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The Model

Homoscedastic linear regression

Variables The response y and the predictors 1, 2, . . .

The Model

y = μ+ ϵ, μ =
∞
∑

j=1

βjj,

E(ϵ|) = 0, E(ϵ2|) = σ2,

β1, β2, . . . and σ2 are unknown parameters, and
 = (1, 2, . . .).

Further

E(μ2) <∞ and
∞
∑

j=1
βjj converges in mean-square.
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Model Selection

Model Selection

Covariates K potential predictors 1, . . . , K available.

Observe (y1,1), . . . , (yn,n),  = (1, 2, . . . , K).

Approximating Linear Model

y =
K
∑

j=1

jβj + b + ϵ,  = 1,2, . . . , n,

b =
∞
∑

j=K+1

βjj is the approximation error.

Multiple models are present.

Model m {I{∈m}| = 1,2, . . . , K} ⊂ {1,2, . . . , K}.
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Class of Appr. Models

A Class of Approximating Models A

The M× K Incidence Matrix

A =
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for the models in A. The 1’s in row m display the
predictors in the mth model.

The Regression Matrix of the Model m

Xm = X dig(m),

m is the vector diagonal entries of dig(m),
X denotes the n× K regression matrix.
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Approximating Model m

Approximating Model m

takes the form

y = Xmβm + bm + ϵ.

The LSE of βm

β̂m = (X
T
m
Xm)+XT

m
y

and of μm = Xmβm

μ̂m = Hmy

under m ∈ M, where

Hm = Xm(XT
m
Xm)+XT

m

is a projector.
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Model Average Estimator

Model Average Estimator (MAE)

É MAE is an alternative to model selection
É A model selection procedure can be unstable

É When is combining better than selection?
É How to measure the uncertainty in selection?

Draper 1995 (JRSS B), Raftery, et. al. 1997 (JASA),
Burnham & Anderson 2002 (Book), Hjort & Claeskens
2003 (JASA), Hansen 2007 (Econometrica)

MAE of β and μ

β̂ =
M
∑

m=1

mβ̂m, weights  ≥ 0 with
M
∑

m=1

m = 1

μ̂ = Hy, H =
M
∑

m=1

mHm is the implied hat matrix.
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The Alg. Structure of MAE

The Algebraic Structure of MAE

Define

AAT =













k1 k12 . . . k1M
k21 k2 . . . k2M
...

...
. . .

kM1 kM2 . . . kM













= K

Properties of H, model weights T = (, . . . ,M).

(i) tr(H) =
M
∑

m=1
mkm.

(ii) tr(H2

) =TK.

(iii) λM(H) ≤ 1.
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The Risk under Sq-Error Loss

The Risk under Squared-Error Loss

Squared-Error Loss L() = ‖μ− μ̂‖2.

The Conditional Risk of μ̂
R() = E(L()| 1 . . .n)

= ‖( −H)μ‖2 + σ2TK

=T(B+ σ2K),

B =









b11 b12 . . . b1M
...

...
. . .

bM1 bM2 . . . bMM









, with bmk = bTm(−Hm)(−Hk)bk.

At least two non-zero  in the optimal .

Example: Suppose M = 2, T = (,1−). Then
 ∈ (0,1) unless b11 = b12 or b22 = b12.
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Selecting the Model Weights

Selecting the Model Weights 

Mallows’ Criterion (MMAE) for MAE (Hansen 2007)

C() = ‖( −H)y‖2 + 2σ2k, k =
M
∑

m=1

mkm,

σ2 is replaced with an estimate. Select ̂ such that

̂ = rgmin


C().

Properties of C(): E[C()] = E[L()] + nσ2 and

L(̂)

inf L()
−→p 1 as n→∞.
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Selecting the Model Weights

Smoothed AC and BC (SAC & SBC)
m = exp(−12ACm)/

∑M
=1 exp(−

1
2AC)

(Bucland 1997, Burnham & Anderson 2002),
m = exp(−12BCm)/

∑M
=1 exp(−

1
2BC),

the AC and BC criteria for model m are

ACm = ln σ̂2m + 2km and BCm = ln σ̂2m + km lnn.

Smoothed MDL (SMDL)

m = exp(−MDLm)/
M
∑

=1

exp(−MDL), where

MDLm = n ln ŝ2m+km lnFm+ln[km(n−km)], Fm = ‖μ̂m‖2/kmŝ2m.

(Rissanen 2000 & 2007, Liski 2006)
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Finite Sample Performance

Simulation Model is the infinite order regression

y =
∞
∑

j=1

βjj + ϵ,

É j ∼ N(0,1) iid (1 = 1), ϵ ∼ N(0,1) and j ⊥⊥ ϵ.

É βj = c
p
2 j−−1/2 and the population R2 = c2

1+c2 .

É 50 ≤ n ≤ 1000 and M = 3n1/3.
É 0.5 ≤  ≤ 1.5, for larger  the coefficients βj decline
more quicly.

É c is selected such that 0.1 ≤ R2 ≤ 0.9.

Mean of predictive loss ‖μ− μ̂‖2 over simulations.



Model Averaging for Linear Regression

Finite Sample Performance

Finite Sample Performance

Simulation Model is the infinite order regression

y =
∞
∑

j=1

βjj + ϵ,

É j ∼ N(0,1) iid (1 = 1), ϵ ∼ N(0,1) and j ⊥⊥ ϵ.

