Notation

R real numbers
R™ ™  set of n X m real matrices
R*™  subset of R™*"™ consisting of matrices with rank r
RZ  subset of R™*™ consisting of symmetric matrices
NND,, subset of RY consisting of nonnegative definite (nnd) matrices:
A € NND,, <= A = LL/ for some L; instead of nnd, the term
positive semidefinite is often used
PD,, subset of NND,, consisting of positive definite (pd) matrices: A =
LL’ for some nonsingular L
0 null vector, null matrix; denoted also as 0, or Onxm
1, column vector of ones, shortened 1
I, identity matrix, shortened I
i; the jth column of I; the jth standard basis vector
A ={a;;} matrix A with its elements a;;
Anxm 71 X m matrix A
a column vector a € R"
A’ transpose of the matrix A
(A :B) partitioned (augmented) matrix
A=(ay am) Apxm represented columnwise
ag)
A = A, xm represented row-wise
aln)
A~ inverse of the matrix A
A~ generalized inverse of the matrix A: AA™ A = A, also called {1}-

{A™}

inverse, or inner inverse

the set of generalized inverses of A
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Notation
reflexive generalized inverse of A: AATA =A, ATAA™ = A",
also called {12}-inverse

the Moore—Penrose inverse of A: the unique matrix satisfying the
four Moore—Penrose conditions:

(mpl) AATA =A,
(mp3) (AA7) = AA™,

(mp2) ATAA” = A7,
(mpd) (ATA) =A"A

generalized inverse of A satisfying the Moore—Penrose conditions
(mpi) and (mpj)

symmetric nnd square root of A € NND,: AY/? = TAY?T,
where A = TAT’ is the eigenvalue decomposition of A

(a+)

inertia of the square matrix A: 7, v, and ¢ are the number of posi-
tive, negative, and zero eigenvalues of A, respectively, all counting
multiplicities

standard inner product in R™: (a,b) = a’b; can denote also a
general inner product in a vector space

inner product a’Vb; V is the inner product matrix (ipm)

vectors a and b are orthogonal with respect to a given inner prod-
uct

Euclidean norm (standard norm, 2-norm) of vector a, also denoted
lall2: ||a]|* = a’a; can denote also a general vector norm in a vector
space

llal|3; = a’Va, norm when the ipm is V (ellipsoidal norm)

standard matrix inner product between A,B € R"*™: (A B) =

tr(A'B) = Zi,j aijbij

Euclidean (Frobenius) norm of the matrix A: ||A||% = tr(A’A) =
@5 4

matrix 2-norm of the matrix A (spectral norm):

[All2 = HmaflllAXIlz =sg1(A) = +1/chi(A'A)

x||

matrix 2-norm of nonsingular A, xn: [[A7 2 = 1/sg,, (A)

condition number of nonsingular A, x,: cond(A) = ||Al[2]|A |2
sg1(A)/sg,(A)
cos Z(a, b), the cosine of the angle, 6, between the nonzero vectors

a and b: cos(a,b) = cosf = cos Z(a,b) = Hé(jfl\blz\\

the angle, 8, 0 < 6 < 7, between the nonzero vectors a and b:
6= Z(a,b) = cos !(a,b)

submatrix of A, xn, obtained by choosing the elements of A which
lie in rows a and columns (3; o and [ are index sets of the rows
and the columns of A, respectively

Ala, o], principal submatrix; same rows and columns chosen
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cof (asjz)

det(A)

det(A[a])
det(AL)

Al

diag(A)
diag(di,...,dn)
diag(d)

A/A1

Asz
A> 0
A>0
A< B

A< B
A<:B
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ith leading principal submatrix of Anxn: AY = Ala,a], where

a={1,...,i}

submatrix of A, obtained by choosing the elements of A which do
not lie in rows « and columns 3

submatrix of A, obtained by deleting row i and column j from A
ijth minor of A corresponding to a;;: minor(a;;) = det(A(z, 7)),
i,j€{l,...,n}

ijth cofactor of A: cof(a;;) = (—1)" minor(ai;)

determinant of the matrix Anxn: det(a) = a, a € R, det(A) =
Z;L:1 aij cof(asj), @ € {1,...,n}: the Laplace expansion by minors
along the ith row

principal minor

leading principal minor of order @

determinant of the matrix A, xn

diagonal matrix formed by the diagonal entries of A, xn

n x n diagonal matrix with listed diagonal entries

n x n diagonal matrix whose ith diagonal element is d;

diagonal matrix formed by the diagonal entries of A, xn

rank of the matrix A

rank of the matrix A

trace of the matrix Ay xp: tr(A) = 21;1 aii

trace of the matrix A, xn

vectoring operation: the vector formed by placing the columns of
A under one another successively

