Model Averaging for Linear Regression

Erkki P. Liski

University of Tampere Department of Mathematics, Statistics and Philosophy

Outline

- The Model
- Model selection
- Model average estimator (MAE)

Outline

- The Model
- Model selection
- Model average estimator (MAE)
- Why MAE?
- General structure of MAE

Outline

- The Model
- Model selection
- Model average estimator (MAE)

< □> < 冊> < 三> のQ(~

- Why MAE?
- General structure of MAE
- Selecting the model weights
- Finite Sample Performance

Homoscedastic linear regression

Variables The response *y* and the predictors $x_1, x_2, ...$

Homoscedastic linear regression

Variables The response y and the predictors $x_1, x_2, ...$

The Model

 β_1, β_2, \ldots and σ^2 are unknown parameters, and $\mathbf{x} = (x_1, x_2, \ldots)$.

Homoscedastic linear regression

Variables The response y and the predictors $x_1, x_2, ...$

The Model

 β_1, β_2, \ldots and σ^2 are unknown parameters, and $\mathbf{x} = (x_1, x_2, \ldots)$.

Further $E(\mu^2) < \infty$ and $\sum_{j=1}^{\infty} \beta_j x_j$ converges in mean-square.

Model Selection

Covariates *K* potential predictors x_1, \ldots, x_K available.

Observe $(y_1, \mathbf{x}_1), \dots, (y_n, \mathbf{x}_n), \mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iK}).$

Model Selection

Covariates *K* potential predictors x_1, \ldots, x_K available.

Observe $(y_1, \mathbf{x}_1), \dots, (y_n, \mathbf{x}_n), \mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iK}).$

Approximating Linear Model

$$y_i = \sum_{j=1}^{K} x_{ij} \beta_j + b_i + \varepsilon_i, \qquad i = 1, 2, ..., n,$$
$$b_i = \sum_{j=K+1}^{\infty} \beta_j x_j \qquad \text{is the approximation error.}$$

Model Selection

Covariates *K* potential predictors x_1, \ldots, x_K available.

Observe $(y_1, \mathbf{x}_1), \dots, (y_n, \mathbf{x}_n), \mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{iK}).$

Approximating Linear Model

$$y_{i} = \sum_{j=1}^{K} x_{ij}\beta_{j} + b_{i} + \varepsilon_{i}, \qquad i = 1, 2, ..., n,$$
$$b_{i} = \sum_{j=K+1}^{\infty} \beta_{j}x_{j} \qquad \text{is the approximation error.}$$

Multiple models are present.

Model
$$m \{x_i \mathbb{I}_{\{i \in m\}} | i = 1, 2, ..., K\} \subset \{1, 2, ..., K\}.$$

A Class of Approximating Models A

The $M \times K$ Incidence Matrix

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 1 & \dots & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 0 & 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{a}_{1}^{T} \\ \vdots \\ \boldsymbol{a}_{m}^{T} \\ \vdots \\ \boldsymbol{a}_{M}^{T} \end{pmatrix}$$

for the models in A. The 1's in row \boldsymbol{a}_m display the predictors in the *m*th model.

The $M \times K$ Incidence Matrix

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 1 & \dots & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 0 & 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{a}_{1}^{T} \\ \vdots \\ \boldsymbol{a}_{m}^{T} \\ \vdots \\ \boldsymbol{a}_{M}^{T} \end{pmatrix}$$

< □> < 冊> < 三> のQ(~

for the models in A. The 1's in row \boldsymbol{a}_m display the predictors in the *m*th model.

The Regression Matrix of the Model m

 $\boldsymbol{X}_m = \boldsymbol{X} \operatorname{diag}(\boldsymbol{a}_m),$

A Class of Approximating Models A

The $M \times K$ Incidence Matrix

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 1 & \dots & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 0 & 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{a}_1' \\ \vdots \\ \boldsymbol{a}_m^T \\ \vdots \\ \boldsymbol{a}_M^T \end{pmatrix}$$

for the models in A. The 1's in row \boldsymbol{a}_m display the predictors in the *m*th model.

The Regression Matrix of the Model m

 $\boldsymbol{X}_m = \boldsymbol{X} \operatorname{diag}(\boldsymbol{a}_m),$

 \boldsymbol{a}_m is the vector diagonal entries of diag(\boldsymbol{a}_m), **X** denotes the $n \times K$ regression matrix.

