Notation

\mathbb{R} real numbers
$\mathbb{R}^{n \times m}$ set of $n \times m$ real matrices
$\mathbb{R}_{r}^{n \times m}$ subset of $\mathbb{R}^{n \times m}$ consisting of matrices with rank r
$\mathbb{R}_{s}^{n} \quad$ subset of $\mathbb{R}^{n \times n}$ consisting of symmetric matrices
NND_{n} subset of \mathbb{R}_{s}^{n} consisting of nonnegative definite (nnd) matrices:
$\mathbf{A} \in \mathrm{NND}_{n} \Longleftrightarrow \mathbf{A}=\mathbf{L} \mathbf{L}^{\prime}$ for some \mathbf{L}; instead of nnd, the term
positive semidefinite is often used
PD_{n} subset of NND_{n} consisting of positive definite (pd) matrices: $\mathbf{A}=$
$\mathbf{L} \mathbf{L}^{\prime}$ for some nonsingular \mathbf{L}
$\mathbf{0}$ null vector, null matrix; denoted also as $\mathbf{0}_{n}$ or $\mathbf{0}_{n \times m}$
$\mathbf{1}_{n}$ column vector of ones, shortened $\mathbf{1}$
$\mathbf{I}_{n} \quad$ identity matrix, shortened \mathbf{I}
\mathbf{i}_{j} the j th column of \mathbf{I}; the j th standard basis vector
$\mathbf{A}=\left\{a_{i j}\right\} \quad$ matrix \mathbf{A} with its elements $a_{i j}$
$\mathbf{A}_{n \times m} \quad n \times m$ matrix \mathbf{A}
a column vector $\mathbf{a} \in \mathbb{R}^{n}$
\mathbf{A}^{\prime} transpose of the matrix \mathbf{A}
(A:B) partitioned (augmented) matrix
$\mathbf{A}=\left(\mathbf{a}_{1}: \ldots: \mathbf{a}_{m}\right) \quad \mathbf{A}_{n \times m}$ represented columnwise
$\mathbf{A}=\left(\begin{array}{c}\mathbf{a}_{(1)}^{\prime} \\ \vdots \\ \mathbf{a}_{(n)}^{\prime}\end{array}\right) \quad \mathbf{A}_{n \times m}$ represented row-wise
\mathbf{A}^{-1} inverse of the matrix \mathbf{A}
\mathbf{A}^{-}generalized inverse of the matrix $\mathbf{A}: \mathbf{A A}^{-} \mathbf{A}=\mathbf{A}$, also called $\{1\}-$
inverse, or inner inverse
$\left\{\mathbf{A}^{-}\right\}$the set of generalized inverses of \mathbf{A}
$\mathbf{A}_{12}^{-} \quad$ reflexive generalized inverse of $\mathbf{A}: \mathbf{A} \mathbf{A}^{-} \mathbf{A}=\mathbf{A}, \mathbf{A}^{-} \mathbf{A} \mathbf{A}^{-}=\mathbf{A}^{-}$, also called $\{12\}$-inverse
\mathbf{A}^{+}the Moore-Penrose inverse of \mathbf{A} : the unique matrix satisfying the four Moore-Penrose conditions:

$$
\begin{array}{ll}
(\mathrm{mp} 1) \mathbf{A} \mathbf{A}^{-} \mathbf{A}=\mathbf{A}, & (\mathrm{mp} 2) \mathbf{A}^{-} \mathbf{A} \mathbf{A}^{-}=\mathbf{A}^{-} \\
(\mathrm{mp} 3)\left(\mathbf{A} \mathbf{A}^{-}\right)^{\prime}=\mathbf{A} \mathbf{A}^{-}, & (\mathrm{mp} 4)\left(\mathbf{A}^{-} \mathbf{A}\right)^{\prime}=\mathbf{A}^{-} \mathbf{A}
\end{array}
$$

$\mathbf{A}_{i j}^{-} \quad$ generalized inverse of \mathbf{A} satisfying the Moore-Penrose conditions (mpi) and (mpj)
$\mathbf{A}^{1 / 2}$ symmetric nnd square root of $\mathbf{A} \in \mathrm{NND}_{n}: \mathbf{A}^{1 / 2}=\mathbf{T} \mathbf{\Lambda}^{1 / 2} \mathbf{T}^{\prime}$, where $\mathbf{A}=\mathbf{T} \boldsymbol{\Lambda} \mathbf{T}^{\prime}$ is the eigenvalue decomposition of \mathbf{A}
$\mathbf{A}^{+1 / 2} \quad\left(\mathbf{A}^{+}\right)^{1 / 2}$
$\operatorname{In}(\mathbf{A})=(\pi, \nu, \delta) \quad$ inertia of the square matrix $\mathbf{A}: \pi, \nu$, and δ are the number of positive, negative, and zero eigenvalues of \mathbf{A}, respectively, all counting multiplicities
$\langle\mathbf{a}, \mathbf{b}\rangle$ standard inner product in $\mathbb{R}^{n}:\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{a}^{\prime} \mathbf{b}$; can denote also a general inner product in a vector space
$\langle\mathbf{a}, \mathbf{b}\rangle_{\mathbf{V}}$ inner product $\mathbf{a}^{\prime} \mathbf{V b} ; \mathbf{V}$ is the inner product matrix (ipm)
$\mathbf{a} \perp \mathbf{b} \quad$ vectors \mathbf{a} and \mathbf{b} are orthogonal with respect to a given inner product
$\|\mathbf{a}\|$ Euclidean norm (standard norm, 2-norm) of vector \mathbf{a}, also denoted $\|\mathbf{a}\|_{2}:\|\mathbf{a}\|^{2}=\mathbf{a}^{\prime} \mathbf{a}$; can denote also a general vector norm in a vector space
$\|\mathbf{a}\|_{\mathbf{V}} \quad\|\mathbf{a}\|_{\mathbf{V}}^{2}=\mathbf{a}^{\prime} \mathbf{V a}$, norm when the ipm is \mathbf{V} (ellipsoidal norm)
$\langle\mathbf{A}, \mathbf{B}\rangle \quad$ standard matrix inner product between $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}:\langle\mathbf{A}, \mathbf{B}\rangle=$ $\operatorname{tr}\left(\mathbf{A}^{\prime} \mathbf{B}\right)=\sum_{i, j} a_{i j} b_{i j}$
$\|\mathbf{A}\|_{F} \quad$ Euclidean (Frobenius) norm of the matrix $\mathbf{A}:\|\mathbf{A}\|_{F}^{2}=\operatorname{tr}\left(\mathbf{A}^{\prime} \mathbf{A}\right)=$ $\sum_{i, j} a_{i j}^{2}$
$\|\mathbf{A}\|_{2}$ matrix 2-norm of the matrix \mathbf{A} (spectral norm):

$$
\|\mathbf{A}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\|\mathbf{A} \mathbf{x}\|_{2}=\operatorname{sg}_{1}(\mathbf{A})=+\sqrt{\operatorname{ch}_{1}\left(\mathbf{A}^{\prime} \mathbf{A}\right)}
$$

