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Characterizing Invariant Convex Functions of Matrices

James V. Bondar and Alastair J. Scott

Carleton University ancl University of Auckland

Some years ago, C. Davis (1957) showed that the invariant convex functions on the
class of symmetric matrices are precisely the functions that are convex increasing functions
of the eigenvalues. (Here "invariant" rneans invariant under the similarity transformation
O --+ OMO'where O is orthogonal.) In this talk we show that the invariant convex
functions on the class of all matrices are precisely those func.tions of the singular values

that are both convex and weak Schur convex. (Here "invariant" means invariant under
the transformation M -+ OtMOz where the O; are orthogonal.)

It has been known for some tirne that increasing symrnetrix convex func.tions of the
squares of the singular values are rnatrix convex. Bondar (1985) strengthens Schwartz'
results to increasing sylnmetric convex functions of the singular values. Here we show

that to be a convex, weak Schur convex function of the singular values is necessary and
sufficient for matrix convexity. We also derive sufficient conditions that are simpler to
apply in practice.

References
J. Bondar (1985). Convexity of acceptance regions of multivariate tests.
Linear Algebra Appl.,67: 195-199.

C. Davis (1957). Al1 convex invariant functions of Hermitian matrices. Arch. Math.,
8: 276-278.



Application of a Generalizecl Matrix Schwarz hrequality
Evaluation of Biasecl Estimation in Linear Regression

J. S. Chiprnan

unive rs i\o 
l}fi['..' ", "

In the general linear regression rnoclel, three estiurators are considered: (1) the Gauss-

Markoff estimator; (2) the Gauss-Marlioff estirnator subject to a set of linear restrictions
on the regression-coefficient vector; (3) the Theil-Goldberger estirnator with uncertain
linear restrictions corresponding to the certain ones of (2). This third estimator is styied
tlre generalized ridge estimator. It is shown, generaliztng a result of Toro-Vizcarrondo
and Wallace, that a sufficient condition for both estimators (2) and (3) to have lower
matrix-mean-square error than estimator (1) is that the noncentrality parameter arising
in the F-test for the restrictions in (2) should be less than 1. A generalization is also

obtained of the Hoerl-Kennard result that for sufficiently small but positive values of their
l.-parameter, estimator (:3) has lower matrix-mean-square error than estimator (1).

References
.L S. Chipmarl, "On least squares with insufficient observations," J.A.S.A.59 (1964),

1078-1111.

A. E. Hoerl and R. W. Kennard, "Ridge regression: biased estimation for nonorthogonal

problerns," Techtrometric-s 12 (1970), 55-67.
C. Toro-Vizcarrondo and T. D. Wallac€, "A test of the rnean square error criterion for

restrictions in linear regression," J.A.S.A. 63 (1968), 558-572.



Statistical Contribr.rtions to Matrix Methocls

Richard Wiiliani Farebrother

University of Manchester

The Formalisation of Matrix Algebra in the 1850s and 1860s was preceded by a number
of significant developments, sorne of which (*) are to be found in statistics works:

1. Cauchy's use of rnodem subscript notatiou for matrix eiements.

2. Gauss's use of matrix rnultiplication when trausforming variables in a quadratic
form.

3.* Mayer's prototype of the elirnination procedure.

4.* Gauss's identification of a iinearly dependent systern of equations.

5.* Gauss's elirnination procedure and the implicit LU decomposition of a square matrix.

6.* Clauss's definition of a generalised inverse of a tnatrix.

7.* Clauss's derivation of a LDL' decomposition of a symmetric matrix.

8.* Gauss's least squares updating fortuulas.

9.* Gauss's proof that the inverse of a symrnetric matrix is itself syrnmetric.

10. Cauchy's latent value decomposition of a 3 x 3 rnatrix.

11.* Laplace's derivation of an orthogonalisation procedure subsequently rediscovered by
Gram and Schmidt.

12.* Donkin's definition of an orthogonal basis for the orthogonal courplement of a rna-
trix.

13. Jacobi's characterisation of the least squares solution as a weighted sum of subset
estimates. This ciraracterisation of the Least Squares solution as a weighted sum of
subset estimates by C)laisirer and Subrahrnaniarn.