Kronecker product of Ay and Bpxg:

a11B almB
A®B= € R"PX™a
an1B anmB
Schur complement of Ay in A = (2; 2;; ):

A/A11 = Az — A1 AT A2

Aos — A1 AT A2

A is nonnegative definite: A = LL’ for some L; A € NND,,

A is positive definite: A = LL’ for some invertible L; A € PD,,

B — A is nonnegative definite; B — A € NND,,; A lies below B
with respect to the Lowner ordering

B — A is positive definite; B — A € PD,,

A and B are rank-subtractive; rk(B — A) = rk(B) —rk(A); A lies
below B with respect to the minus ordering
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Sh(V | X)

Pa.v

PA;V

PaB
{Pas}

“(A)

N (A)
(A)*

AJ_
C(A)v

Ay
pa(z)
ucy
u+y
UV
UmBYy
unvy

chi(A) = \;
ch(A)

ch(A,B)
nzch(A)
ChVi (A)

Sgi(A) =4

Notation

the shorted matrix of V.€ NND,, with respect to X, xp, Sh(V | X)
is the maximal element U (in the Lowner ordering) in the set
U={U:0<, ULV, ¢U0)Ccg(X)}

orthogonal projector onto ¥(A) (w.r.t. I): Pa = A(A’A)" A’ =
AAT

orthogonal projector onto ¢(A) w.r.t. V.€ PD,:
Pav=A(A'VA)"A'V

generalized orthogonal projector onto ¢(A) w.r.t. V.€ NND,:
Pav=A(A'VA)"A'V+A[I-(A'VA)” A'VA|U, where U is
arbitrary

projector onto €'(A) along ¢(B): Pajg(A:B) = (A:0)
set of matrices satisfying: Pa|g(A : B) = (A : 0)

orthogonal projector onto the vector space U (w.r.t. a given inner
product)

column space of the matrix Apxp: €(A) = {y € R" 1 y =
Ax for some x € RP }

null space of the matrix Apxp: #/(A)={x€RP: Ax =0}

orthocomplement of €(A) w.r.t. I ¥(A)" = {z € R" : 2/Ax =
0Vx eRP} = 4 (A)

matrix whose column space is Z(AL) = ¢ (A)*

orthocomplement of ¥(A) w.r.t. V: 4(A)y = {z € R" : 2/ VAx =
0Vx eRP} = 4 (A'V)

matrix whose column space is Z(A)y

the characteristic polynomial of A: pa (z) = det(A — zI)

U is a subset of V; possibly U =V

sum of the vector spaces U and V

direct sum of the vector spaces U and V

direct sum of the orthogonal vector spaces U and V
intersection of the vector spaces U and V

the ith largest eigenvalue of Ay xy (all eigenvalues being real)

set of all n eigenvalues of A, xn, including multiplicities, called
also the spectrum of A: ch(A) = {chi1(A),...,ch,(A)}

set of proper eigenvalues of symmetric A, x, with respect to B €
NND,; A € ch(A,B) if Aw = ABw,Bw # 0

set of the nonzero eigenvalues of Ay xn:

nzch(A) = {chi(A),...,chr(A)}, r = rank(A)

eigenvector of A, x, with respect to A\; = ch;(A): a nonzero vec-
tor t; satisfying the equation At; = \;t;

the ith largest singular value of A, xm: sg;(A) = ++4/ch;(A’A) =

+/ch; (AA)
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sg(A)
nzsg(A)
p(A)

vars(y)

varg(y) = s;

covs(z,y)

cova(X,y) = Szy

cord (X,y) = Tay

X
%

ui,...,Uq
U1y -5 Wn)
i

U

..., 0
LICOERRERRLIED)

varg(u;) = s2
cova(ui, uj) = sij
ssp(U) = {ti;}
cova(U) = {si;}

cord(ui, uj) = Tij

corg(U) = {ri;}

MHLN?(u(;), @, S)
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set of the singular values of A, xm (m < n):
sg(A) = {sg1(A),...,sg,,(A)}

set of the nonzero singular values of A, xm:
nasg(A) = {sg,(A), .., 5g,(A)}, r = rank(A)

