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The International Conference on Trends and Perspectives in Linear Statisti-
cal Inference, LinStat'2012, and the 21st International Workshop on Matrices
and Statistics, IWMS'2012, will be held on July 16-20, 2012 in the Mathe-
matical Research and Conference Center of the Polish Academy of Sciences
at B�edlewo near Pozna«. This is the follow-up of the 2008 and 2010 editions
held in B�edlewo, Poland and in Tomar, Portugal.

The purpose of the meeting is to bring together researchers sharing an interest
in a variety of aspects of statistics and its applications as well as matrix
analysis and its applications to statistics, and o�er them a possibility to
discuss current developments in these subjects. The format of this meeting
will involve plenary talks, special sessions, contributed talks and posters.
The conference will mainly focus on a number of topics: estimation, prediction
and testing in linear models, robustness of relevant statistical methods, es-
timation of variance components appearing in linear models, generalizations
to nonlinear models, design and analysis of experiments, including optimality
and comparison of linear experiments, and applications of matrix methods in
statistics.
The work of young scientists has a special position in the LinStat'2012 to en-
courage and promote them. The best poster as well as the best talk of Ph.D.
students will be awarded. Prize-winning works will be widely publicized and
promoted by the conference.

It is expected that many of presented papers will be published, after referee-
ing, in a Special Issue of each of the journals: Communications in Statistics
- Theory and Methods and Communications in Statistics - Simulation and
Computation, associated with this conference. All papers submitted must
meet the publication standards of mentioned journals and will be subject to
normal refereeing procedure.
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Committees and Organizers

The Scienti�c Committee for LinStat'2012 comprises

• Augustyn Markiewicz (chair, Pozna« University of Life Sciences, Poland),
• Anthony C. Atkinson (London School of Economics, UK),
• João T. Mexia (New University of Lisbon, Portugal),
• Simo Puntanen (University of Tampere, Finland),
• Dietrich von Rosen (Swedish University of Agricultural Sciences, Uppsala
and Linköping University, Sweden),

• Götz Trenkler (Technical University of Dortmund, Germany),
• Roman Zmy±lony (University of Zielona Góra, Poland).

The Scienti�c Committee for IWMS'2012 comprises

• Simo Puntanen (chair, University of Tampere, Finland),
• George P. H. Styan (honorary chair, McGill University, Montreal, Canada),
• S. Ejaz Ahmed (Brock University, St. Catharines, Canada),
• Je�rey Hunter (Auckland University of Technology, New Zealand),
• Augustyn Markiewicz (Pozna« University of Life Sciences, Poland),
• Dietrich von Rosen (Swedish University of Agricultural Sciences, Uppsala
and Linköping University, Sweden),

• Götz Trenkler (Technical University of Dortmund, Germany),
• Júlia Volaufová (Louisiana State University, Health Sciences Center, New
Orleans, USA),

• Hans J. Werner (University of Bonn, Germany).

The Organizing Committee comprises

• Katarzyna Filipiak (chair, Pozna« University of Life Sciences, Poland),
• Francisco Carvalho (Polytechnic Institute of Tomar, Portugal),
• Maªgorzata Graczyk (Pozna« University of Life Sciences, Poland),
• Jan Hauke (Adam Mickiewicz University, Pozna«, Poland),
• Agnieszka �acka (Pozna« University of Life Sciences, Poland),
• Martin Singull (University of Linköping, Sweden),
• Waldemar Woªy«ski (Adam Mickiewicz University, Pozna«, Poland).

The Organizers are

• Stefan Banach International Mathematical Center, Institute of Mathe-
matics of the Polish Academy of Sciences, Warsaw,

• Faculty of Mathematics and Computer Science, Adam Mickiewicz Uni-
versity, Pozna«,

• Institute of Socio-Economic Geography and Spatial Management, Adam
Mickiewicz University, Pozna«,

• Department of Mathematical and Statistical Methods, Pozna« University
of Life Sciences.
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Call for Papers

We are pleased to announce a special issue of Communications in Statistics
� Theory and Methods and Communications in Statistics � Simulation and
Computation (Taylor & Francis) devoted to LinStat-IWMS'2012.

They will include selected papers strongly correlated to the talks of the con-
ference and with emphasis on advances on linear models and inference.

Coordinator-Editor: N. Balakrishnan

Guest Editors of Theory and Methods: Júlia Volaufová and Augustyn
Markiewicz

Guest Editors of Simulation and Computation: Simo Puntanen and
Katarzyna Filipiak

All papers submitted must meet the publication standards of Communica-
tions in Statistics (see: http://www.math.mcmaster.ca/bala/comstat/) and
will be subject to normal refereeing procedure. The deadline for submission
of papers is the end of November, 2012.

Papers should be submitted using the web site

http://mc.manuscriptcentral.com/lsta

If the author does not have account, he should create one. The contribu-
tors must choose "Special Issue � Advances on Linear Models and
Inference" (Theory and Methods) and "Special Issue � Advances on
Linear Models and Inference: Computational Aspects" (Simulation
and Computation) as the manuscript type.
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Program

Sunday, July 15, 2012

14:00 � 19:00 Registration
19:00 � Reception Dinner

Monday, July 16, 2012

7:30 � 8:50 Breakfast

Plenary Session

8:55 � 9:00 Opening
9:00 � 9:45 R. A. Bailey: Optimal design of experiments with very

low average replication
9:45 � 10:30 R. Bhatia: Geometric mean of matrices

10:30 � 11:00 Co�ee Break

Parallel Session A � Multivariate Analysis part I

11:00 � 11:30 D. von Rosen: From linear to multilinear models
11:30 � 11:50 S. Toprak: A new approach to adaptive spline thresh-

old autoregression by using Tikhonov regularization and
continuous optimization

Parallel Session B � Matrices for Linear Models part I

11:00 � 11:30 H. J. Werner: On the linear aggregation problem in the
general Gauÿ-Markov model

11:30 � 11:50 F. S. Kurnaz: A new Liu-type estimator

11:50 � 12:00 Break

Parallel Session A � Multivariate Analysis part II

12:00 � 12:20 C. Cuevas-Covarrubias: Mutual Principal Components,
reduction of dimensionality in statistical classi�cation

12:20 � 12:40 Z. Hanusz: Simulation study on improved Shapiro-Wilk
test of normality

12:40 � 13:00 D. Klein: Estimators of serial covariance parameters in
multivariate linear models
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Parallel Session B � Mixed Models part I

12:00 � 12:35 J. Volaufová: On testing linear hypotheses in general
mixed models

12:35 � 13:00 B. Arendacká: Building stones for inference on variance
component

13:00 � 15:00 Lunch

Parallel Session A � Robust Statistical Methods part I

15:00 � 15:20 A. C. Atkinson: Very robust regression
15:20 � 16:00 D. Perrotta: Considerations on sampling, precision and

speed of robust regression estimators

Parallel Session B � General part I

15:00 � 15:30 A. Lee: Getting the "correct" answer from survey res-
ponses: an application of regression mixture models

15:30 � 16:00 A. Alin: Bootstrap con�dence regions for multinomial
probabilities based on penalized power-divergence test
statistics

16:00 � 16:30 Co�ee Break

Parallel Session A � Experimental Designs part I

16:30 � 17:05 S. Gilmour: QB-optimal saturated two-level main e�ects
designs

17:05 � 17:30 H. Abebe: On the choice of a prior distribution for
Bayesian D-optimal designs for the logistic regression
model

Parallel Session B � Mixed Models part II

16:30 � 17:05 F. Vaida: Conditional AIC for linear mixed e�ects mod-
els

17:05 � 17:30 A. Michalski: On admissibility of decision rules derived
from submodels in two variance components model

17:30 � 17:50 Co�ee Break

Parallel Session A � Applications part I

17:50 � 18:20 J.-P. Masson: About the evolution of the genomic diver-
sity in a population reproducing through partial asexual-
ity

18:20 � 18:40 K. Bartoszek: Multivariate linear phylogenetic compar-
ative models and adaptation
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Parallel Session B � Mixed Models part III

17:50 � 18:20 V. Witkovský: On exact and approximate simultaneous
con�dence regions for parameters in normal linear model
with two variance components

18:20 � 18:40 N. Demetrashvili Estimating intraclass correlation and
its con�dence interval in linear mixed models

18:40 � 19:00 N. Vahabi: Multilevel Rasch model and item response
theory

19:00 � Dinner
20:30 � Concert

Tuesday, July 17, 2012

7:30 � 9:00 Breakfast

Plenary Session

9:00 � 9:45 K. M. Prasad: Partial orders on matrices and the column
space decompositions

9:45 � 10:30 P. C. Rodrigues: Low-rank approximations and weighted
low-rank approximations