$\left\|\mathbf{A}^{-1}\right\|_{2} \quad$ matrix 2-norm of nonsingular $\mathbf{A}_{n \times n}:\left\|\mathbf{A}^{-1}\right\|_{2}=1 / \operatorname{sg}_{n}(\mathbf{A})$
$\operatorname{cond}(\mathbf{A}) \quad$ condition number of nonsingular $\mathbf{A}_{n \times n}: \operatorname{cond}(\mathbf{A})=\|\mathbf{A}\|_{2}\left\|\mathbf{A}^{-1}\right\|_{2}=$ $\operatorname{sg}_{1}(\mathbf{A}) / \operatorname{sg}_{n}(\mathbf{A})$
$\cos (\mathbf{a}, \mathbf{b}) \cos \angle(\mathbf{a}, \mathbf{b})$, the cosine of the angle, θ, between the nonzero vectors \mathbf{a} and $\mathbf{b}: \cos (\mathbf{a}, \mathbf{b})=\cos \theta=\cos \angle(\mathbf{a}, \mathbf{b})=\frac{\langle\mathbf{a}, \mathbf{b}\rangle}{\|\mathbf{a}\|\|\mathbf{b}\|}$
$\angle(\mathbf{a}, \mathbf{b})$ the angle, $\theta, 0 \leq \theta \leq \pi$, between the nonzero vectors \mathbf{a} and \mathbf{b} : $\theta=\angle(\mathbf{a}, \mathbf{b})=\cos ^{-1}(\mathbf{a}, \mathbf{b})$
$\mathbf{A}[\alpha, \beta] \quad$ submatrix of $\mathbf{A}_{n \times n}$, obtained by choosing the elements of \mathbf{A} which lie in rows α and columns $\beta ; \alpha$ and β are index sets of the rows and the columns of \mathbf{A}, respectively
$\mathbf{A}[\alpha] \quad \mathbf{A}[\alpha, \alpha]$, principal submatrix; same rows and columns chosen
$\mathbf{A}_{i}^{\mathrm{L}} \quad i$ th leading principal submatrix of $\mathbf{A}_{n \times n}: \mathbf{A}_{i}^{\mathrm{L}}=\mathbf{A}[\alpha, \alpha]$, where $\alpha=\{1, \ldots, i\}$
$\mathbf{A}(\alpha, \beta)$ submatrix of \mathbf{A}, obtained by choosing the elements of \mathbf{A} which do not lie in rows α and columns β
$\mathbf{A}(i, j)$ submatrix of \mathbf{A}, obtained by deleting row i and column j from \mathbf{A}
$\operatorname{minor}\left(a_{i j}\right) \quad i j$ th minor of \mathbf{A} corresponding to $a_{i j}: \operatorname{minor}\left(a_{i j}\right)=\operatorname{det}(\mathbf{A}(i, j))$, $i, j \in\{1, \ldots, n\}$
$\operatorname{cof}\left(a_{i j}\right) \quad i j$ th cofactor of $\mathbf{A}: \operatorname{cof}\left(a_{i j}\right)=(-1)^{i+j} \operatorname{minor}\left(a_{i j}\right)$
$\operatorname{det}(\mathbf{A}) \quad$ determinant of the matrix $\mathbf{A}_{n \times n}: \operatorname{det}(a)=a, a \in \mathbb{R}, \operatorname{det}(\mathbf{A})=$ $\sum_{j=1}^{n} a_{i j} \operatorname{cof}\left(a_{i j}\right), i \in\{1, \ldots, n\}$: the Laplace expansion by minors along the i th row
$\operatorname{det}(\mathbf{A}[\alpha])$ principal minor
$\operatorname{det}\left(\mathbf{A}_{i}^{\mathrm{L}}\right)$ leading principal minor of order i
$|\mathbf{A}| \quad$ determinant of the matrix $\mathbf{A}_{n \times n}$
$\operatorname{diag}(\mathbf{A})$ diagonal matrix formed by the diagonal entries of $\mathbf{A}_{n \times n}$
$\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \quad n \times n$ diagonal matrix with listed diagonal entries
$\operatorname{diag}(\mathbf{d}) \quad n \times n$ diagonal matrix whose i th diagonal element is d_{i}
$\mathbf{A}_{\delta} \quad$ diagonal matrix formed by the diagonal entries of $\mathbf{A}_{n \times n}$
$\operatorname{rk}(\mathbf{A}) \quad$ rank of the matrix \mathbf{A}
$\operatorname{rank}(\mathbf{A}) \quad \operatorname{rank}$ of the matrix \mathbf{A}
$\operatorname{tr}(\mathbf{A}) \quad$ trace of the matrix $\mathbf{A}_{n \times n}: \operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}$
$\operatorname{trace}(\mathbf{A}) \quad$ trace of the matrix $\mathbf{A}_{n \times n}$
$\operatorname{vec}(\mathbf{A})$ vectoring operation: the vector formed by placing the columns of A under one another successively
$\mathbf{A} \otimes \mathbf{B} \quad$ Kronecker product of $\mathbf{A}_{n \times m}$ and $\mathbf{B}_{p \times q}$:

$$
\mathbf{A} \otimes \mathbf{B}=\left(\begin{array}{ccc}
a_{11} \mathbf{B} & \ldots & a_{1 m} \mathbf{B} \\
\vdots & \vdots & \vdots \\
a_{n 1} \mathbf{B} & \ldots & a_{n m} \mathbf{B}
\end{array}\right) \in \mathbb{R}^{n p \times m q}
$$

