# ANALYSIS OF LONGITUDINAL DATA <br> USING CUBIC SMOOTHING SPLINES 

Tapio Nummi

Department of Mathematics, Statistics and Philosophy

33014 University of Tampere
Finland

## 1. Spline smoothing

Suppose that our aim is to model

$$
y_{i}=d\left(x_{i}\right)+\epsilon_{i}, \quad i=1, \ldots, n,
$$

where $d$ is a smooth function and $\epsilon_{i}$ are iid with $E\left(\epsilon_{i}\right)=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$.

The linear spline estimator is

$$
\begin{gathered}
d\left(x_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\sum_{k=1}^{K} u_{k}\left(x-\kappa_{k}\right)_{+}, \\
\quad\left(x-\kappa_{k}\right)_{+}=\left\{\begin{array}{cc}
0, & x \leq \kappa_{k} \\
x-\kappa_{k}, & x>\kappa_{k}
\end{array}\right.
\end{gathered}
$$

and $\kappa_{1}, \ldots, \kappa_{K}$ are knots.

The curve $d$ is now modeled by piecewise line segments tied together at knots $\kappa_{1}, \ldots, \kappa_{K}$.

## Example

```
> library(MASS)
> data(faithful)
> names(faithful)
[1] "eruptions" "waiting"
> plot(faithful)
> faithful<-faithful[order(faithful$waiting),]
> attach(faithful)
> knots<-c(0,60,75) % knots 60, 75
> rhs<-function(x,c) ifelse (x>c,x-c,0)
> dm<-outer(waiting, knots, rhs)
> dm
```

[,1] [,2] [,3]
$[1] \quad 43 \quad 0 \quad$,
$[2] \quad 45 \quad 0 \quad$,
...
[83,] $60 \quad 0 \quad 0$
$\begin{array}{cccc}{[84,]} & 62 & 2 & 0\end{array}$
...
[134,] $75 \quad 15 \quad 0$
$\begin{array}{llll}{[135,]} & 76 & 16 & 1\end{array}$
$>\mathrm{g}<-\operatorname{lm}$ (eruptions ${ }^{\sim} \mathrm{dm}$ )
> plot (eruptions~waiting)
> lines(waiting, predict(g))
$>$


We can generalize the above equation to a piecewise polynomial of degree $p$, but the most common choices in practice are quadratic ( $p=2$ ) and cubic ( $p=3$ ) splines.

For cubic splines we have

$$
\begin{aligned}
d\left(x_{i} ; \boldsymbol{\beta} ; \boldsymbol{u}\right) & =\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\beta_{3} x_{i}^{3} \\
& +\sum_{k=1}^{K} u_{k}\left(x-\kappa_{k}\right)_{+}^{3}
\end{aligned}
$$

where $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)^{\prime}, \boldsymbol{u}=\left(u_{1}, \ldots, u_{k}\right)^{\prime}$ and $1, x, x^{2}, x^{3},\left(x-\kappa_{1}\right)_{+}^{3}, \ldots,\left(x-\kappa_{K}\right)_{+}^{3}$ are called basis functions. Other possible choices of basis functions include $B$-splines, wavelet, Fourier Series and polynomial bases etc.

A natural cubic spline is obtained by assuming that the function is linear beyond the boundary knots.

The number ( $K$ ) and location of knots $\kappa_{1}, \ldots, \kappa_{K}$ must be specified in advance.

Coefficients $\boldsymbol{\beta}$ and $\boldsymbol{u}$ can be estimated using standard least squares procedures.

However, in some cases the estimated curve tends to be a very rough estimate.

Our approach is to apply smoothing splines, where the smoothing is controlled by a smoothing parameter $\alpha$.

Smoothing splines have a knot at each unique value of $x$ and the fitting is carried out by least squares with a roughness penalty term.

## 2. Penalized smoothing

If $x_{1}, \ldots, x_{n}$ are points in $[a, b]$ satisfying $a<x_{1}, \ldots, x_{n}<b$ the penalized sum of squares (PSS) is given as

$$
\sum_{i=1}^{n}\left\{y_{i}-d\left(x_{i}\right)\right\}^{2}+\alpha \int_{a}^{b}\left\{d^{\prime \prime}(x)\right\}^{2} d x
$$

where

$$
\alpha \int_{a}^{b}\left\{d^{\prime \prime}(x)\right\}^{2} d x
$$

is the roughness penalty ( RP ) term with $\alpha>$
0.

Note that here $\alpha$ represents the rate of exchange between residual error and local variation.

If $\alpha$ is very large the main component of PSS
will be RP and the estimated curve will be very smooth.

If $\alpha$ is relatively small the estimated curve will track the data points very closely.

If we define a non-negative definite matrix

$$
\boldsymbol{K}=\nabla \Delta^{-1} \nabla^{\prime}
$$

Where non-zero elements of $n \times(n-2)$ matrix $\nabla$ and $(n-2) \times(n-2)$ matrix $\Delta$ are defined
as
$\nabla_{i i}=\frac{1}{h_{i}}, \nabla_{i+1, i}=-\left(\frac{1}{h_{i}}+\frac{1}{h_{i+1}}\right), \nabla_{i+2, i}=\frac{1}{h_{i+1}}$
and

$$
G_{i, i+1}=G_{i+1, i}=\frac{h_{i+1}}{6}, G_{i i}=\frac{h_{i}+h_{i+1}}{3},
$$

where $h_{j}=x_{j+1}-x_{j}, j=1,2, \ldots, n-1$.