10:30 � 11:00 Co�ee Break

Plenary Session

11:00 � 11:45 P. E. Oliveira: Smoothing discrete distributions

11:45 � 12:00 Break

Parallel Session A � Mixed Models part IV

12:00 � 12:35 L. R. LaMotte: On inverse prediction in mixed models
12:35 � 13:00 Y. Liang: Variance components estimability in multilevel

models with block circular symmetric covariance struc-
ture

Parallel Session B � Experimental Designs part II

12:00 � 12:35 J. P. Morgan: Weighting, model transformation, and de-
sign optimality

12:35 � 13:00 C. May: A sequential generalized DKL-optimum design
for model selection and parameter estimation in non-
linear nested models

13:00 � 15:00 Lunch
15:00 � 21:00 Excursion
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Wednesday, July 18, 2012

7:30 � 9:00 Breakfast

Plenary Session

9:00 � 9:45 Somnath Datta: Nonparametric regression for sojourn
time distributions in a multistate model

9:45 � 10:30 O. Bluder: Investigation of Bayesian Mixtures-of-
Experts models to predict semiconductor lifetime

10:30 � 11:00 Co�ee Break

Parallel Session A � Robust Statistical Methods part II

11:00 � 11:50 D. P. Wiens: Robust model-based sampling designs

Parallel Session B � High-Dimensional Data part I

11:00 � 11:30 Susmita Datta: Nonparametric regression using partial
least squares dimension reduction in multistate models

11:30 � 11:50 T. Górecki: First and second derivative in time series
classi�cation using DTW

11:50 � 12:00 Break

Parallel Session A � Matrices for Linear Models part II

12:00 � 12:30 H. Drygas: Linear models in the face of Diabetes Melli-
tus: the in�uence of physical activity

12:30 � 13:00 R. Sund: Muste - editorial environment for matrix com-
putations

Parallel Session B � High-Dimensional Data part II

12:00 � 12:35 A. Khalili: Simultaneous �xed and random e�ect selec-
tion in �nite mixture of linear mixed-e�ect models

12:35 � 13:00 A. Gökta³: A comparison of logit and probit models for
a binary response variable via a new way of data gene-
ralization

13:00 � 15:00 Lunch

Parallel Session A � Model Selection, Penalty Estimation and
Applications

15:00 � 15:30 S. E. Ahmed: Absolute Penalty and Shrinkage Estima-
tion in Weibull censored regression model

15:30 � 16:00 E. P. Liski: Model averaging via penalized least squares
in linear regression

16:00 � 16:20 N. Acar: Model selection in log-linear models by using
information criteria
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Parallel Session B � Optimum Design for Mixed E�ects Regression
Models

15:00 � 15:30 B. Bogacka: Optimum designs for enzyme kinetic models
with co-variates

15:30 � 16:00 F. Mentré: Two-stage optimal designs in nonlinear
mixed e�ect models: application to pharmacokinetics in
children

16:00 � 16:20 M. Prus: Optimal designs for prediction of individual
e�ects in random coe�cient regression models

16:20 � 16:50 Co�ee Break

16:50 � Poster Session

A. Bachratá: Using methods of stochastic optimization for constructing
optimal experimental designs with cost constraints
S. B¥la²ková: Regression model of AMH
S. Donevska: Regression analysis between parts of compositional data
C. Fernandes: COBS and stair nesting - segregation and crossing
A. Gökta³: Validity of the assumed link functions for some binary choice
models based on the bootstrap con�dence band with R
M. Graczyk: Regular E-optimal spring balance weighing design with
correlated errors
R. Gupta: Estimation of parameters of structural change under small
sigma approximation theory
D. Kayzer: Canonical variate analysis of chlorophyll a, b and a+b con-
tent in tropospheric ozone-sensitive and resistant tobacco cultivars ex-
posed in ambient air conditions
P.-H. Liau: Latin square designs and fractional factorial designs
D. G. Pereira: Weighted linear joint regression analysis
M. Przystalski: Modeling resistance to oat crown rust in series of oat
trials
P. Ramos: Estimation of variance components in balanced, staggered
and stair nested designs
�. Smaga: D-optimal chemical balance weighing designs for three objects
if n=2 (mod 4)
T.-S. Tsou: Is the skew t distribution truly robust?
M. Tu£ková: Design of experiment for regression models with constrains
R. Zmy±lony: Inference for the interclass correlation in familial data
using small sample asymptotics

19:00 � 20:00 Concert: Indian Singing by Susmita Datta
20:00 � Barbecue
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Thursday, July 19, 2012

7:30 � 9:00 Breakfast

Plenary Session

9:00 � 9:45 P. �emrl: Adjacency preserving maps
9:45 � 10:30 G. P. H. Styan: An illustrated introduction to Euler and

Fitting factorizations and Anderson graphs for classic
magic matrices

10:30 � 11:00 Co�ee Break

Plenary Session � George P. H. Styan's 75th Birthday

11:00 � 11:25 G. Trenkler: The Luoshu and most perfect pandiagonal
magic squares

11:25 � 11:50 K. Conradsen: Multivariate analysis of polarimetric
SAR images

11:50 � 12:00 Break

Parallel Session A � Matrices for Linear Models part III

12:00 � 12:20 A. Erkoç: A graphical evaluation of Robust Ridge Re-
gression in mixture experiments

12:20 � 12:40 S. Türkan: Cook's distance for ridge estimator in semi-
parametric regression

12:40 � 13:00 K. Nosek: Change-point detection in two-phase regres-
sion with inequality constraints

Parallel Session B � George P. H. Styan's 75th Birthday

12:00 � 12:30 O. M. Baksalary: Some comments on joint papers by
George P.H. Styan and the Baksalarys

12:30 � 13:00 C. A. Coelho: Celebrating George P. H. Styan's 75th

birthday and my meetings with him

13:00 � 15:00 Lunch

Parallel Session A � Multivariate Analysis part III

15:00 � 15:20 M. Onozawa: Tests for pro�le analysis based on two-step
monotone missing data

15:20 � 15:40 �. Waszak: Functional discriminant coordinates
15:40 � 16:00 R. Enomoto: Normality test based on Song's multivari-

ate kurtosis
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Parallel Session B � George P. H. Styan's 75th Birthday

15:00 � 15:30 S. J. Haslett: Equivalence of linear models under changes
to data, design matrix, or covariance structure

15:30 � 15:45 J. Hauke: Nonnegativity of eigenvalues of sum of diago-
nalizable matrices

15:45 � 16:00 C. A. Coelho: On the distribution of linear combinations
of chi-square random variables

16:00 � 16:30 Co�ee Break

Parallel Session A � Multivariate Analysis part IV

16:30 � 17:05 J. Najim: Eigenvalue estimation of covariance matrices
of large dimensional data

17:05 � 17:30 J. Pielaszkiewicz: Asymptotic spectral analysis of matrix
quadratic forms

Parallel Session B � George P. H. Styan's 75th Birthday

16:30 � 17:00 A. J. Scott: Fitting Generalized Linear Models to sample
survey data

17:00 � 17:30 K. L. Chu: The magic behind the construction of certain
Agrippa-Cardano type magic matrices

17:30 � 17:50 Co�ee Break

Parallel Session A � General part II

17:50 � 18:15 U. Beyazta³: Jackknife-after-Bootstrap as logistic regres-
sion diagnostic tool

18:15 � 18:40 D. Haki: Improved estimation of the mean by using coef-
�cient of variation as a prior information in ranked set
sampling

18:40 � 19:00 S. Takahashi: Simultaneous con�dence intervals among
mean components in elliptical distributions

Parallel Session B � George P. H. Styan's 75th Birthday

17:50 � 18:15 P. Bertrand: Study with George Styan
18:15 � 18:30 P. Loly's video: Using singular values for comparing and

classifying magical squares (natural magic and Latin)
18:30 � 19:00 S. Puntanen: Oh, still crazy after all these years?

