References

Abadir, K. M. \& Magnus, J. R. (2005). Matrix Algebra. Cambridge University Press. [vii, 53, 280, 303, 316, 389, 398, 410]
Afriat, S. N. (1957). Orthogonal and oblique projectors and the characteristics of pairs of vector spaces. Proceedings of the Cambridge Philosophical Society, 53, 800-816. [134]
Aigner, D. J. \& Balestra, P. (1988). Optimal experimental design for error components models. Econometrica, 56, 955-971. [331]
Aitken, A. C. (1935). On least squares and linear combination of observations. Proceedings of the Royal Society of Edinburgh, Section A, 55, 42-49. [43]
Aitken, A. C. (1939). Determinants and Matrices. Oliver \& Boyd. 2nd-9th editions, 1942-1956; 9th edition, reset \& reprinted, 1967. [291]
Alalouf, I. S. \& Styan, G. P. H. (1979a). Characterizations of estimability in the general linear model. The Annals of Statistics, 7, 194-200. [346]
Alalouf, I. S. \& Styan, G. P. H. (1979b). Estimability and testability in restricted linear models. Mathematische Operationsforschung und Statistik, Series Statistics, 10, 189201. [346]

Albert, A. (1969). Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM Journal on Applied Mathematics, 17, 434-440. [306]
Albert, A. (1972). Regression and the Moore-Penrose Pseudoinverse. Academic Press. [306]
Albert, A. (1973). The Gauss-Markov theorem for regression models with possibly singular covariances. SIAM Journal on Applied Mathematics, 24, 182-187. [43, 229, 325]
Alpargu, G., Drury, S. W. \& Styan, G. P. H. (1997). Some remarks on the Bloomfield-Watson-Knott Inequality and on some other inequalities related to the Kantorovich Inequality. In Proceedings of the Conference in Honor of Shayle R. Searle, August 910, 1996, Biometrics Unit, Cornell University, Ithaca, New York, pp. 125-143. [235, 425]
Alpargu, G. \& Styan, G. P. H. (2000). Some comments and a bibliography on the FruchtKantorovich and Wielandt inequalities. In Innovations in Multivariate Statistical Analysis: A Festschrift for Heinz Neudecker (R. D. H. Heijmans, D. S. G. Pollock \& A. Satorra, eds.), Kluwer, pp. 1-38. [235, 425]

Anderson, T. W. (1948). On the theory of testing serial correlation. Skandinavisk Aktuarietidskrift, 31, 88-116. [215]
Anderson, T. W. (1971). The Statistical Analysis of Time Series. Wiley. Reprinted as Wiley Classics Library Edition, 1994. [221]

Anderson, T. W. (1972). Efficient estimation of regression coefficients in time series. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1 (L. M. Le Cam, J. Neyman \& E. L. Scott, eds.), University of California Press, Berkeley, pp. 471-482. [221]
Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, Third Ed. Wiley. [vii, 19, 26, 132, 184, 195, 198, 213, 291, 366]
Anderson, T. W. \& Styan, G. P. H. (1982). Cochran's theorem, rank additivity and tripotent matrices. In Statistics and Probability: Essays in Honor of C. R. Rao (G. Kallianpur, P. R. Krishnaiah \& J. K. Ghosh, eds.), North-Holland, pp. 1-23. [352, 390]
Anderson, Jr., W. N. (1971). Shorted operators. SIAM Journal on Applied Mathematics, 20, 520-525. [313]
Anderson, Jr., W. N. \& Trapp, G. E. (1975). Shorted operators, II. SIAM Journal on Applied Mathematics, 28, 60-71. [313]
Andrews, D. W. K. \& Phillips, P. C. B. (1986). A simplified proof of a theorem on the difference of the Moore-Penrose inverses of two positive semidefinite matrices. Communications in Statistics: Theory and Methods, 15, 2973-2975. [312]
Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27, 17-21. [199, 200, 436]
Arav, M., Hall, F. J. \& Li, Z. (2008). A Cauchy-Schwarz inequality for triples of vectors. Mathematical Inequalities \& Applications, 11, 629-634. [307]
Arnold, B. C. \& Groeneveld, R. A. (1974). Bounds for deviations between sample and population statistics. Biometrika, 61, 387-389. [421]
Baksalary, J. K. (1984). Nonnegative definite and positive definite solutions to the matrix equation $A X A^{*}=B$. Linear and Multilinear Algebra, 16, 133-139. [265]
Baksalary, J. K. (1987). Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors. In Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila \& S. Puntanen, eds.), Dept. of Mathematical Sciences, University of Tampere, pp. 113-142. [156, 190]
Baksalary, J. K. (1988). Criteria for the equality between ordinary least squares and best linear unbiased estimators under certain linear models. The Canadian Journal of Statistics, 16, 97-102. [241]
Baksalary, J. K. (1990). Solution to Problem 89-7. [Let X, Y, and Z be random variables. If the correlations $\varrho(X, Y)$ and $\varrho(Y, Z)$ are known, what are the sharp lower and upper bounds for $\varrho(X, Z)$?]. The IMS Bulletin, 19, 213-214. [307]
Baksalary, J. K. (2004). An elementary development of the equation characterizing best linear unbiased estimators. Linear Algebra and its Applications, 388, 3-6. [218]
Baksalary, J. K., Baksalary, O. M. \& Szulc, T. (2004). Properties of Schur complements in partitioned idempotent matrices. Linear Algebra and its Applications, 379, 303318. [303]

Baksalary, J. K. \& van Eijnsbergen, A. C. (1988). A comparison of two criteria for ordinary-least-squares estimators to be best linear unbiased estimators. The American Statistician, 42, 205-208. [227]
Baksalary, J. K., Hauke, J., Liu, X. \& Liu, S. (2004). Relationships between partial orders of matrices and their powers. Linear Algebra and its Applications, 379, 277287. [316]

Baksalary, J. K. \& Kala, R. (1977). An extension of the rank criterion for the least squares estimator to be the best linear unbiased estimator. Journal of Statistical Planning and Inference, 1, 309-312. [221]
Baksalary, J. K. \& Kala, R. (1978a). A bound for the Euclidean norm of the difference between the least squares and the best linear unbiased estimators. The Annals of Statistics, 6, 1390-1393. [325]

Baksalary, J. K. \& Kala, R. (1978b). Relationships between some representations of the best linear unbiased estimator in the general Gauss-Markoff model. SIAM Journal on Applied Mathematics, 35, 515-520. [229]
Baksalary, J. K. \& Kala, R. (1979). Two relations between oblique and Λ-orthogonal projectors. Linear Algebra and its Applications, 24, 99-103. [156]
Baksalary, J. K. \& Kala, R. (1980). A new bound for the Euclidean norm of the difference between the least squares and the best linear unbiased estimators. The Annals of Statistics, 8, 679-681. [325]
Baksalary, J. K. \& Kala, R. (1981a). Linear transformations preserving best linear unbiased estimators in a general Gauss-Markoff model. The Annals of Statistics, 9, 913-916. [257]
Baksalary, J. K. \& Kala, R. (1981b). Simple least squares estimation versus best linear unbiased prediction. Journal of Statistical Planning and Inference, 5, 147-151. [249]
Baksalary, J. K. \& Kala, R. (1983a). On equalities between BLUEs, WLSEs, and SLSEs. The Canadian Journal of Statistics, 11, 119-123. [Corrigendum: (1984), 12, p. 240]. [149]
Baksalary, J. K. \& Kala, R. (1983b). Partial orderings between matrices one of which is of rank one. Bulletin of the Polish Academy of Sciences, Mathematics, 31, 5-7. [306]
Baksalary, J. K. \& Kala, R. (1986). Linear sufficiency with respect to a given vector of parametric functions. Journal of Statistical Planning and Inference, 14, 331-338. [258, 265, 266]
Baksalary, J. K., Kala, R. \& Kłaczyński, K. (1983). The matrix inequality $M \geq B^{*} M B$. Linear Algebra and its Applications, 54, 77-86. [316]
Baksalary, J. K., Liski, E. P. \& Trenkler, G. (1989). Mean square error matrix improvements and admissibility of linear estimators. Journal of Statistical Planning and Inference, 23, 313-325. [312]
Baksalary, J. K. \& Markiewicz, A. (1988). Admissible linear estimators in the general Gauss-Markov model. Journal of Statistical Planning and Inference, 19, 349-359. [260]
Baksalary, J. K. \& Markiewicz, A. (1989). A matrix inequality and admissibility of linear estimators with respect to the mean square error matrix criterion. Linear Algebra and its Applications, 112, 9-18. [260]
Baksalary, J. K. \& Markiewicz, A. (1990). Admissible linear estimators of an arbitrary vector of parametric functions in the general Gauss-Markov model. Journal of Statistical Planning and Inference, 26, 161-171. [260]
Baksalary, J. K., Markiewicz, A. \& Rao, C. R. (1995). Admissible linear estimation in the general Gauss-Markov model with respect to an arbitrary quadratic risk function. Journal of Statistical Planning and Inference, 44, 341-347. [260]
Baksalary, J. K. \& Mathew, T. (1986). Linear sufficiency and completeness in an incorrectly specified general Gauss-Markov model. Sankhyā, Ser. A, 48, 169-180. [271]
Baksalary, J. K. \& Mathew, T. (1990). Rank invariance criterion and its application to the unified theory of least squares. Linear Algebra and its Applications, 127, 393-401. [286, 288]
Baksalary, J. K., Nurhonen, M. \& Puntanen, S. (1992). Effect of correlations and unequal variances in testing for outliers in linear regression. Scandinavian Journal of Statistics, 19, 91-95. [342]
Baksalary, J. K. \& Pukelsheim, F. (1991). On the Löwner, minus, and star partial orderings of nonnegative definite matrices and their squares. Linear Algebra and its Applications, 151, 135-141. [316]
Baksalary, J. K., Pukelsheim, F. \& Styan, G. P. H. (1989). Some properties of matrix partial orderings. Linear Algebra and its Applications, 119, 57-85. [316]
Baksalary, J. K. \& Puntanen, S. (1989). Weighted-least-squares estimation in the general Gauss-Markov model. In Statistical Data Analysis and Inference (Y. Dodge, ed.), North-Holland, pp. 355-368. [44, 149, 286, 287, 288, 289]

Baksalary, J. K. \& Puntanen, S. (1990a). Characterizations of the best linear unbiased estimator in the general Gauss-Markov model with the use of matrix partial orderings. Linear Algebra and its Applications, 127, 363-370. [221]
Baksalary, J. K. \& Puntanen, S. (1990b). A complete solution to the problem of robustness of Grubbs's test. The Canadian Journal of Statistics, 18, 285-287. [342]
Baksalary, J. K. \& Puntanen, S. (1991). Generalized matrix versions of the CauchySchwarz and Kantorovich inequalities. Aequationes Mathematicae, 41, 103-110. [238, 423, 425]
Baksalary, J. K., Puntanen, S. \& Styan, G. P. H. (1990a). On T. W. Anderson's contributions to solving the problem of when the ordinary least-squares estimator is best linear unbiased and to characterizing rank additivity of matrices. In The Collected Papers of T. W. Anderson: 1943-1985 (G. P. H. Styan, ed.), Wiley, pp. 1579-1591. [216]
Baksalary, J. K., Puntanen, S. \& Styan, G. P. H. (1990b). A property of the dispersion matrix of the best linear unbiased estimator in the general Gauss-Markov model. Sankhyā, Ser. A, 52, 279-296. [149, 261, 286, 287, 323]
Baksalary, J. K., Puntanen, S. \& Yanai, H. (1992). Canonical correlations associated with symmetric reflexive generalized inverses of the dispersion matrix. Linear Algebra and its Applications, 176, 61-74. [295, 345, 386, 387]
Baksalary, J. K., Rao, C. R. \& Markiewicz, A. (1992). A study of the influence of the "natural restrictions" on estimation problems in the singular Gauss-Markov model. Journal of Statistical Planning and Inference, 31, 335-351. [39, 125]
Baksalary, J. K., Schipp, B. \& Trenkler, G. (1992). Some further results on Hermitianmatrix inequalities. Linear Algebra and its Applications, 160, 119-129. [306]
Baksalary, J. K. \& Styan, G. P. H. (2002). Generalized inverses of partitioned matrices in Banachiewicz-Schur form. Linear Algebra and its Applications, 354, 41-47. [295]
Baksalary, O. M. \& Styan, G. P. H. (2007). Some comments on the life and publications of Jerzy K. Baksalary (1944-2005). Linear Algebra and its Applications, 410, 3-53. [ix]
Baksalary, O. M., Styan, G. P. H. \& Trenkler, G. (2009). On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra and its Applications, 430, 2798-2812. [112]
Baksalary, O. M. \& Trenkler, G. (2009a). On angles and distances between subspaces. Linear Algebra and its Applications, 431, 2243-2260. [134]
Baksalary, O. M. \& Trenkler, G. (2009b). A projector oriented approach to the best linear unbiased estimator. Statistical Papers, 50, 721-733. [156, 218]
Balestra, P. (1970). On the efficiency of ordinary least-squares in regression models. Journal of the American Statistical Association, 65, 1330-1337. [227]
Baltagi, B. H. (1989). Applications of a necessary and sufficient condition for OLS to be BLUE. Statistics \& Probability Letters, 8, 457-461. [241]
Baltagi, B. H. (2000). Further evidence on the efficiency of least squares in regression models. In Panel Data Econometrics: Future Directions (J. Krisnakumar \& E. Ronchetti, eds.), Elsevier, pp. 279-291. [163]

Baltagi, B. H. (2008). Econometrics, Fourth Ed. Springer. [163]
Banachiewicz, T. (1937a). Sur l'inverse d'un cracovien et une solution générale d'un système d'équations linéaires. Comptes Rendus Mensuels des Séances de la Classe des Sciences Mathématiques et Naturelles de l'Académie Polonaise des Sciences et des Lettres, no. 4, 3-4. [295]
Banachiewicz, T. (1937b). Zur Berechnung der Determinanten, wie auch der Inversen, und zur darauf basierten Auflösung der Systeme lineare Gleichungen. Acta Astronomica, Série C, 3, 41-67. [295]
Bapat, R. B. (2000). Linear Algebra and Linear Models, Second Ed. Springer. [vii, 52, $283,348,352,360,386,389]$
Barnard, G. A. (1963). The logic of least squares. Journal of the Royal Statistical Society, Ser. B, 25, 124-127. [257]