$\mathbf{A} / \mathbf{A}_{11} \quad$ Schur complement of \mathbf{A}_{11} in $\mathbf{A}=\left(\begin{array}{ll}\mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22}\end{array}\right)$:
$\mathbf{A} / \mathbf{A}_{11}=\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-} \mathbf{A}_{12}$
$\mathbf{A}_{22.1} \quad \mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-} \mathbf{A}_{12}$
$\mathbf{A} \geq_{\mathrm{L}} \mathbf{0} \quad \mathbf{A}$ is nonnegative definite: $\mathbf{A}=\mathbf{L} \mathbf{L}^{\prime}$ for some $\mathbf{L} ; \mathbf{A} \in \mathrm{NND}_{n}$
$\mathbf{A}>_{\mathrm{L}} \mathbf{0} \quad \mathbf{A}$ is positive definite: $\mathbf{A}=\mathbf{L} \mathbf{L}^{\prime}$ for some invertible $\mathbf{L} ; \mathbf{A} \in \mathrm{PD}_{n}$
$\mathbf{A} \leq_{\mathrm{L}} \mathbf{B} \quad \mathbf{B}-\mathbf{A}$ is nonnegative definite; $\mathbf{B}-\mathbf{A} \in \mathrm{NND}_{n} ; \mathbf{A}$ lies below \mathbf{B} with respect to the Löwner ordering
$\mathbf{A}<_{\mathrm{L}} \mathbf{B} \quad \mathbf{B}-\mathbf{A}$ is positive definite; $\mathbf{B}-\mathbf{A} \in \mathrm{PD}_{n}$
$\mathbf{A} \leq_{r s} \mathbf{B} \quad \mathbf{A}$ and \mathbf{B} are rank-subtractive; $\operatorname{rk}(\mathbf{B}-\mathbf{A})=\operatorname{rk}(\mathbf{B})-\operatorname{rk}(\mathbf{A}) ; \mathbf{A}$ lies below \mathbf{B} with respect to the minus ordering
$\operatorname{Sh}(\mathbf{V} \mid \mathbf{X})$ the shorted matrix of $\mathbf{V} \in \mathrm{NND}_{n}$ with respect to $\mathbf{X}_{n \times p}, \operatorname{Sh}(\mathbf{V} \mid \mathbf{X})$ is the maximal element \mathbf{U} (in the Löwner ordering) in the set $\mathcal{U}=\left\{\mathbf{U}: \mathbf{0} \leq_{\mathrm{L}} \mathbf{U} \leq_{\mathrm{L}} \mathbf{V}, \mathscr{C}(\mathbf{U}) \subset \mathscr{C}(\mathbf{X})\right\}$
$\mathbf{P}_{\mathbf{A}} \quad$ orthogonal projector onto $\mathscr{C}(\mathbf{A})$ (w.r.t. $\left.\mathbf{I}\right): \mathbf{P}_{\mathbf{A}}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-} \mathbf{A}^{\prime}=$ $\mathbf{A A}^{+}$
$\mathbf{P}_{\mathbf{A} ; \mathbf{V}}$ orthogonal projector onto $\mathscr{C}(\mathbf{A})$ w.r.t. $\mathbf{V} \in \mathrm{PD}_{n}$: $\mathbf{P}_{\mathbf{A} ; \mathbf{V}}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{V A}\right)^{-} \mathbf{A}^{\prime} \mathbf{V}$
$\mathbf{P}_{\mathbf{A} ; \mathbf{V}}$ generalized orthogonal projector onto $\mathscr{C}(\mathbf{A})$ w.r.t. $\mathbf{V} \in \mathrm{NND}_{n}$: $\mathbf{P}_{\mathbf{A} ; \mathbf{V}}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{V} \mathbf{A}\right)^{-} \mathbf{A}^{\prime} \mathbf{V}+\mathbf{A}\left[\mathbf{I}-\left(\mathbf{A}^{\prime} \mathbf{V} \mathbf{A}\right)^{-} \mathbf{A}^{\prime} \mathbf{V A}\right] \mathbf{U}$, where \mathbf{U} is arbitrary
$\mathbf{P}_{\mathbf{A} \mid \mathbf{B}}$ projector onto $\mathscr{C}(\mathbf{A})$ along $\mathscr{C}(\mathbf{B}): \mathbf{P}_{\mathbf{A} \mid \mathbf{B}}(\mathbf{A}: \mathbf{B})=(\mathbf{A}: \mathbf{0})$
$\left\{\mathbf{P}_{\mathbf{A} \mid \mathbf{B}}\right\} \quad$ set of matrices satisfying: $\mathbf{P}_{\mathbf{A} \mid \mathbf{B}}(\mathbf{A}: \mathbf{B})=(\mathbf{A}: \mathbf{0})$
$\mathbf{P}_{\mathcal{U}}$ orthogonal projector onto the vector space \mathcal{U} (w.r.t. a given inner product)
$\mathscr{C}(\mathbf{A})$ column space of the matrix $\mathbf{A}_{n \times p}: \mathscr{C}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{R}^{n}: \mathbf{y}=\right.$ Ax for some $\left.\mathbf{x} \in \mathbb{R}^{p}\right\}$
$\mathscr{N}(\mathbf{A})$ null space of the matrix $\mathbf{A}_{n \times p}: \mathscr{N}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{p}: \mathbf{A x}=\mathbf{0}\right\}$
$\mathscr{C}(\mathbf{A})^{\perp}$ orthocomplement of $\mathscr{C}(\mathbf{A})$ w.r.t. $\mathbf{I}: \mathscr{C}(\mathbf{A})^{\perp}=\left\{\mathbf{z} \in \mathbb{R}^{n}: \mathbf{z}^{\prime} \mathbf{A} \mathbf{x}=\right.$ $\left.\mathbf{0} \forall \mathbf{x} \in \mathbb{R}^{p}\right\}=\mathscr{N}\left(\mathbf{A}^{\prime}\right)$
$\mathbf{A}^{\perp} \quad$ matrix whose column space is $\mathscr{C}\left(\mathbf{A}^{\perp}\right)=\mathscr{C}(\mathbf{A})^{\perp}$
$\mathscr{C}(\mathbf{A})_{\mathbf{V}}^{\perp} \quad$ orthocomplement of $\mathscr{C}(\mathbf{A})$ w.r.t. $\mathbf{V}: \mathscr{C}(\mathbf{A})_{\mathbf{V}}^{\perp}=\left\{\mathbf{z} \in \mathbb{R}^{n}: \mathbf{z}^{\prime} \mathbf{V} \mathbf{A x}=\right.$ $\left.\mathbf{0} \forall \mathbf{x} \in \mathbb{R}^{p}\right\}=\mathscr{N}\left(\mathbf{A}^{\prime} \mathbf{V}\right)$
