Notation

 \mathbb{R} real numbers

 $\mathbb{R}^{n \times m}$ set of $n \times m$ real matrices

- $\mathbb{R}^{n \times m}_{r}$ subset of $\mathbb{R}^{n \times m}$ consisting of matrices with rank r
 - \mathbb{R}^n_s subset of $\mathbb{R}^{n \times n}$ consisting of symmetric matrices
- NND_n subset of \mathbb{R}^n_s consisting of nonnegative definite (nnd) matrices: $\mathbf{A} \in \operatorname{NND}_n \iff \mathbf{A} = \mathbf{LL}'$ for some \mathbf{L} ; instead of nnd, the term positive semidefinite is often used
 - PD_n subset of NND_n consisting of positive definite (pd) matrices: $\mathbf{A} = \mathbf{L}\mathbf{L}'$ for some nonsingular \mathbf{L}
 - $\mathbf{0} \quad \text{null vector, null matrix; denoted also as } \mathbf{0}_n \text{ or } \mathbf{0}_{n \times m}$
 - $\mathbf{1}_n$ column vector of ones, shortened $\mathbf{1}$
 - \mathbf{I}_n identity matrix, shortened \mathbf{I}
 - \mathbf{i}_j the *j*th column of \mathbf{I} ; the *j*th standard basis vector

 $\mathbf{A} = \{a_{ij}\}$ matrix \mathbf{A} with its elements a_{ij}

 $\mathbf{A}_{n \times m}$ $n \times m$ matrix \mathbf{A}

- **a** column vector $\mathbf{a} \in \mathbb{R}^n$
- \mathbf{A}' transpose of the matrix \mathbf{A}
- $(\mathbf{A}: \mathbf{B})$ partitioned (augmented) matrix

 $\mathbf{A} = (\mathbf{a}_1 : \ldots : \mathbf{a}_m) \quad \mathbf{A}_{n \times m}$ represented columnwise

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{(1)}' \\ \vdots \\ \mathbf{a}_{(n)}' \end{pmatrix}$$

 $\mathbf{A}_{n \times m}$ represented row-wise

 \mathbf{A}^{-1} inverse of the matrix \mathbf{A}

 $A^- \quad \mbox{generalized inverse of the matrix } A: AA^-A = A, also called \{1\} - inverse, or inner inverse$

427

 $\{\mathbf{A}^{-}\}$ the set of generalized inverses of \mathbf{A}

- $\mathbf{A}_{12}^{-} \quad \text{reflexive generalized inverse of } \mathbf{A}: \mathbf{A}\mathbf{A}^{-}\mathbf{A} = \mathbf{A}, \ \mathbf{A}^{-}\mathbf{A}\mathbf{A}^{-} = \mathbf{A}^{-},$ also called {12}-inverse
- \mathbf{A}^+ the Moore–Penrose inverse of \mathbf{A} : the unique matrix satisfying the four Moore–Penrose conditions:

$(mp1) \mathbf{A}\mathbf{A}^{-}\mathbf{A} = \mathbf{A},$	$(mp2) \mathbf{A}^{-}\mathbf{A}\mathbf{A}^{-} = \mathbf{A}^{-},$
$(mp3) (\mathbf{A}\mathbf{A}^{-})' = \mathbf{A}\mathbf{A}^{-},$	$(mp4) (\mathbf{A}^{-}\mathbf{A})' = \mathbf{A}^{-}\mathbf{A}$

$$\begin{split} \mathbf{A}^{1/2} & \text{symmetric nnd square root of } \mathbf{A} \in \text{NND}_n: \ \mathbf{A}^{1/2} = \mathbf{T} \mathbf{\Lambda}^{1/2} \mathbf{T}', \\ & \text{where } \mathbf{A} = \mathbf{T} \mathbf{\Lambda} \mathbf{T}' \text{ is the eigenvalue decomposition of } \mathbf{A} \end{split}$$

$$A^{+1/2}$$
 $(A^+)^{1/2}$

$$\text{In}(\mathbf{A}) = (\pi, \nu, \delta) \quad \text{inertia of the square matrix } \mathbf{A}: \pi, \nu, \text{ and } \delta \text{ are the number of positive, negative, and zero eigenvalues of } \mathbf{A}, \text{ respectively, all counting multiplicities}$$

- $\langle \mathbf{a}, \mathbf{b} \rangle$ standard inner product in \mathbb{R}^n : $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}'\mathbf{b}$; can denote also a general inner product in a vector space
- $\langle \mathbf{a}, \mathbf{b} \rangle_{\mathbf{V}}$ inner product $\mathbf{a}' \mathbf{V} \mathbf{b}$; \mathbf{V} is the inner product matrix (ipm)
 - $\mathbf{a}\perp \mathbf{b}$ ~ vectors \mathbf{a} and \mathbf{b} are orthogonal with respect to a given inner product
 - $\|\mathbf{a}\|$ Euclidean norm (standard norm, 2-norm) of vector \mathbf{a} , also denoted $\|\mathbf{a}\|_2$: $\|\mathbf{a}\|^2 = \mathbf{a}'\mathbf{a}$; can denote also a general vector norm in a vector space
 - $\|\mathbf{a}\|_{\mathbf{V}} \|\mathbf{a}\|_{\mathbf{V}}^2 = \mathbf{a}' \mathbf{V} \mathbf{a}$, norm when the ipm is **V** (ellipsoidal norm)
- $\langle \mathbf{A}, \mathbf{B} \rangle$ standard matrix inner product between $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$: $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}'\mathbf{B}) = \sum_{i,j} a_{ij} b_{ij}$
- $\|\mathbf{A}\|_F$ Euclidean (Frobenius) norm of the matrix \mathbf{A} : $\|\mathbf{A}\|_F^2 = \operatorname{tr}(\mathbf{A}'\mathbf{A}) = \sum_{i,j} a_{ij}^2$
- $\|\mathbf{A}\|_2$ matrix 2-norm of the matrix \mathbf{A} (spectral norm):

$$\|\mathbf{A}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{A}\mathbf{x}\|_{2} = \mathrm{sg}_{1}(\mathbf{A}) = +\sqrt{\mathrm{ch}_{1}(\mathbf{A}'\mathbf{A})}$$