Bartmann, F. C. \& Bloomfield, P. (1981). Inefficiency and correlation. Biometrika, 68, 67-71. [244]
Bekker, P. A. \& Neudecker, H. (1989). Albert's theorem applied to problems of efficiency and MSE superiority. Statistica Neerlandica, 43, 157-167. [306]
Belsley, D. A. (1991). Conditioning Diagnostics: Collinearity and Weak Data in Regression. Wiley. $[20,93,100,162,178,412]$
Belsley, D. A., Kuh, E. \& Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley. [181]
Ben-Israel, A. (1992). A volume associated with $m \times n$ matrices. Linear Algebra and its Applications, 167, 87-111. [132]
Ben-Israel, A. (2002). The Moore of the Moore-Penrose inverse. Electronic Journal of Linear Algebra, 9, 150-157. [108]
Ben-Israel, A. \& Greville, T. N. E. (2003). Generalized Inverses: Theory and Applications, Second Ed. Springer. [vii, 5, 10, 13, 107, 108, 111, 132, 134, 156, 268, 355, 401, 407]
Ben-Israel, A. \& Levin, Y. (2006). The geometry of linear separability in data sets. Linear Algebra and its Applications, 416, 75-87. [374, 377]
Benson, W. H. \& Jacoby, O. (1976). New Recreations with Magic Squares. Dover. [55]
Benzécri, J.-P. (1973). L'Analyse des Données: L'Analyse des Correspondances. Dunod. [14]
Bernstein, D. S. (2009). Matrix Mathematics: Theory, Facts, and Formulas, Second Ed. Princeton University Press. [vii]
Bertrand, P. V. \& Holder, R. L. (1988). A quirk in multiple regression: the whole regression can be greater than the sum of its parts. The Statistician, 37, 371-374. [309]
Bhimasankaram, P. (1988). Rank factorization of a matrix and its applications. The Mathematical Scientist, 13, 4-14. [350]
Bhimasankaram, P. \& Saha Ray, R. (1997). On a partitioned linear model and some associated reduced models. Linear Algebra and its Applications, 264, 329-339. [323, 331]
Bhimasankaram, P. \& Sengupta, D. (1996). The linear zero functions approach to linear models. Sankhyā, Ser. B, 58, 338-351. [331]
Bhimasankaram, P., Shah, K. R. \& Saha Ray, R. (1998). On a singular partitioned linear model and some associated reduced models. Journal of Combinatorics, Information 83 System Sciences, 23, 415-421. [331]
Blom, G. (1976). When is the arithmetic mean BLUE? The American Statistician, 30, 40-42. [224]
Bloomfield, P. \& Watson, G. S. (1975). The inefficiency of least squares. Biometrika, 62, 121-128. [238, 239, 240]
Bock, R. D. (2007). Rethinking Thurstone. In Factor Analysis at 100: Historical Developments and Future Directions (R. Cudeck \& R. C. MacCallum, eds.), Lawrence Erlbaum, pp. 35-45. [viii]
Bouniakowsky, V. Y. (1859). Sur quelques inégalités concernant les intégrales ordinaires et les intégrales aux différences finies. Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg, Septième Série, 1, 1-18. [415]
Bring, J. (1996). Geometric approach to compare variables in a regression model. The American Statistician, 50, 57-62. [183]
Bryant, P. (1984). Geometry, statistics, probability: variations on a common theme. The American Statistician, 38, 38-48. [156, 183, 213]
Canner, P. L. (1969). Some curious results using minimum variance linear unbiased estimators. The American Statistician, 23, 39-40. [263]
Carlson, D. (1986). What are Schur complements, anyway? Linear Algebra and its Applications, 74, 257-275. [293]
Casella, G. (2008). Statistical Design. Springer. [vii, 188]

Cauchy, A.-L. (1821). Cours d'Analyse de l'École Royale Polytechnique, Première Partie: Analyse Algébrique. Debure Frères, Paris. [Cf. pp. 360-377; reprinted in Euvres Complètes d'Augustin Cauchy, Seconde Série: Vol. 4, Gauthier-Villars, Paris, 1897]. [415]
Chatterjee, S. \& Firat, A. (2007). Generating data with identical statistics but dissimilar graphics. The American Statistician, 61, 248-254. [199]
Chatterjee, S. \& Hadi, A. S. (1986). Influential observations, high leverage points, and outliers in linear regression (with discussion). Statistical Science, 1, 379-416. [158]
Chatterjee, S. \& Hadi, A. S. (1988). Sensitivity Analysis in Linear Regression. Wiley. [158]
Chatterjee, S. \& Hadi, A. S. (2006). Regression Analysis by Example, Fourth Ed. Wiley. [ix]
Cheng, T.-k. (1984). Some Chinese Islamic "magic square" porcelain. In Studies in Chinese Ceramics (T.-k. Cheng, ed.), The Chinese University Press, Hong Kong, pp. 133-143. [First published in Journal of Asian Art, vol. 1, pp. 146-159.]. [55]
Chipman, J. S. (1964). On least squares with insufficient observations. Journal of the American Statistical Association, 59, 1078-1111. [423]
Chipman, J. S. (1968). Specification problems in regression analysis. In Proceedings of the Symposium on Theory and Application of Generalized Inverses of Matrices (T. L. Boullion \& P. L. Odell, eds.), Texas Tech. Press, pp. 114-176. [315]
Chipman, J. S. (1976). Estimation and aggregation in econometrics: an application of the theory of generalized inverses. In Generalized Inverses and Applications (M. Z. Nashed, ed.), Academic Press, pp. 549-769. [315]
Chipman, J. S. (1979). Efficiency of least squares estimation of linear trend when residuals are autocorrelated. Econometrica, 47, 115-128. [241]
Chipman, J. S. (1997). "Proofs" and proofs of the Eckart-Young theorem (with an Appendix by Heinz Neudecker). In Stochastic Processes and Functional Analysis. In Celebration of M. M. Rao's 65th Birthday (J. A. Goldstein, N. E. Gretsky \& J. J. Uhl Jr., eds.), Dekker, pp. 71-83. [401]
Chipman, J. S. (1998). The contributions of Ragnar Frisch to economics and econometrics. In Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium (Oslo, 1995) (S. Strøm, ed.), Cambridge University Press, pp. 58-108. [331]
Chipman, J. S. \& Rao, M. M. (1964). Projections, generalized inverses and quadratic forms. Journal of Mathematical Analysis and Applications, 9, 1-11. [156]
Christensen, R. (1990). Comment on Puntanen and Styan (1989) (Letter to the Editor). The American Statistician, 44, 191-192. [39, 125]
Christensen, R. (2001). Advanced Linear Modeling: Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization, Second Ed. Springer. [vii, 203, 206, 230, 231, 232, 234]
Christensen, R. (2002). Plane Answers to Complex Questions: The Theory of Linear Models, Third Ed. Springer. [vii, 195, 212, 247, 255, 256]
Christensen, R., Pearson, L. M. \& Johnson, W. (1992). Case-deletion diagnostics for mixed models. Technometrics, 34, 38-45. [338]
Chu, K. L. (2004). Inequalities and equalities associated with ordinary least squares and generalized least squares in partitioned linear models. Ph.D. Thesis, Dept. of Mathematics \& Statistics, McGill University, Montréal. [241]
Chu, K. L., Drury, S. W., Styan, G. P. H. \& Trenkler, G. (2010). Magic generalized inverses. Report 2010-02, Dept. of Mathematics \& Statistics, McGill University, Montréal. [In preparation]. [54, 355]
Chu, K. L., Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2004). On decomposing the Watson efficiency of ordinary least squares in a partitioned weakly singular linear model. Sankhyā, 66, 634-651. [236, 333]

Chu, K. L., Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2005). Some further results concerning the decomposition of the Watson efficiency in partitioned linear models. Sankhyā, 67, 74-89. [333, 384]
Chu, K. L., Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2007). The efficiency factorization multiplier for the Watson efficiency in partitioned linear models: some examples and a literature review. Journal of Statistical Planning and Inference, 137, 3336-3351. [241, 263, 333]
Chu, K. L., Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2008). Inequalities and equalities for the generalized efficiency function in orthogonally partitioned linear models. In Inequalities and Applications (T. M. Rassias \& D. Andrica, eds.), Cluj University Press, pp. 13-69. [333]
Chu, K. L., Puntanen, S. \& Styan, G. P. H. (2009). Some comments on philatelic Latin squares from Pakistan. The Pakistan Journal of Statistics, 25, 427-471. [68]
Chu, K. L., Puntanen, S. \& Styan, G. P. H. (2010). Rank, eigenvalues and MoorePenrose inverse of a special symmetric matrix associated with postage stamps: a new problem proposed. Statistical Papers, 51, submitted. [390]
Chu, K. L., Puntanen, S. \& Styan, G. P. H. (2011). Solution to Problem 1/SP09 "Inverse and determinant of a special symmetric matrix" (Problem proposed by H. Neudecker, G. Trenkler, and S. Liu). Statistical Papers, 52, 258-260. [263]

Chu, M. T., Funderlic, R. E. \& Golub, G. H. (1995). A rank-one reduction formula and its applications to matrix factorizations. SIAM Review, 37, 512-530. [304]
Colbourn, C. J. \& Dinitz, J. H., eds. (2007). Handbook of Combinatorial Designs, Second Ed. Chapman \& Hall/CRC. [vii]
Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18. [Additional correspondence, pp. 348-350]. [181]
Cook, R. D. (1996). Personal communication. (S. P.). [206]
Cook, R. D. (1998). Regression Graphics: Ideas for Studying Regression through Graphics. Wiley. [199]
Cook, R. D. (2007). Fisher lecture: Dimension reduction in regression (with discussion). Statistical Science, 22, 1-26. [199]
Cook, R. D. \& Forzani, L. (2008). Principal fitted components for dimension reduction in regression. Statistical Science, 23, 485-501. [199]
Cook, R. D., Li, B. \& Chiaramonte, F. (2007). Dimension reduction in regression without matrix inversion. Biometrika, 94, 569-584. [199]
Cook, R. D. \& Weisberg, S. (1999). Applied Regression Including Computing and Graphics. Wiley. [199]
Cottle, R. W. (1974). Manifestations of the Schur complement. Linear Algebra and its Applications, 8, 189-211. See also Rendiconti del Seminario Matematico e Fisico di Milano, 45 (1975), 31-40. [293]
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334. [422]
Cuadras, C. M. (1993). Interpreting an inequality in multiple regression. The American Statistician, 47, 256-258. [309]
Cuadras, C. M. (1995). Increasing the correlations with the response variable may not increase the coefficient of determination: a PCA interpretation. In Multivariate Statistics and Matrices in Statistics: Proceedings of the 5th Tartu Conference, TartuPühajärve, Estonia, 23-28 May 1994 (E.-M. Tiit, T. Kollo \& H. Niemi, eds.), TEV \& VSP, pp. 75-83. [309]
Das Gupta, S. (1971). Nonsingularity of the sample covariance matrix. Sankhyā, Ser. A, 33, 475-478. [129]
Das Gupta, S. (1993). The evolution of the D^{2}-statistic of Mahalanobis. Sankhy \bar{a}, Ser. A, 55, 442-459. [25]
Das Gupta, S. (1997). Personal communication. (S. P.). [208]

Davidson, R. \& MacKinnon, J. G. (1993). Estimation and Inference in Econometrics. Oxford University Press. [163]
Davidson, R. \& MacKinnon, J. G. (2004). Econometric Theory and Methods. Oxford University Press. [163, 251]
DeGroot, M. H. (1986). A conversation with T. W. Anderson. Statistical Science, 1, 97-105. [215]
Demidenko, E. (2004). Mixed Models: Theory and Applications. Wiley. [256]
Dénes, J. \& Keedwell, A. D. (1974). Latin Squares and their Applications. Academic Press. [68]
Dey, A., Hande, S. \& Tiku, M. L. (1994). Statistical proofs of some matrix results. Linear and Multilinear Algebra, 38, 109-116. [viii, 306]
Diderrich, G. T. (1985). The Kalman filter from the perspective of Goldberger-Theil estimators. The American Statistician, 39, 193-198. [265]
Draper, N. R. \& Pukelsheim, F. (1996). An overview of design of experiments. Statistical Papers, 37, 1-32. [vii]
Draper, N. R. \& Smith, H. (1998). Applied Regression Analysis, Third Ed. Wiley. [ix]
Driscoll, M. F. \& Gundberg, Jr., W. R. (1986). A history of the development of Craig's theorem. The American Statistician, 40, 65-70. [19]
Drury, S. W., Liu, S., Lu, C.-Y., Puntanen, S. \& Styan, G. P. H. (2002). Some comments on several matrix inequalities with applications to canonical correlations: historical background and recent developments. Sankhyā, Ser. A, 64, 453-507. [136, 144, 238, 241, 386, 424, 425, 426]
Drygas, H. (1970). The Coordinate-Free Approach to Gauss-Markov Estimation. Springer. [41, 221, 325]
Drygas, H. (1983). Sufficiency and completeness in the general Gauss-Markov model. Sankhyā, Ser. A, 45, 88-98. [257, 258]
Drygas, H. \& Zmyślony, R. (1988). On admissible estimation for parametric functions in linear models. Statistical Papers, 113-123. [260]
Dumais, M. F. (2000). The Craig-Sakamoto theorem. MSc Thesis, Dept. of Mathematics \& Statistics, McGill University, Montréal. [19]
Duncan, W. J. (1944). Some devices for the solution of large sets of simultaneous linear equations (with an appendix on the reciprocation of partitioned matrices). The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Seventh Series, 35, 660-670. [301]
Eaton, M. L. (1970). Gauss-Markov estimation for multivariate linear models: A coordinate free approach. The Annals of Mathematical Statistics, 41, 528-538. [221]
Eaton, M. L. (1976). A maximization problem and its application to canonical correlation. Journal of Multivariate Analysis, 6, 422-425. [419]
Eaton, M. L. (1978). A note on the Gauss-Markov Theorem. Annals of the Institute of Statistical Mathematics, 30, 181-184. [221]
Eaton, M. L. (1983). Multivariate Statistics: A Vector Space Approach. Wiley. Reprinted: IMS Lecture Notes - Monograph Series, Vol. 53, 2007. [221]
Eckart, C. \& Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211-218. [400, 401]
Elian, S. N. (2000). Simple forms of the best linear unbiased predictor in the general linear regression model. The American Statistician, 54, 25-28. [249]
Eubank, R. L. \& Webster, J. T. (1985). The singular-value decomposition as a tool for solving estimability problems. The American Statistician, 39, 64-66. [393]
Farebrother, R. W. (1976). Further results on the mean square error of ridge regression. Journal of the Royal Statistical Society, Ser. B, 38, 248-250. [306]
Farebrother, R. W. (1990). Least squares and the Gauss-Markov theorem [comment on Puntanen and Styan (1989)] (Letter to the Editor). The American Statistician, 44, 191. [39, 125]