Later Contributions Include:

14.* Thiele's discussion of the canonical form of the linear model.

15.* The Singular value decomposition derived by Eckart and Young.

i6.* The so-callecl Gur.r-Mu.kov theorem is clue to Ciauss alone.

17.* The generalisation of this theoren usually attributed to Aitken would seem to be

due to Plackett.



Stationary Distributions and Mean First Passage Times in
Markov Chains using Generaltzed Inverses

Jeffrey J. Hunter

Massey University

The determination of the mean first passage tirnes in finite irreducible discrete tirne
Markov chains requires the computation of a generalized inverse of .I - P, where P is the
transition matrix of the Markov chain, and also knowledge of the stationary distribution
of tlie Markov chain. Generalized inverses can be used to find stationary distributions.
Tire linking of these two procedures and the cornputation of stationary distributions using
various multi-condition generalized inverses is investigated.



Cornbining Inclependent Tqsts For A Cotllmon Mean-lA" 
Ap'irlication of the Parailel Surn of Matrices

Thomas Mathew

Departrnent of Mathematics and Statistics' UniversitY of MarYlancl
Baltimore CountY

Baltimore, MarYl an d 21228
U.S.A.

I. the co.text of the recovery of inter-block inforrnation in a BIBD, the problem of

conrbining two inclepenclent tests is addressecl in cohen and sackrowitz (1989, Journ'al of

the. Ameico, Stotirtical Association). Apart from the intra- and inter-block F-tests, their

cornbi.ecl test uses a correlation type statistic, and this statistic has a positive expected

value whe' the null hypothesis of equality of the treatment effects is not true' We show

that a similar statistic .or b" definecl in the context of hypotiresis testing for a common

lnean i' several indepenclent linear models. Using the properties of the parallel surn of

matrices, we also sirow that this statistic has a positive expected value wheu the null

hypothesis is not true.



Invariant Preorcleriirgs of Matrices ancl Approximation Problerns
in N4ultivariate Statistics ancl MDS

Renate Meyer

Institute of Startistics and Docurnentation
Aachen University of Technology, German.y

Tlre singular value decomposition of a complex n x k -matrix A : Dl=, og4(A)u;vf, with
o1r1(A) 2 "pt(A)the Hennitian matrix A * A, plays an important role in various multivariate descriptive
statistical nethods, as for exarnple in principal components and analysis, canouical corre-

lation analysis, discriminant analysis, and correspondence analysis. It is applied to solve

the key problem of approximating a given rz x k-rnatrix (1 < k < ,) by a matlix of lower
rank r < k. Define A1,; : Di=rop4(A)u;vf . The minimum norm rank r approximation
result

,b@ - At,l) < 'i(A - G) for all G with rank (G) ( r, (0 1)

was obtainecl by Eckart ancl Young (1936) for the Eucliclean norm $(A: {tr,O.e.1}. The
solution A1,; turned out to be "robust" with respect to the choice of the approxiuration
criterion, as it was extended by Mirsky (1960) to the class of unitarily invariant norms.

The objective in the first part of this paper is to generalize this result to an even larger
class of real-valued loss functions, encolrlpassing the unitarily invariant norurs. Certain
preorderings { of complex rnatrices, that occur naturally in the context of multivariate
statistics, will be considering in proving uniuersal optimality of A1,;, i.e.

A-Ar,r < A-G forall Gwith rank (G) Sr. (0.2)

Of course, this irnmediately entails (1) for ail real-valued {-monotone functionsTy'.
The second part treats the problem of approximating a Herrnitian n x n matrix by

a positive-sernidefinite rnatrix of given rank, which is of major relevance in the context
of multidimensional scaling (MDS). Thereby, the hitherto rnost general result of Mathar
(1985) is extended and further universally optirnal properties of the classical MDS solu-

tion are provided.
Iiey uords: singular value decornposition, group induced preorderings, invariant order-

ings, weak majorization, principal components analysis, rnultidimensional scaling.

References

Eckart, C., Young, G. (1936). The approximation of one matrix by another of lower rank.
P.sy ch o m etrik a L, 2Il -218.'

