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1. Spline smoothing

Suppose that our aim is to model

yi = d(xi) + εi, i = 1, . . . , n,

where d is a smooth function and εi are iid

with E(εi) = 0 and V ar(εi) = σ2
ε .

The linear spline estimator is

d(xi) = β0 + β1xi +
K∑

k=1

uk(x− κk)+,

(x− κk)+ =

{
0, x ≤ κk

x− κk, x > κk

and κ1, . . . , κK are knots.

The curve d is now modeled by piecewise line

segments tied together at knots κ1, . . . , κK.



Example

> library(MASS)

> data(faithful)

> names(faithful)

[1] "eruptions" "waiting"

> plot(faithful)

> faithful<-faithful[order(faithful$waiting),]

> attach(faithful)

> knots<-c(0,60,75) % knots 60, 75

> rhs<-function(x,c) ifelse (x>c,x-c,0)

> dm<-outer(waiting, knots, rhs)

> dm

[,1] [,2] [,3]

[1,] 43 0 0

[2,] 45 0 0

...

[83,] 60 0 0

[84,] 62 2 0

...

[134,] 75 15 0

[135,] 76 16 1

...



> g<-lm(eruptions~dm)

> plot(eruptions~waiting)

> lines(waiting, predict(g))

>
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We can generalize the above equation to a

piecewise polynomial of degree p, but the

most common choices in practice are qua-

dratic (p = 2) and cubic (p = 3) splines.

For cubic splines we have

d(xi;β;u) = β0 + β1xi + β2x2
i + β3x3

i

+
K∑

k=1

uk(x− κk)
3
+,

where β = (β0, β1, β2, β3)
′, u = (u1, . . . , uk)

′

and 1, x, x2, x3, (x−κ1)
3
+, . . . , (x−κK)3+ are

called basis functions. Other possible choices

of basis functions include B-splines, wave-

let, Fourier Series and polynomial bases etc.



A natural cubic spline is obtained by assu-

ming that the function is linear beyond the

boundary knots.

The number (K) and location of knots κ1, . . . , κK

must be speci�ed in advance.

Coe�cients β and u can be estimated using

standard least squares procedures.

However, in some cases the estimated curve

tends to be a very rough estimate.

Our approach is to apply smoothing splines,

where the smoothing is controlled by a smoot-

hing parameter α.



Smoothing splines have a knot at each unique

value of x and the �tting is carried out by

least squares with a roughness penalty term.

2. Penalized smoothing

If x1, . . . , xn are points in [a, b] satisfying

a < x1, . . . , xn < b the penalized sum of squa-

res (PSS) is given as

n∑
i=1

{yi − d(xi)}2 + α
∫ b

a
{d′′(x)}2dx,

where

α
∫ b

a
{d′′(x)}2dx

is the roughness penalty (RP) term with α >

0.



Note that here α represents the rate of exc-

hange between residual error and local varia-

tion.

If α is very large the main component of PSS

will be RP and the estimated curve will be

very smooth.

If α is relatively small the estimated curve will

track the data points very closely.

If we de�ne a non-negative de�nite matrix

K = ∇∆−1∇′,

where non-zero elements of n×(n−2) matrix

∇ and (n− 2)× (n− 2) matrix ∆ are de�ned



as

∇ii =
1

hi
, ∇i+1,i = −

(
1

hi
+

1

hi+1

)
, ∇i+2,i =

1

hi+1

and

Gi,i+1 = Gi+1,i =
hi+1

6
, Gii =

hi + hi+1

3
,

where hj = xj+1 − xj, j = 1,2, . . . , n− 1.

Now PSS becomes as

PSS(K) = (y − d)′(y − d) + αd′Kd

and its minimum is obtained at

d̂ = (I + αK)−1y.

It can be shown (e.g. Green and Silverman,

1994) that d̂ is a natural cubic smoothing



with knots at the points x1, . . . , xn.

Note that the special form d̂ follows from the

chosen RP term

α
∫ b

a
{d′′(x)}2dx.

If we, for example, would use a discrete ap-

proximation

µi+1 − 2µi + µi−1

of the second derivative the PSS would be

(Demidenko, 2004)

PSS(QQ′) = (y − d)′(y − d) + αd′QQ′d,



where (n = 6)

Q =



1 0 0 0
−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2
0 0 0 1


.

Then the minimizer is

d̃ = (I + αQQ′)−1y.