19:30 � Conference Dinner
� After Dinner Speaker: A. J. Scott
� After Dessert Speaker: S. Puntanen
� YSA Prize Ceremony
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Friday, July 20, 2012

7:30 � 9:00 Breakfast

Plenary Session

9:00 � 9:45 T. Mathew: Tolerance intervals in general mixed e�ects
models using small sample asymptotics

9:45 � 10:30 C. Hao: In�uential observations in the extended Growth
Curve model with crossover designs

10:30 � 11:00 Co�ee Break

Parallel Session A � Multivariate Analysis part V

11:00 � 11:25 M. Fonseca: Linear models with doubly exchangeable dis-
tributed errors

11:25 � 11:50 A. Roy: Classi�cation of higher-order data with separa-
ble covariance and structured multiplicative or additive
mean models

Parallel Session B � Applications part II

11:00 � 11:25 T. Kossowski: The Moran coe�cient for non-normal
data: revisited with some extensions

11:25 � 11:50 R. Covas: Some math on the electricity market by a ge-
neralization of the Black-Scholes formula

11:50 � 12:00 Break

Parallel Session A � General part III

12:00 � 12:30 D. Kosiorowski: Robust monitoring of multivariate data
stream

12:30 � 13:00 D. �nan: Modeling multiple time series data using
wavelet-based support vector regression

Parallel Session B � Experimental Designs part III

12:00 � 12:20 L. Filová: Constructing e�cient exact designs of experi-
ments using integer quadratic programming

12:20 � 12:40 S. D. Georgiou: Latin hypercube designs and block-
circulant matrices

12:40 � 13:00 S. Stylianou: Construction and analysis of D-optimal
edge designs

13:00 � 15:00 Lunch

Parallel Session A � Mixed Model part V

15:00 � 15:35 E. Fi²erová: Sensitivity analysis in mixed models
15:35 � 16:00 F. Carvalho: Linear and quadratic su�ciency in mixed

model
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Parallel Session B � Experimental Designs part IV

15:00 � 15:35 T. Cali«ski: On combining information in a generally
balanced nested block design

15:35 � 16:00 A. �acka: Analysis of an experiment in a generally ba-
lanced nested block design

16:00 � 16:30 Co�ee Break

Parallel Session A � Mixed Model part VI

16:30 � 17:05 B. Scha�rin: On the Errors-In-Variables Model with sin-
gular covariance matrices

17:05 � 17:30 M. Salehi: Multilevel linear mixed model for the analysis
of longitudinal studies

Parallel Session B � Experimental Designs part V

16:30 � 17:05 J. Kunert: Optimal designs for the Michaelis Menten
model with correlated observations

17:05 � 17:30 K. Filipiak: On universal optimality of circular repeated
measurements designs

17:30 � 17:50 Co�ee Break

Parallel Session A � Matrices for Linear Models part IV

17:50 � 18:10 B. Asikgil: A novel approach for estimation of seemingly
unrelated linear regressions with high order autoregres-
sive disturbances

18:10 � 18:30 B. Eygi Erdogan: A comparison of di�erent parameter
estimation methods in fuzzy linear regression

18:30 � 18:50 N. Güler: A study on the equivalence of BLUEs under a
general linear model and its transformed models

Parallel Session B � Experimental Designs part VI

17:50 � 18:25 D. Uci«ski: D-optimum hybrid sensor network deploy-
ment for parameter estimation of spatiotemporal pro-
cesses

18:25 � 18:50 A. Markiewicz: Optimality of neighbor designs

18:50 � 19:50 Closing

19:00 � Dinner

Saturday, July 21, 2012

8:00 � 10:00 Breakfast
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Robust Statistical Methods

Anthony C. Atkinson

London School of Economics, UK

Abstract

Robust statistical methods are intended to behave well in the presence of
departures from the model that explains the greater part of the data. A
contamination model for the data is that the observations y have density

f(y) = (1− ε)f1(y, θ1) + εf2(y, θ2). (1)

The simplest example is when f1(y, θ1) = φ(µ, σ2), the normal distribution.
When there is no contamination (ε = 0) the minimum variance unbiased
estimator of µ is the sample mean ȳ. Now suppose that there is some con-
tamination. In the �nite sample case, even with ε = 1/n, the sample mean has
unbounded bias as the observation from f2(.) becomes increasingly extreme.
The estimate breaks down as the observation goes to ±∞. Asymptotically
(as n→∞) the sample mean has zero breakdown.
The sample median, on the other hand is not so a�ected. Asymptotically
up to half the observations can be moved arbitrarily far away from µ with
the median providing an unbiased estimator. However, the variance of the
median is asymptotically π/2, so that the e�ciency of the median as an
estimator of location is 0.637, although the breakdown point is 50%. An aim
of robust statistics is to �nd estimators that are unbiased in the presence
of contamination whilst achieving the Cramer-Rao lower bound. Of course,
such estimators do not exist, but breakdown can be traded against variance
in�ation.
The trade-o� is achieved through the use of M-estimators and their exten-
sions. Given an estimator of µ, say µ̃, the residuals are de�ned as

ri(µ̃) = yi − µ̃. (2)

As is well known, the least squares estimate of µ, which is also the maximum
likelihood estimate, minimizes the sum of squares

n∑
i=1

{ri(µ)/σ}2. (3)

Of course the value of σ is irrelevant.
Traditional robust estimators attempt to limit the in�uence of outliers by
replacing the square of the residuals in (3) by a function ρ of the residuals



36 A. C. Atkinson

which is bounded. The M (Maximum likelihood like) estimate of µ is the
value that minimizes the objective function

n∑
i=1

ρ{ri(µ)/σ}. (4)

Of the numerous form that have been suggested for ρ(.) (Adrews et al., 1972,
Hampel et al., 1986, Huber and Ronchetti, 2009) perhaps the most popular
choice is Tukey's Biweight function

ρ(x) =

{
x2

2 −
x4

2c2 + x6

6c4 if |x| ≤ c
c2

6 if |x| > c,
(5)

where c is a crucial tuning constant. For small x, ρ(x) behaves like (3). For
large |x| the residuals are constant; the e�ect of extreme observations is mit-
igated.
In equation (4) it is assumed that σ is known, yielding the estimate µ̃M (σ).
Otherwise, an M-estimator of scale σ̃M is de�ned as the solution to the equa-
tion

1
n

n∑
i=1

ρ{ri(µ)/σ} = Kc, (6)

where both µ and σ are iteratively jointly estimated. Kc and c are related
constants which are linked to the breakdown point of the estimator of µ.
Regression, which will be the subject of two of the talks, is more di�cult.
If the contamination is only in the y direction, M-estimation is appropriate.
However, if the x values may also be outlying, leverage points may be present.
Then, not only is ordinary least squares exceptionally susceptible to the pres-
ence of outliers, but so are M-estimates. Instead, very robust methods, with
an asymptotic breakdown point of 50% of outliers are to be preferred.
Very robust regression was introduced by Rousseeuw (1984) who developed
suggestions of Hampel (1975) that led to the Least Median of Squares (LMS)
and Least Trimmed Squares (LTS) algorithms.
In the regression model yi = xTi β + εi, the residuals in (2) become ri(β̃) =
yi − xTi β̃. The LMS estimator minimizes the hth ordered squared residual
r2[h](β) with respect to β, where h = b(n+ p+ 1)/2c and b.c denotes integer
part.
The convergence rate of β̃LMS is n−1/3. Rousseeuw (1984, p. 876) also sug-
gested Least Trimmed Squares (LTS) which has a convergence rate of n−1/2

and so better properties than LMS for large samples. As opposed to minimis-
ing the median squared residual, β̃LTS is found to