- $\|\mathbf{A}^{-1}\|_2$ matrix 2-norm of nonsingular $\mathbf{A}_{n \times n}$: $\|\mathbf{A}^{-1}\|_2 = 1/\operatorname{sg}_n(\mathbf{A})$
- $\begin{array}{ll} \operatorname{cond}(\mathbf{A}) & \operatorname{condition\ number\ of\ nonsingular\ } \mathbf{A}_{n\times n} \colon \operatorname{cond}(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \\ & \operatorname{sg}_1(\mathbf{A})/\operatorname{sg}_n(\mathbf{A}) \end{array}$
- $\cos(\mathbf{a}, \mathbf{b}) \quad \cos \angle(\mathbf{a}, \mathbf{b}), \text{ the cosine of the angle, } \theta, \text{ between the nonzero vectors}$ $\mathbf{a} \text{ and } \mathbf{b}: \cos(\mathbf{a}, \mathbf{b}) = \cos \theta = \cos \angle(\mathbf{a}, \mathbf{b}) = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\| \|\mathbf{b}\|}$
 - $\angle(\mathbf{a}, \mathbf{b})$ the angle, θ , $0 \le \theta \le \pi$, between the nonzero vectors \mathbf{a} and \mathbf{b} : $\theta = \angle(\mathbf{a}, \mathbf{b}) = \cos^{-1}(\mathbf{a}, \mathbf{b})$
 - $\mathbf{A}[\alpha,\beta]$ submatrix of $\mathbf{A}_{n\times n}$, obtained by choosing the elements of \mathbf{A} which lie in rows α and columns β ; α and β are index sets of the rows and the columns of \mathbf{A} , respectively
 - $\mathbf{A}[\alpha] \quad \mathbf{A}[\alpha, \alpha]$, principal submatrix; same rows and columns chosen

- $\mathbf{A}_{i}^{\mathrm{L}}$ ith leading principal submatrix of $\mathbf{A}_{n \times n}$: $\mathbf{A}_{i}^{\mathrm{L}} = \mathbf{A}[\alpha, \alpha]$, where $\alpha = \{1, \ldots, i\}$
- $\mathbf{A}(\alpha,\beta) \quad \text{submatrix of } \mathbf{A}, \text{ obtained by choosing the elements of } \mathbf{A} \text{ which do} \\ \text{not lie in rows } \alpha \text{ and columns } \beta$
 - $\mathbf{A}(i, j)$ submatrix of \mathbf{A} , obtained by deleting row *i* and column *j* from \mathbf{A}

minor
$$(a_{ij})$$
 ijth minor of **A** corresponding to a_{ij} : minor $(a_{ij}) = \det(\mathbf{A}(i,j)),$
 $i, j \in \{1, \dots, n\}$

- $\operatorname{cof}(a_{ij})$ ijth cofactor of **A**: $\operatorname{cof}(a_{ij}) = (-1)^{i+j} \operatorname{minor}(a_{ij})$
- det(**A**) determinant of the matrix $\mathbf{A}_{n \times n}$: det $(a) = a, a \in \mathbb{R}$, det $(\mathbf{A}) = \sum_{j=1}^{n} a_{ij} \operatorname{cof}(a_{ij}), i \in \{1, \ldots, n\}$: the Laplace expansion by minors along the *i*th row
- $det(\mathbf{A}[\alpha])$ principal minor
 - $det(\mathbf{A}_i^{\mathrm{L}})$ leading principal minor of order *i*
 - $|\mathbf{A}|$ determinant of the matrix $\mathbf{A}_{n \times n}$
 - $\operatorname{diag}(\mathbf{A})$ diagonal matrix formed by the diagonal entries of $\mathbf{A}_{n \times n}$
- $\operatorname{diag}(d_1,\ldots,d_n)$ $n \times n$ diagonal matrix with listed diagonal entries
 - diag(d) $n \times n$ diagonal matrix whose *i*th diagonal element is d_i
 - \mathbf{A}_{δ} diagonal matrix formed by the diagonal entries of $\mathbf{A}_{n \times n}$
 - $rk(\mathbf{A})$ rank of the matrix \mathbf{A}
 - $\operatorname{rank}(\mathbf{A})$ rank of the matrix \mathbf{A}
 - tr(**A**) trace of the matrix $\mathbf{A}_{n \times n}$: tr(**A**) = $\sum_{i=1}^{n} a_{ii}$
 - trace(**A**) trace of the matrix $\mathbf{A}_{n \times n}$
 - $\operatorname{vec}(\mathbf{A})$ vectoring operation: the vector formed by placing the columns of \mathbf{A} under one another successively
 - $\mathbf{A} \otimes \mathbf{B}$ Kronecker product of $\mathbf{A}_{n \times m}$ and $\mathbf{B}_{p \times q}$:

$$\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{11}\mathbf{B} & \dots & a_{1m}\mathbf{B} \\ \vdots & \vdots & \vdots \\ a_{n1}\mathbf{B} & \dots & a_{nm}\mathbf{B} \end{pmatrix} \in \mathbb{R}^{np \times mq}$$

