|θ) ∝ θα−1e−βθ
n∏

i=1

θe−θyi

∝ θα+n−1e−θ(β+
∑

yi),

which is Gamma(α+ n, β +
∑
yi) distribution.
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Bayesian analysis. Let y = (y1, ..., yn) be a random sample form
Exp(θ) and let Gamma(α, β) be the prior. Then the posterior is

p(θ|y) ∝ p(θ)p(y|θ) ∝ θα−1e−βθ
n∏

i=1

θe−θyi

∝ θα+n−1e−θ(β+
∑

yi),

which is Gamma(α+ n, β +
∑
yi) distribution.

Censored observations. Assume that the observations y1, ...ym
are known to be larger than U , while the exact values of
ym+1, ..., yn are known. Then the values y1, ...ym are called
right-censored. On the other hand, if some observations are
known to be less or equal to some threshold L, they are called
left-censored.
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In the exponential case of right-censoring, the likelihood is

p(y|θ) =
m∏

i=1

Pr(Yi > U |θ)
n∏

i=m+1

p(yi|θ)

=

m∏

i=1

e−θU
n∏

i=m+1

θe−θyi = θn−me−θ(mU+
∑

yi).
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In the exponential case of right-censoring, the likelihood is

p(y|θ) =
m∏

i=1

Pr(Yi > U |θ)
n∏

i=m+1

p(yi|θ)

=

m∏

i=1

e−θU
n∏

i=m+1

θe−θyi = θn−me−θ(mU+
∑

yi).

Thus, with prior Gamma(α, β), the posterior is
Gamma(α+ n−m,β +mU +

∑
yi).
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In the exponential case of right-censoring, the likelihood is

p(y|θ) =
m∏

i=1

Pr(Yi > U |θ)
n∏

i=m+1

p(yi|θ)

=

m∏

i=1

e−θU
n∏

i=m+1

θe−θyi = θn−me−θ(mU+
∑

yi).

Thus, with prior Gamma(α, β), the posterior is
Gamma(α+ n−m,β +mU +

∑
yi).

In the case of left-censoring, the likelihood is

p(y|θ) = (1− e−θL)m θn−me−θ
∑

yi ,

so that the posterior distribution is nonstandard.
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Let us assume that the life time of an electronical component is
exponentially distributed. After 2 years it is observed that 3
out of 10 components have broken and the life times of the
remaining components are 2.7, 3.7, 4.0, 4.7, 5.9, 6.6, 12.1.
The JAGS code (in this case different from OpenBUGS or
WinBUGS) and the related R code:

model{

theta ~ dgamma(alpha,beta)

for(i in 1:n){

x[i] ~ dinterval(y[i],L)

y[i] ~ dexp(theta)

}

}

comp <- list(n=10,L=2,y=c(NA,NA,NA,2.7,3.7,4.0,4.7,5.9,6.6,12.1),

x=c(0,0,0,1,1,1,1,1,1,1),alpha=0.01,beta=0.01)
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The frequentist approach to hypothesis testing would compare
a null hypothesis H0 with an alternative H1 through a test
statistic T which typically obtains a larger value when H1 is
true than when H0 is true. The null hypothesis is rejected with
a level α if the observed value of the test statistic, tobs, is larger
than the critical value tC where Pr(T > tC |H0) = α. The
so-called p-value, p = Pr(T ≥ tobs|H0), is a related concept.
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The frequentist approach to hypothesis testing would compare
a null hypothesis H0 with an alternative H1 through a test
statistic T which typically obtains a larger value when H1 is
true than when H0 is true. The null hypothesis is rejected with
a level α if the observed value of the test statistic, tobs, is larger
than the critical value tC where Pr(T > tC |H0) = α. The
so-called p-value, p = Pr(T ≥ tobs|H0), is a related concept.

In frequentist statistics, we do not assign probabilities to
hypotheses. In particular, the p-value cannot be interpreted as
p(H0). On the contrary, in the Bayesian approach, we may
assign the prior probabilities p(H0) and p(H1), and, using
Bayes’ theorem, compute the posterior probabilities

p(Hi|y) =
p(Hi)p(y|Hi)

p(H0)p(y|H0) + p(H1)p(y|H1)
, i = 0, 1.
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In the frequentist approach it is not absolutely necessary to
specify an alternative hypothesis. Further, if an alternative is
specified, the p-value is independent of it. In the Bayesian
approach, the both hypotheses must be fully specified.
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In the frequentist approach it is not absolutely necessary to
specify an alternative hypothesis. Further, if an alternative is
specified, the p-value is independent of it. In the Bayesian
approach, the both hypotheses must be fully specified.

One usually computes the posterior odds

p(H1|y
p(H0|y)

=
p(y|H1)

p(y|H0)
× p(H1)

p(H0)
,

which depends on the data y only through the Bayes factor

B10 = p(y|H1)/p(y|H0).
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In the frequentist approach it is not absolutely necessary to
specify an alternative hypothesis. Further, if an alternative is
specified, the p-value is independent of it. In the Bayesian
approach, the both hypotheses must be fully specified.

One usually computes the posterior odds

p(H1|y
p(H0|y)

=
p(y|H1)

p(y|H0)
× p(H1)

p(H0)
,

which depends on the data y only through the Bayes factor

B10 = p(y|H1)/p(y|H0).

In the case that a hypothesis is composite (not simple), the
unknown parameters should be first integrated out:

p(y|Hi) =

∫
p(y|θi, Hi)p(θi|Hi)dθi, i = 0, 1.
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Table 3: Interpretation of Bayes factor B10 in favor of H1 over
H0. From Robert E. Kass and Adrian E. Raftery (1995). ”Bayes
Factors”. JASA 90 (430): 791.

B10 2 logB10 Evidence against H0

1-3 0-2 Hardly worth a mention
3-20 2-6 Positive
20-150 6-10 Strong
>150 >10 Very strong

Rough interpretations for B1, and, equivalently for 2 logB10,
are provided in Table 3. The quantity 2 logB10 corresponds to
the likelihood ratio statistics in likelihood inference.
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Table 4: The log Bayes factors 2 logBτ0 for HUS data.

1970 1971 1972 1973 1974 1975 1976

y 1 5 3 2 2 1 0
α = β = 1 4.9 -0.5 0.6 3.9 7.5 13 24
α = β = 0.01 -1.3 -5.9 -4.5 -1.0 3.0 9.7 20
α = β = 0.0001 -10 -15 -14 -10 -6.1 0.6 11

1977 1978 1979 1980 1981 1982 1983

y 0 2 1 1 7 11 4
α = β = 1 35 41 51 63 55 38 42
α = β = 0.01 32 39 51 64 57 40 47
α = β = 0.0001 23 30 42 55 48 31 38

1984 1985 1986 1987 1988 1989

y 7 10 16 16 9 15
α = β = 1 40 31 11 -2.9 -5.3 0
α = β = 0.01 46 38 18 1.8 1.2 0
α = β = 0.0001 37 29 8.8 -7.1 -7.7 0
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Table 4 shows the numbers of cases of haemolytic uraemic
syndrome (HUS) treated at a clinic in Birmingham from 1970
to 1989. There seems to be a rise in 1981. We assume that the
annual counts y1, ..., yn are independent and Poisson-distributed
with means E(Yj) = λ1 for j = 1, ..., τ , and E(Yj) = λ2 for
j = τ + 1, ..., n. The changepoint can take values 1, ..., n− 1.
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Table 4 shows the numbers of cases of haemolytic uraemic
syndrome (HUS) treated at a clinic in Birmingham from 1970
to 1989. There seems to be a rise in 1981. We assume that the
annual counts y1, ..., yn are independent and Poisson-distributed
with means E(Yj) = λ1 for j = 1, ..., τ , and E(Yj) = λ2 for
j = τ + 1, ..., n. The changepoint can take values 1, ..., n− 1.