Now PSS becomes as

$$
P S S(\boldsymbol{K})=(\boldsymbol{y}-\boldsymbol{d})^{\prime}(\boldsymbol{y}-\boldsymbol{d})+\alpha \boldsymbol{d}^{\prime} \boldsymbol{K} \boldsymbol{d}
$$

and its minimum is obtained at

$$
\widehat{d}=(\boldsymbol{I}+\alpha \boldsymbol{K})^{-1} \boldsymbol{y} .
$$

It can be shown (e.g. Green and Silverman, 1994) that $\hat{d}$ is a natural cubic smoothing
with knots at the points $x_{1}, \ldots, x_{n}$.

Note that the special form $\hat{\boldsymbol{d}}$ follows from the chosen RP term

$$
\alpha \int_{a}^{b}\left\{d^{\prime \prime}(x)\right\}^{2} d x
$$

If we, for example, would use a discrete approximation

$$
\mu_{i+1}-2 \mu_{i}+\mu_{i-1}
$$

of the second derivative the PSS would be (Demidenko, 2004)

$$
P S S\left(\boldsymbol{Q} Q^{\prime}\right)=(\boldsymbol{y}-\boldsymbol{d})^{\prime}(\boldsymbol{y}-\boldsymbol{d})+\alpha \boldsymbol{d}^{\prime} \boldsymbol{Q} \boldsymbol{Q}^{\prime} \boldsymbol{d}
$$

where $(n=6)$

$$
\boldsymbol{Q}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then the minimizer is

$$
\tilde{d}=\left(\boldsymbol{I}+\alpha \boldsymbol{Q} \boldsymbol{Q}^{\prime}\right)^{-1} \boldsymbol{y}
$$

Note that for fixed $\alpha$ the spline fit

$$
\hat{\boldsymbol{d}}=(\boldsymbol{I}+\alpha \boldsymbol{K})^{-1} \boldsymbol{y}=\boldsymbol{S}_{\alpha} \boldsymbol{y}
$$

is linear in $\boldsymbol{y}$ and the matrix $\boldsymbol{S}_{\alpha}$ is known as the smoother matrix.

The smoother matrix $\boldsymbol{S}_{\alpha}$ has many interesting properties discussed e.g. in Hastie, Tibs-
hirami and Friedman (2001), but here I briefly mention only the following :

1. Choosing the smoothing parameter:

$$
C V(\alpha)=\sum_{i=1}^{n}\left(\frac{y_{i}-\widehat{d}_{\alpha}\left(x_{i}\right)}{1-S_{\alpha}(i, i)}\right)^{2}
$$

where $S_{\alpha}(i, i)$ are diagonal elements of $\boldsymbol{S}_{\alpha}$.
2. Estimation of the effective degrees of freedom

$$
d f_{\alpha}=\operatorname{tr}\left(\boldsymbol{S}_{\alpha}\right)
$$

This can be compared to matrix

$$
\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}
$$

in regression analysis (or in regression splines) in a sense that

$$
\operatorname{tr}(\boldsymbol{H})
$$

gives the number of estimated parame-
ters (or the number of basis functions
utilized).

# Example: Stem curve model - modelling the degrease of stem diameter as a function stem 

 height.Third degree polynomial fitted


Spline fitted by alpha=5


## The effective number of degrees of freedom $d f_{\alpha}=\operatorname{tr}\left(S_{\alpha=5}\right)=16.79628$.

Note that if

$$
\begin{aligned}
& \alpha \rightarrow 0, d f_{\alpha} \rightarrow n \\
& \alpha \rightarrow \infty, d f_{\alpha} \rightarrow 2
\end{aligned}
$$



Since $d f_{\alpha}=\operatorname{tr}\left(S_{\alpha}\right)$ is monotone in $\alpha$, we can invert the relationship and specify $\alpha$ by fixing $d f$. For $d f=4$ this gives $\alpha=3880$.

This yields to model selection with different values for $d f$, where more traditional criteria developed for regression models maybe used.

## 3. Connection to mixed models

If we let

$$
X=[1, x],
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ and by the special form of $\boldsymbol{\nabla}$ we note that

$$
X^{\prime} \nabla=0
$$

and
$(\boldsymbol{I}+\alpha \boldsymbol{K})^{-1}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}+\boldsymbol{Z}\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}+\alpha \Delta^{-1}\right) \boldsymbol{Z}^{\prime}$,
where $Z=\nabla\left(\nabla^{\prime} \nabla\right)^{-1}$.