$\mathbf{A}_{\mathbf{V}}^{\perp}$ matrix whose column space is $\mathscr{C}(\mathbf{A})_{\mathrm{V}}^{\perp}$
$p_{\mathbf{A}}(x)$ the characteristic polynomial of $\mathbf{A}: p_{\mathbf{A}}(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$
$\mathcal{U} \subset \mathcal{V} \quad \mathcal{U}$ is a subset of $\mathcal{V} ;$ possibly $\mathcal{U}=\mathcal{V}$
$\mathcal{U}+\mathcal{V}$ sum of the vector spaces \mathcal{U} and \mathcal{V}
$\mathcal{U} \oplus \mathcal{V}$ direct sum of the vector spaces \mathcal{U} and \mathcal{V}
$\mathcal{U} \boxplus \mathcal{V}$ direct sum of the orthogonal vector spaces \mathcal{U} and \mathcal{V}
$\mathcal{U} \cap \mathcal{V} \quad$ intersection of the vector spaces \mathcal{U} and \mathcal{V}
$\operatorname{ch}_{i}(\mathbf{A})=\lambda_{i} \quad$ the i th largest eigenvalue of $\mathbf{A}_{n \times n}$ (all eigenvalues being real)
$\operatorname{ch}(\mathbf{A})$ set of all n eigenvalues of $\mathbf{A}_{n \times n}$, including multiplicities, called also the spectrum of $\mathbf{A}: \operatorname{ch}(\mathbf{A})=\left\{\operatorname{ch}_{1}(\mathbf{A}), \ldots, \operatorname{ch}_{n}(\mathbf{A})\right\}$
$\operatorname{ch}(\mathbf{A}, \mathbf{B})$ set of proper eigenvalues of symmetric $\mathbf{A}_{n \times n}$ with respect to $\mathbf{B} \in$ $\mathrm{NND}_{n} ; \lambda \in \operatorname{ch}(\mathbf{A}, \mathbf{B})$ if $\mathbf{A} \mathbf{w}=\lambda \mathbf{B} \mathbf{w}, \mathbf{B} \mathbf{w} \neq \mathbf{0}$
$\operatorname{nzch}(\mathbf{A}) \quad$ set of the nonzero eigenvalues of $\mathbf{A}_{n \times n}$:
$\operatorname{nzch}(\mathbf{A})=\left\{\operatorname{ch}_{1}(\mathbf{A}), \ldots, \operatorname{ch}_{r}(\mathbf{A})\right\}, r=\operatorname{rank}(\mathbf{A})$
$\operatorname{chv}_{i}(\mathbf{A})$ eigenvector of $\mathbf{A}_{n \times n}$ with respect to $\lambda_{i}=\operatorname{ch}_{i}(\mathbf{A})$: a nonzero vector \mathbf{t}_{i} satisfying the equation $\mathbf{A} \mathbf{t}_{i}=\lambda_{i} \mathbf{t}_{i}$
$\operatorname{sg}_{i}(\mathbf{A})=\delta_{i} \quad$ the i th largest singular value of $\mathbf{A}_{n \times m}: \operatorname{sg}_{i}(\mathbf{A})=+\sqrt{\operatorname{ch}_{i}\left(\mathbf{A}^{\prime} \mathbf{A}\right)}=$ $+\sqrt{\operatorname{ch}_{i}\left(\mathbf{A A}^{\prime}\right)}$
$\operatorname{sg}(\mathbf{A}) \quad$ set of the singular values of $\mathbf{A}_{n \times m}(m \leq n)$:
$\operatorname{sg}(\mathbf{A})=\left\{\operatorname{sg}_{1}(\mathbf{A}), \ldots, \operatorname{sg}_{m}(\mathbf{A})\right\}$
$\operatorname{nzsg}(\mathbf{A})$ set of the nonzero singular values of $\mathbf{A}_{n \times m}$:
$\operatorname{nzsg}(\mathbf{A})=\left\{\operatorname{sg}_{1}(\mathbf{A}), \ldots, \operatorname{sg}_{r}(\mathbf{A})\right\}, r=\operatorname{rank}(\mathbf{A})$
$\rho(\mathbf{A})$ the spectral radius of $\mathbf{A}_{n \times n}$: the maximum of the absolute values of the eigenvalues of $\mathbf{A}_{n \times n}$
$\operatorname{var}_{\mathrm{s}}(y)$ sample variance of the variable y $\operatorname{var}_{\mathrm{d}}(\mathbf{y})=s_{y}^{2} \quad$ sample variance: argument is the variable vector $\mathbf{y} \in \mathbb{R}^{n}$: $\operatorname{var}_{\mathrm{d}}(\mathbf{y})=\frac{1}{n-1} \mathbf{y}^{\prime} \mathbf{C y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
$\operatorname{cov}_{\mathrm{s}}(x, y)$ sample covariance between the variables x and y $\operatorname{cov}_{\mathrm{d}}(\mathbf{x}, \mathbf{y})=s_{x y} \quad$ sample covariance: arguments are variable vectors $\in \mathbb{R}^{n}$: $\operatorname{cov}_{\mathrm{d}}(\mathbf{x}, \mathbf{y})=\frac{1}{n-1} \mathbf{x}^{\prime} \mathbf{C} \mathbf{y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{i}\right)\left(y_{i}-\bar{y}\right)$
$\operatorname{cor}_{\mathrm{d}}(\mathbf{x}, \mathbf{y})=r_{x y} \quad$ sample correlation: $r_{x y}=\mathbf{x}^{\prime} \mathbf{C y} / \sqrt{\mathbf{x}^{\prime} \mathbf{C x} \cdot \mathbf{y}^{\prime} \mathbf{C y}}=\cos (\mathbf{C x}, \mathbf{C y})$
$\overline{\overline{\mathrm{x}}}$ projection of \mathbf{x} onto $\mathscr{C}\left(\mathbf{1}_{n}\right): \overline{\overline{\mathbf{x}}}=\mathbf{J x}=\bar{x} \mathbf{1}_{n}$ centered $\mathbf{x}: \tilde{\mathbf{x}}=\mathbf{C x}=\mathbf{x}-\mathbf{J} \mathbf{x}=\mathbf{x}-\bar{x} \mathbf{1}_{n}$
$\mathbf{U} \quad n \times d$ data matrix of the u-variables:

$$
\mathbf{U}=\left(\mathbf{u}_{1}: \ldots: \mathbf{u}_{d}\right)=\left(\begin{array}{c}
\mathbf{u}_{(1)}^{\prime} \\
\vdots \\
\mathbf{u}_{(n)}^{\prime}
\end{array}\right)
$$

$\mathbf{u}_{1}, \ldots, \mathbf{u}_{d} \quad$ "variable vectors" in "variable space" \mathbb{R}^{n}
$\mathbf{u}_{(1)}, \ldots, \mathbf{u}_{(n)} \quad$ "observation vectors" in "observation space" \mathbb{R}^{d}
$\overline{\mathbf{u}}$ vector of means of the variables $u_{1}, \ldots, u_{d}: \overline{\mathbf{u}}=\left(\bar{u}_{1}, \ldots, \bar{u}_{d}\right)^{\prime}$
$\widetilde{\mathbf{U}}$ centered $\mathbf{U}: \widetilde{\mathbf{U}}=\mathbf{C U}, \mathbf{C}$ is the centering matrix
$\tilde{\mathbf{u}}_{1}, \ldots, \tilde{\mathbf{u}}_{d}$ centered variable vectors
$\tilde{\mathbf{u}}_{(1)}, \ldots, \tilde{\mathbf{u}}_{(n)} \quad$ centered observation vectors
$\operatorname{var}_{\mathrm{d}}\left(\mathbf{u}_{i}\right)=s_{i}^{2} \quad$ sample variance: argument is the variable vector $\mathbf{u}_{i} \in \mathbb{R}^{n}$:
$\operatorname{var}_{\mathrm{d}}\left(\mathbf{u}_{i}\right)=\frac{1}{n-1} \mathbf{u}_{i}^{\prime} \mathbf{C} \mathbf{u}_{i}=\frac{1}{n-1} \sum_{\ell=1}^{n}\left(u_{\ell i}-\bar{u}_{i}\right)^{2}$
$\operatorname{cov}_{\mathrm{d}}\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=s_{i j} \quad$ sample covariance: arguments are variable vectors $\in \mathbb{R}^{n}$:
$s_{i j}=\frac{1}{n-1} \mathbf{u}_{i}^{\prime} \mathbf{C} \mathbf{u}_{j}=\frac{1}{n-1} \sum_{\ell=1}^{n}\left(u_{\ell i}-\bar{u}_{i}\right)\left(u_{\ell j}-\bar{u}_{j}\right)$
$\operatorname{ssp}(\mathbf{U})=\left\{t_{i j}\right\} \quad$ matrix $\mathbf{T}(d \times d)$ of the sums of squares and products of deviations about the mean: $\mathbf{T}=\mathbf{U}^{\prime} \mathbf{C U}=\sum_{i=1}^{n}\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)^{\prime}$
$\operatorname{cov}_{\mathrm{d}}(\mathbf{U})=\left\{s_{i j}\right\} \quad$ sample covariance matrix $\mathbf{S}(d \times d)$ of the data matrix \mathbf{U} :
$\mathbf{S}=\frac{1}{n-1} \mathbf{T}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)^{\prime}$
$\operatorname{cor}_{\mathrm{d}}\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=r_{i j} \quad$ sample correlation: arguments are variable vectors $\in \mathbb{R}^{n}$
$\operatorname{cor}_{\mathrm{d}}(\mathbf{U})=\left\{r_{i j}\right\} \quad$ sample correlation matrix $\mathbf{R}(d \times d)$ of the data matrix \mathbf{U} :
$\mathbf{R}=\operatorname{cor}_{\mathrm{d}}(\mathbf{U})=(\operatorname{diag} \mathbf{S})^{-1 / 2} \mathbf{S}(\operatorname{diag} \mathbf{S})^{-1 / 2}$
$\operatorname{MHLN}^{2}\left(\mathbf{u}_{(i)}, \overline{\mathbf{u}}, \mathbf{S}\right) \quad$ sample Mahalanobis distance (squared) of the i th observation from the mean: $\operatorname{MHLN}^{2}\left(\mathbf{u}_{(i)}, \overline{\mathbf{u}}, \mathbf{S}\right)=\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)^{\prime} \mathbf{S}^{-1}\left(\mathbf{u}_{(i)}-\overline{\mathbf{u}}\right)$
$\operatorname{MHLN}^{2}\left(\overline{\mathbf{u}}_{i}, \overline{\mathbf{u}}_{j}, \mathbf{S}_{*}\right)$ sample Mahalanobis distance (squared) between two mean vectors: $\operatorname{MHLN}^{2}\left(\overline{\mathbf{u}}_{i}, \overline{\mathbf{u}}_{j}, \mathbf{S}_{*}\right)=\left(\overline{\mathbf{u}}_{i}-\overline{\mathbf{u}}_{j}\right)^{\prime} \mathbf{S}_{*}^{-1}\left(\overline{\mathbf{u}}_{i}-\overline{\mathbf{u}}_{j}\right)$, where
$\mathbf{S}_{*}=\frac{1}{n_{1}+n_{2}-2}\left(\mathbf{U}_{1}^{\prime} \mathbf{C}_{n_{1}} \mathbf{U}_{1}+\mathbf{U}_{2}^{\prime} \mathbf{C}_{n_{2}} \mathbf{U}_{2}\right)$
$\operatorname{MHLN}^{2}(\mathbf{u}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ population Mahalanobis distance squared:
$\operatorname{MHLN}^{2}(\mathbf{u}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=(\mathbf{u}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{u}-\boldsymbol{\mu})$
$\mathrm{E}(\cdot) \quad$ expectation of a random argument: $\mathrm{E}(x)=p_{1} x_{1}+\cdots+p_{k} x_{k}$ if x is a discrete random variable whose values are x_{1}, \ldots, x_{k} with corresponding probabilities p_{1}, \ldots, p_{k}
$\operatorname{var}(x)=\sigma_{x}^{2} \quad$ variance of the random variable $x: \sigma_{x}^{2}=\mathrm{E}\left(x-\mu_{x}\right)^{2}, \mu_{x}=\mathrm{E}(x)$
$\operatorname{cov}(x, y)=\sigma_{x y} \quad$ covariance between the random variables x and y :
$\sigma_{x y}=\mathrm{E}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right), \mu_{x}=\mathrm{E}(x), \mu_{y}=\mathrm{E}(y)$
$\operatorname{cor}(x, y)=\varrho_{x y} \quad$ correlation between the random variables x and $y: \varrho_{x y}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}$
$\operatorname{cov}(\mathbf{x})$ covariance matrix $(d \times d)$ of a d-dimensional random vector \mathbf{x} : $\operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}=\mathrm{E}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)^{\prime}$
$\operatorname{cor}(\mathbf{x}) \quad$ correlation matrix $(d \times d)$ of the random vector \mathbf{x} :
$\operatorname{cor}(\mathbf{x})=\boldsymbol{\rho}=(\operatorname{diag} \boldsymbol{\Sigma})^{-1 / 2} \boldsymbol{\Sigma}(\operatorname{diag} \boldsymbol{\Sigma})^{-1 / 2}$
$\operatorname{cov}(\mathbf{x}, \mathbf{y}) \quad($ cross- $)$ covariance matrix between the random vectors \mathbf{x} and \mathbf{y} : $\operatorname{cov}(\mathbf{x}, \mathbf{y})=\mathrm{E}\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{\mathbf{y}}\right)^{\prime}=\boldsymbol{\Sigma}_{\mathbf{x} \mathbf{y}}$
$\operatorname{cov}(\mathbf{x}, \mathbf{x}) \quad \operatorname{cov}(\mathbf{x}, \mathbf{x})=\operatorname{cov}(\mathbf{x})$
$\operatorname{cor}(\mathbf{x}, \mathbf{y})$ (cross-)correlation matrix between the random vectors \mathbf{x} and \mathbf{y} $\operatorname{cov}\binom{x}{y}$ partitioned covariance matrix of the random vector $\binom{x}{y}$:

$$
\operatorname{cov}\binom{\mathbf{x}}{y}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{\mathbf{x x}} & \boldsymbol{\sigma}_{\mathbf{x} y} \\
\boldsymbol{\sigma}_{\mathbf{x} y}^{\prime} & \sigma_{y}^{2}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{cov}(\mathbf{x}, \mathbf{x}) & \operatorname{cov}(\mathbf{x}, y) \\
\operatorname{cov}(\mathbf{x}, y)^{\prime} & \operatorname{var}(y)
\end{array}\right)
$$

$\mathbf{x} \sim(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \mathrm{E}(\mathbf{x})=\boldsymbol{\mu}, \operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}$
$\mathbf{x} \sim \mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \mathbf{x}$ follows the p-dimensional normal distribution $\mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
$n(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad$ density for $\mathbf{x} \sim \mathrm{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{\Sigma}$ pd:

$$
n(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \mathrm{e}^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

$\mathrm{cc}_{i}(\mathbf{x}, \mathbf{y}) \quad i$ th largest canonical correlation between the random vectors \mathbf{x} and \mathbf{y}
$\operatorname{cc}(\mathbf{x}, \mathbf{y})$ set of the canonical correlations between the random vectors \mathbf{x} and \mathbf{y}
$c_{+}(\mathbf{x}, \mathbf{y})$ set of the nonzero (necessarily positive) canonical correlations between the random vectors \mathbf{x} and \mathbf{y}; square roots of the nonzero eigenvalues of $\mathbf{P}_{\mathbf{A}} \mathbf{P}_{\mathbf{B}}$:

$$
\begin{aligned}
\operatorname{cc}_{+}(\mathbf{x}, \mathbf{y})=\operatorname{nzch}^{1 / 2}\left(\mathbf{P}_{\mathbf{A}} \mathbf{P}_{\mathbf{B}}\right) & =\operatorname{nzsg}\left[\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{+1 / 2} \mathbf{A}^{\prime} \mathbf{B}\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{+1 / 2}\right] \\
\operatorname{cov}\binom{\mathbf{x}}{\mathbf{y}} & =\left(\begin{array}{ll}
\mathbf{A}^{\prime} \mathbf{A} & \mathbf{A}^{\prime} \mathbf{B} \\
\mathbf{B}^{\prime} \mathbf{A} & \mathbf{B}^{\prime} \mathbf{B}
\end{array}\right)
\end{aligned}
$$

$\mathbf{X}=\left(\mathbf{1}: \mathbf{X}_{0}\right) \quad$ in regression context often the model matrix
$\mathbf{X}_{0} \quad n \times k$ data matrix of the x-variables:

$$
\mathbf{X}_{0}=\left(\mathbf{x}_{1}: \ldots: \mathbf{x}_{k}\right)=\left(\begin{array}{c}
\mathbf{x}_{(1)}^{\prime} \\
\vdots \\
\mathbf{x}_{(n)}^{\prime}
\end{array}\right)
$$

$\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ variable vectors in the variable space \mathbb{R}^{n}
$\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n)}$ observation vectors in the observation space \mathbb{R}^{k}
$\operatorname{ssp}\left(\mathbf{X}_{0}: \mathbf{y}\right)$ partitioned matrix of the sums of squares and products of deviations about the mean of data $\left(\mathbf{X}_{0}: \mathbf{y}\right)$:

$$
\operatorname{ssp}\left(\mathbf{X}_{0}: \mathbf{y}\right)=\left(\begin{array}{ll}
\mathbf{T}_{\mathbf{x x}} & \mathbf{t}_{\mathbf{x} y} \\
\mathbf{t}_{\mathbf{x} y}^{\prime} & t_{y y}
\end{array}\right)=\left(\mathbf{X}_{0}: \mathbf{y}\right)^{\prime} \mathbf{C}\left(\mathbf{X}_{0}: \mathbf{y}\right)
$$

$\operatorname{cov}_{\mathrm{d}}\left(\mathbf{X}_{0}: \mathbf{y}\right)$ partitioned sample covariance matrix of data $\left(\mathbf{X}_{0}: \mathbf{y}\right)$:

$$
\operatorname{cov}_{\mathrm{d}}\left(\mathbf{X}_{0}: \mathbf{y}\right)=\left(\begin{array}{cc}
\mathbf{S}_{\mathbf{x x}} & \mathbf{s}_{\mathbf{x} y} \\
\mathbf{s}_{\mathbf{x} y}^{\prime} & s_{y}^{2}
\end{array}\right)
$$