- $\begin{array}{ll} \mathbf{A}/\mathbf{A}_{11} & \text{Schur complement of } \mathbf{A}_{11} & \text{in } \mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \\ & \mathbf{A}/\mathbf{A}_{11} = \mathbf{A}_{22} \mathbf{A}_{21}\mathbf{A}_{11}^{-}\mathbf{A}_{12} \end{array}$
 - $A_{22\cdot 1}$ $A_{22} A_{21}A_{11}^{-}A_{12}$
- $\mathbf{A} \geq_{\mathsf{L}} \mathbf{0}$ **A** is nonnegative definite: $\mathbf{A} = \mathbf{L}\mathbf{L}'$ for some \mathbf{L} ; $\mathbf{A} \in \text{NND}_n$
- $\mathbf{A} >_{\mathsf{L}} \mathbf{0}$ **A** is positive definite: $\mathbf{A} = \mathbf{L}\mathbf{L}'$ for some invertible \mathbf{L} ; $\mathbf{A} \in \mathrm{PD}_n$
- $\mathbf{A} \leq_{\mathsf{L}} \mathbf{B} \quad \mathbf{B} \mathbf{A}$ is nonnegative definite; $\mathbf{B} \mathbf{A} \in \text{NND}_n$; \mathbf{A} lies below \mathbf{B} with respect to the Löwner ordering
- $\mathbf{A} <_{\mathsf{L}} \mathbf{B} \quad \mathbf{B} \mathbf{A}$ is positive definite; $\mathbf{B} \mathbf{A} \in \mathrm{PD}_n$
- $\mathbf{A} \leq_{rs} \mathbf{B}$ A and B are rank-subtractive; $\operatorname{rk}(\mathbf{B} \mathbf{A}) = \operatorname{rk}(\mathbf{B}) \operatorname{rk}(\mathbf{A})$; A lies below B with respect to the minus ordering

- $\begin{array}{ll} \operatorname{Sh}(\mathbf{V} \mid \mathbf{X}) & \text{the shorted matrix of } \mathbf{V} \in \operatorname{NND}_n \text{ with respect to } \mathbf{X}_{n \times p}, \operatorname{Sh}(\mathbf{V} \mid \mathbf{X}) \\ & \text{ is the maximal element } \mathbf{U} \text{ (in the Löwner ordering) in the set} \\ & \mathcal{U} = \{ \mathbf{U} : \mathbf{0} \leq_L \mathbf{U} \leq_L \mathbf{V}, \ \mathscr{C}(\mathbf{U}) \subset \mathscr{C}(\mathbf{X}) \} \end{array}$
 - $\begin{array}{ll} \mathbf{P_A} & \text{orthogonal projector onto } \mathscr{C}(\mathbf{A}) \ (\text{w.r.t. } \mathbf{I}) : \mathbf{P_A} = \mathbf{A}(\mathbf{A}'\mathbf{A})^-\mathbf{A}' = \\ & \mathbf{A}\mathbf{A}^+ \end{array}$
 - $\begin{array}{ll} \mathbf{P}_{\mathbf{A};\mathbf{V}} & \text{orthogonal projector onto } \mathscr{C}(\mathbf{A}) \text{ w.r.t. } \mathbf{V} \in \mathrm{PD}_n: \\ & \mathbf{P}_{\mathbf{A};\mathbf{V}} = \mathbf{A}(\mathbf{A}'\mathbf{V}\mathbf{A})^{-}\mathbf{A}'\mathbf{V} \end{array}$
 - $\begin{array}{ll} \mathbf{P}_{\mathbf{A};\mathbf{V}} & \text{generalized orthogonal projector onto } \mathscr{C}(\mathbf{A}) \text{ w.r.t. } \mathbf{V} \in \mathrm{NND}_n;\\ & \mathbf{P}_{\mathbf{A};\mathbf{V}} = \mathbf{A}(\mathbf{A}'\mathbf{V}\mathbf{A})^-\mathbf{A}'\mathbf{V} + \mathbf{A}[\mathbf{I}-(\mathbf{A}'\mathbf{V}\mathbf{A})^-\mathbf{A}'\mathbf{V}\mathbf{A}]\mathbf{U}, \text{ where } \mathbf{U} \text{ is arbitrary} \end{array}$
 - $\mathbf{P}_{\mathbf{A}|\mathbf{B}} \quad \text{projector onto } \mathscr{C}(\mathbf{A}) \text{ along } \mathscr{C}(\mathbf{B}) \text{: } \mathbf{P}_{\mathbf{A}|\mathbf{B}}(\mathbf{A}:\mathbf{B}) = (\mathbf{A}:\mathbf{0})$
 - $\{\mathbf{P}_{\mathbf{A}|\mathbf{B}}\} \quad \text{set of matrices satisfying: } \mathbf{P}_{\mathbf{A}|\mathbf{B}}(\mathbf{A}:\mathbf{B}) = (\mathbf{A}:\mathbf{0})$
 - $\mathbf{P}_{\mathcal{U}}$ orthogonal projector onto the vector space \mathcal{U} (w.r.t. a given inner product)
 - $\mathscr{C}(\mathbf{A})$ column space of the matrix $\mathbf{A}_{n \times p}$: $\mathscr{C}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \mathbf{A}\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^p \}$
 - $\mathscr{N}(\mathbf{A})$ null space of the matrix $\mathbf{A}_{n \times p}$: $\mathscr{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^p : \mathbf{A}\mathbf{x} = \mathbf{0} \}$
 - $$\begin{split} \mathscr{C}(\mathbf{A})^{\perp} & \text{orthocomplement of } \mathscr{C}(\mathbf{A}) \text{ w.r.t. } \mathbf{I} : \mathscr{C}(\mathbf{A})^{\perp} = \{ \mathbf{z} \in \mathbb{R}^n : \mathbf{z}' \mathbf{A} \mathbf{x} = \mathbf{0} \; \forall \mathbf{x} \in \mathbb{R}^p \} = \mathscr{N}(\mathbf{A}') \end{split}$$

 \mathbf{A}^{\perp} matrix whose column space is $\mathscr{C}(\mathbf{A}^{\perp}) = \mathscr{C}(\mathbf{A})^{\perp}$

