
Notation

R real numbers
Rn×m set of n×m real matrices
Rn×mr subset of Rn×m consisting of matrices with rank r

Rns subset of Rn×n consisting of symmetric matrices
NNDn subset of Rns consisting of nonnegative definite (nnd) matrices:

A ∈ NNDn ⇐⇒ A = LL′ for some L; instead of nnd, the term
positive semidefinite is often used

PDn subset of NNDn consisting of positive definite (pd) matrices: A =
LL′ for some nonsingular L

0 null vector, null matrix; denoted also as 0n or 0n×m
1n column vector of ones, shortened 1

In identity matrix, shortened I

ij the jth column of I; the jth standard basis vector
A = {aij} matrix A with its elements aij

An×m n×m matrix A

a column vector a ∈ Rn

A′ transpose of the matrix A

(A : B) partitioned (augmented) matrix
A = (a1 : . . . : am) An×m represented columnwise

A =

a′(1)
...

a′(n)

 An×m represented row-wise

A−1 inverse of the matrix A

A− generalized inverse of the matrix A: AA−A = A, also called {1}-
inverse, or inner inverse

{A−} the set of generalized inverses of A
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428 Notation

A−12 reflexive generalized inverse of A: AA−A = A, A−AA− = A−,
also called {12}-inverse

A+ the Moore–Penrose inverse of A: the unique matrix satisfying the
four Moore–Penrose conditions:

(mp1) AA−A = A, (mp2) A−AA− = A−,

(mp3) (AA−)′ = AA−, (mp4) (A−A)′ = A−A

A−ij generalized inverse of A satisfying the Moore–Penrose conditions
(mpi) and (mpj)

A1/2 symmetric nnd square root of A ∈ NNDn: A1/2 = TΛ1/2T′,
where A = TΛT′ is the eigenvalue decomposition of A

A+1/2 (A+)1/2

In(A) = (π, ν, δ) inertia of the square matrix A: π, ν, and δ are the number of posi-
tive, negative, and zero eigenvalues of A, respectively, all counting
multiplicities

〈a,b〉 standard inner product in Rn: 〈a,b〉 = a′b; can denote also a
general inner product in a vector space

〈a,b〉V inner product a′Vb; V is the inner product matrix (ipm)
a ⊥ b vectors a and b are orthogonal with respect to a given inner prod-

uct
‖a‖ Euclidean norm (standard norm, 2-norm) of vector a, also denoted

‖a‖2: ‖a‖2 = a′a; can denote also a general vector norm in a vector
space

‖a‖V ‖a‖2V = a′Va, norm when the ipm is V (ellipsoidal norm)
〈A,B〉 standard matrix inner product between A,B ∈ Rn×m: 〈A,B〉 =

tr(A′B) =
∑

i,j
aijbij

‖A‖F Euclidean (Frobenius) norm of the matrix A: ‖A‖2F = tr(A′A) =∑
i,j
a2
ij

‖A‖2 matrix 2-norm of the matrix A (spectral norm):

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = sg1(A) = +
√

ch1(A′A)

‖A−1‖2 matrix 2-norm of nonsingular An×n: ‖A−1‖2 = 1/ sgn(A)
cond(A) condition number of nonsingular An×n: cond(A) = ‖A‖2‖A−1‖2 =

sg1(A)/ sgn(A)
cos(a,b) cos∠(a,b), the cosine of the angle, θ, between the nonzero vectors

a and b: cos(a,b) = cos θ = cos∠(a,b) = 〈a,b〉
‖a‖‖b‖

∠(a,b) the angle, θ, 0 ≤ θ ≤ π, between the nonzero vectors a and b:
θ = ∠(a,b) = cos−1(a,b)

A[α, β] submatrix of An×n, obtained by choosing the elements of A which
lie in rows α and columns β; α and β are index sets of the rows
and the columns of A, respectively