Our baseline model H0 is that there is no change, λ1 = λ2 = λ,
and the alternative Hτ that there is a change after τ years.
Under Hτ we assume that λ1 and λ2 have independent priors
with parameters α and β. Then p(y|Hτ ) equals

∫
∞

0

τ∏

j=1

λ
yj

1

yj !
e−λ1 ·β

αλα−1
1 e−βλ1

Γ(α)
dλ1

∫
∞

0

n∏

j=τ+1

λ
yj

1

yj !
e−λ2 ·β

αλα−1
2 e−βλ2

Γ(α)
dλ2,
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which can be simplified as

β2α

Γ(α)2
∏n

j=1 yj !

Γ(α+ sτ )Γ(α+ sn − sτ )

(β + τ)α+sτ (β + n− τ)α+sn−sτ
,

where sτ = y1 + ...+ yτ and sn = y1 + ...+ yn.
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which can be simplified as

β2α

Γ(α)2
∏n

j=1 yj !

Γ(α+ sτ )Γ(α+ sn − sτ )

(β + τ)α+sτ (β + n− τ)α+sn−sτ
,

where sτ = y1 + ...+ yτ and sn = y1 + ...+ yn.

Under H0 we also assume that λ ∼ Gamma(α, β). Then the
Bayes factor for a changepoint in year τ is

Bτ0 =
Γ(α+ sτ )Γ(α+ sn − sτ )β

α(β + n)α+sn

Γ(α)Γ(α+ sn)(β + τ)α+sτ (β + n− τ)α+sn−sτ
, τ = 1, ..., n

From Table 4 we see that there is a very strong evidence for
change in 1976–1985 for all priors.
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Bayes factors can be presented in closed form only in simple
conjugate situations, but various simulation-based methods
have been suggested. One simple example is the harmonic

mean method, which is based on the result

1

T

T∑

t=1

1

p(y|θ(t))
p−→ 1

p(y)
as T → ∞,

where θ(t), t = 1, ..., T are independent simulations from p(θ|y).
The result follows from the law of large numbers.
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Bayes factors can be presented in closed form only in simple
conjugate situations, but various simulation-based methods
have been suggested. One simple example is the harmonic

mean method, which is based on the result

1

T

T∑

t=1

1

p(y|θ(t))
p−→ 1

p(y)
as T → ∞,

where θ(t), t = 1, ..., T are independent simulations from p(θ|y).
The result follows from the law of large numbers.

This estimator is somewhat unstable, since occasional values of
θ(t) with small likelihood have a large effect on it. Therefore,
several modifications of the method have been developed. More
advanced methods, such as path sampling, are effective, but
usually require problem-specific tuning.
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Another approach is to consider the model choice as a discrete
parameter. This is generally a more reliable method to obtain
posterior model probabilities with BUGS (BUGS book, 2013).
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Another approach is to consider the model choice as a discrete
parameter. This is generally a more reliable method to obtain
posterior model probabilities with BUGS (BUGS book, 2013).

In the following, we present a code to estimate the model
probabilities in the HUS example. We give an equal prior
probability, 1/n, to each of the models Hτ , τ = 1, ..., n. Here,
Hn corresponds to H0.
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Another approach is to consider the model choice as a discrete
parameter. This is generally a more reliable method to obtain
posterior model probabilities with BUGS (BUGS book, 2013).

In the following, we present a code to estimate the model
probabilities in the HUS example. We give an equal prior
probability, 1/n, to each of the models Hτ , τ = 1, ..., n. Here,
Hn corresponds to H0.

Figure 3 shows the posterior model probabilities. The values 11
and 12 are the most probable change points:
Pr(τ = 11|y) ≈ 0.97 and Pr(τ = 12|y) ≈ 0.03.
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model{

for(i in 1:n){

q[i] <- 1/n

}

tau ~ dcat(q[])

for(i in 1:2){

lambda[i] ~ dgamma(alpha,beta)

}

for(i in 1:n){

mu[i] <- lambda[1]+

step(i-tau-0.1)*(lambda[2]-lambda[1])

y[i] ~ dpois(mu[i])

}

}

HUS <- list(n=20, y= c(1,5,3,2,2,1,0,0,2,1,1,7,11,4,7,10,16,16,9,15),

alpha=0.01,beta=0.01)
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Figure 3: Posterior model probabilities in the HUS example.
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Next we consider simple models having more than one
parameter. Let us assume that y = (y1, ..., yn) is a random
sample from N(µ, σ2) where both µ and σ2 are unknown. If the
joint prior is p(µ, σ2) ∝ 1/σ2, or equivalently p(µ, log(σ2)) ∝ 1,
the posterior is
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Next we consider simple models having more than one
parameter. Let us assume that y = (y1, ..., yn) is a random
sample from N(µ, σ2) where both µ and σ2 are unknown. If the
joint prior is p(µ, σ2) ∝ 1/σ2, or equivalently p(µ, log(σ2)) ∝ 1,
the posterior is

p(µ, σ2|y) ∝ 1

σ2
× 1

(σ2)n/2
exp

(
− 1

2σ2

n∑

i=1

(yi − µ)2

)

=
1

(σ2)n/2+1
exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2 + n(ȳ − µ)2

])

=
1

(σ2)n/2+1
exp

(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
,

where s2 = 1
n−1

∑n
i=1(yi − ȳ)2 is the sample variance.
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The marginal posterior of σ2 is obtained by integrating µ out:

p(σ2|y) ∝
∫ ∞

−∞

1

(σ2)n/2+1
exp

(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
dµ.



Normal distribution (cont)

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models
Normal
distribution

Example

Multinomial
distribution

Example

Markov chains

MCMC methods

Model checking
and comparison

Hierarchical and
regression
models

Categorical data

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 69 / 130

The marginal posterior of σ2 is obtained by integrating µ out:

p(σ2|y) ∝
∫ ∞

−∞

1

(σ2)n/2+1
exp

(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
dµ.

The integral of the factor exp
(
− 1

2σ2n(ȳ − µ)2
)
is a simple

normal integral, so
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The marginal posterior of σ2 is obtained by integrating µ out:

p(σ2|y) ∝
∫ ∞

−∞

1

(σ2)n/2+1
exp

(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
dµ.

The integral of the factor exp
(
− 1

2σ2n(ȳ − µ)2
)
is a simple

normal integral, so

p(σ2|y) ∝ 1

(σ2)n/2+1
exp

(
− 1

2σ2
(n− 1)s2

)√
2πσ2/n

∝ 1

(σ2)(n+1)/2
exp

(
−(n− 1)s2

2σ2

)
.
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The marginal posterior of σ2 is obtained by integrating µ out:

p(σ2|y) ∝
∫ ∞

−∞

1

(σ2)n/2+1
exp

(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
dµ.

The integral of the factor exp
(
− 1

2σ2n(ȳ − µ)2
)
is a simple

normal integral, so

p(σ2|y) ∝ 1

(σ2)n/2+1
exp

(
− 1

2σ2
(n− 1)s2

)√
2πσ2/n

∝ 1

(σ2)(n+1)/2
exp

(
−(n− 1)s2

2σ2

)
.

This is a scaled inverse-χ2-density:

σ2|y ∼ Inv-χ2(n− 1, s2).
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Thus, {(n− 1)s2/σ2 | y} ∼ χ2
n−1. This is analogous with the

corresponding sampling theory result. However, in sampling
theory, s2 is considered random, while here σ2 is random.
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Thus, {(n− 1)s2/σ2 | y} ∼ χ2
n−1. This is analogous with the

corresponding sampling theory result. However, in sampling
theory, s2 is considered random, while here σ2 is random.