$\operatorname{cor}_{\mathrm{d}}\left(\mathbf{X}_{0}: \mathbf{y}\right)$ partitioned sample correlation matrix of data $\left(\mathbf{X}_{0}: \mathbf{y}\right)$:

$$
\operatorname{cor}_{\mathrm{d}}\left(\mathbf{X}_{0}: \mathbf{y}\right)=\left(\begin{array}{cc}
\mathbf{R}_{\mathbf{x x}} & \mathbf{r}_{\mathbf{x} y} \\
\mathbf{r}_{\mathbf{x} y}^{\prime} & 1
\end{array}\right)
$$

\mathbf{H} orthogonal projector onto $\mathscr{C}(\mathbf{X})$, the hat matrix: $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}=$ $\mathbf{X X}^{+}=\mathbf{P}_{\mathbf{X}}$
\mathbf{M} orthogonal projector onto $\mathscr{C}(\mathbf{X})^{\perp}: \mathbf{M}=\mathbf{I}_{n}-\mathbf{H}$
\mathbf{J} the orthogonal projector onto $\mathscr{C}\left(\mathbf{1}_{n}\right): \mathbf{J}=\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}=\mathbf{P}_{\mathbf{1}_{n}}$
C centering matrix, the orthogonal projector onto $\mathscr{C}\left(\mathbf{1}_{n}\right)^{\perp}$: $\mathbf{C}=\mathbf{I}_{n}-\mathbf{J}$
$\left(\mathbf{X}_{1}: \mathbf{X}_{2}\right)$ partitioned model matrix \mathbf{X}
$\mathbf{M}_{1} \quad$ orthogonal projector onto $\mathscr{C}\left(\mathbf{X}_{1}\right)^{\perp}: \mathbf{M}_{1}=\mathbf{I}_{n}-\mathbf{P}_{\mathbf{X}_{1}}$
$\hat{\boldsymbol{\beta}}$ solution to normal equation $\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{y}, \operatorname{OLSE}(\boldsymbol{\beta})$
$\mathbf{X} \widehat{\boldsymbol{\beta}}=\hat{\mathbf{y}} \quad \hat{\mathbf{y}}=\mathbf{H y}=\mathrm{OLS}$ fitted values, $\operatorname{OLSE}(\mathbf{X} \boldsymbol{\beta})$, denoted also $\widehat{\mathbf{X} \boldsymbol{\beta}}=\hat{\boldsymbol{\mu}}$, when $\boldsymbol{\mu}=\mathbf{X} \boldsymbol{\beta}$
$\tilde{\boldsymbol{\beta}}$ solution to generalized normal equation $\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{W}^{-} \mathbf{y}$, where $\mathbf{W}=\mathbf{V}+\mathbf{X} \mathbf{U} \mathbf{X}^{\prime}, \mathscr{C}(\mathbf{W})=\mathscr{C}(\mathbf{X}: \mathbf{V})$
$\tilde{\boldsymbol{\beta}}$ if \mathbf{V} is positive definite and \mathbf{X} has full column rank, then $\tilde{\boldsymbol{\beta}}=$ $\operatorname{BLUE}(\boldsymbol{\beta})=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}$
$\mathbf{X} \tilde{\boldsymbol{\beta}} \quad \operatorname{BLUE}(\mathbf{X} \boldsymbol{\beta})$, denoted also $\widetilde{\mathbf{X} \boldsymbol{\beta}}=\tilde{\boldsymbol{\mu}}$
\bar{y} mean of the response variable $y: \bar{y}=\left(y_{1}+\cdots+y_{n}\right) / n$
$\overline{\mathbf{x}}$ vector of the means of k regressor variables $x_{1}, \ldots, x_{k}: \overline{\mathbf{x}}=$ $\left(\bar{x}_{1}, \ldots, \bar{x}_{k}\right)^{\prime} \in \mathbb{R}^{k}$
$\overline{\overline{\mathbf{y}}} \quad$ projection of \mathbf{y} onto $\mathscr{C}\left(\mathbf{1}_{n}\right): \overline{\overline{\mathbf{y}}}=\mathbf{J} \mathbf{y}=\bar{y} \mathbf{1}_{n}$
$\tilde{\mathbf{y}} \quad$ centered $\mathbf{y}, \tilde{\mathbf{y}}=\mathbf{C y}=\mathbf{y}-\overline{\overline{\mathbf{y}}}$
$\hat{\boldsymbol{\beta}}_{\mathbf{x}} \quad \hat{\boldsymbol{\beta}}_{\mathbf{x}}=\mathbf{T}_{\mathbf{x} \mathbf{x}}^{-1} \mathbf{t}_{\mathbf{x} y}=\mathbf{S}_{\mathbf{x} \mathbf{x}}^{-1} \mathbf{S}_{\mathbf{x} y}$: the OLS-regression coefficients of x variables when $\mathbf{X}=\left(\mathbf{1}: \mathbf{X}_{0}\right)$
$\hat{\beta}_{0} \quad \hat{\beta}_{0}=\bar{y}-\hat{\boldsymbol{\beta}}_{\mathbf{x}}^{\prime} \overline{\mathbf{x}}=\bar{y}-\left(\hat{\beta}_{1} \bar{x}_{1}+\cdots+\hat{\beta}_{k} \bar{x}_{k}\right):$ OLSE of the constant term (intercept) when $\mathbf{X}=\left(\mathbf{1}: \mathbf{X}_{0}\right)$
$\operatorname{BLP}(\mathbf{y} ; \mathbf{x})$ the best linear predictor of the random vector \mathbf{y} on the basis of the random vector \mathbf{x}
$\operatorname{BLUE}\left(\mathbf{K}^{\prime} \boldsymbol{\beta}\right)$ the best linear unbiased estimator of estimable parametric function $\mathbf{K}^{\prime} \boldsymbol{\beta}$, denoted as $\mathbf{K}^{\prime} \tilde{\boldsymbol{\beta}}$ or $\widetilde{\mathbf{K}^{\prime} \boldsymbol{\beta}}$
$\operatorname{BLUP}\left(\mathbf{y}_{f} ; \mathbf{y}\right)$ the best linear unbiased predictor of a new unobserved \mathbf{y}_{f}
$\mathrm{LE}\left(\mathbf{K}^{\prime} \boldsymbol{\beta} ; \mathbf{y}\right)$ (homogeneous) linear estimator of $\mathbf{K}^{\prime} \boldsymbol{\beta}$, where $\mathbf{K} \in \mathbb{R}^{p \times q}$: $\left\{\operatorname{LE}\left(\mathbf{K}^{\prime} \boldsymbol{\beta} ; \mathbf{y}\right)\right\}=\left\{\mathbf{A y}: \mathbf{A} \in \mathbb{R}^{q \times n}\right\}$