Note that for �xed α the spline �t

d̂ = (I + αK)−1y = Sαy

is linear in y and the matrix Sα is known as

the smoother matrix.

The smoother matrix Sα has many interes-

ting properties discussed e.g. in Hastie, Tibs-



hirami and Friedman (2001), but here I brie�y

mention only the following :

1. Choosing the smoothing parameter:

CV (α) =
n∑

i=1

(
yi − d̂α(xi)

1− Sα(i, i)
)2,

where Sα(i, i) are diagonal elements of

Sα.

2. Estimation of the e�ective degrees of free-

dom

dfα = tr(Sα).

This can be compared to matrix

H = X(X ′X)−1X ′



in regression analysis (or in regression spli-

nes) in a sense that

tr(H)

gives the number of estimated parame-

ters (or the number of basis functions

utilized).



Example: Stem curve model - modelling the

degrease of stem diameter as a function stem

height.

0 10 20 30 40 50 60

15
0

20
0

25
0

30
0

35
0

40
0

Third degree polynomial fitted

Measurement

S
te

m
 d

ia
m

et
er



0 10 20 30 40 50 60

15
0

20
0

25
0

30
0

35
0

40
0

Spline fitted by alpha=5

Measurement

S
te

m
 d

ia
m

et
er

The e�ective number of degrees of freedom

dfα = tr(Sα=5) = 16.79628.

Note that if

α → 0, dfα → n

α →∞, dfα → 2
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Since dfα = tr(Sα) is monotone in α, we can

invert the relationship and specify α by �xing

df . For df = 4 this gives α = 3880.

This yields to model selection with di�erent

values for df , where more traditional criteria

developed for regression models maybe used.



3. Connection to mixed models

If we let

X = [1, x],

where x = (x1, . . . , xn)′ and by the special

form of ∇ we note that

X ′∇ = 0

and

(I+αK)−1 = X(X ′X)−1X ′+Z(Z ′Z+α∆−1)Z ′,

where Z = ∇(∇′∇)−1.

Then the solution of PSS(K) can be written

as

d̂ = Xβ̂ + Zû,



where

β̂ = (X ′X)−1Xy

and

û = (Z ′Z + α∆−1)−1Z ′y.

These estimates can be seen as (BLUP) so-

lutions of the mixed model

y = Xβ + Zu + ε,

where X and Z are de�ned before and

u ∼ N(0, σ2
u∆) and ε ∼ N(0, σ2I)

with smoothing parameter as a variance ratio

α = σ2

σ2
u
.



Note that we may always rewrite

y = Xβ + Z∗u∗ + ε,

where Z∗ = Z∆1/2 and u∗ = ∆−1/2u with

u∗ ∼ N(0, σ2
uI) and ε ∼ N(0, σ2I).

We can now use standard statistical software

for parameter estimation (e.g. LME in R or

Proc Mixed in SAS).



4. Growth Curves

• The growth curve model (GCM) of Pottho� & Roy (1964)

Y = TBA′ + E,

where Y = (y1, y2, . . . , yn) is a matrix of obs.,

T and A are design matrices (within and between indivi-

dual),

B is a matrix of unknown parameters, and

E is a matrix of random errors.

• The columns of E are independently distributed as

ei ∼ N(0,Σ).

• Here I assume that

Σ = σ2R,

where R takes certain parsimonious covariance structure

with covariance parameters θ.



• Now we may write

Y = GA′ + E,

where G = (g1, . . . , gm) is the matrix of

mean curves.

• The GCM is a linear approximation

G = (g1, . . . , gm)
= (Tβ1, . . . , Tβm)
= TB.

• The aim here is to develop the methods

needed when G is approximated by more

�exible cubic smoothing splines.



• Penalized log-likelihood function

2l = −
1

σ2
tr[(Y ′ −AG′)R−1(Y ′ −AG′)′+

α(AG′)K(AG′)′]− n log |σ2R| − c.

• For given α, σ2 and R, the maximum is

obtained at

G̃ = (R−1 + αK)−1R−1Y A(A′A)−1.

• If R satis�es

RK = K,

this simpli�es to

Ĝ = (I + αK)−1Y A(A′A)−1.



• It is easily seen that

R = I (Independent),

R = I + σ2
d11′ (Uniform),

R = I + σ2
d′XX ′ (Linear1),

R = I + XDX ′ (Linear2)

satis�es the condition RK = K.

• This result can be compared to estima-

tion in linear models, when BLUE coinsi-

des with OLSE.