By making the substitution

z =
A

σ2
, where A = (n− 1)s2 + n(ȳ − µ)2,
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Thus, {(n− 1)s2/σ2 | y} ∼ χ2
n−1. This is analogous with the

corresponding sampling theory result. However, in sampling
theory, s2 is considered random, while here σ2 is random.

By making the substitution

z =
A

σ2
, where A = (n− 1)s2 + n(ȳ − µ)2,

we obtain the marginal density of µ:

p(µ|y) ∝
∫

∞

0

1

(σ2)n/2+1
exp

(
− 1

2σ2
[(n− 1)s2 + n(ȳ − µ)2]

)
dσ2

∝ A−n/2

∫
∞

0

zn/2−1 exp(−z)dz

∝
[
1 +

n(µ− ȳ)2

(n− 1)s2

]
−n/2

.
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This is the tn−1(ȳ, s
2/n) density. Thus, {(µ− ȳ)/(s/

√
n) | y}

∼ tn−1. This is again analogous to the sampling theory result.
It can also be shown (exercise) that the density of a new
observation ỹ is tn−1(ȳ, s

2(1 + 1/n)). The posterior can be
simulated using p(σ2|y) and p(µ|σ2, y) = N(µ|ȳ, σ2/n).
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This is the tn−1(ȳ, s
2/n) density. Thus, {(µ− ȳ)/(s/

√
n) | y}

∼ tn−1. This is again analogous to the sampling theory result.
It can also be shown (exercise) that the density of a new
observation ỹ is tn−1(ȳ, s

2(1 + 1/n)). The posterior can be
simulated using p(σ2|y) and p(µ|σ2, y) = N(µ|ȳ, σ2/n).
Example. Estimating the speed of light. Simon Newcomb made
an experiment in 1882 to measure the speed of light. He
measured the time light travels 7442 meters. Figure 4 shows
that there are two outliers, so the normal distribution as such is
not a very good model. However, for the sake of illustration, we
assume that the observations are independent and from
N(µ, σ2). With the noninformative prior p(µ, σ2) ∝ 1/σ2, the
95% posterior interval is (ȳ ± t(n−1);0.025s/

√
n) = (23.6, 28.9)

where n = 66, ȳ = 26.2 and s = 10.8. Further, the prediction
interval is (ȳ ± t(n−1);0.025s

√
1 + 1/n) = (4.6, 47.8).



Example: Speed of light (cont)

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models
Normal
distribution

Example

Multinomial
distribution

Example

Markov chains

MCMC methods

Model checking
and comparison

Hierarchical and
regression
models

Categorical data

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 72 / 130

F
re

q
u

e
n

cy

−40 −20 0 20 40

0
2

4
6

8
1

0
1

2

Figure 4: Newcomb’s measurements for speed of light.
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If y = (y1, ...yk) is multinomially distributed with parameters n
and θ = (θ1, ..., θk) (denoted as Multin(n; θ)) then the likelihood
is

p(θ|y) ∝ θy11 θ
y2
2 ...θ

yk
k

where θi ≥ 0 for all i = 1, ..., k and
∑k

i=1 θi = 1.
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If y = (y1, ...yk) is multinomially distributed with parameters n
and θ = (θ1, ..., θk) (denoted as Multin(n; θ)) then the likelihood
is

p(θ|y) ∝ θy11 θ
y2
2 ...θ

yk
k

where θi ≥ 0 for all i = 1, ..., k and
∑k

i=1 θi = 1.

It is easy to see that the conjugate prior is the Dirichlet
distribution (denoted as Dirichlet(α1, ...αk)):

p(θ) ∝ θα1−1
1 θα2−1

2 ...θαk−1
k ,

where θi ≥ 0 and αi > 0 for all i = 1, ..., k, and
∑k

i=1 θi = 1.
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If y = (y1, ...yk) is multinomially distributed with parameters n
and θ = (θ1, ..., θk) (denoted as Multin(n; θ)) then the likelihood
is

p(θ|y) ∝ θy11 θ
y2
2 ...θ

yk
k

where θi ≥ 0 for all i = 1, ..., k and
∑k

i=1 θi = 1.

It is easy to see that the conjugate prior is the Dirichlet
distribution (denoted as Dirichlet(α1, ...αk)):

p(θ) ∝ θα1−1
1 θα2−1

2 ...θαk−1
k ,

where θi ≥ 0 and αi > 0 for all i = 1, ..., k, and
∑k

i=1 θi = 1.

The posterior distribution is Dirichlet(α1 + y1, ...αk + yk):

p(θ) ∝ θα1+y1−1
1 θα2+y2−1

2 ...θαk+yk−1
k .
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In January 2006, Taloustutkimus (Economic Survey in Finland)
interviewed 1582 adults about their preferences in the
forthcoming presidential election. Out of those who expressed
their opinion, 52% supported Halonen, 20% Niinistö, 18%
Vanhanen, and 10% other candidates. The proportion of
uncertain respondents was 29%.
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In January 2006, Taloustutkimus (Economic Survey in Finland)
interviewed 1582 adults about their preferences in the
forthcoming presidential election. Out of those who expressed
their opinion, 52% supported Halonen, 20% Niinistö, 18%
Vanhanen, and 10% other candidates. The proportion of
uncertain respondents was 29%.

If we assume simple random sampling (which is not exactly
true), the numbers of the supporters in the sample follow a
multinomial distribution where n ≈ 0.71 · 1582 ≈ 1123, and
θ1, θ2, θ3, θ4 are the true proportions of the supporters of
Halonen, Niinistö, Vanhanen, and other candidates, in the
population of those expressing their opinion. With a uniform
prior, the posterior is Dirichlet(0.52 · 1123 + 1, 0.20 · 1123 + 1,
0.18 · 1123 + 1, 0.1 · 1123 + 1).
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There were two interesting questions: 1) Will Halonen have
more than 50% of the votes in the first round? 2) Will Niinistö
win Vanhanen? By posterior simulation we find out that
Pr(θ1 > 0.5|y) = 0.90 and Pr(θ2 − θ3 > 0|y) = 0.86. Further,
the 95% posterior interval for Halonen’s support is (49,55)%.
Below the related JAGS code and the data given in R:

model{

y ~ dmulti(theta,n)

theta ~ ddirch(alpha)

p1 <- step(theta[1]-0.5)

p2 <- step(theta[2]-theta[3])

}

el <- list(n=1123,y=round(c(0.52,0.2,0.18,0.1)*1123),

alpha=c(1,1,1,1))
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Assume that we have observations y0, ..., yT from a time
homogenous Markov chain measured at time points
t = 0, 1, 2, ..., T . Then the likelihood can be written as

Pr(Y0 = y0, ..., YT = yT )

= Pr(Y0 = y0

T∏

t=1

Pr(Yt = yt|Yt−1 = yt−1)

= Pr(Y0 = y0)
T∏

t=1

pyt−1,yt

= Pr(Y0 = y0)
S∏

r=1

S∏

r=1

pnrs
rs ,

where nrs denotes the number of transitions from r to s.
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If we ignoring the information of the first observation, Y0, we
can write the log-likelihood as

l(p) =
S∑

r=1

S∑

s=1

nrs log(prs), (4)

and the S × S matrix of transition counts nrs is a sufficient
statistic. Conditioning on the row sums nr., the numbers of
transitions starting from state r are multinomially distributed,
(nr1, ..., nrS) ∼ Multin(nr.; (pr1, ..., prS)) for all r = 1, ..., S.
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If we ignoring the information of the first observation, Y0, we
can write the log-likelihood as

l(p) =
S∑

r=1

S∑

s=1

nrs log(prs), (4)

and the S × S matrix of transition counts nrs is a sufficient
statistic. Conditioning on the row sums nr., the numbers of
transitions starting from state r are multinomially distributed,
(nr1, ..., nrS) ∼ Multin(nr.; (pr1, ..., prS)) for all r = 1, ..., S.