Jensen, D.R. (1984). Invariant ordering
Irtequalities in,9tat'istics an d Probability.,
Ca.,26-ii4.

and order preservation. In: Y.L. Tong, Ed.,
histitute of Mathematical Statistics, Hayward,
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Mathar, R. (1985). The best Euclidean fit to a given distance matrix in prescribed dimen-
sions. Linear Algebra Appl. 67, 7-6.

Meyer, R. (1991) Multidirnensional Scaling as a frarnework for Correspondence Analysis
and its extensions, in: M. Schader, Ed., Analyzirtg and Mod.elin.g Data and l{nowledge,

Springer, 63-72.

Mirsky, L. (1960. Symmetric gauge functions and unitarily invariant norms. Quart. J.
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A Cornpact Expression For Variance of Sample Second-order
Moments in Multivariate Linear Relations

Heinz Neudecker

Department of Actuarial Science and Econometrics
University of Amsterdam"

The Netherlands

Satorra (1992) considered the random (prl) vector

, :iBr;; * tr,
i=7

where the random (n;rl) vectors 51 are independent with rnean E(6) : 0 and variance
D.(5;), and B; are LL are coustants

(i:t...nr).

He derived the variance of u(zz'), where u(.) is the short version of vec(.).
It is the aim of this note to give a compact expression for the variance and subsequently

derive Satorra's result.



Matrix Tiicks Related to Deleting an Observation in the General
Linear Model

Markliu Nurhonen and Simo Puntanen

Departrnent of Mathematical Sciences- 
UniversitY of TarnPere

Consicler the linear motlel U, X0,V, where X has full colurnn rank and V is positive

definite. when estimating the pararneters of the model, it is natural to consider the

consequences of sorne changes or perturbations in the data on the estimates: regression

diag'ostics rneasure these consequencies. One fundamental perturbation is omitting one

o, ,",r"rul of the observations from the model. In this paper our interest focuses oll some

helpful matrix forrnulas while studying regression diagnostics.



The full CS-cleconrposition of a partitionecl orthogonal tnatrixl

Chris C. Paige

Sc;hool of Computer Science, McGill University
Montr6al, Qu6bec, Canacla H3A 2A7

The C,9-decomposition (CSD) of a 2-block by 2-block partitioned unitary matrix Q :

(fl:rt, 3::r) 
reveais the relationships betwee' the si*gular value c{ecornpositions (svDs)

of eaclr of the 4 subblocks of Q. The CSD shows each SVD has the form Ql; : LI;D;iVf ,

lor i, j :7,2, where each [.I; and I/i is unitary, and each D;1 is essentially diagonal. Here

we give a simple proof of this which has no restrictions ou the dirnensions of Q11.

The CSD was originally proposed by C. Davis and W. Kahan, and is important in
finding the principal angles between subspaces (Davis ancl Kahan, Bjorck and Golub),
such as in cornputing canonical correlations between two sets of variates. It aiso arises

in, for example, the Total Least Squares (TLS) problern. The relationships betrveen the 4
subblock SVDs (in particular the way that each unitary matrix U; or V1 appears in 2 dif-
ferent SVDs) has macle the CSD a powerful tool for providing sirnple and elegant proofs

of many useful results invoiving partitioned unitary matrices or orthogonal projectors.
Here we also show the CSD makes several nice rauk relations obvious, aud can be used

to prove some interesting results involving general nonsingular matrices.
I(e.y words: CS decornposition, unitary tnatrices, tank relations.

lJoint Research with
Shanghai 200062, China.

Musheng Wei, Departmenl
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How Not to use Matric,es when Teacliing Statistics

D.J. Saville
NZ Pastoral Agriculture Research lnstitute Ltcl

and
G.R. Wood

Department of Mathematics, university of canterbury

Hic,lclen in the appenclices of some statistical texts is a geometric apProaclt to analysis

of variance ancl r"gr"rsion. This approach has been large un-used in teaching for two

reasons. Firsi, the approach has been considered too hard, and second, this century has

been a period in which algebraic methods have been dominant. It is the aim of this paper

to show that the first reason offered is nonsense: the geornetric approach can make things

easy.

How cioes the geometric methocl rnalie things easy? The matirematical framework

necessary for the geometric cievelopment of analysis of variance and regression can be

reducecl to a halclful of straightforward vector ideas. Once these are learnt a concrete

methocl is followecl i1 any situation. Three objects are isolated: the observation vector'

the 
'roclel 

space ancl hypothesis clirections. All lie in a finite-climensional Euclidearl space.