$\mathrm{LP}(\mathbf{y} ; \mathbf{x})$ (inhomogeneous) linear predictor of the p-dimensional random vector \mathbf{y} on the basis of the q-dimensional random vector \mathbf{x} : $\{\operatorname{LP}(\mathbf{y} ; \mathbf{x})\}=\left\{f(\mathbf{x}): f(\mathbf{x})=\mathbf{A x}+\mathbf{a}, \mathbf{A} \in \mathbb{R}^{p \times q}, \mathbf{a} \in \mathbb{R}^{p}\right\}$
$\operatorname{LUE}\left(\mathbf{K}^{\prime} \boldsymbol{\beta} ; \mathbf{y}\right)$ (homogeneous) linear unbiased estimator of $\mathbf{K}^{\prime} \boldsymbol{\beta}$:
$\left\{\operatorname{LUE}\left(\mathbf{K}^{\prime} \boldsymbol{\beta} ; \mathbf{y}\right)\right\}=\left\{\mathbf{A y}: \mathrm{E}(\mathbf{A y})=\mathbf{K}^{\prime} \boldsymbol{\beta}\right\}$
$\operatorname{LUP}\left(\mathbf{y}_{f} ; \mathbf{y}\right)$ linear unbiased predictor of a new unobserved \mathbf{y}_{f} : $\left\{\operatorname{LUP}\left(\mathbf{y}_{f} ; \mathbf{y}\right)\right\}=\left\{\mathbf{A y}: \mathrm{E}\left(\mathbf{A} \mathbf{y}-\mathbf{y}_{f}\right)=\mathbf{0}\right\}$
$\operatorname{MSEM}(f(\mathbf{x}) ; \mathbf{y}) \quad$ mean squared error matrix of $f(\mathbf{x})$ (= random vector, function of the random vector \mathbf{x}) with respect to \mathbf{y} (= random vector or a given fixed vector): $\operatorname{MSEM}[f(\mathbf{x}) ; \mathbf{y}]=\mathrm{E}[\mathbf{y}-f(\mathbf{x})][\mathbf{y}-f(\mathbf{x})]^{\prime}$
$\operatorname{MSEM}\left(\mathbf{F y} ; \mathbf{K}^{\prime} \boldsymbol{\beta}\right)$ mean squared error matrix of the linear estimator $\mathbf{F y}$ under $\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \boldsymbol{\sigma}^{2} \mathbf{V}\right\}$ with respect to $\mathbf{K}^{\prime} \boldsymbol{\beta}$: $\operatorname{MSEM}\left(\mathbf{F y} ; \mathbf{K}^{\prime} \boldsymbol{\beta}\right)=\mathrm{E}\left(\mathbf{F y}-\mathbf{K}^{\prime} \boldsymbol{\beta}\right)\left(\mathbf{F y}-\mathbf{K}^{\prime} \boldsymbol{\beta}\right)^{\prime}$
$\operatorname{OLSE}\left(\mathbf{K}^{\prime} \boldsymbol{\beta}\right)$ the ordinary least squares estimator of parametric function $\mathbf{K}^{\prime} \boldsymbol{\beta}$, denoted as $\mathbf{K}^{\prime} \hat{\boldsymbol{\beta}}$ or $\widehat{\mathbf{K}^{\prime} \boldsymbol{\beta}}$; here $\widehat{\boldsymbol{\beta}}$ is any solution to the normal equation $\mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{y}$
$\operatorname{risk}\left(\mathbf{F y} ; \mathbf{K}^{\prime} \boldsymbol{\beta}\right) \quad$ quadratic risk of $\mathbf{F y}$ under $\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{V}\right\}$ with respect to $\mathbf{K}^{\prime} \boldsymbol{\beta}$: $\operatorname{risk}\left(\mathbf{F y} ; \mathbf{K}^{\prime} \boldsymbol{\beta}\right)=\operatorname{tr}\left[\operatorname{MSEM}\left(\mathbf{F} \mathbf{y} ; \mathbf{K}^{\prime} \boldsymbol{\beta}\right)\right]=\mathrm{E}\left(\mathbf{F} \mathbf{y}-\mathbf{K}^{\prime} \boldsymbol{\beta}\right)^{\prime}\left(\mathbf{F y}-\mathbf{K}^{\prime} \boldsymbol{\beta}\right)$
\mathscr{M} linear model: $\left\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{V}\right\}: \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \operatorname{cov}(\mathbf{y})=\operatorname{cov}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{V}$, $\mathrm{E}(\mathbf{y})=\mathbf{X} \boldsymbol{\beta}$
$\mathscr{M}_{\text {mix }}$ mixed linear model: $\mathscr{M}_{\text {mix }}=\{\mathbf{y}, \mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \boldsymbol{\gamma}, \mathbf{D}, \mathbf{R}\}: \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \boldsymbol{\gamma}+$ $\varepsilon ; \gamma$ is the vector of the random effects, $\operatorname{cov}(\gamma)=\mathbf{D}, \operatorname{cov}(\varepsilon)=\mathbf{R}$, $\operatorname{cov}(\boldsymbol{\gamma}, \boldsymbol{\varepsilon})=\mathbf{0}, \mathrm{E}(\mathbf{y})=\mathbf{X} \boldsymbol{\beta}$
\mathscr{M}_{f} linear model with new future observations \mathbf{y}_{f} :

$$
\mathscr{M}_{f}=\left\{\binom{\mathbf{y}}{\mathbf{y}_{f}},\binom{\mathbf{X} \boldsymbol{\beta}}{\mathbf{X}_{f} \boldsymbol{\beta}}, \sigma^{2}\left(\begin{array}{cc}
\mathbf{V} & \mathbf{V}_{12} \\
\mathbf{V}_{21} & \mathbf{V}_{22}
\end{array}\right)\right\}
$$