Further, the rows of this matrix are independent. From results
concerning the multinomial distribution it follows that the ML
estimate is p̂rs = nrs/nr., for s = 1, ..., S and r = 1, ..., S.
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In a more simple model where the states Yt are independent prs
can be replaced with ps in equation (4). The ML estimates are
now p̂s = n.s/n.. where n.s is the sth column sum and n.. the
number of all transitions.
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In a more simple model where the states Yt are independent prs
can be replaced with ps in equation (4). The ML estimates are
now p̂s = n.s/n.. where n.s is the sth column sum and n.. the
number of all transitions.

The likelihood ratio statistics for testing the independence
hypothesis is given by

W = 2
∑

r,s

nrs log

(
p̂rs
p̂s

)
= 2

∑

r,s

nrs log

(
nrsn..

nr·n·s

)
.

Under independence, there are S − 1 free parameters, while in
the general case, S(S − 1) parameters. Thus, under
independence, the test statistic is approximately χ2-distributed
with S(S − 1)− (S − 1) = (S − 1)2 degrees of freedom. W
approximately equals the Pearson statistic for independence.
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Table 5: Observed frequencies of one-step transitions in a DNA
chain

Observed frequency

First base A C G T Sum
A 185 74 86 171 516
C 101 41 6 115 263
G 69 45 34 78 226
T 161 103 100 202 566

Sum 516 263 226 566 1571

Let us test independence of bases in a DNA chain. Under
independence, we obtain estimates p̂A = 516/1571 = 0.328,
p̂C = 263/1571 = 0.167 etc. In the Markovian case, we obtain
p̂AA = 185/516 = 0.359, p̂AC = 74/516 = 0.143 etc.
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If the independence hypothesis was correct, the test statistics P
and W would have approximate χ2

9-distributions. Now their
observed values are 64.45 and 50.3 which make this hypothesis
highly implausible.
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If the independence hypothesis was correct, the test statistics P
and W would have approximate χ2

9-distributions. Now their
observed values are 64.45 and 50.3 which make this hypothesis
highly implausible.

The fit of the independence assumption can also be studied
graphically. If this assumption was correct, the normalized

deviations Zrs = (Ors − Ers)/E
1/2
rs , where Ors = nrs denotes

the observed and Ers = nr·n·s/n.. the expected frequency,
would be approximately distributed as N(0, 1). Figure 5 shows
the normal probability plot. One observed frequency clearly
deviates from the observed one (Zrs is less than -5). This value
belongs to the CG cell.
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Figure 5: Normal probability plot of normalized deviations
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In the following, we will introduce computationally intensive
methods based on Markov chains which can be used in the
simulation of multivariate distributions. These are called
Markov Chain Monte Carlo (MCMC) methods, and they are
especially useful in the computations of Bayesian statistics. The
general idea is to generate a time-reversible Markov chain with
a desired stationary distribution.



MCMC methods

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Gibbs sampler

Metropolis
algorithm

Example

Metropolis-
Hastings

Convergence

Model checking
and comparison

Hierarchical and
regression
models

Categorical data

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 84 / 130

In the following, we will introduce computationally intensive
methods based on Markov chains which can be used in the
simulation of multivariate distributions. These are called
Markov Chain Monte Carlo (MCMC) methods, and they are
especially useful in the computations of Bayesian statistics. The
general idea is to generate a time-reversible Markov chain with
a desired stationary distribution.

We will assume that target distribution is discrete, so that we
can apply the theory of discrete state-space Markov chains.
However, MCMC methods are often applied to continuous
distributions, so that their proper treatment would require the
theory of general state-space Markov chains. But since
continuous distributions can be approximated by discrete ones
with arbitrary accuracy, we can content ourselves with the
theory presented by far.
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The Gibbs sampler can be used to simulate a multivarite
distribution with probability function p(x). The Gibbs sampler
can be implemented if it is possible to generate random
numbers from all of the full conditional distributions, denoted
as pi(xi|x−i), i = 1, ..., d, where x−i = (x1, ..., xi−1, xi+1, ..., xd).
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The Gibbs sampler can be used to simulate a multivarite
distribution with probability function p(x). The Gibbs sampler
can be implemented if it is possible to generate random
numbers from all of the full conditional distributions, denoted
as pi(xi|x−i), i = 1, ..., d, where x−i = (x1, ..., xi−1, xi+1, ..., xd).

The algorithm is implemented so that one first chooses the
initial value vector x0 = (x01, ..., x

0
d). After generating the

random vectors x1, ...,xt, the vector xt+1 is generated
componentwise as follows:

✔ Generate xt+1
1 from p1(x1|xt2, ..., xtd)

✔ Generate xt+1
2 from p2(x2|xt+1

1 , xt3, ..., x
t
d)

✔ Generate xt+1
3 from p3(x3|xt+1

1 , xt+1
2 , xt4, ..., x

t
d)

...
✔ Generate xt+1

d from pd(xd|xt+1
1 , xt+1

2 , ..., xt+1
d−1)
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The algorithm produces a Markov chain, since the distribution
of x(t+1) is independent of x0, ...,x(t−1) given xt. It is time
homogenous, since the transition probabilites are based on the
distributions pj(xj |x−j) all the time. The chain is not
necessarily irreducible, but it is so if the set {x : p(x) > 0} is
’sufficiently’ connected enabling the process to move to all
points of the state space.
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The algorithm produces a Markov chain, since the distribution
of x(t+1) is independent of x0, ...,x(t−1) given xt. It is time
homogenous, since the transition probabilites are based on the
distributions pj(xj |x−j) all the time. The chain is not
necessarily irreducible, but it is so if the set {x : p(x) > 0} is
’sufficiently’ connected enabling the process to move to all
points of the state space.

We show next that p(x) fulfils the detailed balance condition

p(x) Pr(Xt+1 = x∗|Xt = x) = p(x∗) Pr(Xt+1 = x|Xt = x∗),

where x = (x1, ..., xj, ..., xd) and x∗ = (x1, ..., x
∗
j , ..., xd). For the

moment we consider that one time step corresponds to
changing only one component of x.
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We obtain that

p(x) Pr(Xt+1 = x∗|Xt = x) = p(x)pj(x
∗
j |x−j) = p(x)

p(x∗)

p(x−j)

= p(x∗)
p(x)

p(x−j)
= p(x∗)pj(xj |x−j)

= p(x∗) Pr(Xt+1 = x|Xt = x∗);

thus p(x) is a stationary distribution.
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We obtain that

p(x) Pr(Xt+1 = x∗|Xt = x) = p(x)pj(x
∗
j |x−j) = p(x)

p(x∗)

p(x−j)

= p(x∗)
p(x)

p(x−j)
= p(x∗)pj(xj |x−j)

= p(x∗) Pr(Xt+1 = x|Xt = x∗);

thus p(x) is a stationary distribution.

Irreducibility implies the uniqueness of the stationary
distribution. The chain is also positively recurrent, since
transient and null recurrent chains do not posses a stationary
distribution. Further, it is aperiodic, since the new value can be
the same as the old. It follows from these properties that the
chain is ergodic.



Metropolis algorithm

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Gibbs sampler

Metropolis
algorithm

Example

Metropolis-
Hastings

Convergence

Model checking
and comparison

Hierarchical and
regression
models

Categorical data

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 88 / 130

The Metropolis algorithm is different from Gibbs sampling in
that it does not require ability to generate random variates
from conditional distributions. It is sufficient to know the
probability function (or density) of the target density upto a
constant of proportionality.
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The Metropolis algorithm is different from Gibbs sampling in
that it does not require ability to generate random variates
from conditional distributions. It is sufficient to know the
probability function (or density) of the target density upto a
constant of proportionality.