Two routine processes then serve to fit the rnodel and test hypotheses: to fit tire rnodel we

project the olservation vector onto the model spac.e) while to test hypotheses we cornpare

averages of squared lengths of projections'

Why bother to clo ii.ingr clifferently? Conventional uretirods fail to convey a satis-

factory unclerstalcling of the principies which unify these basic statistical methods. The

cookbook approach r"n uin, mysterious, while the matrix approach is accessible only to

tlrose with lrathernatical rnaturity. The geometric approacir provides at elemen'tary b:ut

rigorouspath through the rnaterial. It has been used successfuily by the atrthors to teach

,"'.ond-y"ur stuclelts in statistic.s as well as postgraduate stuclents in the applied sciences'

These icleas will be cliscussecl, ancl an example of the method in actiou presented.

1l



Problerns with clirect soiritions of the normal eqrrations for
rlon-paratnetric aclditive uro clels

M. G. Sc:hintek

Medical Biornetrics Group, University of Graz Medical Schoois,
A-8036 Graz, Austria

To stucly the funciioual clependence between variables of a multivariate regression

problem in a data-driven fashion, non-pal'alletric techniques like Generalized Additive
Models (Buja, A., Hastie, T. and Tibshirani, R.: Linear smoothers and additive rnodels.

Artn. Statisf. 1989, 17,453-555) are very useful. Instead of solving the associated uonnal
equations a Jacobi-type iterative procedure called backfitting is usually appiied. This

is prirnarily done for the purpose of computational efficiency and to avoid singularity
problens. But little is known from a theoretical and even less frorn a practical point of
view about the quality of the obtained results.

Let us observe (d + l)-dirnensioual data (r;,X) with z; : (r0r,...,r;a). The

r1j,...tr,,.j represent indepenclent observations drawn frorn a randorn vector X :
(*r,,...,i0)anclther;anclXfuifilY;:g(r;)*e;forI<i(zr,wireregisallurl-
known smooth function from Rd to ft, and €1r... )en are independent errors. An additive
approximation to g

d

s6)veo+fsi,xi)
j=1

is aimed at, where 96 is a constant and the !;s are any srnooth functions. To make these

functions g; identifiable it is required that E(g16)): 0 for I < i ( d. For instance we

can apply thepopular cubicpolynomial srnoothing splines. Let Sr: (1+)A.1ifr)-1 bethe
snroother matrix (operator) and 1(4 a penaity rnatrix of such a spline. For l. :1,2,...,d
the normal equations form a (nd) x (n d) system

1) [) :I:::
,9a ,94 ,94

L9, ,91

szlS,
Sfl
Sza

Sau

denoted by Pg: QA, where P and Q are block matrices of smoothing operators ^9r.

One way to solve the system wouid be to apply the rnethod of successive overrelaxatiotl,

but for d > 2 we do not l<now how to choose the relaxation parameter. Instead we propose

taking advantage of the specific block structure (especially the position of the /s) of P. It
allows us to clerive a recursive scheme for the calculation of P-1. IJnder non-singularity
a direct solution can be obtained by 0 : P-t Qy. This approach is cheap but depends on

tlre chosen scatterplot smoolher. 
12



In case of singularity we propose another approach based on a specific type of Tichonow
regularization assuming measurement errors of tire dependent variable. Let us have the
singular systern Pr : Qa. Let a be a regularization parameter, then ihe disturbed system
takes tlre forrn (P*P * al)r - P*Qy.The deviation lli - rll can be estimated in terms
of 7/a and the measurernent error of the right-hand side of the equation. The system can

be solved by standard techniques but is cotnputationally expensive.

Research supported by Austrian Science Research Fund trant P8153-PIIY,

i3



On the Efficiency of a Linear Unbiased Estimator and on a
Matrix Version of the Cauchy-Schwarz Inequality

George P.H. Styan

Department of Mathematics and Statistics,
McGill lJniversity

Montr6a1, Qu6bec, Canada H3A 2A7

We consider the efficienc.y of a linear unbiased estirnator in the general linear model and

its conlection to a determinant version of the Cauchy-Schwarz inequality; we illustrate

our results with an example from simple linear regression.