the spectral radius of A, xn»: the maximum of the absolute values
of the eigenvalues of A, xn

sample variance of the variable y

sample variance: argument is the variable vector y € R™:
vara(y) = 745y'Cy = 745 200 (i — )

sample covariance between the variables x and y

sample covariance: arguments are variable vectors € R™:
cova(x,y) = 755x'Cy = A5 >0 (@i — i) (yi — §)
sample correlation: ry, = x'Cy/y/x’Cx - y'Cy = cos(Cx, Cy)
projection of x onto €(1,): X = Jx = z1,
centered x: Xx=Cx=x—-Jx=x—71,
n X d data matrix of the u-variables:
)
U=(ur:...:ug) =
)

“variable vectors” in “variable space” R™
“observation vectors” in “observation space” R?
vector of means of the variables u1,...,uq: G = (u1,...,4q)
centered U : U = CU, C is the centering matrix
centered variable vectors

centered observation vectors

sample variance: argument is the variable vector u; € R™:
vara(us) = Ty Cus = 2oy S0 (s — 0)?

sample covariance: arguments are variable vectors € R™:
Sij = ﬁu;Cuj = ”+1 Zz:l(ugi - ﬂi)(Ug]‘ — ﬂj)

matrix T (d x d) of the sums of squares and products of deviations
about the mean: T = U'CU = Z:;l(u(i) —0)(ug — )

sample covariance matrix S (d x d) of the data matrix U:
n —_ —

S = nilT = nil Zi:l(u(i> - u)(u(l) - u)/

sample correlation: arguments are variable vectors € R™

sample correlation matrix R (d x d) of the data matrix U:
R = corg(U) = (diag S)~*/28(diag S) /2

sample Mahalanobis distance (squared) of the ith observation from
the mean: MHLNZ(u(i), 4,S) = (uy) — ﬁ)'S_l(u(i) —u)
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MHLN?(@;, @5, Sx)

MHLN? (u, p, )
E()

var(z) = o2

cov(w,y) = oay

cor(z,y) = Quy

cov(x)
cor(x)
cov(x,y)

cov(x,x)
cor(x,y)

x
COV{ 4

x ~ (1, 3)
X~ NP(H’? 2)
n(x; p, )

cci(x,y)

ce(x,y)

: Xo)

Notation

sample Mahalanobis distance (squared) between two mean vectors:
MHLN? (%, @5, S.) = (@; — 1;)/S; ' ({; — @), where
S. = ———(U;C,, U1 + U5C,,Us)

ni+ng—2
population Mahalanobis distance squared:
MHLN?(u, 4, ) = (u — p)'S™ (u — p)

expectation of a random argument: E(z) = pix1 + -+ - + pray if
z is a discrete random variable whose values are x1,...,x; with
corresponding probabilities p1, ..., pk

variance of the random variable z: 02 = E(z — pz)?, pe = E(2)

covariance between the random variables = and y:
Ozy = E(x — pa)(y — py), po = E(2), pry = E(y)

o
correlation between the random variables = and y: zy = ——

OOy

covariance matrix (d x d) of a d-dimensional random vector x:
cov(x) = 3 = B(x — 1) (x — uxe)

correlation matrix (d x d) of the random vector x:
cor(x) = P = (diag £) /22 (diag )~ /2

(cross-)covariance matrix between the random vectors x and y:
cov(x,y) = B(x — ) (y — py)" = Ty

cov(x,x) = cov(x)

(cross-)correlation matrix between the random vectors x and y

partitioned covariance matrix of the random vector (’;)

x Yxx Oxy cov(x, x)
CoVv = ’ 2 = ’
Y Oxy Oy cov(x,y)

E(x) = p, cov(x) =X

var(y)

cov(x, y))

x follows the p-dimensional normal distribution N, (u, X)
density for x ~ Ny (u,X), ¥ pd:

1 L (x—p)' S (x—p)

n(x; p, X) = Gryrsiz

ith largest canonical correlation between the random vectors x
and y

set of the canonical correlations between the random vectors x
and y

set of the nonzero (necessarily positive) canonical correlations be-
tween the random vectors x and y; square roots of the nonzero
eigenvalues of P Pg:

ccy (x,y) = nzch'/?(PoPg) = nzsg[(A’A)TV/2A'B(B'B) /7]

x\ [(A'A A'B
“Vly|] = \B'A BB

in regression context often the model matrix
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Xo

X1y... Xk
X(1)74.

ssp(Xo 1 y)