Assume that we want to simulate a distribution with
probability function p(x) where x may be scalar or vector. We
need to define a jumping distribution (or proposal distribution)
J(y|x) from which a proposal y may be generated when the
current value is x. In the Metropolis algorithm it is assumed
that J(y|x) = J(x|y).
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An initial value x0 is first generated. After generating x0, ..., xt,
the new value xt+1 is obtained as follows: 1) A new proposal y
is generated from J(y|x). The new value y is accepted with
probability

min

(
1,
p(y)

p(xt)

)
.

2) If the new value is accepted, we set xt+1 = y, otherwise the
old value is kept, so that xt+1 = xt.
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An initial value x0 is first generated. After generating x0, ..., xt,
the new value xt+1 is obtained as follows: 1) A new proposal y
is generated from J(y|x). The new value y is accepted with
probability

min

(
1,
p(y)

p(xt)

)
.

2) If the new value is accepted, we set xt+1 = y, otherwise the
old value is kept, so that xt+1 = xt.

The Metropolis algorithm produces a Markov chain, since the
distribution of the new value xt+1 only depends on the current
value xt. The chain is also time-homogenous, since the
transition probabilities are based on the jumping distribution
J(y|x), which is not changed during the simulation. Further, it
is irreducible if J(y|x) is so chosen that the chain may reach all
points of the state space.
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Next we show that p(x) fulfils the detailed balance condition.
Let x and x∗ be two points in the state space such that
p(x∗) ≤ p(x). Then

p(x) Pr(Xt+1 = x∗|Xt = x) = p(x)J(x∗|x)p(x
∗)

p(x)

= p(x∗)J(x|x∗)
= p(x∗) Pr(Xt+1 = x|Xt = x∗).
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Next we show that p(x) fulfils the detailed balance condition.
Let x and x∗ be two points in the state space such that
p(x∗) ≤ p(x). Then

p(x) Pr(Xt+1 = x∗|Xt = x) = p(x)J(x∗|x)p(x
∗)

p(x)

= p(x∗)J(x|x∗)
= p(x∗) Pr(Xt+1 = x|Xt = x∗).

Thus, p(x) is the stationary distribution and the chain is
positively recurrent. Further, since it is also aperiodic, it is
ergodic.
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It is said that a Markov chain mixes slowly if it moves slowly
around the support of p(x). Then there is strong
autocorrelation between the consequtive observations, and the
mean converges slowly to the theoretical mean of the stationary
distribution.
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It is said that a Markov chain mixes slowly if it moves slowly
around the support of p(x). Then there is strong
autocorrelation between the consequtive observations, and the
mean converges slowly to the theoretical mean of the stationary
distribution.

There are two possible reasons for this problem. First, if the
deviation of the jumping distribution is too small for some
component, the chain moves slowly with respect to that
component. On the other hand, if the deviation is too large,
new proposals are rarely accepted and the chain remains long in
the same position.
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It is said that a Markov chain mixes slowly if it moves slowly
around the support of p(x). Then there is strong
autocorrelation between the consequtive observations, and the
mean converges slowly to the theoretical mean of the stationary
distribution.

There are two possible reasons for this problem. First, if the
deviation of the jumping distribution is too small for some
component, the chain moves slowly with respect to that
component. On the other hand, if the deviation is too large,
new proposals are rarely accepted and the chain remains long in
the same position.

It is possible to optimize the jumping distribution. If the
jumping distribution is a d-dimensional normal distribution,
then its optimal covariance matrix is c2Σ where c ≈ 2.4/

√
d and

Σ is the covariance matrix of the target distribution.
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Let us consider a two-parameter Weibull distribution with the
density

f(x;β, δ) =
δ

βδ
xδ−1 exp

{
−
(
x

β

)δ
}
, x, β, δ > 0.



Metropolis algorithm: Example

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Gibbs sampler

Metropolis
algorithm

Example

Metropolis-
Hastings

Convergence

Model checking
and comparison

Hierarchical and
regression
models

Categorical data

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 92 / 130

Let us consider a two-parameter Weibull distribution with the
density

f(x;β, δ) =
δ

βδ
xδ−1 exp

{
−
(
x

β

)δ
}
, x, β, δ > 0.

With a random sample y1, ..., yn the likelihood is

p(y|θ) = δn

βnδ

(∏

i

yi

)δ−1

exp

{
−
∑

i

(
yi
β

)δ
}
.
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Let us consider a two-parameter Weibull distribution with the
density

f(x;β, δ) =
δ

βδ
xδ−1 exp

{
−
(
x

β

)δ
}
, x, β, δ > 0.

With a random sample y1, ..., yn the likelihood is

p(y|θ) = δn

βnδ

(∏

i

yi

)δ−1

exp

{
−
∑

i

(
yi
β

)δ
}
.

By choosing p(β, δ) ∝ 1/(βδ) as the prior, the posterior becomes

p(β, δ|y) ∝ δn−1

βnδ+1

(∏

i

yi

)δ−1

exp

{
−
∑

i

(
yi
β

)δ
}
.
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It would be possible to derive the full conditional posterior
distributions and simulate the posterior distribution using
Gibbs sampling. We could generate random numbers from the
conditional distributions using adaptive rejection sampling.
However, it is here simpler to apply the Metropolis algorithm.
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It would be possible to derive the full conditional posterior
distributions and simulate the posterior distribution using
Gibbs sampling. We could generate random numbers from the
conditional distributions using adaptive rejection sampling.
However, it is here simpler to apply the Metropolis algorithm.

To illustrate the estimation, we generate an artificial data set of
100 observations from the Weibull(0.3,10) distribution. Figure 6
shows a simulated Markov chain with 10000 iterations, starting
from the initial values δ = β = 1. As a jumping distribution we
use the bivariate normal distribution, the mean vector being
the ’old’ vector and the covariance matrix diag(0.01, 10).
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It would be possible to derive the full conditional posterior
distributions and simulate the posterior distribution using
Gibbs sampling. We could generate random numbers from the
conditional distributions using adaptive rejection sampling.
However, it is here simpler to apply the Metropolis algorithm.

To illustrate the estimation, we generate an artificial data set of
100 observations from the Weibull(0.3,10) distribution. Figure 6
shows a simulated Markov chain with 10000 iterations, starting
from the initial values δ = β = 1. As a jumping distribution we
use the bivariate normal distribution, the mean vector being
the ’old’ vector and the covariance matrix diag(0.01, 10).

The figure shows that the chain converges to its stationary
distribution rapidly but the chain for β seems to mix poorly.
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Figure 6: Estimating the parameteres of the Weibull distribution:
10000 iterations of the Metropolis algorithm
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Next we simulate 10000 new observations using the optimal
covariance matrix 2.42Σ/2 where Σ is the covariance matrix of
the target distribution, estimated using the most recent
simulations of the original chain. As an initial value we use the
last simulated vector of the first chain. On the basis of Figure 7
the mixing is more rapid now. Figure 8 shows the graphs of the
2.5%, 50% and 97% cumulative quantiles.
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Figure 7: Estimating the parameteres of the Weibull distribution:
10000 further iterations of the Metropolis algorithm
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Figure 8: 2.5%, 50% and 97% cumulative quantiles of 10000
posterior simulations
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The Metropolis-Hastings algorithm is similar to the Metropolis
algorithm except that it is not assumed that the jumping
distribution J(y|x) is symmetric with respect to the ’old’ value
x. The acceptance probablity of a proposal is now

min

(
1,
p(y)/J(y|xt)
p(xt)/J(xt|y)

)
.

It can be shown (exercise) that the algorithm produces a
Markov chain with stationary distribution p(x).
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Markov Chain simulation should be continued until reaching
the stationary distribution, and after this until reliable
estimates for the summary statistics of the stationary
distribution have been obtained. The iterations before the
convergence are usually disregarded as a burn-in phase.
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Markov Chain simulation should be continued until reaching
the stationary distribution, and after this until reliable
estimates for the summary statistics of the stationary
distribution have been obtained. The iterations before the
convergence are usually disregarded as a burn-in phase.