- $\begin{array}{ll} \mathscr{C}(\mathbf{A})_{\mathbf{V}}^{\perp} & \text{orthocomplement of } \mathscr{C}(\mathbf{A}) \text{ w.r.t. } \mathbf{V} : \mathscr{C}(\mathbf{A})_{\mathbf{V}}^{\perp} = \big\{ \mathbf{z} \in \mathbb{R}^{n} : \mathbf{z}' \mathbf{V} \mathbf{A} \mathbf{x} = \\ & \mathbf{0} \; \forall \mathbf{x} \in \mathbb{R}^{p} \, \big\} = \mathscr{N}(\mathbf{A}' \mathbf{V}) \end{array}$
 - $\mathbf{A}_{\mathbf{V}}^{\perp}$ matrix whose column space is $\mathscr{C}(\mathbf{A})_{\mathbf{V}}^{\perp}$
 - $p_{\mathbf{A}}(x)$ the characteristic polynomial of \mathbf{A} : $p_{\mathbf{A}}(x) = \det(\mathbf{A} x\mathbf{I})$
- $\mathcal{U} \subset \mathcal{V}$ \mathcal{U} is a subset of \mathcal{V} ; possibly $\mathcal{U} = \mathcal{V}$
- $\mathcal{U} + \mathcal{V}$ sum of the vector spaces \mathcal{U} and \mathcal{V}
- $\mathcal{U} \oplus \mathcal{V}$ direct sum of the vector spaces \mathcal{U} and \mathcal{V}
- $\mathcal{U} \boxplus \mathcal{V}$ direct sum of the orthogonal vector spaces \mathcal{U} and \mathcal{V}
- $\mathcal{U} \cap \mathcal{V}$ intersection of the vector spaces \mathcal{U} and \mathcal{V}
- $ch_i(\mathbf{A}) = \lambda_i$ the *i*th largest eigenvalue of $\mathbf{A}_{n \times n}$ (all eigenvalues being real)
 - $ch(\mathbf{A})$ set of all *n* eigenvalues of $\mathbf{A}_{n \times n}$, including multiplicities, called also the spectrum of \mathbf{A} : $ch(\mathbf{A}) = \{ch_1(\mathbf{A}), \ldots, ch_n(\mathbf{A})\}$
 - $ch(\mathbf{A}, \mathbf{B})$ set of proper eigenvalues of symmetric $\mathbf{A}_{n \times n}$ with respect to $\mathbf{B} \in NND_n$; $\lambda \in ch(\mathbf{A}, \mathbf{B})$ if $\mathbf{Aw} = \lambda \mathbf{Bw}, \mathbf{Bw} \neq \mathbf{0}$
 - $$\begin{split} \text{nzch}(\mathbf{A}) & \text{set of the nonzero eigenvalues of } \mathbf{A}_{n \times n}: \\ \text{nzch}(\mathbf{A}) = \{\text{ch}_1(\mathbf{A}), \dots, \text{ch}_r(\mathbf{A})\}, \, r = \text{rank}(\mathbf{A}) \end{split}$$
 - chv_i(**A**) eigenvector of $\mathbf{A}_{n \times n}$ with respect to $\lambda_i = ch_i(\mathbf{A})$: a nonzero vector \mathbf{t}_i satisfying the equation $\mathbf{At}_i = \lambda_i \mathbf{t}_i$
- $$\begin{split} \mathrm{sg}_i(\mathbf{A}) &= \delta_i \quad \mathrm{the} \ i\mathrm{th} \ \mathrm{largest} \ \mathrm{singular} \ \mathrm{value} \ \mathrm{of} \ \mathbf{A}_{n \times m} : \ \mathrm{sg}_i(\mathbf{A}) &= + \sqrt{\mathrm{ch}_i(\mathbf{A}'\mathbf{A})} \\ &+ \sqrt{\mathrm{ch}_i(\mathbf{A}\mathbf{A}')} \end{split}$$

Notation

- $\begin{aligned} \mathrm{sg}(\mathbf{A}) & \text{set of the singular values of } \mathbf{A}_{n \times m} \ (m \leq n): \\ & \mathrm{sg}(\mathbf{A}) = \{ \mathrm{sg}_1(\mathbf{A}), \dots, \mathrm{sg}_m(\mathbf{A}) \} \end{aligned}$
- $\begin{array}{ll} \operatorname{nzsg}(\mathbf{A}) & \operatorname{set} \text{ of the nonzero singular values of } \mathbf{A}_{n \times m}:\\ & \operatorname{nzsg}(\mathbf{A}) = \{\operatorname{sg}_1(\mathbf{A}), \ldots, \operatorname{sg}_r(\mathbf{A})\}, \ r = \operatorname{rank}(\mathbf{A}) \end{array}$
 - $\rho(\mathbf{A})$ the spectral radius of $\mathbf{A}_{n \times n}$: the maximum of the absolute values of the eigenvalues of $\mathbf{A}_{n \times n}$
 - $\operatorname{var}_{\mathrm{s}}(y)$ sample variance of the variable y

$$\begin{aligned} \operatorname{var}_{\mathrm{d}}(\mathbf{y}) &= s_y^2 \quad \text{sample variance: argument is the variable vector } \mathbf{y} \in \mathbb{R}^n \\ & \operatorname{var}_{\mathrm{d}}(\mathbf{y}) = \frac{1}{n-1} \mathbf{y}' \mathbf{C} \mathbf{y} = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 \end{aligned}$$

 $\operatorname{cov}_{s}(x, y)$ sample covariance between the variables x and y

$$cov_{d}(\mathbf{x}, \mathbf{y}) = s_{xy} \quad \text{sample covariance: arguments are variable vectors } \in \mathbb{R}^{n}: \\ cov_{d}(\mathbf{x}, \mathbf{y}) = \frac{1}{n-1} \mathbf{x}' \mathbf{C} \mathbf{y} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x}_{i}) (y_{i} - \bar{y})$$

 $\operatorname{cor}_{d}(\mathbf{x}, \mathbf{y}) = r_{xy}$ sample correlation: $r_{xy} = \mathbf{x}' \mathbf{C} \mathbf{y} / \sqrt{\mathbf{x}' \mathbf{C} \mathbf{x} \cdot \mathbf{y}' \mathbf{C} \mathbf{y}} = \cos(\mathbf{C} \mathbf{x}, \mathbf{C} \mathbf{y})$

- $\overline{\mathbf{x}}$ projection of \mathbf{x} onto $\mathscr{C}(\mathbf{1}_n)$: $\overline{\mathbf{x}} = \mathbf{J}\mathbf{x} = \overline{x}\mathbf{1}_n$
- $\mathbf{\tilde{x}}$ centered \mathbf{x} : $\mathbf{\tilde{x}} = \mathbf{C}\mathbf{x} = \mathbf{x} \mathbf{J}\mathbf{x} = \mathbf{x} \bar{x}\mathbf{1}_n$
- **U** $n \times d$ data matrix of the *u*-variables:

$$\mathbf{U} = (\mathbf{u}_1 : \ldots : \mathbf{u}_d) = \begin{pmatrix} \mathbf{u}'_{(1)} \\ \vdots \\ \mathbf{u}'_{(n)} \end{pmatrix}$$