Approximating Model *m*

takes the form

 $\boldsymbol{y} = \boldsymbol{X}_m \boldsymbol{\beta}_m + \boldsymbol{b}_m + \boldsymbol{\varepsilon}.$

Approximating Model *m*

takes the form

$$\boldsymbol{y} = \boldsymbol{X}_m \boldsymbol{\beta}_m + \boldsymbol{b}_m + \boldsymbol{\varepsilon}.$$

The LSE of β_m

$$\hat{\boldsymbol{\beta}}_m = (\boldsymbol{X}_m^T \boldsymbol{X}_m)^+ \boldsymbol{X}_m^T \boldsymbol{y}$$

and of $\boldsymbol{\mu}_m = \boldsymbol{X}_m \boldsymbol{\beta}_m$

$$\hat{\boldsymbol{\mu}}_m = \boldsymbol{H}_m \boldsymbol{y}$$

Approximating Model m

takes the form

$$\boldsymbol{y} = \boldsymbol{X}_m \boldsymbol{\beta}_m + \boldsymbol{b}_m + \boldsymbol{\varepsilon}.$$

The LSE of β_m

$$\hat{\boldsymbol{\beta}}_m = (\boldsymbol{X}_m^T \boldsymbol{X}_m)^+ \boldsymbol{X}_m^T \boldsymbol{y}$$

and of $\boldsymbol{\mu}_m = \boldsymbol{X}_m \boldsymbol{\beta}_m$

$$\hat{\boldsymbol{\mu}}_m = \boldsymbol{H}_m \boldsymbol{y}$$

under $m \in M$, where

$$\boldsymbol{H}_m = \boldsymbol{X}_m (\boldsymbol{X}_m^T \boldsymbol{X}_m)^+ \boldsymbol{X}_m^T$$

is a projector.

- MAE is an alternative to model selection
- A model selection procedure can be unstable

- MAE is an alternative to model selection
- A model selection procedure can be unstable
- When is combining better than selection?
- How to measure the uncertainty in selection?

- MAE is an alternative to model selection
- A model selection procedure can be unstable
- When is combining better than selection?
- How to measure the uncertainty in selection?

Draper 1995 (JRSS B), Raftery, et. al. 1997 (JASA), Burnham & Anderson 2002 (Book), Hjort & Claeskens 2003 (JASA), Hansen 2007 (Econometrica)

- MAE is an alternative to model selection
- A model selection procedure can be unstable
- When is combining better than selection?
- How to measure the uncertainty in selection?

Draper 1995 (JRSS B), Raftery, et. al. 1997 (JASA), Burnham & Anderson 2002 (Book), Hjort & Claeskens 2003 (JASA), Hansen 2007 (Econometrica)

- MAE is an alternative to model selection
- A model selection procedure can be unstable
- When is combining better than selection?
- How to measure the uncertainty in selection?

Draper 1995 (JRSS B), Raftery, et. al. 1997 (JASA), Burnham & Anderson 2002 (Book), Hjort & Claeskens 2003 (JASA), Hansen 2007 (Econometrica)

MAE of $\boldsymbol{\beta}$ and $\boldsymbol{\mu}$

$$\hat{\boldsymbol{\beta}}_{w} = \sum_{m=1}^{M} w_{m} \hat{\boldsymbol{\beta}}_{m}$$
, weights $w_{i} \ge 0$ with $\sum_{m=1}^{M} w_{m} = 1$

 $\hat{\boldsymbol{\mu}}_{w} = \boldsymbol{H}_{w}\boldsymbol{y}, \quad \boldsymbol{H}_{w} = \sum_{m=1}^{M} w_{m}\boldsymbol{H}_{m}$ is the implied hat matrix.

The Algebraic Structure of MAE

Define

$$\mathbf{A}\mathbf{A}^{T} = \begin{pmatrix} k_{1} & k_{12} & \dots & k_{1M} \\ k_{21} & k_{2} & \dots & k_{2M} \\ \vdots & \vdots & \ddots & \\ k_{M1} & k_{M2} & \dots & k_{M} \end{pmatrix} = \mathbf{K}$$

The Algebraic Structure of MAE

Define

$$\mathbf{A}\mathbf{A}^{T} = \begin{pmatrix} k_{1} & k_{12} & \dots & k_{1M} \\ k_{21} & k_{2} & \dots & k_{2M} \\ \vdots & \vdots & \ddots & \\ k_{M1} & k_{M2} & \dots & k_{M} \end{pmatrix} = \mathbf{K}$$

Properties of H_{w} , model weights $w^{T} = (w_{i}, ..., w_{M})$.