In practice, convergence to stationary distribution can be
detected by studying various time series plots, such as trace
plots, and plots of cumulative summary statistics and
autoregression functions.
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Markov Chain simulation should be continued until reaching
the stationary distribution, and after this until reliable
estimates for the summary statistics of the stationary
distribution have been obtained. The iterations before the
convergence are usually disregarded as a burn-in phase.

In practice, convergence to stationary distribution can be
detected by studying various time series plots, such as trace
plots, and plots of cumulative summary statistics and
autoregression functions.

However, it is usually more reliable to also use convergence
diagnostics. Geweke’s diagnostic is based on comparing the
means of the beginning and last parts of the chain. In the
following, we will introduce Gelman and Rubin’s diagnostic,
which is based on comparing several simulated chains.
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Suppose we have simulated m chains of n iterations (after
removing the burn-in phase). We denote the simulations by
ψij (i = 1, ..., n; j = 1, ..., n), and compute B and W , the
between- and within-sequence variances:
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Suppose we have simulated m chains of n iterations (after
removing the burn-in phase). We denote the simulations by
ψij (i = 1, ..., n; j = 1, ..., n), and compute B and W , the
between- and within-sequence variances:

B =
n

m− 1

m∑

j=1

(ψ̄.j − ψ̄..)
2,

where ψ̄.j =
1
n

∑n
i=1 ψij , ψ̄.. =

1
m

∑m
j=1 ψ̄.j , and
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Suppose we have simulated m chains of n iterations (after
removing the burn-in phase). We denote the simulations by
ψij (i = 1, ..., n; j = 1, ..., n), and compute B and W , the
between- and within-sequence variances:

B =
n

m− 1

m∑

j=1

(ψ̄.j − ψ̄..)
2,

where ψ̄.j =
1
n

∑n
i=1 ψij , ψ̄.. =

1
m

∑m
j=1 ψ̄.j , and

W =
1

m

m∑

j=1

s2j , where s
2
j =

1

n− 1

n∑

i=1

(ψij − ψ̄.j)
2
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Suppose we have simulated m chains of n iterations (after
removing the burn-in phase). We denote the simulations by
ψij (i = 1, ..., n; j = 1, ..., n), and compute B and W , the
between- and within-sequence variances:

B =
n

m− 1

m∑

j=1

(ψ̄.j − ψ̄..)
2,

where ψ̄.j =
1
n

∑n
i=1 ψij , ψ̄.. =

1
m

∑m
j=1 ψ̄.j , and

W =
1

m

m∑

j=1

s2j , where s
2
j =

1

n− 1

n∑

i=1

(ψij − ψ̄.j)
2

We can estimate the posterior variance Var(ψ|y) by the

weighted average V̂ar
+
(ψ|y) = n−1

n W + 1
nB.
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The quantity V̂ar
+
(ψ|y) overestimates the posterior variance if

the starting values are overdispersed, but is unbiased under
stationarity. On the other hand, W underestimates posterior
variance for any finite n because the individual sequences have
not had time to range over all of the target distribution.
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The quantity V̂ar
+
(ψ|y) overestimates the posterior variance if

the starting values are overdispersed, but is unbiased under
stationarity. On the other hand, W underestimates posterior
variance for any finite n because the individual sequences have
not had time to range over all of the target distribution.

We may monitor convergence using the potential scale factor

R̂ =

√
V̂ar

+
(ψ|y)
W

which tells by which factor the posterior deviation estimate can
be decreased if simulation is continued. Simulation should be
continued until R̂ is close to 1 for each parameter ψ. In most
practical cases, values below 1.1 would be acceptable.
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To illustrate the use of the diagnostic, we continue our example
on the Weibull distribution. We generate 5 chains of length
1000 using random initial values. After removing the first 500
simulations from each chain, we obtain the following
diagnostics. Also a multivariate version of the diagnostic is
computed. Here, gelman.diag is a function in R package coda
and SIMS is an mcmc object containing the chains.

1> gelman.diag(SIMS)

Potential scale reduction factors:

Point est. Upper C.I.

delta 1.00 1.01

beta 1.01 1.02

Multivariate psrf

1.01
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Figure 9: The Gelman-Rubin shrink factor might be close to 1 by
chance. Therefore, a graph (gelman.plot) showing its convergence
is useful. Here, the curves show the diagnostic and its 97.5%
quantile for the observation intervals 25:50, 30:60, ..., 500:1000.
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The conclusions of a Bayesian analysis are conditional on the
chosen probability model. Therefore, it is essential to check
that the model is a reasonable approximation to reality. Model
checking can be done with respect to outliers, sampling
distribution, prior distribution, link function, covariates and so
on.
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The conclusions of a Bayesian analysis are conditional on the
chosen probability model. Therefore, it is essential to check
that the model is a reasonable approximation to reality. Model
checking can be done with respect to outliers, sampling
distribution, prior distribution, link function, covariates and so
on.

We can distinguish three aspects of modelling:

✔ Criticism: exploratory checking of a single model
✔ Extension: embedding a model in a larger model
✔ Comparison: comparing candidate models in terms of their

fit and predictive power
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A widely used and useful technique for model checking is
plotting residuals. They help, for example, detect outliers,
autocorrelation and problems in distributional assumptions.
They measure the deviation between observations and
estimated expected values.
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A widely used and useful technique for model checking is
plotting residuals. They help, for example, detect outliers,
autocorrelation and problems in distributional assumptions.
They measure the deviation between observations and
estimated expected values.

A Pearson residual is defined as

ri(θ) =
yi − E(yi|θ)√

Var(yi|θ)
.

In classical analysis, θ is replaced by its fitted value, while in
Bayesian analysis the residuals have a posterior distribution.
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A widely used and useful technique for model checking is
plotting residuals. They help, for example, detect outliers,
autocorrelation and problems in distributional assumptions.
They measure the deviation between observations and
estimated expected values.

A Pearson residual is defined as

ri(θ) =
yi − E(yi|θ)√

Var(yi|θ)
.

In classical analysis, θ is replaced by its fitted value, while in
Bayesian analysis the residuals have a posterior distribution.

Example. We consider the child heart surgery data in Table 1.
Figure 10 shows the box plot of Pearson residuals assuming
that yi ∼ Bin(θ,mj). Hospital H appears to be an outlier.
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Figure 10: Box plot of Pearson residuals for heart surgery data
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model{

theta ~ dbeta(1,1)

for(j in 1:J){

y[j] ~ dbin(theta,m[j])

res[j] <- (y[j]-m[j]*theta)/sqrt(m[j]*theta*(1-theta))

}}

hospital <- list(J=J,m=m,y=y)

hospital.jag <- jags.model("Hospital2.txt",hospital)

hospital.coda <- coda.samples(hospital.jag,c("theta","res"),10000)

med <- apply(hospital.coda[[1]][,-13],2,median)

ind <- order(med)

Res <- as.list(1:J)

for(j in 1:J) Res[[j]] <-

c(hospital.coda[[1]][,paste("res[",ind[j],"]",sep="")])

boxplot(Res,names=names(y)[ind])
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Residuals are examples of statistics which measure the
discrepancy between the data and the assumed model. These
statistics are usually easy to calculate, but we beed a method to
determine if the observed discrepancy is significant. Here, we
may use so-called Bayesian p-values obtained by simulating the
posterior predictive distribution of the test statistic.
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Residuals are examples of statistics which measure the
discrepancy between the data and the assumed model. These
statistics are usually easy to calculate, but we beed a method to
determine if the observed discrepancy is significant. Here, we
may use so-called Bayesian p-values obtained by simulating the
posterior predictive distribution of the test statistic.