A[α] A[α, α], principal submatrix; same rows and columns chosen
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AL
i ith leading principal submatrix of An×n: AL

i = A[α, α], where
α = {1, . . . , i}

A(α, β) submatrix of A, obtained by choosing the elements of A which do
not lie in rows α and columns β

A(i, j) submatrix of A, obtained by deleting row i and column j from A

minor(aij) ijth minor of A corresponding to aij : minor(aij) = det(A(i, j)),
i, j ∈ {1, . . . , n}

cof(aij) ijth cofactor of A: cof(aij) = (−1)i+j minor(aij)
det(A) determinant of the matrix An×n: det(a) = a, a ∈ R, det(A) =∑n

j=1 aij cof(aij), i ∈ {1, . . . , n}: the Laplace expansion by minors
along the ith row

det(A[α]) principal minor
det(AL

i ) leading principal minor of order i
|A| determinant of the matrix An×n

diag(A) diagonal matrix formed by the diagonal entries of An×n

diag(d1, . . . , dn) n× n diagonal matrix with listed diagonal entries
diag(d) n× n diagonal matrix whose ith diagonal element is di

Aδ diagonal matrix formed by the diagonal entries of An×n

rk(A) rank of the matrix A

rank(A) rank of the matrix A

tr(A) trace of the matrix An×n : tr(A) =
∑n

i=1 aii

trace(A) trace of the matrix An×n

vec(A) vectoring operation: the vector formed by placing the columns of
A under one another successively

A⊗B Kronecker product of An×m and Bp×q:

A⊗B =

a11B . . . a1mB
...

...
...

an1B . . . anmB

 ∈ Rnp×mq

A/A11 Schur complement of A11 in A =
(A11 A12

A21 A22

)
:

A/A11 = A22 −A21A−11A12

A22·1 A22 −A21A−11A12

A ≥L 0 A is nonnegative definite: A = LL′ for some L; A ∈ NNDn
A >L 0 A is positive definite: A = LL′ for some invertible L; A ∈ PDn
A ≤L B B −A is nonnegative definite; B −A ∈ NNDn; A lies below B

with respect to the Löwner ordering
A <L B B−A is positive definite; B−A ∈ PDn
A ≤rs B A and B are rank-subtractive; rk(B−A) = rk(B)− rk(A); A lies

below B with respect to the minus ordering
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Sh(V | X) the shorted matrix of V ∈ NNDn with respect to Xn×p, Sh(V | X)
is the maximal element U (in the Löwner ordering) in the set
U = {U : 0 ≤L U ≤L V, C (U) ⊂ C (X) }

PA orthogonal projector onto C (A) (w.r.t. I): PA = A(A′A)−A′ =
AA+

PA;V orthogonal projector onto C (A) w.r.t. V ∈ PDn:
PA;V = A(A′VA)−A′V

PA;V generalized orthogonal projector onto C (A) w.r.t. V ∈ NNDn:
PA;V = A(A′VA)−A′V+A[I− (A′VA)−A′VA]U, where U is
arbitrary

PA|B projector onto C (A) along C (B): PA|B(A : B) = (A : 0)
{PA|B} set of matrices satisfying: PA|B(A : B) = (A : 0)

PU orthogonal projector onto the vector space U (w.r.t. a given inner
product)

C (A) column space of the matrix An×p: C (A) = {y ∈ Rn : y =
Ax for some x ∈ Rp }

N (A) null space of the matrix An×p: N (A) = {x ∈ Rp : Ax = 0 }

C (A)⊥ orthocomplement of C (A) w.r.t. I: C (A)⊥ = { z ∈ Rn : z′Ax =
0 ∀x ∈ Rp } = N (A′)

A⊥ matrix whose column space is C (A⊥) = C (A)⊥

C (A)⊥V orthocomplement of C (A) w.r.t. V: C (A)⊥V = { z ∈ Rn : z′VAx =
0 ∀x ∈ Rp } = N (A′V)