(i)
$$\operatorname{tr}(\boldsymbol{H}_{w}) = \sum_{m=1}^{M} w_{m}k_{m}$$
.
(ii) $\operatorname{tr}(\boldsymbol{H}_{w}^{2}) = \boldsymbol{w}^{T}\boldsymbol{K}\boldsymbol{w}$.
(iii) $\lambda_{M}(\boldsymbol{H}_{w}) \leq 1$.

The Risk under Squared-Error Loss

Squared-Error Loss $L(\boldsymbol{w}) = \|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}_w\|^2$.

< □ > < □ > < □ > < □ > < □ > < ○ < ○</p>

The Risk under Squared-Error Loss

Squared-Error Loss $L(\boldsymbol{w}) = \|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}_w\|^2$.

The Conditional Risk of $\hat{\boldsymbol{\mu}}_{w}$ $R(\boldsymbol{w}) = E(L(\boldsymbol{w}) | \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n})$ $= \| (\boldsymbol{I} - \boldsymbol{H}_{w}) \boldsymbol{\mu} \|^{2} + \sigma^{2} \boldsymbol{w}^{T} \boldsymbol{K} \boldsymbol{w}$ $= \boldsymbol{w}^{T} (\boldsymbol{B} + \sigma^{2} \boldsymbol{K}) \boldsymbol{w}.$

< □ > < 個 > < = > < の < 0 >

The Risk under Squared-Error Loss

Squared-Error Loss $L(\mathbf{w}) = \|\mathbf{\mu} - \hat{\mathbf{\mu}}_w\|^2$.

The Conditional Risk of $\hat{\boldsymbol{\mu}}_{w}$ $R(\boldsymbol{w}) = E(L(\boldsymbol{w}) | \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n})$ $= \| (\boldsymbol{I} - \boldsymbol{H}_{w}) \boldsymbol{\mu} \|^{2} + \sigma^{2} \boldsymbol{w}^{T} \boldsymbol{K} \boldsymbol{w}$ $= \boldsymbol{w}^{T} (\boldsymbol{B} + \sigma^{2} \boldsymbol{K}) \boldsymbol{w},$

$$\boldsymbol{B} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1M} \\ \vdots & \vdots & \ddots & \\ b_{M1} & b_{M2} & \dots & b_{MM} \end{pmatrix}, \text{ with } b_{mk} = \boldsymbol{b}_m^T (\boldsymbol{I} - \boldsymbol{H}_m) (\boldsymbol{I} - \boldsymbol{H}_k) \boldsymbol{b}_k.$$

The Risk under Squared-Error Loss

Squared-Error Loss $L(\boldsymbol{w}) = \|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}_w\|^2$.

The Conditional Risk of $\hat{\boldsymbol{\mu}}_{w}$ $R(\boldsymbol{w}) = E(L(\boldsymbol{w}) | \boldsymbol{x}_{1} \dots \boldsymbol{x}_{n})$ $= \| (\boldsymbol{I} - \boldsymbol{H}_{w}) \boldsymbol{\mu} \|^{2} + \sigma^{2} \boldsymbol{w}^{T} \boldsymbol{K} \boldsymbol{w}$ $= \boldsymbol{w}^{T} (\boldsymbol{B} + \sigma^{2} \boldsymbol{K}) \boldsymbol{w},$

$$\boldsymbol{B} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1M} \\ \vdots & \vdots & \ddots & \\ b_{M1} & b_{M2} & \dots & b_{MM} \end{pmatrix}, \text{ with } b_{mk} = \boldsymbol{b}_m^T (\boldsymbol{I} - \boldsymbol{H}_m) (\boldsymbol{I} - \boldsymbol{H}_k) \boldsymbol{b}_k.$$

At least two non-zero w_i in the optimal w.

Example: Suppose M = 2, $\mathbf{w}^T = (w, 1 - w)$. Then $w \in (0, 1)$ unless $b_{11} = b_{12}$ or $b_{22} = b_{12}$.

Selecting the Model Weights w_i

Mallows' Criterion (MMAE) for MAE (Hansen 2007)

$$C(\boldsymbol{w}) = \|(\boldsymbol{I} - \boldsymbol{H}_w)\boldsymbol{y}\|^2 + 2\sigma^2 k_w, \qquad k_w = \sum_{m=1}^M w_m k_m,$$

. .