. X(n>

cova(Xo : y)

corg(Xo :y)

(X1 :

e
< ™

k1l
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n X k data matrix of the z-variables:

X(1)
Xo=(x1:...:Xp) =
X(m)
variable vectors in the variable space R™
observation vectors in the observation space R¥
partitioned matrix of the sums of squares and products of devia-

tions about the mean of data (Xo :y):

Txx tx
e = (t' t) = (X0 :¥)/O(Xo 1 y)
xy

partitioned sample covariance matrix of data (Xo : y):

Sxx Sx1
covg(Xop 1 y) = >
Sy Sy

partitioned sample correlation matrix of data (Xo : y):

Rxx rx
corg(Xop :y) = v

orthogonal projector onto %(X), the hat matrix: H = X(X'X)" X' =
XX =Py

orthogonal projector onto ¢(X)*: M =1, — H
the orthogonal projector onto ¢ (1,): J = %1n1; =P,

centering matrix, the orthogonal projector onto %(1,,)~:
c=I,-J

partitioned model matrix X
orthogonal projector onto %’(Xl)J‘: M, =1, — Px,
solution to normal equation X'X8 = X'y, OLSE(B)

¥ = Hy = OLS fitted values, OLSE(Xp), denoted also )/(-B =0,
when p = Xp

solution to generalized normal equation X’ W~ X3 = X'W ™y,
where W = V + XUX', ¥(W) = ¢(X : V)

if V is positive definite and X has full column rank, then 8 =
BLUE(B) = (X'V'X)"'X'V~ly

BLUE(XS), denoted also X8 = fi

mean of the response variable y: § = (y1 + -+ yn)/n

vector of the means of k regressor variables x1,...,zp: X =

(Z1,...,7,) €RF

projection of y onto €(1,): ¥ = Jy = y1,
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BLP(y;x)
BLUE(K'g)

BLUP(yy;y)
LE(K'B;y)

LP(y;x)

LUE(K'B;y)
LUP(ys;y)

MSEM(f(x);y)

MSEM (Fy; K'8)

OLSE(K'B)

risk(Fy; K'B)
Vi

Mrmix

Notation

centered y, y=Cy =y —y

ﬁx = T;,}txy = S;,}sxy: the OLS-regression coefficients of x-
variables when X = (1 : Xjo)

Bo=y—PBLx=17— (Bﬁn 4+t kak) OLSE of the constant
term (intercept) when X = (1 : Xo)

the best linear predictor of the random vector y on the basis of
the random vector x

the best linear unbiased estimator of estimable parametric func-
tion K’B, denoted as K’'B or K’

the best linear unbiased predictor of a new unobserved y ¢

(homogeneous) linear estimator of K’'B3, where K € RP*4:
{LE(K'B;y)} = {Ay: A e R™*"}

(inhomogeneous) linear predictor of the p-dimensional random
vector y on the basis of the g-dimensional random vector x:
{LP(y;x)} ={f(x): f(x) = Ax+a, AR acR"}

(homogeneous) linear unbiased estimator of K’g3:
{LUE(K'B;y)} = { Ay : E(Ay) =K'}
linear unbiased predictor of a new unobserved y s:
{LUP(ys;y)} = {Ay : E(Ay —ys) = 0}

mean squared error matrix of f(x) (= random vector, function of
the random vector x) with respect to y (= random vector or a
given fixed vector): MSEM|[f(x);y] = Ely — f(x)]ly — f(x)]’

mean squared error matrix of the linear estimator Fy under
{y, X8, 0V} with respect to K’'g:

MSEM(Fy: K'8) = E(Fy — K'8)(Fy — K'8)’

the ordinary least squares estimator of parametric function K’'f3,
denoted as K',é or K’3; here ,@ is any solution to the normal
equation X’'X8 = X'y

quadratic risk of Fy under {y, X8, 0>V} with respect to K'g:
risk(Fy; K'B) = tr[MSEM(Fy: K')] = B(Fy — K'B) (Fy — K'B)
linear model: {y, X8, 0?V}:y = XB+e, cov(y) = cov(e) = 0>V,
E(y) = X8

mixed linear model: #nix = {y, XB8+Z~, D, R}y = XB+Z~v+

€; v is the vector of the random effects, cov(y) = D, cov(e) = R,
cov(y,€) =0, E(y) = Xp

linear model with new future observations y:

e = y XpB o2 V Vi
My = yi 5 Xfﬂ ) Va1 Voo