A⊥V matrix whose column space is C (A)⊥V
pA(x) the characteristic polynomial of A: pA(x) = det(A− xI)
U ⊂ V U is a subset of V; possibly U = V
U + V sum of the vector spaces U and V
U ⊕ V direct sum of the vector spaces U and V
U � V direct sum of the orthogonal vector spaces U and V
U ∩ V intersection of the vector spaces U and V

chi(A) = λi the ith largest eigenvalue of An×n (all eigenvalues being real)
ch(A) set of all n eigenvalues of An×n, including multiplicities, called

also the spectrum of A: ch(A) = {ch1(A), . . . , chn(A)}
ch(A,B) set of proper eigenvalues of symmetric An×n with respect to B ∈

NNDn; λ ∈ ch(A,B) if Aw = λBw,Bw 6= 0

nzch(A) set of the nonzero eigenvalues of An×n:
nzch(A) = {ch1(A), . . . , chr(A)}, r = rank(A)

chvi(A) eigenvector of An×n with respect to λi = chi(A): a nonzero vec-
tor ti satisfying the equation Ati = λiti

sgi(A) = δi the ith largest singular value of An×m: sgi(A) = +
√

chi(A′A) =
+
√

chi(AA′)
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sg(A) set of the singular values of An×m (m ≤ n):
sg(A) = {sg1(A), . . . , sgm(A)}

nzsg(A) set of the nonzero singular values of An×m:
nzsg(A) = {sg1(A), . . . , sgr(A)}, r = rank(A)

ρ(A) the spectral radius of An×n: the maximum of the absolute values
of the eigenvalues of An×n

vars(y) sample variance of the variable y
vard(y) = s2

y sample variance: argument is the variable vector y ∈ Rn:
vard(y) = 1

n−1y′Cy = 1
n−1

∑n

i=1(yi − ȳ)2

covs(x, y) sample covariance between the variables x and y
covd(x,y) = sxy sample covariance: arguments are variable vectors ∈ Rn:

covd(x,y) = 1
n−1x′Cy = 1

n−1
∑n

i=1(xi − x̄i)(yi − ȳ)

cord(x,y) = rxy sample correlation: rxy = x′Cy/
√

x′Cx · y′Cy = cos(Cx,Cy)
¯̄x projection of x onto C (1n): ¯̄x = Jx = x̄1n
x̃ centered x: x̃ = Cx = x− Jx = x− x̄1n
U n× d data matrix of the u-variables:

U = (u1 : . . . : ud) =

u′(1)
...

u′(n)


u1, . . . ,ud “variable vectors” in “variable space” Rn

u(1), . . . ,u(n) “observation vectors” in “observation space” Rd

ū vector of means of the variables u1, . . . , ud: ū = (ū1, . . . , ūd)′

Ũ centered U : Ũ = CU, C is the centering matrix
ũ1, . . . , ũd centered variable vectors

ũ(1), . . . , ũ(n) centered observation vectors

vard(ui) = s2
i sample variance: argument is the variable vector ui ∈ Rn:

vard(ui) = 1
n−1u′iCui = 1

n−1
∑n

`=1(u`i − ūi)2

covd(ui,uj) = sij sample covariance: arguments are variable vectors ∈ Rn:
sij = 1

n−1u′iCuj = 1
n−1

∑n

`=1(u`i − ūi)(u`j − ūj)

ssp(U) = {tij} matrix T (d×d) of the sums of squares and products of deviations
about the mean: T = U′CU =

∑n

i=1(u(i) − ū)(u(i) − ū)′

covd(U) = {sij} sample covariance matrix S (d× d) of the data matrix U:
S = 1

n−1T = 1
n−1

∑n

i=1(u(i) − ū)(u(i) − ū)′

cord(ui,uj) = rij sample correlation: arguments are variable vectors ∈ Rn

cord(U) = {rij} sample correlation matrix R (d× d) of the data matrix U:
R = cord(U) = (diag S)−1/2S(diag S)−1/2