minimize SST{β̂(h)} =
h∑
i=1

e2i {β̂(h)}, (7)
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where, for any subset H of size h, the parameter estimates β̂(h) are straight-
forwardly obtained by least squares.
Unlike M-estimation, these procedures do not require an estimate of σ2. How-
ever, the estimate is required for outlier detection. Let the minimum value
of (7) be SST(β̃LTS). The estimator of σ2 is based on this residual sum of
squares. However, since the sum of squares contains only the central h obser-
vations from a normal sample, the estimate needs scaling. The factors come
from the general results of Tallis (1963) on elliptical truncation.
The LMS and LTS estimators are least squares estimates from carefully se-
lected subsets of the data, asymptotically one half for LTS. If there are no, or
only a few, outliers, such estimates will be ine�cient. To increase e�ciency,
reweighted versions of the LMS and LTS estimators can be computed, using
larger subsets of the data. These estimators are found by giving weight 0 to
observations which are determined to be outliers when using the parameter
estimates from LMS or LTS. Least squares is then applied to the remaining
observations.
An alternative to these forms of very robust estimation is deletion of outliers,
starting from a �t to all the data (Cook and Weisberg, 1982, Atkinson, 1985).
If there are few outliers, the resulting estimators will be based on most of
the data and so will be more e�cient than those based on smaller subsets.
However, in the presence of many outliers these backwards methods can fail.
Atkinson and Riani (2000) suggest a Forward Search (FS) in which least
squares is used to �t the model to subsets of the data of increasing size. The
process stops when all observations not used in �tting are determined to be
outliers. See Atkinson et al. (2010) for a recent discussion of the FS.
In LMS and LTS inference is made from models �tted to subsets of the
data of one or two sizes, with perhaps subsets of three di�erent sizes for the
reweighted versions. Instead, in the FS the model is progressively �tted to
subsets of increasing size. The procedure needs both to reject all outliers, in
order to provide unbiased estimates of the parameters, and to use as many
observations as possible in the �t in order to enhance e�ciency. One thread in
the session will be the improved properties of the estimates that result from
using this �exible, data-dependent subset size for parameter estimation.
A second thread in the session has to do with e�cient computation. The LMS
and LTS estimates used are approximations found by least squares �tting to
many subsets of observations. As a consequence LMS and LTS estimation
(and, in general, all algorithms of robust statistics) spend a large part of the
computational time in sampling subsets of observations and then computing
parameter estimates from the subsets. In addition, each new subset has to
be checked as to whether it is in general position (that is, it has a positive
determinant). For these reasons, when the total number of possible subsets
is much larger than the number of distinct subsets used for estimation, an
e�cient method is needed to generate a new random subset without checking
explicitly if it contains repeated elements. We also need to ensure that the
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current subset has not been previously extracted. A lexicographic approach
can be found that ful�lls these requirements.
In addition to data analysis, robust techniques can be employed in the design
of experiments. The model is (1) with f1(.) typically a regression model and
f2(.) a departure, speci�ed to some extent. In Box and Draper (1963) interest
is in protecting second-order response surface models from biases from omit-
ted third-order terms. Only the second-order model will be �tted to the data.
The methods of optimum experimental design (Fedorov, 1972, Atkinson et
al., 2007) require that a model, or models, be speci�ed. In a series of papers
Wiens and co-workers (Wiens and Zhou, 1997, Wiens, 1998, Fang and Wiens,
2000, Wiens, 2009) extend optimum design to partially speci�ed situations.
For example, Fang and Wiens (2000) bound the departure between the �tted
and true models. They also allow for the possibility of heteroscedastic errors,
bounding the magnitude of departure from homoscedasticity. With loss func-
tion the average mean squared error of prediction, I-optimal (Atkinson et al.,
2007, �10.6) designs are obtained when the data are homoscedastic and the
polynomial model is correct (f2(.) = 0). When these conditions do not hold,
the robust design replaces the support points of the optimum design with
clusters of observations at nearby but distinct sites.
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Experimental Designs

Steven Gilmour

University of Southampton, UK

Abstract

The statistical design of experiments plays a vital role in experimentation in
industry, medicine, agriculture, science and engineering. The need to obtain
data which will give accurate and precise answers to research questions as
economically as possible requires careful planning of experiments before they
are run. Statistical methodology for designing experiments has a long history
and classical methods continue to be successfully applied. However, as new
technologies or business requirements lead to new types of experiment being
conducted, research in the design of experiments continues and is currently
experiencing an upsurge in activity.
The connection between design of experiments and linear statistical inference
is old, with careful randomization providing a robust justi�cation for linear
models in many design structures and properties of estimators from linear
theory providing the basis for optimal choices of designs. Many problems
require computationally intensive optimizations and matrix methods provide
the basis for this.
We encourage both invited and contributed papers in the design of exper-
iments for the LinStat 2012 conference. There will be a stream of sessions
on this theme, aiming to bring together international leaders in the �eld as
well as early-career researchers to encourage the exchange of ideas and give
participants a broad view of the subject. Papers related to any aspect of the
design of experiments are encouraged, so that participants can get as broad
a view as possible of the subject.

Some particular areas of research which are expected to feature are:

1. Block designs: the idea of blocking experimental units to improve the pre-
cision of treatment comparisons is widely used in practice. However, the
extension to complex blocking structures continues to be an important
area of research. Applications in genomics, proteomics and metabolomics
have motivated recent work on optimal designs with very small block
sizes, e.g. in experiments using microarrays. Related ideas for control-
ling variation, such as neighbour-balanced designs in agricultural exper-
iments are increasingly popular and some of the same ideas can be used
in experiments on social networks, in which neighbour relationships (or
friendships) form less regular networks of experimental units.
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2. Nonlinear design: the ideas generated from optimal design for linear mod-
els have been extended to cover various forms of nonlinear model. Al-
though the basic theory is worked out, computational limitations mean
that the application of nonlinear design is just starting. Experiments in
pharmacokinetics and other areas of biological kinetics have motivated re-
search on optimal design for nonlinear mixed models. However, as more
is learned, the clearer it becomes that there are di�cult problems to
overcome and some of the current research will be presented at this con-
ference. The advantages of pseudo-Bayesian design are well-recognised,
but considerable research is still going on to �nd practicable ways of
implementing these methods.

3. Factorial and response surface designs: increasing pressure on costs in-
creases the importance of studying many factors in a single experiment
and in industrial research the bene�ts of multifactorial experiments are
widely recognised. Much current research focuses on designs which are
useful when not all e�ects of interest can be studied. At one extreme,
there has been an explosion of interest in supersaturated designs for
screening very large numbers of factors. Research continues on how to
analyse the data from such designs, while attention is turning to how to
design follow-up experiments, or sequences of supersaturated designs. For
more detailed study of processes, response surface methodology is widely
used in practice. It has become increasingly recognised that many, per-
haps most, industrial experiments have some factors whose levels are
harder to set than others. This leads naturally to split-plot and other
multi-stratum designs, and this is a topic of ongoing interest.

4. Experiments with discrete responses: most optimal design theory has
been developed for linear models, or over-simpli�ed generalized linear
models. In most experiments, unit-to-unit variance must be allowed for
and this requires the use of generalized linear mixed models and the
design of experiments for such models has started to attract interest.
Such data are often combined with complex factorial treatment designs
and sometimes with multi-stratum structures and this is expected to
become an area of active research in the near future.

5. Design for observational systems: Designing spatial sampling
schemes and computer experiments are two types of application which
have many similarities with design of experiments. They di�er in that
there is no concept of allocating and randomizing treatments to exper-
imental units, but many of the same concepts of optimal design apply
nonetheless. An explosion of research in such areas, and increasing real-
ization that it is very similar to optimal design, will be re�ected in the
conference programme.

Submissions are encouraged in all of these areas of research, but also in others.
The emphasis will be on methodological developments, but applied papers
are also of interest.
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Multivariate Analysis

Dietrich von Rosen

Swedish University of Agricultural Sciences, Uppsala, Sweden
Linköping University, Sweden

Abstract

Multivariate statistical analysis has a long history, but most of us probably do
not have a clear picture of when it really started, what it was in the past and
what it is today. In the present introduction we give a few personal re�ections
about some areas which are connected to the analysis based on the dispersion
matrix or the multivariate normal distribution, omitting a discussion of many
"multivariate areas" such as factor analysis, structural equations modelling,
multivariate scaling, principal components analysis, multivariate calibration,
cluster analysis, path analysis, canonical correlation analysis, non-parametric
multivariate analysis, graphical models, multivariate distribution theory, and
Bayesian multivariate analysis, to mention a few.
To begin with, it is of interest to cite a reply made by T.W. Anderson,
concerning a discussion of the 2nd edition of his book on multivariate analysis
"For a con�dent and thorough understanding, the mathematical theory is
necessary" (Schervish, 1987). Although these words were written more than
25 years ago, they make even more sense today.
The multivariate normal (Gaussian) distribution was �rst applied about 200
years ago. Today one possesses substantial knowledge of the distribution: the
characteristic function, moments, density, derivatives of the density, char-
acterizations, and marginal distributions, among other topics. Closely con-
nected to the distribution are the Wishart and the inverse Wishart distri-
butions and di�erent types of multivariate beta distributions. When extend-
ing the multivariate normal distribution the class of elliptical distributions
is sometimes used since it includes the normal distribution. Other types of
multivariate normal distributions which share many basic properties with
the classical "vector-normal" distribution are the matrix normal, the bilin-
ear normal and the multilinear normal distributions. To some extent they
are all special cases of the multivariate normal distribution (classical vector-
valued distribution), but in view of the possible applications, there are some
advantages to be gained from studying all these di�erent cases.
It is interesting to observe that it is still a relatively open question how to
decide if data follows a multivariate normal distribution. The existing tests
may be classi�ed either as goodness-of-�t tests or as tests based on charac-
terizations. However, most of the tests are connected with some asymptotic
result and the size of the samples needed to make testing interesting is not
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obvious. Too large samples will usually lead to the test statistics becoming
asymptotically normally distributed, even if the original data is not normal,
whereas small samples will mean that there is no power when testing for
normality. Here one can envisage computer-intensive methods to becoming
bene�cial, since they can speed up convergency.
Concerning modelling there has been a tendency to create more and more
complicated models: i.e. the parametrization has tended to become more
advanced and the distributions have tended to deviate more from the normal
distribution. An interesting class to study is skew-symmetric distributions,
which include a skew-normal distribution. One natural �eld of application
of skewed distributions is cases when there exist certain detection limits.
However, one should not forget that a small change in the parametrization
may have drastic inferential consequences, for example, when extending the
MANOVA model