 $\mathbf{u}_1, \ldots, \mathbf{u}_d$ "variable vectors" in "variable space" \mathbb{R}^n

 $\mathbf{u}_{(1)},\ldots,\mathbf{u}_{(n)}$ "observation vectors" in "observation space" \mathbb{R}^d

 $\mathbf{\bar{u}}$ vector of means of the variables u_1, \ldots, u_d : $\mathbf{\bar{u}} = (\bar{u}_1, \ldots, \bar{u}_d)'$

- $\widetilde{\mathbf{U}}$ centered $\mathbf{U}: \widetilde{\mathbf{U}} = \mathbf{C}\mathbf{U}, \mathbf{C}$ is the centering matrix
- $\mathbf{\tilde{u}}_1, \ldots, \mathbf{\tilde{u}}_d$ centered variable vectors
- $\mathbf{\tilde{u}}_{(1)}, \ldots, \mathbf{\tilde{u}}_{(n)}$ centered observation vectors

$$\begin{aligned} \operatorname{var}_{\mathrm{d}}(\mathbf{u}_{i}) &= s_{i}^{2} \quad \text{sample variance: argument is the variable vector } \mathbf{u}_{i} \in \mathbb{R}^{n}: \\ &\operatorname{var}_{\mathrm{d}}(\mathbf{u}_{i}) = \frac{1}{n-1}\mathbf{u}_{i}^{\prime}\mathbf{C}\mathbf{u}_{i} = \frac{1}{n-1}\sum_{\ell=1}^{n}(u_{\ell i} - \bar{u}_{i})^{2} \end{aligned}$$

- $\begin{array}{ll} \operatorname{cov}_{\mathrm{d}}(\mathbf{u}_i,\mathbf{u}_j) = s_{ij} & \text{sample covariance: arguments are variable vectors} \in \mathbb{R}^n:\\ & s_{ij} = \frac{1}{n-1}\mathbf{u}_i'\mathbf{C}\mathbf{u}_j = \frac{1}{n-1}\sum_{\ell=1}^n (u_{\ell i} \bar{u}_i)(u_{\ell j} \bar{u}_j) \end{array}$
 - $ssp(\mathbf{U}) = \{t_{ij}\} \quad \text{matrix } \mathbf{T} \ (d \times d) \text{ of the sums of squares and products of deviations} \\ \text{about the mean: } \mathbf{T} = \mathbf{U}' \mathbf{C} \mathbf{U} = \sum_{i=1}^{n} (\mathbf{u}_{(i)} \bar{\mathbf{u}}) (\mathbf{u}_{(i)} \bar{\mathbf{u}})'$
 - $\begin{array}{l} \operatorname{cov}_{\mathrm{d}}(\mathbf{U}) = \{s_{ij}\} & \operatorname{sample \ covariance \ matrix } \mathbf{S} \ (d \times d) \ \mathrm{of \ the \ data \ matrix } \mathbf{U}: \\ & \mathbf{S} = \frac{1}{n-1}\mathbf{T} = \frac{1}{n-1}\sum_{i=1}^{n} (\mathbf{u}_{(i)} \bar{\mathbf{u}})(\mathbf{u}_{(i)} \bar{\mathbf{u}})' \end{array}$
- $\operatorname{cor}_{d}(\mathbf{u}_{i},\mathbf{u}_{j}) = r_{ij}$ sample correlation: arguments are variable vectors $\in \mathbb{R}^{n}$
- $\begin{array}{l} \operatorname{cor}_{\mathrm{d}}(\mathbf{U}) = \{r_{ij}\} & \operatorname{sample \ correlation \ matrix } \mathbf{R} \ (d \times d) \ \mathrm{of \ the \ data \ matrix } \mathbf{U}: \\ \mathbf{R} = \operatorname{cor}_{\mathrm{d}}(\mathbf{U}) = (\operatorname{diag} \mathbf{S})^{-1/2} \mathbf{S}(\operatorname{diag} \mathbf{S})^{-1/2} \end{array}$
- $$\begin{split} \mathrm{MHLN}^2(\mathbf{u}_{(i)}, \bar{\mathbf{u}}, \mathbf{S}) & \text{sample Mahalanobis distance (squared) of the$$
 i $th observation from the mean: \\ \mathrm{MHLN}^2(\mathbf{u}_{(i)}, \bar{\mathbf{u}}, \mathbf{S}) &= (\mathbf{u}_{(i)} \bar{\mathbf{u}})' \mathbf{S}^{-1}(\mathbf{u}_{(i)} \bar{\mathbf{u}}) \end{split}$

- $\begin{array}{ll} \mathrm{MHLN}^{2}(\bar{\mathbf{u}}_{i},\bar{\mathbf{u}}_{j},\mathbf{S}_{*}) & \text{sample Mahalanobis distance (squared) between two mean vectors:} \\ & \mathrm{MHLN}^{2}(\bar{\mathbf{u}}_{i},\bar{\mathbf{u}}_{j},\mathbf{S}_{*}) = (\bar{\mathbf{u}}_{i}-\bar{\mathbf{u}}_{j})'\mathbf{S}_{*}^{-1}(\bar{\mathbf{u}}_{i}-\bar{\mathbf{u}}_{j}), \text{ where} \\ & \mathbf{S}_{*} = \frac{1}{n_{1}+n_{2}-2}(\mathbf{U}_{1}'\mathbf{C}_{n_{1}}\mathbf{U}_{1}+\mathbf{U}_{2}'\mathbf{C}_{n_{2}}\mathbf{U}_{2}) \end{array}$
 - $\begin{array}{ll} \mathrm{MHLN}^2(\mathbf{u},\boldsymbol{\mu},\boldsymbol{\Sigma}) & \text{population Mahalanobis distance squared:} \\ & \mathrm{MHLN}^2(\mathbf{u},\boldsymbol{\mu},\boldsymbol{\Sigma}) = (\mathbf{u}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{u}-\boldsymbol{\mu}) \end{array}$
 - $E(\cdot)$ expectation of a random argument: $E(x) = p_1x_1 + \cdots + p_kx_k$ if x is a discrete random variable whose values are x_1, \ldots, x_k with corresponding probabilities p_1, \ldots, p_k
 - $\operatorname{var}(x) = \sigma_x^2 \quad \text{variance of the random variable } x : \, \sigma_x^2 = \mathrm{E}(x-\mu_x)^2, \, \mu_x = \mathrm{E}(x)$