Ideally, models should be checked by comparing the predictions
of a model to new data. Suppose that the data y is divided into
two parts: yf for fitting the model, and yc for model criticism.
Then the comparisons are based on the predictive distribution,

p(ypredc |yf ) =
∫
p(ypredc |θ)p(θ|yf )dθ,

simulated by drawing θ from p(θ|yf ) and ypredc from p(ypredc |θ).
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A function T (yc) is called a test statistic (Gelman et al., 2004)
if it would have an extreme value if the data yc conflict with the
assumed model. By choosing T (yc) = yci one can check for
individual outliers.
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A function T (yc) is called a test statistic (Gelman et al., 2004)
if it would have an extreme value if the data yc conflict with the
assumed model. By choosing T (yc) = yci one can check for
individual outliers.

One can check whether T (yc) is extreme graphically or by
computing the Bayesian p-value

p = Pr(T (ypredc ) ≤ T (yc)|yf ).

This can be obtained by drawing simulations ypredc from the
posterior predictive distribution, and by calculating the
proportion of cases where T (ypredc ) ≤ T (yc).
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A function T (yc) is called a test statistic (Gelman et al., 2004)
if it would have an extreme value if the data yc conflict with the
assumed model. By choosing T (yc) = yci one can check for
individual outliers.

One can check whether T (yc) is extreme graphically or by
computing the Bayesian p-value

p = Pr(T (ypredc ) ≤ T (yc)|yf ).

This can be obtained by drawing simulations ypredc from the
posterior predictive distribution, and by calculating the
proportion of cases where T (ypredc ) ≤ T (yc).

In practice, the same data set is often used for fitting and
checking (yc = yf = y). In this case the diagnostics are likely to
be conservative.
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In the previous example of cardic surgery death rates the value
of the hospital H appeared to be an outlier. We may compute
its predictive p-value (using the mid p-value

Pr(ypredi > yi|y−i) +
1
2 Pr(y

pred
i = yi|y−i) for discrete data):

model{

theta ~ dbeta(1,1)

for(j in 1:7){y[j] ~ dbin(theta,m[j])}

for(j in 9:J){y[j] ~ dbin(theta,m[j])}

#predicted number of deaths in the 8th hospital

y8.pred ~ dbin(theta,m[8])

P <- step(y8.pred-y[8]-0.001)+0.5*equals(y8.pred,y[8])

}

Mean SD Naive SE Time-series SE

P 0.00035 0.01803 0.0001803 0.0001803

y8.pred 14.68810 3.86418 0.0386418 0.0386418
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We continue our study of the Newcomb data, and use the
statistics T1 = min(y) and T2 = (y(1) − y(n/2))/(y(n/4) − y(n/2)),
where y(j) is the jth lowest value of y.

for(i in 1:n){

y[i] ~ dnorm(mu,tau)

yrep[i] ~ dnorm(mu,tau)

}

n.50 <- round(n/2)

n.25 <- round(n/4)

yrep.sort <- sort(yrep[])

T1.rep <- yrep.sort[1]

yrep.50 <- yrep.sort[n.50]

yrep.25 <- yrep.sort[n.25]

T2.rep <- (T1.rep-yrep.50)/(yrep.25-yrep.50)

P1 <- step(T1.rep-T1.obs)

P2 <- step(T2.rep-T2.obs)
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Figure 11: The figure shows the posterior predictive distribution
of T2. We see that T obs

2 indicated by a vertical line would be
implausibly large if the model was correct.



Model comparison using deviances

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Model checking
and comparison

Residuals

Example

Predictive checks

p-values

Example 1

Example 2

Deviance

DIC

Example

Hierarchical and
regression
models

Categorical data

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 114 / 130

Model fit can be summarized with the deviance, defined as

D(θ) = −2 log p(y|θ)

where p(y|θ) is the likelihood function.
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Model fit can be summarized with the deviance, defined as

D(θ) = −2 log p(y|θ)

where p(y|θ) is the likelihood function.To obtain a summary
that depends on y only, θ can be replaced with a point estimate
θ̂, such as posterior mean. We obtain

D(θ̂) = −2 log p(y|θ̂).
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Model fit can be summarized with the deviance, defined as

D(θ) = −2 log p(y|θ)

where p(y|θ) is the likelihood function.To obtain a summary
that depends on y only, θ can be replaced with a point estimate
θ̂, such as posterior mean. We obtain

D(θ̂) = −2 log p(y|θ̂).

This may give an over-optimistic picture of the model fit.
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Model fit can be summarized with the deviance, defined as

D(θ) = −2 log p(y|θ)

where p(y|θ) is the likelihood function.To obtain a summary
that depends on y only, θ can be replaced with a point estimate
θ̂, such as posterior mean. We obtain

D(θ̂) = −2 log p(y|θ̂).

This may give an over-optimistic picture of the model fit. A
natural Bayesian alternative is the posterior mean deviance

D̄ = E(D(θ)|y).
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It is easy to estimate D̄ using posterior simulations θl:

ˆ̄D =
1

L

L∑

l=1

D(θl).
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It is easy to estimate D̄ using posterior simulations θl:

ˆ̄D =
1

L

L∑

l=1

D(θl).

The difference between the posterior mean deviance and the
deviance at θ̂ represents the effect of model fitting and is called
the effective number of parameters:

pD = D̄ −D(θ̂).
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It is easy to estimate D̄ using posterior simulations θl:

ˆ̄D =
1

L

L∑

l=1

D(θl).

The difference between the posterior mean deviance and the
deviance at θ̂ represents the effect of model fitting and is called
the effective number of parameters:

pD = D̄ −D(θ̂).

In nonhierarchical models, if the number of observations is large
or the prior information is weak, pD is usually approximately
equal to the actual number of parameters.
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When the goal is to choose an optimal model for prediction, the
expected predictive deviance,

E[−2 log(p(yrep, θ̂(y)))],

has been suggested as a criterion of model fit. Here the
expectation is taken over the unknown true distribution of yrep.



Deviance information criterion, DIC

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Model checking
and comparison

Residuals

Example

Predictive checks

p-values

Example 1

Example 2

Deviance

DIC

Example

Hierarchical and
regression
models

Categorical data

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 116 / 130

When the goal is to choose an optimal model for prediction, the
expected predictive deviance,

E[−2 log(p(yrep, θ̂(y)))],

has been suggested as a criterion of model fit. Here the
expectation is taken over the unknown true distribution of yrep.

This can be approximated by the deviance information

criterion (DIC):

DIC = D(θ̂) + 2pD = D̄ + pD.
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When the goal is to choose an optimal model for prediction, the
expected predictive deviance,

E[−2 log(p(yrep, θ̂(y)))],

has been suggested as a criterion of model fit. Here the
expectation is taken over the unknown true distribution of yrep.

This can be approximated by the deviance information

criterion (DIC):

DIC = D(θ̂) + 2pD = D̄ + pD.

This can usually be easily computed using posterior simulation.
When the prior information is weak or the sample size large,
p ≈ pD, implying that DIC ≈ AIC.
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We regress the incidence of pine processionary caterpillars on 8
potential exploratory variables. (The data set is caterpillar in R

package bayess.) The response variable y is the log transform of
the average number of nests per tree.