X = BC + E, E ∼ Np,n(0,Σ, I),

where B and Σ are unknown parameters, to the Growth Curve model

X = ABC + E, E ∼ Np,n(0,Σ, I),

where B and Σ are unknown parameters, as in MANOVA, and A and C
are known design matrices. With the Growth Curve model we actually move
from the exponential family to the curved exponential family with signi�cant
consequences, e.g. for the Growth Curve model the MLEs of B are non-linear
and the estimators are not independent of the unique MLE of Σ. A further
generalization is a spatial-temporal setting

X = ABC + E, E ∼ Np,nk(0,Σ, I⊗Ψ),

where Σ models the dependency over time and Ψ is connected to spatial de-
pendency. In summary, in MANOVA most things work as in the correspond-
ing univariate case, i.e. easily interpretable mean and dispersion estimators
are obtained, while in the Growth Curve model explicit estimators are also
obtained, but the mean estimators are non-linear and more di�cult to in-
terpret. For the spatial-temporal model, no explicit MLEs are available but
one has algorithms which deliver unique estimators. Concerning the future
we will probably see more articles where for X ∈ N(µ,Σ) there are models
which state that µ ∈ C(C1) ⊗ C(C2) ⊗ · · · ⊗ C(Cm), i.e. a tensor product of
C(Ci), where C(Ci) stands for the space generated by the columns of Ci, and
Σ = Σ1 ⊗ Σ2 ⊗ · · · ⊗ Σm. Another type of generalization which has been
taking place for decades is the assumption of di�erent types of dispersion
structures, e.g. structures connected to factor analysis, structures connected
to spatial relationships, and structures connected to time series, structures
connected to random e�ects models, structures connected to graphical normal
models, structures connected to the complex normal and quaternion normal
distributions.
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High-dimensional statistical analysis is, with today's huge amount of avail-
able data, of the utmost interest. Indeed various di�erent high-dimensional
approaches are natural extensions of classical multivariate methods. A gen-
eral characterization of high-dimensional analysis is that in the multivariate
setting there are more dependent variables than independent observations. It
is driven by theoretical challenges as well as numerous applications such as
applications within signal processing, �nance, bioinformatics, environmetrics,
chemometrics, etc. The area comprises, but is not limited to, random matri-
ces, Gaussian and Wishart matrices with sizes which turn to in�nity, free
probability, the R-transform, free convolution, analysis of large data sets,
various types of p, n-asymptotics including the Kolmogorov asymptotic ap-
proach, functional data analysis, smoothing methods (splines); regularization
methods (Ridge regression, partial least squares (PLS), principal components
regression (PCR), variable selection, blocking); and estimation and testing
with more variables than observations.
If one considers the asymptotics with p indicating the number of dependent
variables and n the number of independent observations, there are a number
of di�erent cases: p/n→ c, where c is a known constant, and both p and n go
to in�nity without any relationship between p and n. The latter case, however,
has to be treated very carefully in order to obtain interpretable results. For
example, one has to distinguish if �rst p and then n goes to in�nity or vice
versa, or min(p, n)→∞. When studying proofs of di�erent situations in the
literature, it is not obvious which situation is considered and many results
can only be viewed as approximations and not as strict asymptotic results,
at least on the basis of the presented proofs.
One of the main problems in multivariate statistical analysis as well as high-
dimensional analysis occurs when the inverse dispersion matrix, Σ−1, has
to be estimated. If Σ is known, it often follows from univariate analysis
that the statistic of interest is a function of Σ−1. Then one tries to replace
Σ−1 with an estimator. If S is an estimator of Σ, the problem is that S−1

may not exist or may perform poorly due to multicollinearity, for example.
If S is singular, then S+ has been used. Moreover, "ridge type" estimators
of the form (S + λI)−1 are in use (Tikhonov regularization). Sometimes a
shrinking takes place through a reduction of the eigenspace by removing the
part which corresponds to small eigenvalues. A di�erent idea is to use the
Cayley-Hamilton theorem and utilize the fact that

Σ−1 =
p∑
i=1

ciΣi−1,

where Σ is of the size p× p and since Σ is unknown the constants ci are also
unknown. Then an approximation of Σ−1 is given by

Σ−1 ≈
a∑
i=1

ciΣi−1, a ≤ p,
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and an estimator is found via Σ̂−1 ≈
∑a
i=1 ĉiS

i−1. When determining ci a
Krylov space method, partial least squares (PLS), is used.
Needless to say, there are many interesting research questions to work on.
Computers are nowadays important tools but much more important are
ideas which can challenge some fundamental problems. For example in high-
dimensional analysis we have parameter spaces which are in�nitely large and
it is really unclear how to handle and interpret this situation. Hopefully the
discussions in this conference will deal with some of the challenging multi-
variate statistical problems.
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Mixed Models

Júlia Volaufová

LSUHSC School of Public Health, New Orleans, USA

Abstract

Mixed models, simply put, are models of a response that involve �xed and
random e�ects (see, e.g., [1]). Here we give a very super�cial and brief cov-
erage of the wide variety of models this term encompasses.
Historically, the most widely-investigated mixed model is the linear mixed
model. For an n-dimensional response vector Y , the model can be expressed
as

Y = Xβ + Zγ + ε, (1)

where X and Z are �xed and known matrices of covariates with β a �xed
vector parameter and γ a vector of random e�ects. The often-invoked distri-
butional assumptions are γ ∼ Nl(0, G) and ε ∼ Nn(0, R). The matrices G
(nnd) and R (pd) are modeled as members of chosen classes (e.g., compound
symmetry, AR(1), unstructured), which involve further unknown parameters.
In special cases when the matrices G and R depend linearly on a set of un-
known scalars, the covariance matrix of the response can be expressed as
Cov(Y ) =

∑p
i=1 ϑiVi where the parameters ϑi are interpreted as variance-

covariance components. γ and ε are assumed to be mutually independent,
which implies that Cov(Y ) = ZGZ ′ +R.
This class of models covers a broad range of situations. Here is a partial list.

• In repeated measuresmodels (see e.g., [17]), also called longitudinalmodels
(see, e.g., [9]), multiple observations are carried out, say over time, on each
individual sampling unit.
• In cluster randomized settings (see, e.g., [10]), dependencies between ob-
servations on sampling units are introduced due to clustering in the ran-
domization process.
• In hierarchical or multilevel settings, a subset of parameters on a given
level is considered to be a random vector whose distribution depends on
an additional set of unknown parameters.

• In some situations it is possible to partition the response vector into in-
dependent subvectors, as in longitudinal models, but in many cases such
partitioning is not straightforward, e.g., in some geodetic or geophysi-
cal applications (see e.g., [8] or [2]) when combining experiments with
di�erent precisions, each relating to the same mean parameter. In these
models it is not obvious and it is not even necessary to identify the latent
random e�ects - the model for the response vector Y is parametrized by
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(unknown) �xed vector parameters of the mean and variance-covariance
components.

The class of linear mixed models can be viewed within the broader context
of nonlinear mixed models. There, the response variable Y can be modeled
in general as

Y = f(x, z, β,γ) + ε. (2)

The function f(.) is a nonlinear function of �xed (β) and random (γ) (vector)
parameters as well as vectors of covariates (x and z). Mostly it is assumed
that f(.) is di�erentiable with respect to β and γ. The distributional assump-
tions regarding γ and ε may be the same as in the linear case.
An example of such a model (2) is a random coe�cients model (see, e.g., [23])
that can be set up in two stages. For stage 1, the model takes the form

Yij = f(tij , βi) + εij , i = 1, . . . , n, j = 1, . . . , Ti, (3)

where Yij is the response for subject i at time j, f(.) is a nonlinear function
of the p-vector of subject-speci�c vector parameters βi and time (tij), and εij
is the error term, which we assume follows a normal distribution with mean
zero and variance σ2. The second stage is at the population level. At this
stage the subject-speci�c parameters are de�ned by the model:

βi = Aiβ +Biγi, i = 1, . . . , n. (4)

In this model, β is a vector of �xed population parameters and γi is a vector
of random e�ects for subject i. In most cases the matrix Ai takes the form
Ai = Ip ⊗ a′i (see, e.g., [22]), where the vector ai is the vector of covariates.
The matrix Bi is used to determine which elements of βi have random com-
ponents and which are �xed. A well-known example of a random coe�cient
model is a growth curve model, a special case of which is when, among other
assumptions, the dimension of each subject speci�c response is the same. It
can be expressed in terms of a multivariate model for a response vector Y ,
which in general may have expectation E(Y ) =