Selecting the Model Weights *w*_i

Mallows' Criterion (MMAE) for MAE (Hansen 2007)

$$C(\mathbf{w}) = \|(\mathbf{I} - \mathbf{H}_w)\mathbf{y}\|^2 + 2\sigma^2 k_w, \qquad k_w = \sum_{m=1}^M w_m k_m,$$

 σ^2 is replaced with an estimate. Select $\hat{oldsymbol{w}}$ such that

 $\hat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} C(\boldsymbol{w}).$

. .

Selecting the Model Weights *w*_i

Mallows' Criterion (MMAE) for MAE (Hansen 2007)

$$C(\mathbf{w}) = \|(\mathbf{I} - \mathbf{H}_w)\mathbf{y}\|^2 + 2\sigma^2 k_w, \qquad k_w = \sum_{m=1}^M w_m k_m,$$

 σ^2 is replaced with an estimate. Select $\hat{\boldsymbol{w}}$ such that $\hat{\boldsymbol{w}} = \arg\min C(\boldsymbol{w}).$

Properties of C(w): $E[C(w)] = E[L(w)] + n\sigma^2$ and

$$\frac{L(\hat{\boldsymbol{w}})}{\inf_{\boldsymbol{w}} L(\boldsymbol{w})} \longrightarrow_{p} 1 \quad \text{as } n \to \infty.$$

Smoothed AIC and BIC (SAIC & SBIC) $w_m = \exp(-\frac{1}{2}AIC_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}AIC_i)$

(Bucland 1997, Burnham & Anderson 2002), $w_m = \exp(-\frac{1}{2}\text{BIC}_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}\text{BIC}_i),$ **Smoothed** AIC and BIC (SAIC & SBIC) $w_m = \exp(-\frac{1}{2}AIC_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}AIC_i)$ (Bucland 1997, Burnham & Anderson 2002), $w_m = \exp(-\frac{1}{2}BIC_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}BIC_i)$,

the AIC and BIC criteria for model m are

 $\operatorname{AIC}_m = \ln \hat{\sigma}_m^2 + 2k_m$ and $\operatorname{BIC}_m = \ln \hat{\sigma}_m^2 + k_m \ln n$.

Smoothed AIC and BIC (SAIC & SBIC) $w_m = \exp(-\frac{1}{2}AIC_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}AIC_i)$ (Bucland 1997, Burnham & Anderson 2002), $w_m = \exp(-\frac{1}{2}BIC_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}BIC_i)$,

the AIC and BIC criteria for model m are

 $\operatorname{AIC}_m = \ln \hat{\sigma}_m^2 + 2k_m$ and $\operatorname{BIC}_m = \ln \hat{\sigma}_m^2 + k_m \ln n.$

Smoothed MDL (SMDL)

$$w_m = \exp(-MDL_m) / \sum_{i=1}^{M} \exp(-MDL_i),$$
 where

Smoothed AIC and BIC (SAIC & SBIC) $w_m = \exp(-\frac{1}{2}AIC_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}AIC_i)$ (Bucland 1997, Burnham & Anderson 2002), $w_m = \exp(-\frac{1}{2}BIC_m) / \sum_{i=1}^{M} \exp(-\frac{1}{2}BIC_i)$,

the AIC and BIC criteria for model *m* are

 $\operatorname{AIC}_m = \ln \hat{\sigma}_m^2 + 2k_m$ and $\operatorname{BIC}_m = \ln \hat{\sigma}_m^2 + k_m \ln n$.

Smoothed MDL (SMDL)

$$w_m = \exp(-MDL_m) / \sum_{i=1}^{M} \exp(-MDL_i),$$
 where

 $MDL_m = n \ln \hat{s}_m^2 + k_m \ln F_m + \ln[k_m(n-k_m)], \quad F_m = \|\hat{\mu}_m\|^2 / k_m \hat{s}_m^2$ (Rissanen 2000 & 2007, Liski 2006)

Finite Sample Performance

Simulation Model is the infinite order regression

$$y_i = \sum_{j=1}^{\infty} \beta_j x_{ji} + \varepsilon_i,$$

► $x_{ji} \sim N(0, 1)$ iid $(x_{1i} = 1)$, $\varepsilon_i \sim N(0, 1)$ and $x_{ji} \perp \varepsilon_i$.