Farebrother, R. W. (1996). Some early statistical contributions to the theory and practice of linear algebra. Linear Algebra and its Applications, 237/238, 205-224. [viii]
Farebrother, R. W. (1997). A. C. Aitken and the consolidation of matrix theory. Linear Algebra and its Applications, 264, 3-12. [viii]
Farebrother, R. W. (2000). What is a Matrician? Image: The Bulletin of the ILAS, 25, 32. [vi]

Farebrother, R. W. (2009). Further results on Samuelson's inequality. In Statistical Inference, Econometric Analysis and Matrix Algebra: Festschrift in Honour of Götz Trenkler (B. Schipp \& W. Krämer, eds.), Physica-Verlag, pp. 311-316. [421]
Farebrother, R. W., Jensen, S. T. \& Styan, G. P. H. (2000). Charles Lutwidge Dodgson: a biographical and philatelic note. Image: The Bulletin of the ILAS, 25, 22-23. [356]
Farebrother, R. W., Styan, G. P. H. \& Tee, G. J. (2003). Gottfried Wilhelm von Leibniz: 1646-1716. Image: The Bulletin of the ILAS, 30, 13-16. [356]
Fiebig, D. G., Bartels, R. \& Krämer, W. (1996). The Frisch-Waugh theorem and generalised least squares. Econometric Reviews, 15, 431-443. [331]
Flury, B. (1997). A First Course in Multivariate Statistics. Springer. [x, 198, 201, 372, 373]
Flury, B. \& Riedwyl, H. (1986). Standard distance in univariate and multivariate analysis. The American Statistician, 40, 249-251. [372]
Freund, R. J. (1988). When is $R^{2}>r_{y 1}^{2}+r_{y 2}^{2}$ (revisited). The American Statistician, 42, 89-90. [309]
Frisch, R. \& Waugh, F. V. (1933). Partial time regressions as compared with individual trends. Econometrica, 1, 387-401. [163, 331]
Frucht, R. (1943). Sobre algunas desigualdades: Observación relativa a la solución del problema N° 21, indicada por el Ing. Ernesto M. Saleme (1942). Mathematicae Notce, Boletin del Instituto de Matemática "Beppo Levi", 3, 41-46. English Translation: Appendix A of Watson et al., 1997. [418]
Fujikoshi, Y., Ulyanov, V. V. \& Shimizu, R. (2010). Multivariate Statistics: HighDimensional and Large-Sample Approximations. Wiley. [vii, 411, 412]
Galántai, A. (2004). Projectors and Projection Methods. Kluwer. [156]
Galántai, A. (2008). Subspaces, angles and pairs of orthogonal projections. Linear and Multilinear Algebra, 56, 227-260. [134, 156]
Galton, F. (1886). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute, 15, 246-263. [201, 436]
Gantmacher, F. R. (1959). The Theory of Matrices, Volume 2. Chelsea. Reprint by AMS Chelsea Publishing, 2000. [375]
Gelman, A. (2005). Analysis of variance - why it is more important than ever (with discussion). The Annals of Statistics, 33, 1-53. [256]
Gentle, J. E. (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer. [vii]
Gnot, S., Klonecki, W. \& Zmyślony, R. (1980). Best unbiased linear estimation, a coordinate free approach. Probability and Mathematical Statistics, 1, 1-13. [221]
Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear regression model. Journal of the American Statistical Association, 57, 369-375. [246]
Golub, G. H. \& Styan, G. P. H. (1973). Numerical computations for univariate linear models. Journal of Statistical Computation and Simulation, 2, 253-274. [390]
Golub, G. H. \& Van Loan, C. F. (1996). Matrix Computations, Third Ed. Johns Hopkins University Press. [375, 390, 392, 393]
Gourieroux, C. \& Monfort, A. (1980). Sufficient linear structures: econometric applications. Econometrica, 48, 1083-1097. [266, 331]
Graham, A. (1981). Kronecker Products and Matrix Calculus: with Applications. Ellis Horwood Ltd. [vi]
Grala, J., Markiewicz, A. \& Styan, G. P. H. (2000). Tadeusz Banachiewicz: 1882-1954. Image: The Bulletin of the ILAS, 25, 24. [290, 295]

Graybill, F. A. (2002). Matrices with Applications in Statistics, Second Ed. Cengage Learning/Brooks/Cole. [vii]
Green, B. F. (1952). The orthogonal approximation of an oblique structure in factor analysis. Psychometrika, 17, 429-440. [401]
Greenacre, M. (2007). Correspondence Analysis in Practice, Second Ed. Chapman \& Hall/CRC. [vi, 50, 413]
Groß, J. (1997a). A note on equality of MINQUE and simple estimator in the general Gauss-Markov model. Statistics \& Probability Letters, 35, 335-339. [340]
Groß, J. (1997b). Special generalized inverse matrices connected with the theory of unified least squares. Linear Algebra and its Applications, 264, 325-327. [346]
Groß, J. (2003). Linear Regression. Springer. [vii]
Groß, J. (2004). The general Gauss-Markov model with possibly singular dispersion matrix. Statistical Papers, 45, 311-336. [218]
Groß, J. \& Puntanen, S. (2000a). Estimation under a general partitioned linear model. Linear Algebra and its Applications, 321, 131-144. [163, 328, 331, 345]
Groß, J. \& Puntanen, S. (2000b). Remark on pseudo-generalized least squares. Econometric Reviews, 19, 131-133. [331]
Groß, J. \& Puntanen, S. (2005). Extensions of the Frisch-Waugh-Lovell theorem. Discussiones Mathematicae - Probability and Statistics, 25, 39-49. [331]
Groß, J., Puntanen, S. \& Trenkler, G. (1996). On the equality of OLSE and BLUE in a linear model with partitioned data. In Proceedings of the A. C. Aitken Centenary Conference (Dunedin, August 1995) (L. Kavalieris, F. C. Lam, L. A. Roberts \& J. A. Shanks, eds.), University of Otago Press, pp. 143-152. [265]
Groß, J. \& Trenkler, G. (1997). When do linear transforms of ordinary least squares and Gauss-Markov estimator coincide? Sankhyā, Ser. A, 59, 175-178. [265]
Groß, J. \& Trenkler, G. (1998). On the product of oblique projectors. Linear and Multilinear Algebra, 44, 247-259. [156, 190]
Groß, J., Trenkler, G. \& Troschke, S.-O. (1997). Problem no. 10519. The American Mathematical Monthly, 103, 347. [351]
Groß, J., Trenkler, G. \& Werner, H. J. (2001). The equality of linear transforms of the ordinary least squares estimator and the best linear unbiased estimator. Sankhy \bar{a}, Ser. A, 63, 118-127. [222, 265]
Gustafson, K. (1972). Antieigenvalue inequalities in operator theory. In Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, 1969; Dedicated to the Memory of Theodore S. Motzkin) (O. Shisha, ed.), Academic Press, pp. 115-119. [237]
Gustafson, K. (1994). Antieigenvalues. Linear Algebra and its Applications, 208/209, 437-454. [237]
Gustafson, K. (1999). The geometrical meaning of the Kantorovich-Wielandt inequalities. Linear Algebra and its Applications, 296, 143-151. [237, 419]
Gustafson, K. (2000). An extended operator trigonometry. Linear Algebra and its Applications, 319, 117-135. [237]
Gustafson, K. (2002). Operator trigonometry of statistics and econometrics. Linear Algebra and its Applications, 354, 141-158. [237]
Gustafson, K. (2005). The geometry of statistical efficiency. In Proceedings of the 14 th International Workshop on Matrices and Statistics, vol. 8 of Research Letters in the Information and Mathematical Sciences (P. S. P. Cowpertwait, ed.), Massey University, pp. 105-121. [237]
Gustafson, K. (2006). The trigonometry of matrix statistics. International Statistical Review, 74, 187-202. [237]
Gustafson, K. (2007). The geometry of statistical efficiency and matrix statistics. Journal of Applied Mathematics and Decision Sciences, 2007, doi:10.1155/2007/94515. [237]
Gustafson, K. (2011). Operator geometry in statistics. In The Oxford Handbook of Functional Data Analysis (F. Ferraty \& Y. Romain, eds.), Oxford University Press, pp. 355-382. [237]

Gustafson, K. \& Rao, D. K. M. (1997). Numerical Range: The Field of Values of Linear Operators and Matrices. Springer. [237]
Gustafson, K. \& Styan, G. P. H. (2009). Superstochastic matrices and magic Markov chains. Linear Algebra and its Applications, 430, 2705-2715. [224]
Guttman, L. (1944). General theory and methods of matric factoring. Psychometrika, 9, 1-16. [304]
Guttman, L. (1946). Enlargement methods for computing the inverse matrix. The Annals of Mathematical Statistics, 17, 336-343. [299, 304]
Guttman, L. (1952). Multiple group methods for common-factor analysis: their basis, computation and interpretation. Psychometrika, 17, 209-222. [304]
Guttman, L. (1957). A necessary and sufficient formula for matric factoring. Psychometrika, 22, 79-81. [304]
Haberman, S. J. (1975). How much do Gauss-Markov and least square estimates differ? A coordinate-free approach. The Annals of Statistics, 3, 982-990. [325]
Hadi, A. S. (1996). Matrix Algebra as a Tool. Duxbury Press. [vii]
Hägele, G. \& Pukelsheim, F. (2001). Llull's writings on electoral systems. Studia Lulliana, 41, 3-38. [67]
Hager, W. W. (1989). Updating the inverse of a matrix. SIAM Review, 31, 221-239. [301]
Hall, F. J. \& Meyer, C. D. (1975). Generalized inverses of the fundamental bordered matrix used in linear estimation. Sankhy \bar{a}, Ser. A, 37, 428-438. [Corrigendum (1978), 40, p. 399]. [264]
Halmos, P. R. (1951). Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company. [156]
Halmos, P. R. (1958). Finite-Dimensional Vector Spaces, Second Ed. Van Nostrand. Reprinted by Springer, 1974. [156]
Hamilton, D. (1987). Sometimes $R^{2}>r_{y x_{1}}^{2}+r_{y x_{2}}^{2}$. Correlated variables are not always redundant. The American Statistician, 41, 129-132. [309]
Härdle, W. \& Hlávka, Z. (2007). Multivariate Statistics: Exercises and Solutions. Springer. [vii]
Hartwig, R. E. (1980). How to partially order regular elements. Mathematica Japonica, $25,1-13$. $[315,316]$
Hartwig, R. E. \& Spindelböck, K. (1984). Matrices for which A^{*} and A^{\dagger} commute. Linear and Multilinear Algebra, 14, 241-256. [112]
Hartwig, R. E. \& Styan, G. P. H. (1986). On some characterizations of the "star" partial ordering for matrices and rank subtractivity. Linear Algebra and its Applications, 82, 145-161. [316]
Harville, D. A. (1976). Extension of the Gauss-Markov theorem to include the estimation of random effects. The Annals of Statistics, 4, 384-395. [273]
Harville, D. A. (1979). Some useful representations for constrained mixed-model estimation. Journal of the American Statistical Association, 74, 200-206. [273]
Harville, D. A. (1990a). BLUP (best linear unbiased prediction) and beyond. In Advances in Statistical Methods for Genetic Improvement of Livestock (D. Gianola \& G. Hammond, eds.), Springer, pp. 239-276. [256]

Harville, D. A. (1990b). Comment on Puntanen and Styan (1989) (Letter to the Editor). The American Statistician, 44, 192. [39, 125]
Harville, D. A. (1997). Matrix Algebra From a Statistician's Perspective. Springer. [vii, $53,87,89,280,286,288,340,358,360,398,401]$
Harville, D. A. (2001). Matrix Algebra: Exercises and Solutions. Springer. [vii]
Haslett, S. J. (1996). Updating linear models with dependent errors to include additional data and/or parameters. Linear Algebra and its Applications, 237/238, 329-349. [337, 338]