É βj = c
p
2 j−−1/2 and the population R2 = c2

1+c2 .

É 50 ≤ n ≤ 1000 and M = 3n1/3.
É 0.5 ≤  ≤ 1.5, for larger  the coefficients βj decline
more quicly.

É c is selected such that 0.1 ≤ R2 ≤ 0.9.

Mean of predictive loss ‖μ− μ̂‖2 over simulations.



Model Averaging for Linear Regression

Finite Sample Performance

Finite Sample Performance

Simulation Model is the infinite order regression

y =
∞
∑

j=1

βjj + ϵ,

É j ∼ N(0,1) iid (1 = 1), ϵ ∼ N(0,1) and j ⊥⊥ ϵ.

É βj = c
p
2 j−−1/2 and the population R2 = c2

1+c2 .

É 50 ≤ n ≤ 1000 and M = 3n1/3.
É 0.5 ≤  ≤ 1.5, for larger  the coefficients βj decline
more quicly.

É c is selected such that 0.1 ≤ R2 ≤ 0.9.

Mean of predictive loss ‖μ− μ̂‖2 over simulations.



Model Averaging for Linear Regression

Finite Sample Performance

Simulation Results

Comments
É AC and Mallows’ C similar, MMAE better than SAC.

É SAC has lower risk than AC
É MMAE better than SBC in most cases.

Method Performs well for
SBC n and R2 small,  large
BC ‘small’ models
AC ‘large´ models

É SMDL better than MDL.
É SMDL emulates the best performance criterion.
É SMDL has the best overall performance.



Model Averaging for Linear Regression

Finite Sample Performance

Simulation Results

Comments
É AC and Mallows’ C similar, MMAE better than SAC.
É SAC has lower risk than AC

É MMAE better than SBC in most cases.

Method Performs well for
SBC n and R2 small,  large
BC ‘small’ models
AC ‘large´ models

É SMDL better than MDL.
É SMDL emulates the best performance criterion.
É SMDL has the best overall performance.



Model Averaging for Linear Regression

Finite Sample Performance

Simulation Results

Comments
É AC and Mallows’ C similar, MMAE better than SAC.
É SAC has lower risk than AC
É MMAE better than SBC in most cases.

Method Performs well for
SBC n and R2 small,  large
BC ‘small’ models
AC ‘large´ models

É SMDL better than MDL.
É SMDL emulates the best performance criterion.
É SMDL has the best overall performance.



Model Averaging for Linear Regression

Finite Sample Performance

Simulation Results

Comments
É AC and Mallows’ C similar, MMAE better than SAC.
É SAC has lower risk than AC
É MMAE better than SBC in most cases.

Method Performs well for
SBC n and R2 small,  large
BC ‘small’ models
AC ‘large´ models

É SMDL better than MDL.

É SMDL emulates the best performance criterion.
É SMDL has the best overall performance.



Model Averaging for Linear Regression

Finite Sample Performance

Simulation Results

Comments
É AC and Mallows’ C similar, MMAE better than SAC.
É SAC has lower risk than AC
É MMAE better than SBC in most cases.

Method Performs well for
SBC n and R2 small,  large
BC ‘small’ models
AC ‘large´ models

É SMDL better than MDL.
É SMDL emulates the best performance criterion.

É SMDL has the best overall performance.



Model Averaging for Linear Regression

Finite Sample Performance

Simulation Results

Comments
É AC and Mallows’ C similar, MMAE better than SAC.
É SAC has lower risk than AC
É MMAE better than SBC in most cases.

Method Performs well for
SBC n and R2 small,  large
BC ‘small’ models
AC ‘large´ models

É SMDL better than MDL.
É SMDL emulates the best performance criterion.
É SMDL has the best overall performance.



Model Averaging for Linear Regression

References

References

Buckland, S. T., Burnham, K. P. and Augustin, N.H.
(1997), Model Selection: An Integral Part of
Inference. Biometrics, 53, 603–618.

Burnham & Anderson (2002), Model Selection and
Multi-model Inference, Springer

Draper, D. (1995), Assesment and Propagation of
Model Uncertainty. Journal of the Royal Statistical
Society B, 57, 45–70.

Hansen, B. E. (2007), Least Squares Model
Averaging. Econometrica, Forthcoming.

Hjort, L.H. and Claeskens, G. (2003), Frequentist
Model Average Estimators. Journal of the American
Statistical Association, 98, 879–899.



Model Averaging for Linear Regression

References

Liski, E. P. (2006), Normalized ML and the MDL
Principle for Variable Selection in Linear Regression
In: Festschrift for Tarmo Pukkila on His 60th
Birthday, 159-172.

Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997),
Bayesian Model Averaging for Regression Models.
Journal of the American Statistical Association, 92,
179–191.

Rissanen, J. (2000). MDL Denoising. IEEE Trans.
Information Theory, IT-46, pp. 2537–2543.

Rissanen, J. (2007), Information and Complexity in
Statistical Modeling, Springer


	Outline
	The Model
	Model Selection
	Class of Appr. Models
	Approximating Model m
	Model Average Estimator
	The Alg. Structure of MAE
	The Risk under Sq-Error Loss
	Selecting the Model Weights
	Finite Sample Performance
	References