Finite Sample Performance

Simulation Model is the infinite order regression

$$y_i = \sum_{j=1}^{\infty} \beta_j x_{ji} + \varepsilon_i,$$

- ► $x_{ji} \sim N(0, 1)$ iid $(x_{1i} = 1)$, $\varepsilon_i \sim N(0, 1)$ and $x_{ji} \perp \varepsilon_i$.
- ► $\beta_j = c\sqrt{2a}j^{-a-1/2}$ and the population $R^2 = \frac{c^2}{1+c^2}$.
- ▶ $50 \le n \le 1000$ and $M = 3n^{1/3}$.
- ► 0.5 ≤ $a \le 1.5$, for larger a the coefficients β_j decline more quicly.
- c is selected such that $0.1 \le R^2 \le 0.9$.

Finite Sample Performance

Simulation Model is the infinite order regression

$$y_i = \sum_{j=1}^{\infty} \beta_j x_{ji} + \varepsilon_i,$$

- ► $x_{ji} \sim N(0, 1)$ iid $(x_{1i} = 1)$, $\varepsilon_i \sim N(0, 1)$ and $x_{ji} \perp \varepsilon_i$.
- ► $\beta_j = c\sqrt{2a}j^{-a-1/2}$ and the population $R^2 = \frac{c^2}{1+c^2}$.
- ▶ $50 \le n \le 1000$ and $M = 3n^{1/3}$.
- ► 0.5 ≤ $a \le 1.5$, for larger a the coefficients β_j decline more quicly.
- *c* is selected such that $0.1 \le R^2 \le 0.9$.

Mean of predictive loss $\|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}_w\|^2$ over simulations.

Comments

► AIC and Mallows' C similar, MMAE better than SAIC.

Comments

- ► AIC and Mallows' C similar, MMAE better than SAIC.
- SAIC has lower risk than AIC

Comments

- ► AIC and Mallows' C similar, MMAE better than SAIC.
- SAIC has lower risk than AIC
- MMAE better than SBIC in most cases.

Method	Performs well for
SBIC	<i>n</i> and R^2 small, <i>a</i> large
BIC	'small' models
AIC	'large´ models

Comments

- ► AIC and Mallows' C similar, MMAE better than SAIC.
- SAIC has lower risk than AIC
- MMAE better than SBIC in most cases.

Method	Performs well for
SBIC	<i>n</i> and R^2 small, <i>a</i> large
BIC	'small' models
AIC	'large´ models

SMDL better than MDL.

Comments

- ► AIC and Mallows' C similar, MMAE better than SAIC.
- SAIC has lower risk than AIC
- MMAE better than SBIC in most cases.

Method	Performs well for
SBIC	<i>n</i> and R^2 small, <i>a</i> large
BIC	'small' models
AIC	'large´ models

- SMDL better than MDL.
- SMDL emulates the best performance criterion.

Comments

- ► AIC and Mallows' C similar, MMAE better than SAIC.
- SAIC has lower risk than AIC
- MMAE better than SBIC in most cases.

Method	Performs well for
SBIC	<i>n</i> and R^2 small, <i>a</i> large
BIC	'small' models
AIC	'large´ models

- SMDL better than MDL.
- SMDL emulates the best performance criterion.
- SMDL has the best overall performance.

References

- Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997), Model Selection: An Integral Part of Inference. *Biometrics*, 53, 603–618.
- Burnham & Anderson (2002), Model Selection and Multi-model Inference, Springer
- Draper, D. (1995), Assessment and Propagation of Model Uncertainty. *Journal of the Royal Statistical Society B*, 57, 45–70.
- Hansen, B. E. (2007), Least Squares Model Averaging. *Econometrica*, Forthcoming.
- Hjort, L. H. and Claeskens, G. (2003), Frequentist Model Average Estimators. *Journal of the American Statistical Association*, 98, 879–899.

- Liski, E.P. (2006), Normalized ML and the MDL Principle for Variable Selection in Linear Regression In: Festschrift for Tarmo Pukkila on His 60th Birthday, 159-172.
- Raftery, A.E., Madigan, D. and Hoeting, J.A. (1997), Bayesian Model Averaging for Regression Models. Journal of the American Statistical Association, 92, 179-191.
- Rissanen, J. (2000). MDL Denoising. IEEE Trans. Information Theory, IT-46, pp. 2537–2543.

🛸 Rissanen, J. (2007), Information and Complexity in Statistical Modeling, Springer