Haslett, S. J. \& Govindaraju, K. (2009). Cloning data: generating datasets with exactly the same multiple linear regression fit. Australian $\& \delta$ New Zealand Journal of Statistics, 51, 499-503. [199]
Haslett, S. J. \& Puntanen, S. (2010a). Effect of adding regressors on the equality of the BLUEs under two linear models. Journal of Statistical Planning and Inference, 140, 104-110. [333, 337]
Haslett, S. J. \& Puntanen, S. (2010b). Equality of BLUEs or BLUPs under two linear models using stochastic restrictions. Statistical Papers, 51, 465-475. [256, 273, 275, 277]
Haslett, S. J. \& Puntanen, S. (2010c). A note on the equality of the BLUPs for new observations under two linear models. Acta et Commentationes Universitatis Tartuensis de Mathematica, 14, 27-33. [279, 280]
Haslett, S. J. \& Puntanen, S. (2010d). On the equality of the BLUPs under two linear mixed models. Metrika, available online. [256, 278, 279]
Hauke, J., Markiewicz, A. \& Puntanen, S. (2011). Comparing the BLUEs under two linear models. Communications in Statistics: Theory and Methods, 40, in press. [89, 266]
Hauke, J. \& Pomianowska, J. (1987). Correlation relations in the light of the nonnegative definiteness of a partitioned matrix (in Polish). Przeglad Statystyczny, 34, 219-224. [307]
Hayes, K. \& Haslett, J. (1999). Simplifying general least squares. The American Statistician, 53, 376-381. [256, 338]
Haynsworth, E. V. (1968a). Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra and its Applications, 1, 73-81. [293, 294]
Haynsworth, E. V. (1968b). On the Schur complement. Basle Mathematical Notes, \#BMN 20, 17 pages. [293, 294]
Healy, M. J. R. (2000). Matrices for Statistics, Second Ed. Oxford University Press. [vii]
Henderson, C. R. (1950). Estimation of genetic parameters. The Annals of Mathematical Statistics, 21, 309-310. [255, 273]
Henderson, C. R. (1963). Selection index and expected genetic advance. In Statistical Genetics and Plant Breeding, National Academy of Sciences - National Research Council Publication No. 982, pp. 141-163. [255, 273]
Henderson, C. R., Kempthorne, O., Searle, S. R. \& von Krosigk, C. M. (1959). The estimation of environmental and genetic trends from records subject to culling. Biometrics, 15, 192-218. [255]
Henderson, H. V. \& Searle, S. R. (1979). Vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics. The Canadian Journal of Statistics, 7, 65-81. [53]
Henderson, H. V. \& Searle, S. R. (1981a). On deriving the inverse of a sum of matrices. SIAM Review, 23, 53-60. [255, 293, 301]
Henderson, H. V. \& Searle, S. R. (1981b). The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear and Multilinear Algebra, 9, 271-288. [53]
Herr, D. G. (1980). On the history of the use of geometry in the general linear model. The American Statistician, 34, 43-47. [183]
Herzberg, A. M. \& Aleong, J. (1985). Further conditions on the equivalence of ordinary least squares and weighted least squares estimators with examples. In Contributions to Probability and Statistics in Honour of Gunnar Blom (J. Lanke \& G. Lindgren, eds.), University of Lund, pp. 127-142. [241]
Hoaglin, D. C. \& Welsch, R. E. (1978). The hat matrix in regression and ANOVA. The American Statistician, 32, 17-22. [Corrigendum: 32 (1978), p. 146]. [158]
Hogben, L., ed. (2007). Handbook of Linear Algebra. Chapman \& Hall/CRC. Associate editors: Richard Brualdi, Anne Greenbaum and Roy Mathias. [vii]
Hogg, R. V. \& Craig, A. T. (1958). On the decomposition of certain χ^{2} variables. The Annals of Mathematical Statistics, 29, 608-610. [355]
de Hoog, F. R., Speed, T. P. \& Williams, E. R. (1990). A matrix version of the Wielandt inequality and its applications to statistics. Linear Algebra and its Applications, 127, 449-456. [323]
Horn, R. A. (1990). The Hadamard product. In Matrix Theory and Applications (C. R. Johnson, ed.), American Mathematical Society, pp. 87-169. [vi]
Horn, R. A. \& Johnson, C. R. (1990). Matrix Analysis. Cambridge University Press. Corrected reprint of the 1985 original. [52, 358, 393]
Horn, R. A. \& Olkin, I. (1996). When does $A^{*} A=B^{*} B$ and why does one want to know? The American Mathematical Monthly, 103, 470-482. [392, 393, 397]
Hotelling, H. (1933). Analysis of a complex statistical variables into principal components. Journal of Educational Psychology, 24, 417-441, 498-520. [206]
Hotelling, H. (1934). Open letter (Reply to Horace Secrist). Journal of the American Statistical Association, 29, 198-199. [200]
Householder, A. S. \& Young, G. (1938). Matrix approximation and latent roots. The American Mathematical Monthly, 45, 165-171. [400]
Hubert, L., Meulman, J. \& Heiser, W. (2000). Two purposes for matrix factorization: a historical appraisal. SIAM Review, 42, 68-82. [304, 401]
Ipsen, I. C. F. \& Meyer, C. D. (1995). The angle between complementary subspaces. The American Mathematical Monthly, 102, 904-911. [134]
Isotalo, J. (2007). Linear estimation and prediction in the general Gauss-Markov model. Acta Universitatis Tamperensis Series A, 1242. Ph.D. Thesis, Dept. of Mathematics, Statistics and Philosophy, University of Tampere. [ix, 241]
Isotalo, J., Möls, M. \& Puntanen, S. (2006). Invariance of the BLUE under the linear fixed and mixed effects models. Acta et Commentationes Universitatis Tartuensis de Mathematica, 10, 69-76. [256]
Isotalo, J. \& Puntanen, S. (2006a). Linear prediction sufficiency for new observations in the general Gauss-Markov model. Communications in Statistics: Theory and Methods, 35, 1011-1024. [247, 251, 252, 258, 259]
Isotalo, J. \& Puntanen, S. (2006b). Linear sufficiency and completeness in the partitioned linear model. Acta et Commentationes Universitatis Tartuensis de Mathematica, 10, 53-67. [266]
Isotalo, J. \& Puntanen, S. (2009). A note on the equality of the OLSE and the BLUE of the parametric function in the general Gauss-Markov model. Statistical Papers, 50, 185-193. [222]
Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2006). On the role of the constant term in linear regression. In Festschrift for Tarmo Pukkila on his 60th Birthday (E. P. Liski, J. Isotalo, J. Niemelä, S. Puntanen \& G. P. H. Styan, eds.), Dept. of Mathematics, Statistics and Philosophy, University of Tampere, pp. 243-259. [95]
Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2007). Effect of adding regressors on the equality of the OLSE and BLUE. International Journal of Statistical Sciences, 6, 193-201. [337, 341]
Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2008a). The BLUE's covariance matrix revisited: a review. Journal of Statistical Planning and Inference, 138, 2722-2737. [312, 368, 378, 384]
Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2008b). Decomposing matrices with Jerzy K. Baksalary. Discussiones Mathematicae - Probability and Statistics, 28, 91-111. [ix]
Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2008c). Formulas useful for linear regression analysis and related matrix theory, fourth edition. Report A 384, Dept. of Mathematics and Statistics, University of Tampere, Finland. [16]
Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2008d). A useful matrix decomposition and its statistical applications in linear regression. Communications in Statistics: Theory and Methods, 37, 1436-1457. [318, 419]

Isotalo, J., Puntanen, S. \& Styan, G. P. H. (2009). Some comments on the Watson efficiency of the ordinary least squares estimator under the Gauss-Markov model. Calcutta Statistical Association Bulletin, 61, 1-15. (Proceedings of the Sixth International Triennial Calcutta Symposium on Probability and Statistics, 29-31 December, 2006, N. Mukhopadhyay and M. Pal, eds.). [333]
Ito, K. \& Kunisch, K. (2008). Lagrange Multiplier Approach to Variational Problems and Applications. Society for Industrial and Applied Mathematics (SIAM). [vi]
Izenman, A. J. (2008). Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer. [413]
Jaeger, A. \& Krämer, W. (1998). A final twist on the equality of OLS and GLS. Statistical Papers, 39, 321-324. [265]
Jensen, B. C. \& McDonald, J. B. (1976). A pedagogigal example of heteroskedasticity and autocorrelation. The American Statistician, 30, 192-193. [261]
Jensen, S. T. (1999). The Laguerre-Samuelson inequality with extensions and applications in statistics and matrix theory. MSc Thesis, Dept. of Mathematics \& Statistics, McGill University, Montréal. [420]
Jensen, S. T. \& Styan, G. P. H. (1999). Some comments and a bibliography on the Laguerre-Samuelson inequality with extensions and applications in statistics and matrix theory. In Analytic and Geometric Inequalities and Applications (T. M. Rassias \& H. M. Srivastava, eds.), Kluwer, pp. 151-181. [420]
Jewell, N. P. \& Bloomfield, P. (1983). Canonical correlations of past and future for time series: definitions and theory. The Annals of Statistics, 11, 837-847. [387]
Jiang, J. (1997). A derivation of BLUP - best linear unbiased predictor. Statistics \& Probability Letters, 32, 321-324. [256]
Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications. Springer. [256]
Johnson, R. A. \& Wichern, D. W. (2007). Applied Multivariate Statistical Analysis, 6th Ed. Pearson Prentice Hall. [132]
Jolliffe, I. T. (2002). Principal Component Analysis, Second Ed. Springer. [203]
Kala, R. (1981). Projectors and linear estimation in general linear models. Communications in Statistics: Theory and Methods, 10, 849-873. [89, 139, 156, 271]
Kala, R. (2008). On commutativity of projectors. Discussiones Mathematicae - Probability and Statistics, 28, 157-165. [156]
Kala, R. (2009). On nested block designs geometry. Statistical Papers, 50, 805-815. [190]
Kala, R. \& Pordzik, P. (2006). Two local operators and the BLUE. Linear Algebra and its Applications, 417, 134-139. [156]
Kala, R. \& Pordzik, P. (2009). Estimation in singular partitioned, reduced or transformed linear models. Statistical Papers, 50, 633-638. [331]
Kanto, A. J. \& Puntanen, S. (1983). A connection between the partial correlation coefficient and the correlation coefficient of certain residuals. Communications in Statistics: Simulation and Computation, 12, 639-641. [179]
Kanto, A. J. \& Puntanen, S. (1985). An interesting feature of the partial correlation coefficient. In Posters: Fourth International Symposium on Data Analysis and Informatics, Edition Provisoire (Versailles 1985), Editeur, Centre de Rocquencourt, Centre de Rennes and Centre de Sophia-Antipolis, INRIA, Versailles, pp. 105-108. [179]
Kantorovich, L. V. (1948). Funkcional'nyi analiz i prikladnaya matematika (in Russian). Uspekhi Matematičeskǐ Nauk, Novaya Seriya, 3, 89-185. See pp. 142-144. English translation: Kantorovich, 1952. [418]
Kantorovich, L. V. (1952). Functional Analysis and Applied Mathematics. U.S. Dept. of Commerce National Bureau of Standards. Translated by C. D. Benster. [418]

Kempthorne, O. (1976). Best linear unbiased estimation with arbitrary variance matrix. In Essays in Probability and Statistics: A Volume in Honor of Professor Junjiro Ogawa (S. Ikeda, ed.), Shinko Tsusho, Tokyo, pp. 203-225. [216]
Kempthorne, O. (1989). Comment [on Puntanen and Styan (1989)]. The American Statistician, 43, 161-162. [215]
Khatri, C. G. (1966). A note on a MANOVA model applied to problems in growth curves. Annals of the Institute of Statistical Mathematics, 18, 75-86. [323]
Khatri, C. G. (1976). A note on multiple and canonical correlation for a singular covariance matrix. Psychometrika, 41, 465-470. [386]
Khatri, C. G. (1978). Some optimization problems with applications to canonical correlations and sphericity tests. Journal of Multivariate Analysis, 8, 453-476. [Corrigendum: (1982), 12, p. 612]. [386]
Khatri, C. G. (1981). Study of F-tests under dependent model. Sankhyā, Ser. A, 43, 107-110. [342]
Khatri, C. G. (1982). A representation of a matrix and its use in the Gauss-Markoff model. Journal of the Indian Statistical Association, 20, 89-98. [323]
Khatri, C. G. (1989). Study of redundancy of vector variables in canonical correlations. Communications in Statistics: Theory and Methods, 18, 1425-1440. [386]
Khatri, C. G. (1990). Some properties of BLUE in a linear model and canonical correlations associated with linear transformations. Journal of Multivariate Analysis, 34, 211-226. [323, 386]
Khatri, C. G. \& Rao, C. R. (1981). Some extensions of the Kantorovich inequality and statistical applications. Journal of Multivariate Analysis, 11, 498-505. [239, 425]
Khatri, C. G. \& Rao, C. R. (1982). Some generalizations of the Kantorovich inequality. Sankhyā, Ser. A, 44, 91-102. [239, 425]
Khattree, R. (2001). On the calculation of antieigenvalues and antieigenvectors. Journal of Interdisciplinary Mathematics, 4, 195-199. [237]
Khattree, R. (2002). On generalized antieigenvalue and antieigenmatrix of order r. American Journal of Mathematical and Management Sciences, 22, 89-98. [237]
Khattree, R. (2003). Antieigenvalues and antieigenvectors in statistics. Journal of Statistical Planning and Inference, 114, 131-144. [237]
Khuri, A. I. (2009). Linear Model Methodology. Chapman \& Hall/CRC. [vii]
Kloetzel, J. E., ed. (2010). Scott Standard Postage Stamp Catalogue. Scott Publishing. [Currently published annually in 6 volumes (on paper)]. [x]
Knott, M. (1975). On the minimum efficiency of least squares. Biometrika, 62, 129-132. [238, 239]
Koch, G. G. (1969). A useful lemma for proving the equality of two matrices with applications to least squares type quadratic forms. Journal of the American Statistical Association, 64, 969-970. [323, 340]
Kollo, T. \& von Rosen, D. (2005). Advanced Multivariate Statistics with Matrices. Springer. [vii]
Krämer, W. (1980a). Finite sample efficiency of ordinary least squares in the linear regression model with autocorrelated errors. Journal of the American Statistical Association, 75, 1005-1009. [241]
Krämer, W. (1980b). A note on the equality of ordinary least squares and Gauss-Markov estimates in the general linear model. Sankhyā, Ser. A, 42, 130-131. [265]
Krämer, W. (1982). Note on estimating linear trend when residuals are autocorrelated. Econometrica, 50, 1065-1067. [241]
Krämer, W. (1984). High correlation among errors and the efficiency of ordinary least squares in linear models. Statistical Papers, 25, 135-142. [241]
Krämer, W. (1986). Least squares regression when the independent variable follows an ARIMA process. Journal of the American Statistical Association, 81, 150-154. [241]