The explanatory variables:
x1 altitude (in meters)
x2 slope (in degrees)
x3 number of pine trees in the area
x4 height (in meters) of the tree sampled at the center of the
area
x5 orientation of the area (from 1 if southbound to 2 otherwise)
x6 height (in meters) of the dominant tree
x7 number of vegetation strata
x8 mix settlement index (from 1 if not mixed to 2 if mixed)
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#JAGS code

for(i in 1:n){

y[i] ~ dnorm(mu[i],tau)

mu[i] <- b0 +b[1]*X[i,1]+b[2]*X[i,2]+b[3]*X[i,3]+

b[4]*X[i,4]+b[5]*X[i,5]+b[6]*X[i,6]+

b[7]*X[i,7]+b[8]*X[i,8]

}

b0 ~ dnorm(0,0.001)

tau ~ dgamma(0.001,0.001)

for(j in 1:8){

b[j] ~ dnorm(0,0.001)

#R code

cp.jag <- jags.model("caterpillar.txt",data,n.chains=2)

cp.coda <- coda.samples(cp.jag,c("b0","b","tau"),10000)

summary(cp.coda)

dic.samples(cp.jag,n.iter=100000,type="pD")
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According to the results, only β1, β2 and β7 are ’significant’ in
the sense that 0 is not included in their 95% posterior intervals.

2.5% 25% 50% 75% 97.5%

b[1] -0.6285 -0.4439 -0.35067 -0.25715 -0.06983

b[2] -0.4792 -0.3324 -0.25874 -0.18520 -0.03537

b[3] -0.1268 0.2279 0.39554 0.55959 0.89309

b[4] -0.4393 -0.1638 -0.02962 0.10728 0.36899

b[5] -0.3364 -0.1891 -0.11807 -0.04442 0.10419

b[6] -0.6400 -0.2028 0.03315 0.26520 0.72730

b[7] -1.2519 -0.8400 -0.63957 -0.44101 -0.04077

b[8] -0.2799 -0.1311 -0.05702 0.01804 0.17237

b0 0.6114 0.7450 0.81175 0.87794 1.01362

tau 1.6534 2.5258 3.10635 3.76617 5.25581
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Now, the model selection criteria are estimated as follows:
ˆ̄D = 56.7, p̂D = 10.95 and D̂IC = 67.65. When the unsignificant

variables are removed both ˆ̄D and D̂IC become smaller,
indicating a better model.

#Original model

Mean deviance: 56.7

penalty 10.95

Penalized deviance: 67.65

#Restricted model

Mean deviance: 55.52

penalty 5.369

Penalized deviance: 60.89
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In linear models it is assumed that the response variable is
normally distributed and its expected value is a linear
combination of the explanatory variables. Generalized linear
models extend the idea of linear modelling to cases where either
of these assumptions may not be appropriate.
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In linear models it is assumed that the response variable is
normally distributed and its expected value is a linear
combination of the explanatory variables. Generalized linear
models extend the idea of linear modelling to cases where either
of these assumptions may not be appropriate.

A generalized linear model is specified in three stages:

✔ The linear predictor ηi = β0 +
∑p

j=1 βjxij
✔ The link function g(.) which relates the linear predictor to

the mean of the response variable: g(µi) = ηi, where
µi = E(yi)

✔ The distribution of yi given its mean µi. In general, this
distribution may also depend on a dispersion parameter φ.
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Binomial regression is perhaps the most popular application of
the generalized linear model. Suppose that yi ∼ Bin(ni, µi)
where ni is known. Then one usually specifies a model for µi,
the mean of yi/ni. Choosing the logistic transformation
g(µi) = log(µi/(1− µi)) leads to logistic regression. The
likelihood in this case is

p(y|β) =
n∏

i=1

(
ni
yi

)(
eηi

1 + eηi

)yi ( 1

1 + eηi

)ni−yi

.
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Binomial regression is perhaps the most popular application of
the generalized linear model. Suppose that yi ∼ Bin(ni, µi)
where ni is known. Then one usually specifies a model for µi,
the mean of yi/ni. Choosing the logistic transformation
g(µi) = log(µi/(1− µi)) leads to logistic regression. The
likelihood in this case is

p(y|β) =
n∏

i=1

(
ni
yi

)(
eηi

1 + eηi

)yi ( 1

1 + eηi

)ni−yi

.

Another popular choice for a link function is the probit link
g(µ) = Φ−1(µ) where Φ(.) is the distribution function of a
standard normal variable. The likelihood becomes

p(y|β) =
n∏

i=1

(
ni
yi

)
(Φ(ηi))

yi(1− Φ(ηi))
ni−yi .
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Table 6: Bioassay data from Racine et al. (1986).

Dose, xi Number of Number of
(log g/ml) animals, ni deaths , yi

-0.86 5 0
-0.30 5 1
-0.05 5 3
0.73 5 5

As an example we consider 4 batches of 5 animals, each of
which is given a different dose of a drug. We are interested in
determining the toxity of the drug. Table 6 reports the
numbers of deaths for the different dose levels.
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We assume that the numbers of deaths are binomially
distributed,

yi|θi ∼ Bin(ni, θi),

and that there is a simple linear linear relationship between the
logit of the mortality θi and the dose level xi:

logit(θi) = α+ βxi,

where logit(θi) = log(θi/(1− θi)).
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We assume that the numbers of deaths are binomially
distributed,

yi|θi ∼ Bin(ni, θi),

and that there is a simple linear linear relationship between the
logit of the mortality θi and the dose level xi:

logit(θi) = α+ βxi,

where logit(θi) = log(θi/(1− θi)). Now the posterior of (α, β) is

p(α, β|y) ∝ p(α, β)

k∏

i=1

(
ni
yi

)
θyii (1− θi)

ni−yi ,

where p(α, β) is the prior, θi = eηi/(1 + eηi) and ηi = α+ βxi.
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There are several ways to specify the prior information.
However, we assume that α ∼ N(0, 1000) and
β ∼ TN(0, 1000; 0,∞) (truncated normal distribution). We
truncate the prior of β from below at 0, since we believe that
the dose is harmful so that β ≥ 0.



Binomial regression: Example (cont)

Basic concepts

Single-parameter
models

Hypothesis
testing

Simple
multiparameter
models

Markov chains

MCMC methods

Model checking
and comparison

Hierarchical and
regression
models

Categorical data

Generalized
linear model

Binomial model

Example

Introduction to Bayesian analysis, autumn 2013 University of Tampere – 127 / 130

There are several ways to specify the prior information.
However, we assume that α ∼ N(0, 1000) and
β ∼ TN(0, 1000; 0,∞) (truncated normal distribution). We
truncate the prior of β from below at 0, since we believe that
the dose is harmful so that β ≥ 0.

We also wish to determine the LD50, the dose level at which
the probability of death is 50%. Thus, we determine x so that

logit(0.5) = α+ βx.

Solving this gives that the LD50 is x = −β/α.
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There are several ways to specify the prior information.
However, we assume that α ∼ N(0, 1000) and
β ∼ TN(0, 1000; 0,∞) (truncated normal distribution). We
truncate the prior of β from below at 0, since we believe that
the dose is harmful so that β ≥ 0.

We also wish to determine the LD50, the dose level at which
the probability of death is 50%. Thus, we determine x so that

logit(0.5) = α+ βx.

Solving this gives that the LD50 is x = −β/α.
Figure 12 shows the results of the analysis.
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Figure 12: Results of the bioassay experiment. Left: Probability
of death as a function of dose with 95% posterior interval and
’observed values’. Right: The posterior distribution of LD50.
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alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)T(0,) #Truncated distribution

for(i in 1:k){

logit(theta[i]) <- alpha+beta*x[i]

y[i] ~ dbinom(theta[i],n[i])

}

LD50 <- -alpha/beta

for(i in 1:K){

logit(theta.pred[i]) <- alpha+beta*xpred[i]}

#R code:

bioassay.coda <- coda.samples(bioassay.jag,c("alpha","beta",

"LD50","theta.pred"),10000)

a <- summary(bioassay.coda)

med <- a$quantiles[-(1:3),3]

plot(xpred,med,type="l",ylim=c(0,1),xlab="dose",ylab="probabilit

points(x,y/n,pch=19)
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