$$\begin{aligned} \cos(x,y) &= \sigma_{xy} & \text{covariance between the random variables } x \text{ and } y \text{:} \\ \sigma_{xy} &= \mathrm{E}(x-\mu_x)(y-\mu_y), \ \mu_x = \mathrm{E}(x), \ \mu_y = \mathrm{E}(y) \end{aligned}$$

- $cor(x,y) = \rho_{xy}$ correlation between the random variables x and y: $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
 - $\begin{array}{ll} \operatorname{cov}(\mathbf{x}) & \operatorname{covariance\ matrix}\ (d \times d) \mbox{ of a d-dimensional\ random\ vector\ } \mathbf{x}:\\ \operatorname{cov}(\mathbf{x}) = \mathbf{\Sigma} = \operatorname{E}(\mathbf{x} \boldsymbol{\mu}_{\mathbf{x}})(\mathbf{x} \boldsymbol{\mu}_{\mathbf{x}})' \end{array}$
 - $\begin{array}{ll} \operatorname{corr}(\mathbf{x}) & \operatorname{correlation\ matrix\ } (d \times d) \ \text{of\ the\ random\ vector\ } \mathbf{x}:\\ & \operatorname{cor}(\mathbf{x}) = \boldsymbol{\rho} = (\operatorname{diag} \boldsymbol{\Sigma})^{-1/2} \boldsymbol{\Sigma} (\operatorname{diag} \boldsymbol{\Sigma})^{-1/2} \end{array}$
 - $\begin{array}{ll} \operatorname{cov}(\mathbf{x},\mathbf{y}) & (\operatorname{cross-}) \operatorname{covariance} \mbox{ matrix between the random vectors } \mathbf{x} \mbox{ and } \mathbf{y} : \\ & \operatorname{cov}(\mathbf{x},\mathbf{y}) = \operatorname{E}(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}})(\mathbf{y}-\boldsymbol{\mu}_{\mathbf{y}})' = \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} \end{array}$
 - $\operatorname{cov}(\mathbf{x}, \mathbf{x}) \quad \operatorname{cov}(\mathbf{x}, \mathbf{x}) = \operatorname{cov}(\mathbf{x})$
 - $cor(\mathbf{x}, \mathbf{y})$ (cross-)correlation matrix between the random vectors \mathbf{x} and \mathbf{y}
 - $\operatorname{cov}\begin{pmatrix}\mathbf{x}\\y\end{pmatrix}$ partitioned covariance matrix of the random vector $\begin{pmatrix}\mathbf{x}\\y\end{pmatrix}$:

$$\operatorname{cov}\begin{pmatrix}\mathbf{x}\\y\end{pmatrix} = \begin{pmatrix}\mathbf{\Sigma}_{\mathbf{x}\mathbf{x}} & \boldsymbol{\sigma}_{\mathbf{x}y}\\ \boldsymbol{\sigma}_{\mathbf{x}y}' & \boldsymbol{\sigma}_{y}^{2}\end{pmatrix} = \begin{pmatrix}\operatorname{cov}(\mathbf{x},\mathbf{x}) & \operatorname{cov}(\mathbf{x},y)\\ \operatorname{cov}(\mathbf{x},y)' & \operatorname{var}(y)\end{pmatrix}$$

 $\mathbf{x} \sim (\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \mathrm{E}(\mathbf{x}) = \boldsymbol{\mu}, \, \mathrm{cov}(\mathbf{x}) = \boldsymbol{\Sigma}$

- $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \mathbf{x}$ follows the *p*-dimensional normal distribution $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - $n(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ density for $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{\Sigma}$ pd:

$$n(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

- $cc_i(\mathbf{x}, \mathbf{y})$ ith largest canonical correlation between the random vectors \mathbf{x} and \mathbf{y}
- $\operatorname{cc}(\mathbf{x},\mathbf{y})$ set of the canonical correlations between the random vectors \mathbf{x} and \mathbf{y}
- $\begin{array}{ll} \mathrm{cc}_+(\mathbf{x},\mathbf{y}) & \mathrm{set \ of \ the \ nonzero \ (necessarily \ positive) \ canonical \ correlations \ between \ the \ random \ vectors \ \mathbf{x} \ and \ \mathbf{y}; \ square \ roots \ of \ the \ nonzero \ eigenvalues \ of \ \mathbf{P_AP_B}: \end{array}$

 $\mathbf{X} = (\mathbf{1} : \mathbf{X}_0)$ in regression context often the model matrix

 \mathbf{X}_0 $n \times k$ data matrix of the *x*-variables:

$$\mathbf{X}_0 = (\mathbf{x}_1 : \ldots : \mathbf{x}_k) = \begin{pmatrix} \mathbf{x}'_{(1)} \\ \vdots \\ \mathbf{x}'_{(n)} \end{pmatrix}$$

 $\mathbf{x}_1, \ldots, \mathbf{x}_k$ variable vectors in the variable space \mathbb{R}^n

$$\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n)}$$
 observation vectors in the observation space \mathbb{R}^k

 $ssp(\mathbf{X}_0 : \mathbf{y})$ partitioned matrix of the sums of squares and products of deviations about the mean of data ($\mathbf{X}_0 : \mathbf{y}$):

$$\operatorname{ssp}(\mathbf{X}_0:\mathbf{y}) = \begin{pmatrix} \mathbf{T}_{\mathbf{x}\mathbf{x}} & \mathbf{t}_{\mathbf{x}y} \\ \mathbf{t}'_{\mathbf{x}y} & t_{yy} \end{pmatrix} = (\mathbf{X}_0:\mathbf{y})' \mathbf{C}(\mathbf{X}_0:\mathbf{y})$$