MHLN2(u(i), ū,S) sample Mahalanobis distance (squared) of the ith observation from
the mean: MHLN2(u(i), ū,S) = (u(i) − ū)′S−1(u(i) − ū)
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MHLN2(ūi, ūj ,S∗) sample Mahalanobis distance (squared) between two mean vectors:
MHLN2(ūi, ūj ,S∗) = (ūi − ūj)′S−1

∗ (ūi − ūj), where
S∗ = 1

n1+n2−2 (U′1Cn1 U1 + U′2Cn2 U2)

MHLN2(u,µ,Σ) population Mahalanobis distance squared:
MHLN2(u,µ,Σ) = (u− µ)′Σ−1(u− µ)

E(·) expectation of a random argument: E(x) = p1x1 + · · · + pkxk if
x is a discrete random variable whose values are x1, . . . , xk with
corresponding probabilities p1, . . . , pk

var(x) = σ2
x variance of the random variable x: σ2

x = E(x− µx)2, µx = E(x)
cov(x, y) = σxy covariance between the random variables x and y:

σxy = E(x− µx)(y − µy), µx = E(x), µy = E(y)

cor(x, y) = %xy correlation between the random variables x and y: %xy = σxy
σxσy

cov(x) covariance matrix (d × d) of a d-dimensional random vector x:
cov(x) = Σ = E(x− µx)(x− µx)′

cor(x) correlation matrix (d× d) of the random vector x:
cor(x) = ρ = (diag Σ)−1/2Σ(diag Σ)−1/2

cov(x,y) (cross-)covariance matrix between the random vectors x and y:
cov(x,y) = E(x− µx)(y− µy)′ = Σxy

cov(x,x) cov(x,x) = cov(x)
cor(x,y) (cross-)correlation matrix between the random vectors x and y

cov
( x
y

)
partitioned covariance matrix of the random vector

( x
y

)
:

cov
(

x
y

)
=
(

Σxx σxy
σ′xy σ2

y

)
=
(

cov(x,x) cov(x, y)
cov(x, y)′ var(y)

)
x ∼ (µ,Σ) E(x) = µ, cov(x) = Σ

x ∼ Np(µ,Σ) x follows the p-dimensional normal distribution Np(µ,Σ)
n(x;µ,Σ) density for x ∼ Np(µ,Σ), Σ pd:

n(x;µ,Σ) = 1
(2π)p/2|Σ|1/2

e−
1
2 (x−µ)′Σ−1(x−µ)

cci(x,y) ith largest canonical correlation between the random vectors x
and y

cc(x,y) set of the canonical correlations between the random vectors x
and y

cc+(x,y) set of the nonzero (necessarily positive) canonical correlations be-
tween the random vectors x and y; square roots of the nonzero
eigenvalues of PAPB:

cc+(x,y) = nzch1/2(PAPB) = nzsg[(A′A)+1/2A′B(B′B)+1/2] ,

cov
(

x
y

)
=
(

A′A A′B
B′A B′B

)
X = (1 : X0) in regression context often the model matrix
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X0 n× k data matrix of the x-variables:

X0 = (x1 : . . . : xk) =

x′(1)
...

x′(n)


x1, . . . ,xk variable vectors in the variable space Rn

x(1), . . . ,x(n) observation vectors in the observation space Rk

ssp(X0 : y) partitioned matrix of the sums of squares and products of devia-
tions about the mean of data (X0 : y):

ssp(X0 : y) =
(

Txx txy
t′xy tyy

)
= (X0 : y)′C(X0 : y)

covd(X0 : y) partitioned sample covariance matrix of data (X0 : y):

covd(X0 : y) =
(

Sxx sxy
s′xy s2

y

)
cord(X0 : y) partitioned sample correlation matrix of data (X0 : y):

cord(X0 : y) =
(

Rxx rxy
r′xy 1

)
H orthogonal projector onto C (X), the hat matrix: H = X(X′X)−X′ =

XX+ = PX

M orthogonal projector onto C (X)⊥: M = In −H

J the orthogonal projector onto C (1n): J = 1
n1n1′n = P1n

C centering matrix, the orthogonal projector onto C (1n)⊥:
C = In − J

(X1 : X2) partitioned model matrix X

M1 orthogonal projector onto C (X1)⊥: M1 = In −PX1

β̂ solution to normal equation X′Xβ = X′y, OLSE(β)