Krämer, W. \& Donninger, C. (1987). Spatial autocorrelation among errors and the relative efficiency of OLS in the linear regression model. Journal of the American Statistical Association, 82, 577-579. [241]
Krein, M. G. (1947). The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, I. Matematicheskii Sbornik, Novaya Seria, 20(62), 431-495. [313]
Kruskal, W. (1968). When are Gauss-Markov and least squares estimators identical? A coordinate-free approach. The Annals of Mathematical Statistics, 39, 70-75. [215, 221]
Kruskal, W. (1975). The geometry of generalized inverses. Journal of the Royal Statistical Society, Ser. B, 37, 272-283. [Corrigendum: (1986), 48 (2), p. 258]. [114]
LaMotte, L. R. (2007). A direct derivation of the REML likelihood function. Statistical Papers, 48, 321-327. [318]
Larocca, R. (2005). Reconciling conflicting Gauss-Markov conditions in the classical linear regression model. Political Analysis, 13, 188-207. [227]
Latour, D., Puntanen, S. \& Styan, G. P. H. (1987). Equalities and inequalities for the canonical correlations associated with some partitioned generalized inverses of a covariance matrix. In Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila \& S. Puntanen, eds.), Dept. of Mathematical Sciences, University of Tampere, pp. 541-553. [386, 387]
Laywine, C. F. \& Mullen, G. L. (1998). Discrete Mathematics using Latin Squares. Wiley. [68]
Ledermann, W. (1983). Issai Schur and his school in Berlin. Bulletin of the London Mathematical Society, 15, 97-106. [293]
de Leeuw, J. (1982). Generalized eigenvalue problems with positive semidefinite matrices. Psychometrika, 47, 87-93. [368, 377]
Lehman, L. M. \& Young, D. M. (1993). A note on on a complete solution to the problem of robustness of Grubbs' test for a single outlier. The Journal of the Industrial Mathematics Society, 43, 11-13. [342]
Li, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion). Journal of the American Statistical Association, 86, 316-342. [199]
Liski, E. P. \& Puntanen, S. (1989). A further note on a theorem on the difference of the generalized inverses of two nonnegative definite matrices. Communications in Statistics: Theory and Methods, 18, 1747-1751. [312, 315]
Liski, E. P., Puntanen, S. \& Wang, S.-G. (1992). Bounds for the trace of the difference of the covariance matrices of the OLSE and BLUE. Linear Algebra and its Applications, 176, 121-130. [240, 261]
Liu, J. (2002). Linear sufficiency in the general Gauss-Markov model. Applied Mathematics - A Journal of Chinese Universities, 17, 85-92. [258]
Liu, S. (2000a). Efficiency comparisons between the OLSE and the BLUE in a singular linear model. Journal of Statistical Planning and Inference, 84, 191-200. [238, 241]
Liu, S. (2000b). On matrix trace Kantorovich-type inequalities. In Innovations in Multivariate Statistical Analysis: A Festschrift for Heinz Neudecker (R. D. H. Heijmans, D. S. G. Pollock \& A. Satorra, eds.), Kluwer, pp. 39-50. [238, 241, 425]

Liu, S. \& King, M. L. (2002). Two Kantorovich-type inequalities and efficiency comparisons between the OLSE and BLUE. Journal of Inequalities and Application, 7, 169-177. [241, 425]
Liu, S., Lu, C.-Y. \& Puntanen, S. (2009). Matrix trace Wielandt inequalities with statistical applications. Journal of Statistical Planning and Inference, 139, 22542260. [425]

Liu, S. \& Neudecker, H. (1995). Matrix-trace Cauchy-Schwarz inequalities and applications in canonical correlation analysis. Statistical Papers, 36, 287-298. [238, 425]

Liu, S. \& Neudecker, H. (1997). Kantorovich inequalities and efficiency comparisons for several classes of estimators in linear models. Statistica Neerlandica, 51, 345-355. [238, 425]
Liu, S. \& Neudecker, H. (1999). A survey of Cauchy-Schwarz and Kantorovich-type matrix inequalities. Statistical Papers, 40, 55-73. [425]
Liu, Y. (2009). On equality of ordinary least squares estimator, best linear unbiased estimator and best linear unbiased predictor in the general linear model. Journal of Statistical Planning and Inference, 139, 1522-1529. [249]
Llinarès, A. (1969). Raymond Llulle: Doctrine d'Enfant. C. Klincksieck, Paris. ["Version médiévale du ms. fr. 22933 de la B. N. de Paris"]. [67]
Loly, P. D. \& Styan, G. P. H. (2010a). Comments on 4×4 philatelic Latin squares. Chance, 23 (1), 57-62. [67]
Loly, P. D. \& Styan, G. P. H. (2010b). Comments on 5×5 philatelic Latin squares. Chance, 23 (2), 58-62. [68]
Lovell, M. C. (1963). Seasonal adjustment of economic time series and multiple regression analysis. Journal of the American Statistical Association, 58, 993-1010. [163, 331]
Lovell, M. C. (2008). A simple proof of the FWL Theorem. The Journal of Economic Education, 39, 88-91. [163, 331]
Lowerre, J. (1974). Some relationships between BLUEs, WLSEs, and SLSEs. Journal of the American Statistical Association, 69, 223-225. [149]
Löwner, K. (1934). Über monotone Matrixfunktionen. Mathematische Zeitschrift, 38, 443-446. [12]
Luati, A. \& Proietti, T. (2010). On the equivalence of the weighted least squares and the generalised least squares estimators, with applications to kernel smoothing. Annals of the Institute of Statistical Mathematics, 62, in press. [241]
Luskin, R. C. (2008). Wouldn't it be nice . . .? The automatic unbiasedness of OLS (and GLS). Political Analysis, 16, 345-349. [227]
Magness, T. A. \& McGuire, J. B. (1962). Comparison of least squares and minimum variance estimates of regression parameters. The Annals of Mathematical Statistics, 33, 462-470. [Acknowledgement of Priority: (1963), 34, p. 352]. [238, 426]
Magnus, J. R. \& Neudecker, H. (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley. Revised edition of the 1988 original. [vi, vii]
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India, 2, 49-55. [25]
Mäkeläinen, T. (1970a). Extrema for characteristic roots of product matrices. Commentationes Physico-Mathematicae, Societas Scientiarum Fennica, 38, 27-53. [398]
Mäkeläinen, T. (1970b). Projections and generalized inverses in the general linear model. Commentationes Physico-Mathematicae, Societas Scientiarum Fennica, 38, 13-25. [156]
Mandel, J. (1982). Use of the singular value decomposition in regression analysis. The American Statistician, 36, 15-24. [393]
Marcus, M. \& Minc, H. (1992). A Survey of Matrix Theory and Matrix Inequalities. Dover Publications. Corrected reprint of the 1969 edition. [415]
Margolis, M. S. (1979). Perpendicular projections and elementary statistics. The American Statistician, 33, 131-135. [183, 213]
Markiewicz, A. (2001). On dependence structures preserving optimality. Statistics \& Probability Letters, 53, 415-419. [342]
Markiewicz, A. \& Puntanen, S. (2009). Admissibility and linear sufficiency in linear model with nuisance parameters. Statistical Papers, 50, 847-854. [185, 260]
Markiewicz, A., Puntanen, S. \& Styan, G. P. H. (2010). A note on the interpretation of the equality of OLSE and BLUE. The Pakistan Journal of Statistics, 26, 127-134. [272]

Marsaglia, G. (1964). Conditional means and covariances of normal variables with singular covariance matrix. Journal of the American Statistical Association, 59, 1203-1204. [194]
Marsaglia, G. \& Styan, G. P. H. (1972). When does $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$? Canadian Mathematical Bulletin, 15, 451-452. [352]
Marsaglia, G. \& Styan, G. P. H. (1974a). Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra, 2, 269-292. [123, 143, 146, 300, 350, 352, 354]
Marsaglia, G. \& Styan, G. P. H. (1974b). Rank conditions for generalized inverses of partitioned matrices. Sankhyā, Ser. A, 36, 437-442. [294]
Marshall, A. W. \& Olkin, I. (1990). Matrix versions of the Cauchy and Kantorovich inequalities. Aequationes Mathematicae, 40, 89-93. [237, 424]
Marshall, A. W., Olkin, I. \& Arnold, B. C. (2011). Inequalities: Theory of Majorization and Its Applications, Second Ed. Springer. [13]
Martin, R. J. (1992). Leverage, influence and residuals in regression models when observations are correlated. Communications in Statistics: Theory and Methods, 21, 1183-1212. [338]
Mathew, T. (1983). Linear estimation with an incorrect dispersion matrix in linear models with a common linear part. Journal of the American Statistical Association, 78, 468-471. [227]
Mathew, T. (1985). On inference in a general linear model with an incorrect dispersion matrix. In Linear Statistical Inference: Proceedings of the International Conference held at Poznań, Poland, June 4-8, 1984 (T. Caliński \& W. Klonecki, eds.), Springer, pp. 200-210. [342]
Mathew, T. \& Bhimasankaram, P. (1983a). On the robustness of LRT in singular linear models. Sankhyā, Ser. A, 45, 301-312. [334, 342]
Mathew, T. \& Bhimasankaram, P. (1983b). On the robustness of the LRT with respect to specification errors in a linear model. Sankhyā, Ser. A, 45, 212-225. [342]
Mathew, T. \& Bhimasankaram, P. (1983c). Optimality of BLUEs in a general linear model with incorrect design matrix. Journal of Statistical Planning and Inference, 8, 315-329. [271]
Mathew, T., Rao, C. R. \& Sinha, B. K. (1984). Admissible linear estimation in singular linear models. Communications in Statistics: Theory and Methods, 13, 3033-3045. [260]
McCulloch, C., Hedayat, S. \& Wells, M. (2008). Obituary: Walter Federer, 1915-2008. The IMS Bulletin, 37, 13. [357]
McCulloch, C. E., Searle, S. R. \& Neuhaus, J. M. (2008). Generalized, Linear, and Mixed Models, Second Ed. Wiley. [256]
McDonald, R. P., Torii, Y. \& Nishisato, S. (1979). Some results on proper eigenvalues and eigenvectors with applications to scaling. Psychometrika, 44, 211-227. [368]
McElroy, F. W. (1967). A necessary and sufficient condition that ordinary least-squares estimators be best linear unbiased. Journal of the American Statistical Association, 62, 1302-1304. [227]
Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics (SIAM). [vii, 10, 134, 358]
Miao, J. M. \& Ben-Israel, A. (1992). On principal angles between subspaces in \mathbb{R}^{n}. Linear Algebra and its Applications, 171, 81-98. [132, 134]
Miao, J. M. \& Ben-Israel, A. (1996). Product cosines of angles between subspaces. Linear Algebra and its Applications, 237/238, 71-81. [134]
Miller, J. (2010). Images of Mathematicians on Postage Stamps. New Port Richey, Florida. http://jeff560.tripod.com/stamps.html. [vi]
Milliken, G. A. \& Akdeniz, F. (1977). A theorem on the difference of the generalized inverses of two nonnegative matrices. Communications in Statistics: Theory and Methods, 6, 1747-1751. [315]

Mirsky, L. (1960). Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal of Mathematics, Oxford, Second Series, 11, 50-59. [401]
Mitra, S. (1988). The relationship between the multiple and the zero-order correlation coefficients. The American Statistician, 42, 89. [309]
Mitra, S. K. (1972). Fixed rank solutions of linear matrix equations. Sankhyā, Ser. A, 34, 387-392. [316]
Mitra, S. K. (1973a). Statistical proofs of some propositions on nonnegative definite matrices. Bulletin of the International Statistical Institute, 45, 206-211. [viii, 315]
Mitra, S. K. (1973b). Unified least squares approach to linear estimation in a general Gauss-Markov model. SIAM Journal on Applied Mathematics, 25, 671-680. [44, 346]
Mitra, S. K. (1982). Properties of the fundamental bordered matrix used in linear estimation. In Statistics and Probability: Essays in Honor of C. R. Rao (G. Kallianpur, P. R. Krishnaiah \& J. K. Ghosh, eds.), North-Holland, pp. 505-509. [264]

Mitra, S. K. (1986). The minus partial order and the shorted matrix. Linear Algebra and its Applications, 83, 1-27. [316]
Mitra, S. K. (1989). Block independence in generalized inverse: a coordinate free look. In Statistical Data Analysis and Inference (Y. Dodge, ed.), North-Holland, pp. 429-443. [264]
Mitra, S. K. (1993). Transformations of the range space and the direct orthogonal projector. In Statistics and Probability: A Raghu Raj Bahadur Festschrift (J. K. Ghosh, S. K. Mitra, K. R. Parthasarathy \& B. L. S. Prakasa Rao, eds.), Wiley Eastern, pp. 463-474. [156]
Mitra, S. K., Bhimasankaram, P. \& Malik, S. B. (2010). Matrix Partial Orders, Shorted Operators and Applications. World Scientific. [vii, 314]
Mitra, S. K. \& Moore, B. J. (1973). Gauss-Markov estimation with an incorrect dispersion matrix. Sankhyā, Ser. A, 35, 139-152. [144, 269, 270, 271, 280, 281, 368]
Mitra, S. K. \& Puntanen, S. (1991). The shorted operator statistically interpreted. Calcutta Statistical Association Bulletin, 40, 97-102. [viii, 314]
Mitra, S. K., Puntanen, S. \& Styan, G. P. H. (1995). Shorted matrices and their applications in linear statistical models: a review. In Multivariate Statistics and Matrices in Statistics: Proceedings of the 5th Tartu Conference, Tartu-Pühajärve, Estonia, 23-28 May 1994 (E.-M. Tiit, T. Kollo \& H. Niemi, eds.), TEV \& VSP, pp. 289-311. [314, 315]
Mitra, S. K. \& Puri, M. L. (1979). Shorted operators and generalized inverses of matrices. Linear Algebra and its Applications, 25, 45-56. [313]
Mitra, S. K. \& Puri, M. L. (1982). Shorted matrices - an extended concept and some applications. Linear Algebra and its Applications, 42, 57-79. [313]
Mitra, S. K. \& Rao, C. R. (1968). Simultaneous reduction of a pair of quadratic forms. Sankhyā, Ser. A, 30, 313-322. [367, 371, 376]
Mitra, S. K. \& Rao, C. R. (1969). Conditions for optimality and validity of simple least squares theory. The Annals of Mathematical Statistics, 40, 1617-1624. [215]
Mitra, S. K. \& Rao, C. R. (1974). Projections under seminorms and generalized MoorePenrose inverses. Linear Algebra and its Applications, 9, 155-167. [75, 87, 156]
Moler, C. (2006). Professor SVD (Gene H. Golub). The MathWorks News \& Notes, October 2006. Available online. [393]
Möls, M. (2004). Linear mixed models with equivalent predictors. Dissertationes Mathematicae Universitatis Tartuensis, 36. Ph.D. Thesis, University of Tartu. [278, 281]
Monahan, J. F. (2008). A Primer on Linear Models. Chapman \& Hall/CRC. [vii, 347]
Moore, E. H. (1920). On the reciprocal of the general algebraic matrix (Abstract). Bulletin of the American Mathematical Society, 26, 890-891. [35, 107]
Moore, E. H. (1935). General Analysis, Part 1 (with editorial collaboration of R. W. Barnard). Memoirs of the American Philosophical Society, Vol. 1 [Cf. pp. 197-209]. [107]