 $cov_d(\mathbf{X}_0 : \mathbf{y})$ partitioned sample covariance matrix of data $(\mathbf{X}_0 : \mathbf{y})$:

$$\operatorname{cov}_{\mathrm{d}}(\mathbf{X}_{0}:\mathbf{y}) = \begin{pmatrix} \mathbf{S}_{\mathbf{x}\mathbf{x}} & \mathbf{s}_{\mathbf{x}y} \\ \mathbf{s}'_{\mathbf{x}y} & s^{2}_{y} \end{pmatrix}$$

 $\operatorname{cor}_{d}(\mathbf{X}_{0}:\mathbf{y})$ partitioned sample correlation matrix of data $(\mathbf{X}_{0}:\mathbf{y})$:

$$\operatorname{cor}_{d}(\mathbf{X}_{0}:\mathbf{y}) = \begin{pmatrix} \mathbf{R}_{\mathbf{x}\mathbf{x}} & \mathbf{r}_{\mathbf{x}y} \\ \mathbf{r}'_{\mathbf{x}y} & 1 \end{pmatrix}$$

- $\begin{array}{ll} \mathbf{H} & \mathrm{orthogonal\ projector\ onto}\ \mathscr{C}(\mathbf{X}), \mathrm{the\ hat\ matrix:}\ \mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}' = \\ & \mathbf{X}\mathbf{X}^{+} = \mathbf{P}_{\mathbf{X}} \end{array}$
- **M** orthogonal projector onto $\mathscr{C}(\mathbf{X})^{\perp}$: $\mathbf{M} = \mathbf{I}_n \mathbf{H}$
- **J** the orthogonal projector onto $\mathscr{C}(\mathbf{1}_n)$: $\mathbf{J} = \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n = \mathbf{P}_{\mathbf{1}_n}$
- $(\mathbf{X}_1:\mathbf{X}_2)$ partitioned model matrix \mathbf{X}
 - \mathbf{M}_1 orthogonal projector onto $\mathscr{C}(\mathbf{X}_1)^{\perp}$: $\mathbf{M}_1 = \mathbf{I}_n \mathbf{P}_{\mathbf{X}_1}$
 - $\hat{\boldsymbol{\beta}}$ solution to normal equation $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{y}$, OLSE($\boldsymbol{\beta}$)
 - $$\begin{split} \mathbf{X} \hat{\boldsymbol{\beta}} &= \hat{\mathbf{y}} \quad \hat{\mathbf{y}} = \mathbf{H} \mathbf{y} = \text{OLS fitted values, OLSE}(\mathbf{X} \boldsymbol{\beta}), \, \text{denoted also } \widehat{\mathbf{X} \boldsymbol{\beta}} = \hat{\boldsymbol{\mu}}, \\ & \text{when } \boldsymbol{\mu} = \mathbf{X} \boldsymbol{\beta} \end{split}$$
 - $\tilde{\boldsymbol{\beta}}$ solution to generalized normal equation $\mathbf{X}'\mathbf{W}^{-}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{W}^{-}\mathbf{y}$, where $\mathbf{W} = \mathbf{V} + \mathbf{X}\mathbf{U}\mathbf{X}'$, $\mathscr{C}(\mathbf{W}) = \mathscr{C}(\mathbf{X}:\mathbf{V})$
 - $\tilde{\beta}$ if **V** is positive definite and **X** has full column rank, then $\tilde{\beta}$ = BLUE(β) = (**X**'**V**⁻¹**X**)⁻¹**X**'**V**⁻¹**y**
 - $\mathbf{X}\tilde{\boldsymbol{\beta}}$ BLUE $(\mathbf{X}\boldsymbol{\beta})$, denoted also $\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\tilde{\mu}}$
 - \bar{y} mean of the response variable $y: \bar{y} = (y_1 + \dots + y_n)/n$
 - $\mathbf{\bar{x}}$ vector of the means of k regressor variables x_1, \ldots, x_k : $\mathbf{\bar{x}} = (\bar{x}_1, \ldots, \bar{x}_k)' \in \mathbb{R}^k$
 - $\overline{\mathbf{\bar{y}}}$ projection of \mathbf{y} onto $\mathscr{C}(\mathbf{1}_n)$: $\overline{\mathbf{\bar{y}}} = \mathbf{J}\mathbf{y} = \overline{y}\mathbf{1}_n$