Then the solution of $\operatorname{PSS}(\boldsymbol{K})$ can be written as

$$
\widehat{d}=X \widehat{\beta}+Z \widehat{u}
$$

where

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X} \boldsymbol{y}
$$

and

$$
\widehat{\boldsymbol{u}}=\left(\boldsymbol{Z}^{\prime} \boldsymbol{Z}+\alpha \boldsymbol{\Delta}^{-1}\right)^{-1} \boldsymbol{Z}^{\prime} \boldsymbol{y}
$$

These estimates can be seen as (BLUP) solutions of the mixed model

$$
y=X \beta+Z u+\epsilon,
$$

where $\boldsymbol{X}$ and $\boldsymbol{Z}$ are defined before and

$$
\boldsymbol{u} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \boldsymbol{\Delta}\right) \text { and } \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

with smoothing parameter as a variance ratio $\alpha=\frac{\sigma^{2}}{\sigma_{u}^{2}}$.

Note that we may always rewrite

$$
\boldsymbol{y}=\boldsymbol{X} \beta+\boldsymbol{Z}_{*} \boldsymbol{u}_{*}+\boldsymbol{\epsilon}
$$

where $\boldsymbol{Z}_{*}=Z \Delta^{1 / 2}$ and $\boldsymbol{u}_{*}=\Delta^{-1 / 2} \boldsymbol{u}$ with

$$
\boldsymbol{u}_{*} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \boldsymbol{I}\right) \text { and } \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

We can now use standard statistical software for parameter estimation (e.g. LME in $R$ or Proc Mixed in SAS).

## 4. Growth Curves

- The growth curve model (GCM) of Potthoff \& Roy (1964)

$$
\boldsymbol{Y}=\boldsymbol{T} \boldsymbol{B} \boldsymbol{A}^{\prime}+\boldsymbol{E},
$$

where $\boldsymbol{Y}=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}\right)$ is a matrix of obs.,
$\boldsymbol{T}$ and $\boldsymbol{A}$ are design matrices (within and between individual),
$\boldsymbol{B}$ is a matrix of unknown parameters, and $\boldsymbol{E}$ is a matrix of random errors.

- The columns of $\boldsymbol{E}$ are independently distributed as

$$
\boldsymbol{e}_{i} \sim N(\mathbf{0}, \boldsymbol{\Sigma}) .
$$

- Here I assume that

$$
\Sigma=\sigma^{2} \boldsymbol{R},
$$

where $\boldsymbol{R}$ takes certain parsimonious covariance structure with covariance parameters $\boldsymbol{\theta}$.

- Now we may write

$$
\boldsymbol{Y}=\boldsymbol{G} A^{\prime}+\boldsymbol{E},
$$

where $\boldsymbol{G}=\left(\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{m}\right)$ is the matrix of mean curves.

- The GCM is a linear approximation

$$
\begin{array}{rlrl}
\boldsymbol{G} & =\left(\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{m}\right) \\
& = & \left(\boldsymbol{T} \boldsymbol{\beta}_{1}, \ldots, \boldsymbol{T} \boldsymbol{\beta}_{m}\right) \\
& = & \boldsymbol{T B} .
\end{array}
$$

- The aim here is to develop the methods needed when $G$ is approximated by more flexible cubic smoothing splines.
- Penalized log-likelihood function

$$
\begin{gathered}
2 l=-\frac{1}{\sigma^{2}} \operatorname{tr}\left[\left(\boldsymbol{Y}^{\prime}-\boldsymbol{A} \boldsymbol{G}^{\prime}\right) \boldsymbol{R}^{-1}\left(\boldsymbol{Y}^{\prime}-\boldsymbol{A} \boldsymbol{G}^{\prime}\right)^{\prime}+\right. \\
\left.\alpha\left(\boldsymbol{A} \boldsymbol{G}^{\prime}\right) \boldsymbol{K}\left(\boldsymbol{A} \boldsymbol{G}^{\prime}\right)^{\prime}\right]-n \log \left|\sigma^{2} \boldsymbol{R}\right|-c
\end{gathered}
$$

- For given $\alpha, \sigma^{2}$ and $\boldsymbol{R}$, the maximum is obtained at

$$
\tilde{G}=\left(\boldsymbol{R}^{-1}+\alpha \boldsymbol{K}\right)^{-1} \boldsymbol{R}^{-1} \boldsymbol{Y} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1}
$$

- If $\boldsymbol{R}$ satisfies

$$
\boldsymbol{R K}=\boldsymbol{K}
$$

this simplifies to

$$
\widehat{\boldsymbol{G}}=(\boldsymbol{I}+\alpha \boldsymbol{K})^{-1} \boldsymbol{Y} \boldsymbol{A}\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1}
$$

- It is easily seen that
$\boldsymbol{R}=\boldsymbol{I}$ (Independent),
$\boldsymbol{R}=\boldsymbol{I}+\sigma_{d}^{2} \mathbf{1 1}^{\prime}$ (Uniform),
$\boldsymbol{R}=\boldsymbol{I}+\sigma_{d^{\prime}}^{2} \boldsymbol{X} \boldsymbol{X}^{\prime}($ Linear 1$)$,
$\boldsymbol{R}=\boldsymbol{I}+\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\prime}$ (Linear2)
satisfies the condition $\boldsymbol{R K}=\boldsymbol{K}$.
- This result can be compared to estimation in linear models, when BLUE coinsides with OLSE.