∑p
i=1(Ci ⊗ Di)βi and co-

variance matrix Cov(Y ) = Σ1 ⊗ Σ2 with the matrices Σ1 and Σ2 and the
vector β unknown.
Using the generalized mixed linear model, we model the transformed mean of
Y via a link function as a linear function of covariates (see, e.g., [14]). Typi-
cally, the conditional distribution of the response belongs to the exponential
family, and often there is a functional relationship between the parameters of
the mean and the variance-covariance components. The conditional mean of
the ith observation, µi, is linked via a function, say g(µi), to the covariates
and random e�ects in terms of additive e�ects as

g(µi) = x′iβ + z′iγ, (5)

where the meaning of β and γ is as above. We note that the nonlinear random
coe�cients model can be perceived as a special case of the generalized linear
mixed model.
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Although these models have been notoriously studied for many decades, there
is a variety of questions still to be addressed. The main aim of inference is
estimation and hypotheses testing. Maximum likelihood or quasi-likelihood
methods result in point estimates with good large sample properties un-
der generally mild conditions. Point and interval estimation of variance-
covariance components has kept statisticians busy for decades (see, e.g.,
[3,11,12,15], etc.). Ultimately in almost all settings one is interested in testing
(linear) hypotheses about the parameter β and/or about variance-covariance
components. Usually we see H01 : H ′β = h or H02 : h′ϑ = 0, or simultane-
ously both. Except for a few special models there is no exact test available
for H01 ; a variety of approximate tests has been studied for quite a time
(see, e.g., [4], [6], [7], [19], [21], [13], [20], and many others). The hypothesis
H02 also has been extensively studied; however even in models with only two
variance-covariance components the question of �nding a test with optimal
properties (in some sense) in general is still open.
In linear mixed models, the choices of the structures of G and R may be
consequential, but often these choices are made arbitrarily and subjectively.
Various information criteria have been developed, recommended, and mod-
i�ed for the purpose of informing these choices. E�ects of such data-driven
choices on inferential procedures for �xed e�ects are just beginning to be
investigated and are related to the broad area of model building (see, e.g.,
[18]).
Here we invite contributions that address pertinent questions and relate to
any aspects of this broad class of mixed models.
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Optimal design of experiments with very low

average replication

Rosemary A. Bailey

Queen Mary, University of London, UK

Abstract

Trials of new crop varieties usually have very low average replication. Thus
one possibility is to have a single plot for each new variety and several plots
for a control variety, with the latter well spread out over the �eld. A more
recent proposal is to ignore the control, and instead have two plots for each
of a small proportion of the new varieties.
Variation in the �eld may be accounted for by a polynomial trend, by spatial
correlation, or by blocking. However, if the experiment has a second phase,
such as making bread from �our milled from the grain produced in the �rst
phase, then that second phase usually has blocks.
The optimality criterion used is usually the A criterion: the average variance
of the pairwise di�erences between the new varieties.
I shall compare designs under the A criterion when the average replication is
much less than two.
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Geometric mean of matrices

Rajendra Bhatia
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Abstract

Positive de�nite matrices are important in diverse areas like statistics, image
processing, quantum information, electrical engineering, elasticity, machine
learning etc. An appropriate notion of averaging a family of such matrices has
been developed in recent years, and has brought together diverse areas like
di�erential geometry, matrix analysis, numerical analysis and approximation
theory. This talk will provide a survey of some of the key ideas.
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Nonparametric regression for sojourn time

distributions in a multistate model

Somnath Datta and Dogu Lorenz

University of Louisville, USA

Abstract

Multistate models are generalizations of traditional survival data where an
individual undergoes di�erent types of events corresponding to transitions
to various states of a system. We consider multistate event data that are
right censored. Under this setup, inferring on the state waiting (or sojourn)
time distribution corresponding to a give transient state j is problematic
since neither the entry nor the exit times are fully observed. In this talk,
we introduce novel procedures to test the e�ect of a categorical covariate on
the sojourn time distribution. In the later part of the talk, we introduce an
Aalen type linear hazard model for the state waiting time distribution that
can incorporate both discrete and continuous covariates. The methods are
illustrated using a number of real data applications.
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Tolerance intervals in general mixed e�ects

models using small sample asymptotics

Thomas Mathew and Gaurav Sharma

University of Maryland Baltimore County, USA

Abstract

The computation of tolerance intervals in mixed and random e�ects mod-
els has not been satisfactorily addressed in a general setting when the data
are unbalanced and/or when covariates are present. In the talk, satisfactory
one-sided and two-sided tolerance intervals in such a general scenario will
be derived, by applying small sample asymptotic procedures. In the case of
one-sided tolerance limits, the problem reduces to the interval estimation of
a percentile, and accurate con�dence limits are derived using small sample
asymptotics. In the case of a two-sided tolerance interval, the problem does
not reduce to an interval estimation problem; however, it is possible to derive
an approximate margin of error statistic that is an upper con�dence limit
for a linear combination of the variance components. For the latter prob-
lem, small sample asymptotic procedures can once again be used in order to
arrive at an accurate upper con�dence limit. In the talk, balanced and un-
balanced data situations will be treated separately, and computational issues
will be brie�y addressed. Extensive numerical results show that the tolerance
intervals derived based on small sample asymptotics exhibit satisfactory per-
formance regardless of the sample size. The results will be illustrated using
examples.
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Smoothing discrete distributions

Paulo E. Oliveira

University of Coimbra, Portugal

Abstract

We will discuss estimation of probability distributions on discrete, �nite or
in�nite, space using nonparametric methods. This model includes of course,
categorical distributions. Although the smoothing implied in nonparametric
methods may seem, at �rst glance, unnatural, smoothing does improve upon
the naïve frequency estimator. Discretizations of the kernel estimator and the
correspondent characterizations of asymptotic properties are discussed.
When dealing with categorical distributions one is often faced with rela-
tively few observations, when compared to the support size. This leads to
considering error criteria better adapted to this sparse estimation problem.
Asymptotics with respect to these sparse criteria is discussed. These results
do not really fall into the general approach to nonparametric estimation, as
they imply that the base space should be updated as the sample size grows.
Other error criteria, such as relative errors, are commonly considered in para-
metric problems. We will adapt relative error criteria to our nonparametric
estimation problem. The estimator found can be explicitly written but their
asymptotics is harder to describe, in some cases only doable indirectly. How-
ever, their �nite sample performance is, depending on the properties of the
true probability distribution, good. We will also discuss the integration into
the estimator of partial known information about the true probability.

Keywords

Discrete distributions, Local polynomial estimator, Relative errors, Asymp-
totics, Sparse observations.
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Partial orders on matrices and the column

space decompositions

K. Manjunatha Prasad

Manipal University, India

Abstract

In literature, we have several partial orders on subclasses of rectangular ma-
trices of same size and some which are dominated by known �Minus Partial
Order". Star partial order ([3]) on rectangular matrices of size, Sharp order
([6]) on class of square matrices of same size and of index one, and the Core
partial order ([2]) are such partial orders dominated by minus partial order to
name a few. It is well known that them×n matrices B and A−B decomposes
the given matrix A under minus partial order (i.e., B,A−B ≤− A) is equiv-
alent to say that the column spaces of B and A−B decomposes the column
space of the matrix A (i.e., C(B) ⊕ C(A − B) = C(A)). The same is true for
the row spaces. In fact, there is one to one correspondence between matrix
decompositions with reference to minus partial order, column space decom-
positions and row space decompositions. The characterization of the partial
orders such as star partial order and sharp order involve both column space
and row space of given matrices. In fact, matrix decomposition A = B + C
with reference to star partial order corresponds to decomposition of column
space and row space of A orthogonally and similarly other matrix partial
orders are characterized by the typical characteristic decompositions of the
column space and row spaces. Even while studying the shorted matrices (see
[1], [5] and [10]) involves both row space and column spaces of given matrices.
Now in the light one to one correspondence between column space decompo-
sitions and row space decompositions, we characterize the partial orders with
reference to column space decomposition alone. Also, it results in having a
new de�nition of shorted matrix with reference to various partial orders i.e.,
only with reference to the decomposition of column space decomposition.
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Matrix partial order, Minus partial order, Star partial order, Sharp partial
order, Shorted matrix.
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Adjacency preserving maps
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Abstract

Hua's fundamental theorems of geometry of matrices characterize bijective
maps on various spaces of matrices preserving adjacency in both directions.
We will discuss some recent improvements of these results.
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Investigation of Bayesian Mixtures-of-Experts

models to predict semiconductor lifetime

Olivia Bluder

Alpen-Adria University Klagenfurt and KAI - Kompetenzzentrum Automobil-
und Industrieelektronik GmbH, Villach, Austria

Abstract

Investigating the reliability of a semiconductor device is time and cost con-
suming, but essential for industry and customers. To save resources, models
that predict the lifetime and the valid parameter range dependent on the
stress conditions are needed.
The given semiconductor lifetime data show a mixture of two log-normal
distributions [1], where the mixture weights of the two components depend
on the applied peak temperature. Hence, a Bayesian Mixtures-of-Experts
(ME) approach is used [3]. For the component means linear models as well
as physical acceleration models [2] are investigated. Under the assumption of
informed normal priors for the model parameters and slightly data dependent
hierarchical inverse Gamma priors for the variances, the mixture based on
two Co�n-Manson models shows the best �t and the best prediction quality.
Applying the model to lifetime data from other semiconductor technologies
shows that the combined Bayesian ME and Co�n-Manson approach is valid
for other designs as well. With the given model parameter ranges for one
semiconductor design based on a minimum number of stress tests can be
predicted. Hence, resources, especially testing time, can be saved.