Morgenthaler, S. \& Clerc-Bérod, A. (1997). A close look at the hat matrix. Student, 2, 1-12. [158]
Moyé, L. A. (2006). Statistical Monitoring of Clinical Trials: Fundamentals for Investigators. Springer. [263]
Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley. [26, 194, 232]
Mukhopadhyay, N. (2010). When finiteness matters: counterexamples to notions of covariance, correlation, and independence. The American Statistician, 64, 231-233. [53]
Müller, J. (1987). Sufficiency and completeness in the linear model. Journal of Multivariate Analysis, 21, 312-323. [258]
Müller, J., Rao, C. R. \& Sinha, B. K. (1984). Inference on parameters in a linear model: a review of recent results. In Experimental Design, Statistical Models, and Genetic Statistics (K. Hinkelmann, ed.), Dekker, pp. 277-295. [258]
Mustonen, S. (1995). Tilastolliset monimuuttujamenetelmät [Statistical Multivariate Methods, in Finnish]. Survo Systems. [392, 407]
Mustonen, S. (1997). A measure for total variability in multivariate normal distribution. Computational Statistics \& Data Analysis, 23, 321-334. [212]
Nelder, J. A. (1985). An alternative interpretation of the singular-value decomposition in regression. The American Statistician, 39, 63-64. [393]
Neudecker, H. (1997). Mahalanobis distance for multinomial data, Problem 97.5.4. Econometric Theory, 13, 890-891. [50]
Neudecker, H. \& Satorra, A. (2003). On best affine prediction. Statistical Papers, 44, 257-266. [213]
Neudecker, H., Trenkler, G. \& Liu, S. (2009). Problem 1/SP09: Inverse and determinant of a special symmetric matrix. Statistical Papers, 50, 221. [263]
Neudecker, H. \& van de Velden, M. (2000). Relationship satisfied by two representations of a positive semi-definite matrix, Problem 00.1.3. Econometric Theory, 16, 143. [397]
Neudecker, H. \& van de Velden, M. (2001). Relationship satisfied by two representations of a positive semi-definite matrix; Solution to Problem 00.1.3. Econometric Theory, 17, 281-282. [397]
von Neumann, J. (1937). Some matrix-inequalities and metrization of matrix space. Tomsk University Review, 1, 286-300. Reprinted in A. H. Taub (ed.) John von Neumann, Collected Works, vol. IV: Continuous Geometry and Other Topics, Pergamon Press, 1962, pp. 205-219. [410]
Nurhonen, M. \& Puntanen, S. (1991). Remarks on the invariance of regression diagnostics. In A Spectrum of Statistical Thought: Essays in Statistical Theory, Economics and Population Genetics in Honour of Johan Fellman (G. Rosenqvist, K. Juselius, K. Nordström \& J. Palmgren, eds.), Swedish School of Economics and Business Administration, Helsinki, No. 46, pp. 189-199. [342]
Nurhonen, M. \& Puntanen, S. (1992a). Effect of deleting an observation on the equality of the OLSE and BLUE. Linear Algebra and its Applications, 176, 131-136. [337, 341]
Nurhonen, M. \& Puntanen, S. (1992b). A property of partitioned generalized regression. Communications in Statistics: Theory and Methods, 21, 1579-1583. [331]
Ogasawara, T. \& Takahashi, M. (1951). Independence of quadratic quantities in a normal system. Journal of Science of the Hiroshima University, Series A: Mathematics, Physics, Chemistry, 15, 1-9. [355]
Ogawa, J. \& Olkin, I. (2008). A tale of two countries: The Craig-Sakamoto-Matusita theorem. Journal of Statistical Planning and Inference, 138, 3419-3428. [19]
Okamoto, M. (1969). Optimality of principal components. In Multivariate Analysis - II (P. R. Krishnaiah, ed.), Academic Press, pp. 673-685. [411]

Okamoto, M. \& Kanazawa, M. (1968). Minimization of eigenvalues of a matrix and optimality of principal components. The Annals of Mathematical Statistics, 39, 859863. [411, 412]

Olkin, I. (1981). Range restrictions for product-moment correlation matrices. Psychometrika, 46, 469-472. [307]
Olkin, I. (1990). Interface between statistics and linear algebra. In Matrix Theory and Applications (C. R. Johnson, ed.), American Mathematical Society, pp. 233-256. [viii]
Olkin, I. (1992). A matrix formulation on how deviant an observation can be. The American Statistician, 46, 205-209. [420]
Olkin, I. (1998). Why is matrix analysis part of the statistics curriculum. Student, 2, 343-348. [viii]
Olkin, I. \& Raveh, A. (2009). Bounds for how much influence an observation can have. Statistical Methods and Applications, 18, 1-11. [421]
Ouellette, D. V. (1981). Schur complements and statistics. Linear Algebra and its Applications, 36, 187-295. [293, 301]
Pan, J.-X. \& Fang, K.-T. (2002). Growth Curve Models and Statistical Diagnostics. Springer. [vii]
Patterson, H. D. \& Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545-554. [318]
Pearson, K. \& Lee, A. (1903). On the laws of inheritance in man: I. Inheritance of physical characters. Biometrika, 2, 357-462. [201, 436]
Pečarić, J. E., Puntanen, S. \& Styan, G. P. H. (1996). Some further matrix extensions of the Cauchy-Schwarz and Kantorovich inequalities, with some statistical applications. Linear Algebra and its Applications, 237/238, 455-476. [238, 425]
Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society, 51, 406-413. [35, 108]
Phillips, P. C. B. (1990). The geometry of the equivalence of OLS and GLS in the linear model, Problem 90.4.7. Econometric Theory, 6, 489-490. [221]
Phillips, P. C. B. (1992). The geometry of the equivalence of OLS and GLS in the linear model; Solution to Problem 90.4.7, proposed by Peter C. B. Phillips. Econometric Theory, 8, 158-159. [221]
Pickover, C. A. (2002). The Zen of Magic Squares, Circles, and Stars: An Exhibition of Surprising Structures Across Dimensions. Princeton University Press. [Second printing in 2003 contains "Updates and breakthroughs" on pp. 395-401 not included in the first printing in 2002]. [55]
Piegorsch, W. W. \& Casella, G. (1989). The early use of matrix diagonal increments in statistical problems. SIAM Review, 31, 428-434. [301]
Piziak, R. \& Odell, P. L. (1999). Full rank factorization of matrices. Mathematics Magazine, 73, 193-201. [350]
Piziak, R. \& Odell, P. L. (2007). Matrix Theory: From Generalized Inverses to Jordan Form. Chapman \& Hall/CRC. [vii]
Poincaré, H. (1890). Sur les équations aux dérivées partielles de la physique mathematiqué. American Journal of Mathematics, 12, 211-294. [399]
Preece, D. A. (1990). R. A. Fisher and experimental design: a review. Biometrics, 46, 925-935. [68]
Pringle, R. M. \& Rayner, A. A. (1970). Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models. SIAM Review, 12, 107-115. [264]
Pringle, R. M. \& Rayner, A. A. (1971). Generalized Inverse Matrices with Applications to Statistics. Charles Griffin \& Hafner. [264]
Pukelsheim, F. (1977). Equality of two BLUEs and ridge-type estimates. Communications in Statistics: Theory and Methods, 6, 603-610. [229]
Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley. Reprinted by SIAM in series Classics in Applied Mathematics, 2006. [312]
Puntanen, S. (1987). On the relative goodness of ordinary least squares estimation in the general linear model. Acta Universitatis Tamperensis Series A, 216. Ph.D. Thesis, Dept. of Mathematical Sciences, University of Tampere. [ix, 136, 387]

Puntanen, S. (1996). Some matrix results related to a partitioned singular linear model. Communications in Statistics: Theory and Methods, 25, 269-279. [331]
Puntanen, S. (1997). Some further results related to reduced singular linear models. Communications in Statistics: Theory and Methods, 26, 375-385. [323, 331]
Puntanen, S. (2010a). Personal collection of photographs. Nokia, Finland. [x]
Puntanen, S. (2010b). Solution to Problem 4/SP08 (Problem proposed by Götz Trenkler and Dietrich Trenkler). Statistical Papers, 51, available online. [263]
Puntanen, S. \& Scott, A. J. (1996). Some further remarks on the singular linear model. Linear Algebra and its Applications, 237/238, 313-327. [149, 289, 319, 326]
Puntanen, S., Seber, G. A. F. \& Styan, G. P. H. (2007). Multivariate statistical analysis. In Handbook of Linear Algebra (L. Hogben, ed.), Chapman \& Hall/CRC, Chap. 53, pp. 53.1-53.15. [viii, 16]
Puntanen, S., Šemrl, P. \& Styan, G. P. H. (1996). Some remarks on the parallel sum of two matrices. In Proceedings of the A. C. Aitken Centenary Conference (Dunedin, August 1995) (L. Kavalieris, F. C. Lam, L. A. Roberts \& J. A. Shanks, eds.), University of Otago Press, pp. 243-256. [289]
Puntanen, S. \& Styan, G. P. H. (1989). The equality of the ordinary least squares estimator and the best linear unbiased estimator. The American Statistician, 43, 153-164. With comments by O. Kempthorne and S. R. Searle and a reply by the authors. [215]
Puntanen, S. \& Styan, G. P. H. (1990). Reply [to R. Christensen (1990), R. W. Farebrother (1990), and D. A. Harville (1990)] (Letter to the Editor). The American Statistician, 44, 192-193. [39, 125]
Puntanen, S. \& Styan, G. P. H. (2005a). Historical introduction: Issai Schur and the early development of the Schur complement. In The Schur Complement and Its Applications (F. Zhang, ed.), Springer, Chap. 0 \& Bibliography, pp. 1-16, 259-288. [vii, 293, 303]
Puntanen, S. \& Styan, G. P. H. (2005b). Schur complements in statistics and probability. In The Schur Complement and Its Applications (F. Zhang, ed.), Springer, Chap. 6 \& Bibliography, pp. 163-226, 259-288. [vii, 13, 293, 307, 348]
Puntanen, S. \& Styan, G. P. H. (2007). Random vectors and linear statistical models. In Handbook of Linear Algebra (L. Hogben, ed.), Chapman \& Hall/CRC, Chap. 52, pp. 52.1-52.17. [viii, 16]
Puntanen, S. \& Styan, G. P. H. (2008a). Foreword for the Special Issue devoted to Jerzy K. Baksalary. Discussiones Mathematicae - Probability and Statistics, 28, 85-90. [ix]

Puntanen, S. \& Styan, G. P. H. (2008b). Stochastic stamps: a philatelic introduction to chance. Chance, 21 (1), 36-41. [vi]
Puntanen, S. \& Styan, G. P. H. (2011). Best linear unbiased estimation in a linear model. In International Encyclopedia of Statistical Science, Part 2 (M. Lovric, ed.), Springer, pp. 141-144. [215]
Puntanen, S., Styan, G. P. H. \& Subak-Sharpe, G. E. (1998). Mahalanobis distance for multinomial data; Solution to Problem 97.5.4, proposed by Heinz Neudecker. Econometric Theory, 14, 695-698. [50, 120]
Puntanen, S., Styan, G. P. H. \& Werner, H. J. (2000a). A comment on the article "Simple forms of the best linear unbiased predictor in the general linear regression model" by Silvia N. Elian (The American Statistician, 54, 25-28), Letter to the Editor. The American Statistician, 54, 327-328. [249]
Puntanen, S., Styan, G. P. H. \& Werner, H. J. (2000b). Two matrix-based proofs that the linear estimator Gy is the best linear unbiased estimator. Journal of Statistical Planning and Inference, 88, 173-179. [218]
Puterman, M. L. (1988). Leverage and influence in autocorrelated regression models. Applied Statistics, 37, 76-86. [Corrigendum: (1991), 40, p. 237]. [338]
Randles, R. H. (2007). A conversation with Robert V. Hogg. Statistical Science, 24, 137-152. [19]

Rao, A. R. \& Bhimasankaram, P. (2000). Linear Algebra, Second Ed. Hindustan Book Agency. [vii, 123, 146, 352]
Rao, C. R. (1962). A note on a generalized inverse of a matrix with applications to problems in mathematical statistics. Journal of the Royal Statistical Society, Ser. B, 24, 152-158. [35]
Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā, Ser. A, 26, 329-358. [203]
Rao, C. R. (1967). Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, California, 1965/66), Vol. I: Statistics (L. M. Le Cam \& J. Neyman, eds.), University of California Press, Berkeley, pp. 355-372. [215, 323]
Rao, C. R. (1968). A note on a previous lemma in the theory of least squares and some further results. Sankhyā, Ser. A, 30, 259-266. [215, 271]
Rao, C. R. (1971a). Estimation of variance and covariance components - MINQUE theory. Journal of Multivariate Analysis, 1, 257-275. [45]
Rao, C. R. (1971b). Minimum variance quadratic unbiased estimation of variance components. Journal of Multivariate Analysis, 1, 445-456. [45]
Rao, C. R. (1971c). Unified theory of linear estimation. Sankhyā, Ser. A, 33, 371-394. [Corrigenda: (1972), 34, p. 194 and p. 477]. [44, 223, 264, 271]
Rao, C. R. (1972). Some recent results in linear estimation. Sankhyā, Ser. B, 34, 369-377. [264]
Rao, C. R. (1973a). Linear Statistical Inference and its Applications, Second Ed. Wiley. [vii, 18, 75, 123, 179, 195, 203, 208, 212, 264, 323, 370, 387, 398, 407]
Rao, C. R. (1973b). Representations of best linear unbiased estimators in the GaussMarkoff model with a singular dispersion matrix. Journal of Multivariate Analysis, 3, 276-292. [41, 43, 141, 271, 325]
Rao, C. R. (1974). Projectors, generalized inverses and the BLUE's. Journal of the Royal Statistical Society, Ser. B, 36, 442-448. [6, 74, 87, 88, 124, 156]
Rao, C. R. (1976). Estimation of parameters in a linear model. The Annals of Statistics, 4, 1023-1037. [Corrigendum: (1979), 7, p. 696]. [259]
Rao, C. R. (1978). Choice of best linear estimators in the Gauss-Markoff model with a singular dispersion matrix. Communications in Statistics: Theory and Methods, 7, 1199-1208. [229]
Rao, C. R. (1979). Separation theorems for singular values of matrices and their applications in multivariate analysis. Journal of Multivariate Analysis, 9, 362-377. [401]
Rao, C. R. (1980). Matrix approximations and reduction of dimensionality in multivariate statistical analysis. In Multivariate Analysis - V (P. R. Krishnaiah, ed.), North-Holland, pp. 3-22. [398, 401, 411]
Rao, C. R. (1981). A lemma on g-inverse of a matrix and computation of correlation coefficients in the singular case. Communications in Statistics: Theory and Methods, 10, 1-10. [213, 386]
Rao, C. R. (1985a). The inefficiency of least squares: extensions of the Kantorovich inequality. Linear Algebra and its Applications, 70, 249-255. [240]
Rao, C. R. (1985b). A unified approach to inference from linear models. In Proceedings of the First International Tampere Seminar on Linear Statistical Models and their Applications (T. Pukkila \& S. Puntanen, eds.), Dept. of Mathematical Sciences, University of Tampere, pp. 9-36. [114]
Rao, C. R. (1987). Estimation in linear models with mixed effects: a unified theory. In Proceedings of the Second International Tampere Conference in Statistics (T. Pukkila \& S. Puntanen, eds.), Dept. of Mathematical Sciences, University of Tampere, pp. 7398. [256]