- $\mathbf{\tilde{y}} \quad \text{centered } \mathbf{y}, \, \mathbf{\tilde{y}} = \mathbf{C}\mathbf{y} = \mathbf{y} \mathbf{\bar{\bar{y}}}$
- $\hat{\beta}_{\mathbf{x}}$ $\hat{\beta}_{\mathbf{x}} = \mathbf{T}_{\mathbf{xx}}^{-1} \mathbf{t}_{\mathbf{xy}} = \mathbf{S}_{\mathbf{xx}}^{-1} \mathbf{s}_{\mathbf{xy}}$: the OLS-regression coefficients of *x*-variables when $\mathbf{X} = (\mathbf{1} : \mathbf{X}_0)$
- $\hat{\beta}_0 \quad \hat{\beta}_0 = \bar{y} \hat{\beta}'_{\mathbf{x}} \bar{\mathbf{x}} = \bar{y} (\hat{\beta}_1 \bar{x}_1 + \dots + \hat{\beta}_k \bar{x}_k)$: OLSE of the constant term (intercept) when $\mathbf{X} = (\mathbf{1} : \mathbf{X}_0)$
- $\mathrm{BLP}(\mathbf{y};\mathbf{x})$ $\$ the best linear predictor of the random vector \mathbf{y} on the basis of the random vector \mathbf{x}
- BLUE($\mathbf{K}'\beta$) the best linear unbiased estimator of estimable parametric function $\mathbf{K}'\beta$, denoted as $\mathbf{K}'\tilde{\beta}$ or $\widetilde{\mathbf{K}'\beta}$
- $BLUP(\mathbf{y}_f; \mathbf{y})$ the best linear unbiased predictor of a new unobserved \mathbf{y}_f
 - $\begin{array}{l} \mathrm{LE}(\mathbf{K}'\boldsymbol{\beta};\mathbf{y}) \quad (\text{homogeneous}) \text{ linear estimator of } \mathbf{K}'\boldsymbol{\beta}, \text{ where } \mathbf{K} \in \mathbb{R}^{p \times q} \text{:} \\ \{\mathrm{LE}(\mathbf{K}'\boldsymbol{\beta};\mathbf{y})\} = \{ \mathbf{A}\mathbf{y} : \mathbf{A} \in \mathbb{R}^{q \times n} \} \end{array}$
 - $$\begin{split} \mathrm{LP}(\mathbf{y};\mathbf{x}) & (\text{inhomogeneous}) \text{ linear predictor of the p-dimensional random} \\ & \text{vector } \mathbf{y} \text{ on the basis of the q-dimensional random vector } \mathbf{x}: \\ & \{\mathrm{LP}(\mathbf{y};\mathbf{x})\} = \{f(\mathbf{x}): f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{a}, \ \mathbf{A} \in \mathbb{R}^{p \times q}, \ \mathbf{a} \in \mathbb{R}^{p} \} \end{split}$$
- $\begin{array}{ll} {\rm LUE}({\bf K}'\beta;{\bf y}) & ({\rm homogeneous}) \mbox{ linear unbiased estimator of } {\bf K}'\beta: \\ & \{{\rm LUE}({\bf K}'\beta;{\bf y})\} = \{ \, {\bf Ay}: {\rm E}({\bf Ay}) = {\bf K}'\beta \, \} \end{array}$
 - $$\begin{split} \text{LUP}(\mathbf{y}_{f}; \mathbf{y}) & \text{linear unbiased predictor of a new unobserved } \mathbf{y}_{f}: \\ \{\text{LUP}(\mathbf{y}_{f}; \mathbf{y})\} = \{ \mathbf{A}\mathbf{y}: \text{E}(\mathbf{A}\mathbf{y} \mathbf{y}_{f}) = \mathbf{0} \, \} \end{split}$$
- $MSEM(f(\mathbf{x}); \mathbf{y})$ mean squared error matrix of $f(\mathbf{x})$ (= random vector, function of the random vector \mathbf{x}) with respect to \mathbf{y} (= random vector or a given fixed vector): $MSEM[f(\mathbf{x}); \mathbf{y}] = E[\mathbf{y} - f(\mathbf{x})][\mathbf{y} - f(\mathbf{x})]'$
- $$\begin{split} \text{MSEM}(\mathbf{F}\mathbf{y};\mathbf{K}'\boldsymbol{\beta}) & \text{mean squared error matrix of the linear estimator } \mathbf{F}\mathbf{y} \text{ under } \\ \{\mathbf{y},\mathbf{X}\boldsymbol{\beta},\sigma^{2}\mathbf{V}\} \text{ with respect to } \mathbf{K}'\boldsymbol{\beta}: \\ \text{MSEM}(\mathbf{F}\mathbf{y};\mathbf{K}'\boldsymbol{\beta}) = \text{E}(\mathbf{F}\mathbf{y}-\mathbf{K}'\boldsymbol{\beta})(\mathbf{F}\mathbf{y}-\mathbf{K}'\boldsymbol{\beta})' \end{split}$$
 - $OLSE(\mathbf{K}'\beta)$ the ordinary least squares estimator of parametric function $\mathbf{K}'\beta$, denoted as $\mathbf{K}'\hat{\beta}$ or $\widehat{\mathbf{K}'\beta}$; here $\hat{\beta}$ is any solution to the normal equation $\mathbf{X}'\mathbf{X}\beta = \mathbf{X}'\mathbf{y}$
 - risk(**Fy**; **K**' β) quadratic risk of **Fy** under {**y**, **X** β , σ^2 **V**} with respect to **K**' β : risk(**Fy**; **K**' β) = tr[MSEM(**Fy**; **K**' β)] = E(**Fy** - **K**' β)'(**Fy** - **K**' β)
 - $$\begin{split} \mathscr{M} & \text{linear model: } \{\mathbf{y}, \, \mathbf{X}\boldsymbol{\beta}, \, \sigma^2 \mathbf{V}\} \text{: } \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \, \text{cov}(\mathbf{y}) = \text{cov}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{V}, \\ & \text{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} \end{split}$$
 - $\begin{aligned} \mathcal{M}_{\text{mix}} & \text{mixed linear model: } \mathcal{M}_{\text{mix}} = \{\mathbf{y}, \mathbf{X}\beta + \mathbf{Z}\gamma, \mathbf{D}, \mathbf{R}\}: \mathbf{y} = \mathbf{X}\beta + \mathbf{Z}\gamma + \\ \boldsymbol{\varepsilon}; \ \boldsymbol{\gamma} \text{ is the vector of the random effects, } \operatorname{cov}(\boldsymbol{\gamma}) = \mathbf{D}, \operatorname{cov}(\boldsymbol{\varepsilon}) = \mathbf{R}, \\ \operatorname{cov}(\boldsymbol{\gamma}, \boldsymbol{\varepsilon}) = \mathbf{0}, \ \mathrm{E}(\mathbf{y}) = \mathbf{X}\beta \end{aligned}$
 - \mathcal{M}_f linear model with new future observations \mathbf{y}_f :

$$\mathcal{M}_{f} = \left\{ \begin{pmatrix} \mathbf{y} \\ \mathbf{y}_{f} \end{pmatrix}, \begin{pmatrix} \mathbf{X}\boldsymbol{\beta} \\ \mathbf{X}_{f}\boldsymbol{\beta} \end{pmatrix}, \sigma^{2} \begin{pmatrix} \mathbf{V} & \mathbf{V}_{12} \\ \mathbf{V}_{21} & \mathbf{V}_{22} \end{pmatrix} \right\}$$