Keywords

Bayesian Mixtures-of-Experts models, Semiconductor lifetime prediction, Lin-
ear models, Physical acceleration models.
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In�uential observations in the extended Growth

Curve model with cross-over designs

Chengcheng Hao1, Dietrich von Rosen2,3,

and Tatjana von Rosen1
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3 Linköping University, Sweden

Abstract

Growth Curve model (GCM) and extended GCM are useful tools to model
repeated measurements in cross-over designs. [2] and [3] assessed in�uence of
observations on estimating the GCM with unstructured covariance. This work
is to propose quantities to detect in�uential measurements in the extended
GCM. It is known that various residuals in the extended GCM can be de�ned
by projecting data matrix onto four orthogonal spaces, see [1]. The relations
between the in�uence quantities and the residuals are surveyed.

Keywords

Extended Growth Curve model, In�uence analysis, Repeated measurement
design, Statistical diagnostics.
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Low-rank approximations and weighted

low-rank approximations

Paulo C. Rodrigues
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Universidade Nova de Lisboa, Portugal

Abstract

Principal component analysis (PCA) is one of the most widely used multi-
variate techniques. It is usually applied to two-way matrices with individuals
in the rows and variables in the columns, and converts the possibly correlated
variables into a set of orthogonal variables, the principal components. Several
algorithms have been proposed to obtain the least squares estimates for the
component scores and for the loadings, being the most used the eigenvalue
decomposition of the covariance (or correlation) matrix of the data or the
singular value decomposition of the two-way data matrix. In this paper we
will be mostly interested in the weighted version of this low-rank approxima-
tion. This allows us to give weights to the variables and/or the individuals
according to the outcome of a preliminary analysis of the two-way data, e.g.,
in the case of repeated measurements the weights can be given by the in-
verse of their error variances. The use of the weighted PCA also increases the
robustness when compared with the standard PCA. Applications to genetic
and �nancial data will be presented.

Keywords

Principal component analysis, Additive main e�ects and multiplicative inter-
action model, Plant genetics, Public debt.
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On the choice of a prior distribution for

Bayesian D-optimal designs for the logistic

regression model

Haftom Abebe, Frans Tan, Gerard Van Breukelen,
Jan Serroyen, and Martijn Berger

Maastricht University, The Netherlands

Abstract

A common way to design a binary response experiment is to design the exper-
iment to be most e�cient for a best guess of the parameter values on which
the optimal design depends. A design which is optimal for a best guess, how-
ever, may not be e�cient for other parameter values. The Bayesian optimal
design approach is a useful tool to take into account uncertainty of the pa-
rameter values. Bayesian D-optimal designs for a logistic regression model
with two parameters are investigated. Such designs depend on the choice of
a prior distribution. Using numerical search and sampling from normal and
uniform priors we show that if we do not have much information about the
value of the parameters, a prior distribution with relatively large variance will
lead to a Bayesian design which remains highly e�cient under other prior dis-
tributions. We also compare uniform and normal priors and �nd that both
distributions are approximately equally e�cient. Finally, we study the e�-
ciencies of designs with equidistant equally weighted design points against
the Bayesian D-optimal designs and �nd that 4 and 5 equidistant equally
weighted design points are highly e�cient.

Keywords

Bayesian D-optimal designs, Logistic regression model, Maximin Bayesian
D-optimal design, Locally D-optimal designs, Relative e�ciency.
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Model selection in log-linear models by using

information criteria

Nihan Acar1, Eylem D. Howe1, and Andrew Howe2

1 Mimar Sinan Fine Arts University, Istanbul, Turkey
2 Transatlantic Petrolium, Istanbul, Turkey

Abstract

Log-linear models help to reveal association patterns among categorical vari-
ables that are widely encountered in sectors such as ecology, medicine and
banking. These models are generally used in the analysis of contingency ta-
bles. In log-linear models deviance and chi-square statistics are mostly used
to select the best model which �ts data. Because the chi-square statistic is
a�ected by sample size, information criteria such as AIC-type criteria are
used lately in many areas.
In this study we purpose to apply and measure the e�ciency of information
criteria in log-linear models.
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Log-linear models, Contingency tables, Information criteria.

References

[1] Dobson, J.A. (2002). An Introduction to Generalized Linear Models. Chapman
and Hall.

[2] Bedrick, E.J. and K.W. Crandall (2010). Model selection criteria for log-linear
models. Aust. N. Z. J. Stat. 52(4), 439�449.

[3] Bozdogan, H. (2000). Akaike's information criterion and recent developments
in information complexity. J. Math. Psych. 44, 62�91.

[4] Rao, P.R. and H. Toutenburg (1999). Linear Models: Least Squares and Alter-
natives. Springer-Verlag.



70 S. E. Ahmed

Absolute Penalty and Shrinkage Estimation in

Weibull censored regression model

S. Ejaz Ahmed

Brock University, St. Catharines, Canada

Abstract

In this talk we address the problem of estimating a vector of regression pa-
rameters in the Weibull censored regression model. Our main objective is
to provide natural adaptive estimators that signi�cantly improve upon the
classical procedures in the situation where some of the predictors may or
may not be associated with the response. In the context of two competing
Weibull censored regression models (full model and candidate sub-model),
we consider an adaptive shrinkage estimation strategy that shrinks the full
model maximum likelihood estimate in the direction of the sub-model maxi-
mum likelihood estimate. The shrinkage estimators are shown to have higher
e�ciency than the classical estimators for a wide class of models. Further,
we consider a LASSO type estimation strategy and compare the relative per-
formance with the shrinkage estimators. Monte Carlo simulations reveal that
when the true model is close to the candidate sub-model, the shrinkage strat-
egy performs better than the LASSO strategy when, and only when, there
are many inactive predictors in the model. Shrinkage and LASSO strategies
are applied to a real data set from Veteran's administration (VA) lung cancer
study to illustrate the usefulness of the procedures in practice.
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Bootstrap con�dence regions for multinomial

probabilities based on penalized

power-divergence test statistics

Aylin Alin1 and Ayanendranath Basu2

1 Dokuz Eylül University, Izmir, Turkey
2 Indian Statistical Institute, India

Abstract

In general con�dence regions for multinomial probabilities are constructed
based on the Pearson χ2 statistic. [1] constructed the bootstrap and asymp-
totic con�dence regions for multinomial parameters based on power-divergence
test statistics . In this study, we consider con�dence regions for multinomial
probabilities based on ordinary and penalized power-divergence test statis-
tics. We built bootstrap and asymptotic con�dence regions. We use two types
of bootstrap con�dence regions. The �rst type is called percentile interval
which is the mostly used version of bootstrap intervals. The second type is
Bca interval proposed by [2] as the improved version of percentile interval.
We only consider small sample sizes where asymptotic properties fail and the
alternative methods are needed mostly. Performances are compared based on
average coverage probabilities calculated by designed simulation studies.
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Bca interval, Bootstrap, Power-divergence test statistics, Penalization.
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Building stones for inference on variance

components

Barbora Arendacká

Physikalisch-Technische Bundesanstalt, Berlin, Germany

Abstract

In his paper, Burch [1] suggested how to make inference on variance com-
ponents in linear mixed models provided a certain decomposition of the co-
variance matrix exists and he showed how these ideas apply in some cases
of two-way random e�ects models without interactions. However, he did not
show how to derive the requested building stones - independent quadratic
forms - in general. We will point out that his approach can be viewed as
a generalization of the ANOVA decomposition of the total sum of squares.
Then the requirement of independence leads to a decomposition of the (n−p)-
dimensional space into orthogonal invariant subspaces and in a case most
favourable for inference, this immediately suggests an algorithm for deriva-
tion of the requested quantities. The presented approach also allows for char-
acterizing designs in which the favourable procedure is applicable as we will
illustrate for the case of two-way random e�ects models.