Rao, C. R. (1995). A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió, 19, 23-63. [413]

Rao, C. R. (2000). Statistical proofs of some matrix inequalities. Linear Algebra and its Applications, 321, 307-320. [viii]
Rao, C. R. (2006). Statistical proofs of some matrix theorems. International Statistical Review, 74, 169-185. [viii]
Rao, C. R. (2007). Antieigenvalues and antisingularvalues of a matrix and applications to problems in statistics. Mathematical Inequalities \& Applications, 10, 471-489. [237, 425]
Rao, C. R. \& Mitra, S. K. (1971a). Further contributions to the theory of generalized inverse of matrices and its applications. Sankhyā, Ser. A, 33, 289-300. [Corrigendum: (1972), 34, p. 477]. [229]

Rao, C. R. \& Mitra, S. K. (1971b). Generalized Inverse of Matrices and Its Applications. Wiley. [vii, 106, 111, 114, 116, 137, 156, 222, 268, 280, 281, 284, 289, 342, 367, 371, 376]
Rao, C. R., Mitra, S. K. \& Bhimasankaram, P. (1972). Determination of a matrix by its subclasses of generalized inverses. Sankhyā, Ser. A, 34, 5-8. [284]
Rao, C. R. \& Rao, M. B. (1998). Matrix Algebra and Its Applications to Statistics and Econometrics. World Scientific. [vii, 86, 123, 389, 410, 411]
Rao, C. R., Toutenburg, H., Shalabh \& Heumann, C. (2008). Linear Models and Generalizations: Least Squares and Alternatives, Third Ed. Springer. With contributions by Michael Schomaker. [vii, 273]
Rao, C. R. \& Yanai, H. (1979). General definition and decomposition of projectors and some applications to statistical problems. Journal of Statistical Planning and Inference, 3, 1-17. [156]
Rao, C. R. \& Yanai, H. (1985a). Generalized inverse of linear transformations: a geometric approach. Linear Algebra and its Applications, 66, 87-98. [114]
Rao, C. R. \& Yanai, H. (1985b). Generalized inverses of partitioned matrices useful in statistical applications. Linear Algebra and its Applications, 70, 105-113. [264]
Raveh, A. (1985). On the use of the inverse of the correlation matrix in multivariate data analysis. The American Statistician, 39, 39-42. [172]
Rencher, A. C. \& Schaalje, G. B. (2008). Linear Models in Statistics, Second Ed. Wiley. [vii]
Robinson, G. K. (1991). That BLUP is a good thing: the estimation of random effects (with discussion on pp. 32-51). Statistical Science, 6, 15-51. [255, 256]
Rong, J.-Y. \& Liu, X.-Q. (2010). On misspecification of the dispersion matrix in mixed linear models. Statistical Papers, 51, 445-453. [278]
Ryan, T. P. (2009). Modern Regression Methods, Second Ed. Wiley. [vii, 199]
Samuelson, P. A. (1968). How deviant can you be? Journal of the American Statistical Association, 63, 1522-1525. [414, 420]
Satorra, A. \& Neudecker, H. (2003). A matrix equality useful in goodness-of-fit testing of structural equation models. Journal of Statistical Planning and Inference, 114, 63-80. [323]
Schall, R. \& Dunne, T. T. (1988). A unified approach to outliers in the general linear model. Sankhyā, Ser. B, 50, 157-167. [338]
Schmidt, E. (1907). Zur Theorie der linearen und nichtlinearen Integralgleichungen: I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Mathematische Annalen, 63, 433-476. [401]
Schönemann, P. H. (1966). A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31, 1-10. [401]
Schott, J. R. (2005). Matrix Analysis for Statistics, Second Ed. Wiley. [vii]
Schur, J. (1917). Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind [I]. Journal für die reine und angewandte Mathematik, 147, 205-232. [293, 303]
Schwarz, H. A. (1888). Ueber ein die Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung. Acta Societatis Scientiarum Fennica, 15, 315-362. [Preface dated 31 October 1885]. [415]

Scott, A. J. \& Styan, G. P. H. (1985). On a separation theorem for generalized eigenvalues and a problem in the analysis of sample surveys. Linear Algebra and its Applications, 70, 209-224. [368, 398, 411]
Searle, S. R. (1956). Matrix methods in components of variance and covariance analysis. The Annals of Mathematical Statistics, 27, 737-748. [viii]
Searle, S. R. (1971). Linear Models. Wiley. Reprinted as Wiley Classics Library Edition, 1997. [34, 347]

Searle, S. R. (1978). A univariate formulation of the multivariate linear model. In Contributions to Survey Sampling and Applied Statistics: Papers in Honor of H. O. Hartley (H. A. David, ed.), Academic Press, pp. 181-189. [230]
Searle, S. R. (1982). Matrix Algebra Useful for Statistics. Wiley. [vii, 171, 358, 370, 387, 393]
Searle, S. R. (1989). Comment [on Puntanen and Styan (1989)]. The American Statistician, 43, 162-163. [216]
Searle, S. R. (1994). Extending some results and proofs for the singular linear model. Linear Algebra and its Applications, 210, 139-151. [149, 256]
Searle, S. R. (1996). Some follow-up on Aitken's least squares equations. In Proceedings of the A.C. Aitken Centenary Conference (Dunedin, August 1995) (L. Kavalieris, F. C. Lam, L. A. Roberts \& J. A. Shanks, eds.), University of Otago Press, pp. 299309. [256]

Searle, S. R. (1997). The matrix handling of BLUE and BLUP in the mixed linear model. Linear Algebra and its Applications, 264, 291-311. [255, 256]
Searle, S. R. (1999). Comments from thirty years of teaching matrix algebra to applied statisticians. Image: The Bulletin of the ILAS, 22, 3-5. [viii]
Searle, S. R. (2000). The infusion of matrices into statistics. Image: The Bulletin of the ILAS, 24, 25-32. [viii, 34]
Searle, S. R. (2005). Recollections from a 50-year random walk midst matrices, statistics and computing. In Proceedings of the 14th International Workshop on Matrices and Statistics, vol. 8 of Research Letters in the Information and Mathematical Sciences (P. S. P. Cowpertwait, ed.), Massey University, pp. 45-52. [viii]

Searle, S. R., Casella, G. \& McCulloch, C. E. (1992). Variance Components. Wiley. [195, $212,255,323]$
Seber, G. A. F. (1980). The Linear Hypothesis: A General Theory, Second Ed. Griffin. [vii, 156, 347]
Seber, G. A. F. (1984). Multivariate Observations. Wiley. [20, 156, 230, 232, 234, 386, 389, 412]
Seber, G. A. F. (2008). A Matrix Handbook for Statisticians. Wiley. [vii, 18, 26, 27, 28, 53, 358]
Seber, G. A. F. \& Lee, A. J. (2003). Linear Regression Analysis, Second Ed. Wiley. [vii, 156, 168]
Seddighin, M. (2009). Antieigenvalue techniques in statistics. Linear Algebra and its Applications, 430, 2566-2580. [237]
SenGupta, A. (1991). Generalized correlations in the singular case. Journal of Statistical Planning and Inference, 28, 241-245. [368, 386]
Sengupta, D. \& Jammalamadaka, S. R. (2003). Linear Models: An Integrated Approach. World Scientific. [vii, 65, 234, 258, 331]
Serre, D. (2007). Matrices: Theory \& Applications, Additional Exercises. École Normale Supérieure. Translated from the 2001 French original. [vi]
Seshadri, V. \& Styan, G. P. H. (1980). Canonical correlations, rank additivity and characterizations of multivariate normality. In Analytic Function Methods in Probability Theory: Proc. Colloquium on the Methods of Complex Analysis in the Theory of Probability and Statistics held at the Kossuth L. University, Debrecen, Hungary, August 29-September 2, 1977, vol. 21 of Colloquia Mathematica Societatis János Bolyai, North-Holland, pp. 331-344. [386]

Sherman, J. \& Morrison, W. J. (1949). Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix (abstract). The Annals of Mathematical Statistics, 20, 621. [301]
Sherman, J. \& Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics, 21, 124-127. [301]
Shieh, G. (2001). The inequality between the coefficient of determination and the sum of squared simple correlation coefficients. The American Statistician, 55, 121-124. [309]
Sibuya, M. (1970). Subclasses of generalized inverses of matrices. Annals of the Institute of Statistical Mathematics, 22, 543-556. [156]
Smith, G. (1997). Do statistics test scores regress toward the mean? Chance, 10 (4), 42-45. [201]
Speed, T. P. (1991). Comment on "That BLUP is a good thing: the estimation of random effects", by G. K. Robinson (1991). Statistical Science, 6, 42-44. [256]
Speed, T. P. (2008a). Terence's stuff: PCA. The IMS Bulletin, 37, 9. [206]
Speed, T. P. (2008b). Terence's stuff: Two by two. The IMS Bulletin, 37, 17. [47]
Speed, T. P. (2009). Terence's stuff: Bibliographies. The IMS Bulletin, 38, 12. [ix]
Speed, T. P. (2010). Terence's stuff: The multivariate normal. The IMS Bulletin, 39, 10. [18]

Srivastava, M. S. (2002). Methods of Multivariate Statistics. Wiley. [vii]
Srivastava, M. S. \& Khatri, C. G. (1979). An Introduction to Multivariate Statistics. North-Holland. [323]
Stapleton, J. H. (2009). Linear Statistical Models, Second Ed. Wiley. [vii]
Steele, J. M. (2004). The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press. [4, 75, 415]
Stewart, G. W. (1987). Collinearity and least squares regression. Statistical Science, 2, 68-100. With discussion. [162]
Stewart, G. W. (1993). On the early history of the singular value decomposition. SIAM Review, 35, 551-566. [393, 400, 401, 411]
Stewart, G. W. (1998). Matrix Algorithms. Volume I: Basic Decompositions. Society for Industrial and Applied Mathematics (SIAM). [393, 395]
Stewart, G. W. (2001). Matrix Algorithms. Volume II: Eigensystems. Society for Industrial and Applied Mathematics (SIAM). [358, 395]
Stewart, G. W. \& Sun, J. G. (1990). Matrix Perturbation Theory. Academic Press. [375, 401]
Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty before 1900. The Belknap Press of Harvard University Press. [200]

Stigler, S. M. (1999). Statistics on the Table: The History of Statistical Concepts and Methods. Harvard University Press. [199, 200, 306]
Stępniak, C. (1985). Ordering of nonnegative definite matrices with application to comparison of linear models. Linear Algebra and its Applications, 70, 67-71. [312]
Styan, G. P. H. (1969). Multivariate Normal Inference with Correlation Structure. Ph.D. Thesis, Dept. of Mathematical Statistics, Columbia University, New York City. [ix]
Styan, G. P. H. (1970). Notes on the distribution of quadratic forms in singular normal variables. Biometrika, 57, 567-572. [355]
Styan, G. P. H. (1973a). Hadamard products and multivariate statistical analysis. Linear Algebra and its Applications, 6, 217-240. [vi]
Styan, G. P. H. (1973b). When does least squares give the best linear unbiased estimate? In Proceedings of the Research Seminar at Dalhousie University, Halifax, Nova Scotia, March 23-25, 1972 (D. G. Kabe \& R. P. Gupta, eds.), North-Holland, pp. 241-246. [221]
Styan, G. P. H. (1983). On some inequalities associated with ordinary least squares and the Kantorovich inequality. In Festschrift for Eino Haikala on his Seventieth Birthday
(P. Huuhtanen, E. P. Liski, T. Pukkila \& S. Puntanen, eds.), Acta Universitatis Tamperensis, University of Tampere, pp. 158-166. [240]
Styan, G. P. H. (1985). Schur complements and linear statistical models. In Proceedings of the First International Tampere Seminar on Linear Statistical Models and their Applications (T. Pukkila \& S. Puntanen, eds.), Dept. of Mathematical Sciences, University of Tampere, pp. 37-75. [293, 348, 387]
Styan, G. P. H. (2007). A philatelic introduction to magic squares and Latin squares for Euler's 300th birthyear. In Proceedings of the Canadian Society for History and Philosphy of Mathematics: Volume 20 (A. Cupillari, ed.), CSHPM, pp. 306-319. [55]
Styan, G. P. H. (2010). Personal collection of philatelic items. Verdun (Québec), Canada. [x]
Styan, G. P. H., Boyer, C. \& Chu, K. L. (2009). Some comments on Latin squares and on Graeco-Latin squares, illustrated with postage stamps and old playing cards. Statistical Papers, 50, 917-941. [67]
Styan, G. P. H. \& Subak-Sharpe, G. E. (1997). Inequalities and equalities associated with the Campbell-Youla generalized inverse of the indefinite admittance matrix of resistive networks. Linear Algebra and its Applications, 250, 349-370. [120]
Takane, Y. (2004). Matrices with special reference to applications in psychometrics. Linear Algebra and its Applications, 388, 341-361. [401]
Takane, Y. \& Yanai, H. (1999). On oblique projectors. Linear Algebra and its Applications, 289, 297-310. [156]
Takane, Y. \& Yanai, H. (2005). On the Wedderburn-Guttman theorem. Linear Algebra and its Applications, 410, 267-278. [304]
Takane, Y. \& Yanai, H. (2007). Alternative characterizations of the extended Wedderburn-Guttman theorem. Linear Algebra and its Applications, 422, 701-711. [304]
Takeuchi, K., Yanai, H. \& Mukherjee, B. N. (1982). The Foundations of Multivariate Analysis: A Unified Approach by Means of Projection onto Linear Subspaces. Wiley, Halsted Press. [156]
Tanabe, K. \& Sagae, M. (1992). An exact Cholesky decomposition and the generalized inverse of the variance-covariance matrix of the multinomial distribution, with applications. Journal of the Royal Statistical Society, Ser. B, 54, 211-219. [120]
Tee, G. J. (2003). Up with determinants! Image: The Bulletin of the ILAS, 30, 7-11. [300, 356]
Theil, H. (1968). On the use of incomplete information in regression analysis. Journal of the American Statistical Association, 58, 401-414. [265]
Theil, H. \& Goldberger, A. S. (1961). On pure and mixed statistical estimation in economics. International Economic Review, 2, 65-78. [265]
Thomas, D. H. (1968). When do minimum variance estimators coincide? [Abstract]. The Annals of Mathematical Statistics, 39, 1365. [89]
Thompson, W. R. (1935). On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation. The Annals of Mathematical Statistics, 6, 214-219. [420]
Tian, Y. (2007). Some decompositions of OLSEs and BLUEs under a partitioned linear model. International Statistical Review, 75, 224-248. [87, 123]
Tian, Y. (2009a). On an additive decomposition of the BLUE in a multiple-partitioned linear model. Journal of Multivariate Analysis, 100, 767-776. [87, 123]
Tian, Y. (2009b). On equalities for BLUEs under misspecified Gauss-Markov models. Acta Mathematica Sinica, English Series, 25, 1907-1920. [271]
Tian, Y. (2010). Weighted least-squares estimators of parametric functions of the regression coefficients under a general linear model. Annals of the Institute of Statistical Mathematics, 62, 929-941. [87]
Tian, Y., Beisiegel, M., Dagenais, E. \& Haines, C. (2008). On the natural restrictions in the singular Gauss-Markov model. Statistical Papers, 49, 553-564. [39]