Xβ̂ = ŷ ŷ = Hy = OLS fitted values, OLSE(Xβ), denoted also X̂β = µ̂,
when µ = Xβ

β̃ solution to generalized normal equation X′W−Xβ = X′W−y,
where W = V + XUX′, C (W) = C (X : V)

β̃ if V is positive definite and X has full column rank, then β̃ =
BLUE(β) = (X′V−1X)−1X′V−1y

Xβ̃ BLUE(Xβ), denoted also X̃β = µ̃

ȳ mean of the response variable y: ȳ = (y1 + · · ·+ yn)/n
x̄ vector of the means of k regressor variables x1, . . . , xk: x̄ =

(x̄1, . . . , x̄k)′ ∈ Rk

¯̄y projection of y onto C (1n): ¯̄y = Jy = ȳ1n
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ỹ centered y, ỹ = Cy = y− ¯̄y

β̂x β̂x = T−1
xxtxy = S−1

xxsxy: the OLS-regression coefficients of x-
variables when X = (1 : X0)

β̂0 β̂0 = ȳ − β̂′xx̄ = ȳ − (β̂1x̄1 + · · · + β̂kx̄k): OLSE of the constant
term (intercept) when X = (1 : X0)

BLP(y; x) the best linear predictor of the random vector y on the basis of
the random vector x

BLUE(K′β) the best linear unbiased estimator of estimable parametric func-
tion K′β, denoted as K′β̃ or K̃′β

BLUP(yf ; y) the best linear unbiased predictor of a new unobserved yf
LE(K′β; y) (homogeneous) linear estimator of K′β, where K ∈ Rp×q:

{LE(K′β; y)} = {Ay : A ∈ Rq×n }

LP(y; x) (inhomogeneous) linear predictor of the p-dimensional random
vector y on the basis of the q-dimensional random vector x:
{LP(y; x)} = { f(x) : f(x) = Ax + a, A ∈ Rp×q, a ∈ Rp }

LUE(K′β; y) (homogeneous) linear unbiased estimator of K′β:
{LUE(K′β; y)} = {Ay : E(Ay) = K′β }

LUP(yf ; y) linear unbiased predictor of a new unobserved yf :
{LUP(yf ; y)} = {Ay : E(Ay− yf ) = 0 }

MSEM(f(x); y) mean squared error matrix of f(x) (= random vector, function of
the random vector x) with respect to y (= random vector or a
given fixed vector): MSEM[f(x); y] = E[y− f(x)][y− f(x)]′

MSEM(Fy; K′β) mean squared error matrix of the linear estimator Fy under
{y, Xβ, σ2V} with respect to K′β:
MSEM(Fy; K′β) = E(Fy−K′β)(Fy−K′β)′

OLSE(K′β) the ordinary least squares estimator of parametric function K′β,
denoted as K′β̂ or K̂′β; here β̂ is any solution to the normal
equation X′Xβ = X′y

risk(Fy; K′β) quadratic risk of Fy under {y, Xβ, σ2V} with respect to K′β:
risk(Fy; K′β) = tr[MSEM(Fy; K′β)] = E(Fy−K′β)′(Fy−K′β)

M linear model: {y, Xβ, σ2V}: y = Xβ+ε, cov(y) = cov(ε) = σ2V,
E(y) = Xβ

Mmix mixed linear model: Mmix = {y, Xβ+Zγ, D, R}: y = Xβ+Zγ+
ε; γ is the vector of the random effects, cov(γ) = D, cov(ε) = R,
cov(γ, ε) = 0, E(y) = Xβ

Mf linear model with new future observations yf :

Mf =
{(

y
yf

)
,

(
Xβ
Xfβ

)
, σ2

(
V V12

V21 V22

)}