I4



Alexander Craig Aitken: 1895-1967

Garry J. Tee

Departrnent of Mathernatics ancl Statistics
University of Aucklancl

Alexander Craig Aitken was bom at Dunedin on 1895 April 1, and he attended Otago

Boys High Scirool. On holiday at his grandparents dairy falm on Otago Peninsula in

1904, he discoverecl the norv-famous breecling colony of the Royal Albatross at Taiaroa

Head. His Calvinist grandparents punished hirn for telling such. an unlikely tale but later

o1e of his uncles was appointed as a Ranger to protect the colony. After 2 years at the

University of Otago he joined the army and was severely wounded at the Battle of the

Somme.

.He completed his studies at the University of Otago, and graduated NI.A. in 1919 .

In 1920 he rnarriecl Mary Betts, who lec.tured in Botany at Otago l-lniversity. He taught

at Otago Boys High School until 1923, when Professor R. J. T. Bell persuaded him to
study at the tiniversity of Edinburglt, where he spent the rest of his life. Professor E. T.

Whittaker asigned hint the problem of smoothing of data, which had practical iurportance

i1 actuarial work. His thesis was of suc.h merit that he was awarded the degree of Doctor

of Science, rather than Ph.D.
Aitken s mathentatical rvork was devoted mainly to nurnerical analysis, statistics and

linear algebra. He founded the renowr ed Oliver & Boyd series of textbooks and wrote the

firsb tlvo himseif: both Determinants and Matrices and Statistical Mathematics
are recognized as classic textbooks. In numerical analysis he devised many methods which

exploited the capabilities of the calculating machines which were then available, and which

have proved to be funclamental to rnuch later work in scientific cornputing. He gairrecl

wide fame as the greatest mental calculator for whom detailed and reliable records exist.

lVhittaker retired in 1946, and Aitken, without any move on his part, was elected to

the Chair of Vlathematics at Edinburgh. He was elected Fellow of the Royal Societies of

London and of Edinburgh, and Honorary Fellow of the Royal Society of New Zealand, of

the Society of Engineers, and of the Paculty of Actuaries of Edinburgh. He was awarded

Honorary Degrees by the Universities of New Zealand and of Glasgow, and he was awarded

several rnajor prizes in mathematics. He was an inspiring lecturer and an extremely gentle

person, intensely devoted to music, and ire wrote sorne poetry of distinction.
In 1963 he published his mernoir Gallipoli to the Somme: Recollections of a

New Zealand Infantryman, which was acclairned as a classic account of death and life
i1 the trenches. The Royal Society of Literature elected hiur as a Fellow, in recognition

of his achievernent in writing that memoir.
Aitken retired in 1965 (in poor health), and ire died at Edinburgh on 1967 November

3, aged 72.

15



Use of permatlettts ancl their analogues.in
mr.rltivariate galnltta, binonlial and negative

the represeutatiou of
binonrial distriltutious

D. Vere-,Jotres

Institute of Statistics and Operations Research
Victoria University of Wellington

Wellington, New Zealancl

Porvers of cleterminantal expressions of the form det[1 -TA],7: diag(tt,t2,...,t,,)

occur i1 expressiols for the moment or probability generating functions for several types

of nultivariate clistribuiion - gamrna, negative binomial, binomial at least- The funda-

'rental 
ideltity relating the logarithm of the determinant to the trace of the logarithrn of

the matrix allows the coefficients in the determinantal expressions to be characterised as

multilinear forms in the elements of A, reducing to the detemrinant of A rvhen the power

is *1, to its permanent when tire power is -1, and to an extension of both concepts

(,,alpha-permalents" in the tenninology of Vere-Jones (1988)), for general porvers. This

pup"'. will review some properties of these representations and the associated multivariate

,lirtrib.rtions, inclucling extensions to nixtures of binornial or negative biuomial distribu-

tio1s, alcl to stochastic processes. Some open questions wiil be urentioned, including the

problem of developing effective numerical techniques.

Reference
Vere-Jones, D., "A generalisation of pertlauents and detertninants,"

Li,near Algebra an'd lts Application-s 111 (1988)' 199-124'
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