Tian, Y. \& Puntanen, S. (2009). On the equivalence of estimations under a general linear model and its transformed models. Linear Algebra and its Applications, 430, 2622-2641. [259]
Tian, Y. \& Styan, G. P. H. (2001). Rank equalities for idempotent and involutory matrices. Linear Algebra and its Applications, 335, 101-117. [390]
Tian, Y. \& Takane, Y. (2008a). On sum decompositions of weighted least-squares estimators for the partitioned linear model. Communications in Statistics: Theory and Methods, 37, 55-69. [87, 123]
Tian, Y. \& Takane, Y. (2008b). Some properties of projectors associated with the WLSE under a general linear model. Journal of Multivariate Analysis, 99, 1070-1082. [87, 89, 123]
Tian, Y. \& Takane, Y. (2009a). More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms. Linear Algebra and its Applications, 430, 1641-1655. [295]
Tian, Y. \& Takane, Y. (2009b). On V-orthogonal projectors associated with a seminorm. Annals of the Institute of Statistical Mathematics, 61, 517-530. [87, 89, 123]
Tian, Y. \& Tian, Z. (2010). On additive and block decompositions of WLSEs under a multiple partitioned regression model. Statistics, 44, 361-379. [87]
Tian, Y. \& Wiens, D. P. (2006). On equality and proportionality of ordinary least squares, weighted least squares and best linear unbiased estimators in the general linear model. Statistics \& Probability Letters, 76, 1265-1272. [87, 123]
Toutenburg, H. \& Shalabh (2009). Statistical Analysis of Designed Experiments, Third Ed. Springer. [vii, 51]
Trenkler, D. \& Trenkler, G. (2001). Magic squares, melancholy and the Moore-Penrose inverse. Image: The Bulletin of the ILAS, 27, 3-10. [54]
Trenkler, G. (1994). Characterizations of oblique and orthogonal projectors. In Proceedings of the International Conference on Linear Statistical Inference LINSTAT '93 (Poznań, 1993) (T. Caliński \& R. Kala, eds.), Kluwer, pp. 255-270. [156, 325]
Trenkler, G. (1995). On the singularity of the sample covariance matrix. Journal of Statistical Computation and Simulation, 52, 172-173. [129]
Trenkler, G. (2006). On oblique and orthogonal projectors. In Contributions to Probability and Statistics: Applications and Challenges - Proceedings of the International Statistics Workshop held at University of Canberra, 4-5 April 2005 (P. Brown, S. Liu \& D. Sharma, eds.), World Scientific, pp. 178-191. [112, 156]
Trenkler, G. \& Puntanen, S. (2005). A multivariate version of Samuelson's inequality. Linear Algebra and its Applications, 410, 143-149. [421]
Trenkler, G. \& Trenkler, D. (2008). Problem 4/SP08. Statistical Papers, 49, 803. [263]
Vehkalahti, K. (2000). Reliability of measurement scales: Tarkkonen's general method supersedes Cronbach's alpha. Ph.D. Thesis, Dept. of Statistics, University of Helsinki, Statistical Research Reports 17, Finnish Statistical Society. [422]
Vehkalahti, K., Puntanen, S. \& Tarkkonen, L. (2007). Effects on measurement errors in predictor selection of linear regression model. Computational Statistics \& Data Analysis, 52, 1183-1195. [401]
Vehkalahti, K., Puntanen, S. \& Tarkkonen, L. (2009). Implications of dimensionality on measurement reliability. In Statistical Inference, Econometric Analysis and Matrix Algebra: Festschrift in Honour of Götz Trenkler (B. Schipp \& W. Krämer, eds.), Physica-Verlag, pp. 143-160. [422]
Vik, K. (1924). Bedømmelse av feilene på fors \varnothing ksfelter med og uten målestokk. Meldinger fra Norges Landbrukshøgskole, 4, 129-181. [68]
Vinograde, B. (1950). Canonical positive definite matrices under internal linear transformations. Proceedings of the American Mathematical Society, 1, 159-161. [397]
Wachsmuth, A., Wilkinson, L. \& Dallal, G. E. (2003). Galton's bend: a previously undiscovered nonlinearity in Galton's family stature regression data. The American Statistician, 57, 190-192. [201]

Waller, N. G. \& Jones, J. A. (2010). Correlation weights in multiple regression. Psychometrika, 75, 58-69. [390]
Wang, S.-G. \& Chow, S.-C. (1987). Some results on canonical correlations and measures of multivariate association. Communications in Statistics: Theory and Methods, 16, 339-351. [386]
Wang, S.-G. \& Chow, S.-C. (1994). Advanced Linear Models: Theory and Applications. Dekker. [vii]
Wang, S.-G. \& Ip, W.-C. (1999). A matrix version of the Wielandt inequality and its applications to statistics. Linear Algebra and its Applications, 296, 171-181. [426]
Wang, S.-G. \& Shao, J. (1992). Constrained Kantorovich inequalities and relative efficiency of least squares. Journal of Multivariate Analysis, 11, 284-298. [241, 425]
Wang, S.-G., Wu, M.-X. \& Ma, W.-Q. (2003). Comparison of MINQUE and simple estimate of the error variance in the general linear model. Acta Mathematica Sinica, English Series, 19, 13-18. [340]
Watkins, D. S. (2007). Unsymmetric matrix eigenvalue techniques. In Handbook of Linear Algebra (L. Hogben, ed.), Chapman \& Hall/CRC, Chap. 43, pp. 43.1-43.12. [375]
Watson, G. S. (1951). Serial correlation in regression analysis. Ph.D. Thesis, Dept. of Experimental Statistics, North Carolina State College, Raleigh. [238]
Watson, G. S. (1955). Serial correlation in regression analysis, I. Biometrika, 42, 327341. [238, 239]

Watson, G. S. (1967). Linear least squares regression. The Annals of Mathematical Statistics, 38, 1679-1699. [215]
Watson, G. S. (1972). Prediction and the efficiency of least squares. Biometrika, 59, 91-98. [229, 249]
Watson, G. S. (1996a). Some singular value decompositions of statistical interest. In Proceedings of the A.C. Aitken Centenary Conference (Dunedin, August 1995) (L. Kavalieris, F. C. Lam, L. A. Roberts \& J. A. Shanks, eds.), University of Otago Press, pp. 359-366. [253]
Watson, G. S. (1996b). Spectral decomposition of the covariance matrix of a multinomial. Journal of the Royal Statistical Society, Ser. B, 58, 289-291. [120]
Watson, G. S., Alpargu, G. \& Styan, G. P. H. (1997). Some comments on six inequalities associated with the inefficiency of ordinary least squares with one regressor. Linear Algebra and its Applications, 264, 13-54. [235, 418]
Wedderburn, J. H. M. (1934). Lectures on Matrices, Colloquium Publications, Vol. 17. American Mathematical Society. Reprinted by Dover, 1964. [304]
Weisberg, S. (2005). Applied Linear Regression, Third Ed. Wiley. [ix, 164, 187, 199]
Wells, M. T. (2009). A conversation with Shayle R. Searle. Statistical Science, 24, 244-254. [viii]
Werner, H. J. (1997). Solution 18-3.2 [to Problem 18-3: A further matrix version of the Cauchy-Schwarz inequality]. Image: The Bulletin of the ILAS, 19, 26-27. [216]
Werner, H. J. \& Yapar, C. (1995). More on partitioned possibly restricted linear regression. In Multivariate Statistics and Matrices in Statistics: Proceedings of the 5th Tartu Conference, Tartu-Pühajärve, Estonia, 23-28 May 1994 (E.-M. Tiit, T. Kollo \& H. Niemi, eds.), TEV \& VSP, pp. 57-66. [331]
Werner, H. J. \& Yapar, C. (1996). A BLUE decomposition in the general linear regression model. Linear Algebra and its Applications, 237/238, 395-404. [337]
Wilson, R. J. (2001). Stamping Through Mathematics. Springer. [vi]
Wolkowicz, H. \& Styan, G. P. H. (1979). Extensions of Samuelson's inequality. The American Statistician, 33, 143-144. [420]
Wong, Y. K. (1935). An application of orthogonalization process to the theory of least squares. The Annals of Mathematical Statistics, 6, 53-75. [viii]
Woodbury, M. A. (1950). Inverting Modified Matrices. Princeton University Press. [301]

Yanai, H. (1990). Some generalized forms of least squares g-inverse, minimum norm g-inverse, and Moore-Penrose inverse matrices. Computational Statistics \& Data Analysis, 10, 251-260. [149]
Yanai, H. (2003). Vectors and matrices in psychometrics with special emphasis on generalized inverse and projection matrices. In New Developments in Psychometrics: Proceedings of the International Meeting of the Psychometric Society IMPS2001 (H. Yanai, A. Okada, K. Shigemasu, Y. Kano \& J. J. Meulman, eds.), Springer, pp. 19-32. [13, 307]
Yanai, H. \& Puntanen, S. (1993). Partial canonical correlations associated with the inverse and some generalized inverses of a partitioned dispersion matrix. In Statistical Sciences and Data Analysis: Proceedings of the Third Pacific Area Statistical Conference (K. Matusita, M. L. Puri \& T. Hayakawa, eds.), VSP, pp. 345-366. [386]
Yanai, H. \& Takane, Y. (2007). Matrix methods and their applications to factor analysis. In Handbook of Latent Variable and Related Models (S.-Y. Lee, ed.), Elsevier, pp. 345366. [307, 314, 401]

Yang, H. \& Wang, L. (2009). An alternative form of the Watson efficiency. Journal of Statistical Planning and Inference, 139, 2767-2774. [241]
Young, D. M., Odell, P. L. \& Hahn, W. (2000). Nonnegative-definite covariance structures for which the BLU, WLS, and LS estimators are equal. Statistics \& Probability Letters, 49, 271-276. [340]
Young, D. M., Scariano, S. M. \& Hallum, C. R. (2005). Estimation-equivalent covariance structures for the least squares and minque estimators of the linear model variance. Communications in Statistics: Theory and Methods, 34, 625-629. [340]
Young, M. M. \& Young, D. M. (2004). An alternative proof of the relationship between F and G when $F F^{T}=G G^{T}$. The Mathematical Scientist, 29, 33-35. [397]
Zehna, P. W. (1991). On proving that \bar{X} and s are independent. The American Statistician, 45, 121-122. [184]
Zhang, B. X., Liu, B. S. \& Lu, C.-Y. (2004). A study of the equivalence of the BLUEs between a partitioned singular linear model and its reduced singular linear models. Acta Mathematica Sinica, English Series, 20, 557-568. [331]
Zhang, F. (1999). Matrix Theory: Basic Results and Techniques. Springer. [vii, 316]
Zhang, F. (2005a). Block matrix techniques. In The Schur Complement and Its Applications (F. Zhang, ed.), Springer, Chap. 3, pp. 83-110. [386]
Zhang, F., ed. (2005b). The Schur Complement and Its Applications. Springer. [vii, 293]
Zhang, F. (2009). Linear Algebra: Challenging Problems for Students, Second Ed. Johns Hopkins University Press. [vii, 253]
Zmyślony, R. (1980). A characterization of best linear unbiased estimators in the general linear model. In Mathematical Statistics and Probability Theory: Proceedings of the Sixth International Conference (Wisla, Poland, 1978) (W. Klonecki, A. Kozek \& J. Rosiński, eds.), Springer, pp. 365-373. [221]

Zyskind, G. (1967). On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models. The Annals of Mathematical Statistics, 38, 1092-1109. [215, 219]
Zyskind, G. (1969). Parametric augmentations and error structures under which certain simple least squares and analysis of variance procedures are also best. Journal of the American Statistical Association, 64, 1353-1368. [215, 224, 227, 234]
Zyskind, G. (1975). Error structures, projections and conditional inverses in linear model theory. In A Survey of Statistical Design and Linear Model (J. N. Srivastava, ed.), North-Holland, pp. 647-663. [215]
Zyskind, G. \& Martin, F. B. (1969). On best linear estimation and general GaussMarkov theorem in linear models with arbitrary nonnegative covariance structure. SIAM Journal on Applied Mathematics, 17, 1190-1202. [123, 149, 215, 324]