Keywords

Independent quadratic forms, Variance components, ANOVA, Invariant sub-
spaces.
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A novel approach for estimation of seemingly

unrelated linear regressions with high order

autoregressive disturbances

Baris Asikgil

Mimar Sinan Fine Arts University, Istanbul, Turkey

Abstract

The problem of estimating a system of linear regression equations in which
the disturbances are contemporaneously correlated across equations has been
investigated in the past years. One of the major problems encountered in the
estimation of such system of linear regression equations is the possible exis-
tence of serial correlation of the disturbances. [3] modi�ed the original "seem-
ingly unrelated linear regressions" estimation technique known as Zellner's
two stage Aitken estimator for the �rst order autoregressive disturbances in
each equation. Also, several alternative estimators given by [2] are compared
for small samples.
In this paper, seemingly unrelated linear regressions with high order autore-
gressive disturbances are considered. A novel approach which includes a poly-
nomial tapering function given by [1] is proposed for high order autoregressive
disturbances in order to obtain more e�cient parameter estimates. Monte
Carlo simulation study is applied to compare this approach with the other
estimators for small-sample e�ciency.

Keywords

Linear regression, Contemporaneously correlation, Autoregressive disturbances,
Tapering procedure.
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Very robust regression

Anthony C. Atkinson1 and Marco Riani2

1 London School of Economics, UK
2 University of Parma, Italy

Abstract

The numerous methods of very robust regression resist up to 50% of out-
liers. This breakdown point, the maximum that can be achieved, is de�ned
asymptotically as the outlying observations become in�nitely far from the
regression data. To distinguish between such very robust methods we study
their behaviour as a function of the distance between the regression data
and the outliers. We introduce a parameter λ that de�nes a parametric path
in the space of models that enables us to study, in a systematic way, the
properties of estimators as the groups of data move from being far apart to
close together. We examine, as a function of λ, the variance and squared
bias of several estimators and we also consider their power when used in the
detection of outliers.
The results of our systematic approach are described in Riani et al. ([1]). An
algorithm using the forward search (Atkinson and Riani, [2]) has the best
properties for both size and power of the outlier tests. The comparisons use
new algorithms for Least Trimmed Squares estimators that have increased
computational e�ciency due to improved combinatorial sampling. The e�-
cient sampling method forms part of the subject of the talk by Domenico
Perrotta.

Keywords

Distance of outliers, Forward search (FS), Least trimmed squares (LTS), MM
estimate, Multiple outliers.
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Some comments on joint papers by

George P.H. Styan and the Baksalarys

Oskar M. Baksalary

Adam Mickiewicz University, Pozna«, Poland

Abstract

The paper [2] opens a list of joint publications by George P. H. Styan and
Jerzy K. Baksalary. Even though Jerzy passed away prematurely in 2005,
the cooperation between George and the Baksalarys has continued up to the
present days. It is now Jerzy's son and the author of the present talk who has
a privilege and pleasure to work together with George. So far the cooperation
between George and the two Baksalarys resulted in 16 papers, including 9
joint papers by George and Jerzy and 8 joint papers by George and Oskar.
Thus, there is one joint paper by George, Jerzy, and Oskar, namely [1]. In the
talk several comments on the joint publications by George and the Baksalarys
will be made.
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Multivariate linear phylogenetic comparative

models and adaptation

Krzysztof Bartoszek

Chalmers University of Technology and the University of Gothenburg, Sweden

Abstract

The need for taking into account evolutionary relationships when analyzing
between species data is by now �rmly established. However stochastic models
allowing for multiple co-evolving traits are extremely limited and essentially
do not go beyond a multivariate Brownian motion with a trend. This does
not allow one to model adaptation, not even with a de�nition as weak as
convergence in distribution. The linear stochastic di�erential equation model
presented in [3],

dY (t) = −A(Y (t)−ψ(t))dt+ ΣdW (t),

where W (t) is a standard Brownian motion, allows for modelling adapting
traits with such as notion of adaptation but up till now had only partial mul-
tivariate implementations [2,4]. In the talk a recently developed R package [1]
which nearly completely covers the framework from [3] in multiple dimensions
will be presented. The properties of the mean and covariance functions will
be discussed in terms of the de�nition of adaptation as weak convergence.
With multiple interacting traits the study of adaption requires one to look
at conditional distributions of interest, especially their limiting properties.
These will be presented and discussed with an emphasis on their biological
interpretation. For example if we consider the multivariate extension of the
model from [4],

dY (t) = −A(Y (t)− (ψ(t) + BX(t)))dt+ ΣydW y(t)
dX(t) = ΣxdW x(t),

then if A has positive real part eigenvalues, the regression coe�cient of Y (t)
on X(t) will converge to B, but if the X variables are also adapting,

dY (t) = −Ay(Y (t)− (ψy(t) + BX(t)))dt+ ΣydW y(t)
dX(t) = −Ax(X(t)−ψx(t))dtΣxdW x(t),

then this limit will not in general equal B. This can be interpreted that even
if evolution would go on for in�nity the Y and X traits would never evolve
to the optimal relationship between them. These concepts will be illustrated
by an example re�analysis of the Cervidae dataset [5].
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Keywords

Ornstein�Uhlenbeck process, Phylogenetic comparative methods, Multivari-
ate models, Evolution, Adaptation.
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Study with George Styan

Philip Bertrand
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Abstract

George and I met 56 years ago in 1956. He was studying Pure Mathematics,
I Mathematical Physics. The �rst lecture of a new Professor of Mathematical
Statistics at the University, Henry Daniels, was more interesting than any
other lecture I had received there in my previous two years. Henry Daniels,
changed the direction of both George and I to Mathematical Statistics. Henry
showed that the subject of Mathematical Statistics is 'the application of the
scienti�c method to the study of any subject'. He demonstrated the logic
of this assertion. To understand and develop the subject a student needs
to study the topics in pure mathematics including complex variable the-
ory, group theory, statistical distribution theory, geometry, algebra, calculus,
stochastic processes, determinants and matrices. These subjects I shared in
classes with George Styan between 1957 to 1959. In 1959 George moved to
Oxford University to do a masters degree. I continued studying a postgradu-
ate diploma in mathematical statistics under Henry Daniels. In 1960 George
and I both worked in London where we met frequently for social discus-
sions with other friends. We also frequently discussed our di�erent statistical
problems. George moved on to North America whilst I continued to work in
Britain. We met again around 1990 when George came to give a talk in our
department.
Our friendship continues from then on.

Keywords

Algebra, Complex variables, Group theory, Determinants and matrices.
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Jackknife-after-Bootstrap as logistic regression

diagnostic tool

Ufuk Beyazta³ and Aylin Alin
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Abstract

Jackknife-after-Bootstrap (JaB) has �rst been proposed by [1] then used by
[2] and [3] to detect in�uential observations in linear regression models. In
this study, we propose using JaB to detect in�uential observations in logistic
regression model. Performance of the proposed method will be compared with
the traditional method for standardized Pearson residuals, Cook's distance,
change in the Pearson chi-square statistic and change in the deviance by both
real world examples and simulation study. The results reveal that under con-
sidered scenarios proposed method performs better than traditional method
and is more robust to masking and swamping e�ects.

Keywords

Logistic regression, Bootstrap, Jackknife, Logistic regression diagnostics.
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Optimum designs for enzyme kinetic models

with co-variates
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3 University of Southampton, UK

Abstract

In this talk we consider a population optimum design of experiments for
non-linear models and in the speci�c application to enzyme kinetic studies.
In the early stage of drug development pharmaceutical companies are inter-
ested in whether the new candidate medicinal product interacts with other
drugs. Since most of the drugs are metabolized in human liver, these early
stage pharmacokinetic experiments are conducted at di�erent levels of con-
centration of the new compound applied to liver tissues representing �sub-
jects� in the study. Also, the liver tissues di�er in some systematic way what
can be incorporated in the model as a function of co-variates. In our studies,
which are based on a set of real data, we �nd that some of the parameters
of this function di�er across the population and so are treated as random.
The question is about the choice of the liver tissues as well as the levels of
concentration of the new medicinal product so that all the model parameters
are estimated with high precision. Although it is set in a speci�c application
it prompts several methodology questions in the optimum design theory to
be answered.

Keywords

Mixed-e�ects model, D-optimality, Transform-both-sides model.
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On combining information in a generally

balanced nested block design

Tadeusz Cali«ski
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Abstract

Nested block designs are quite often used in practice, particularly in agri-
cultural experimentation. Their statistical properties have been considered
in many papers, as reviewed by Bailey (1999). Of special interest are those
nested block designs which satisfy the general balance property introduced
by Nelder (1965) and discussed by several authors, by Bailey (1994) and by
Bogacka and Mejza (1994) in particular.
The purpose of the present paper is to give explicit formulae for analyzing an
experiment carried out in a nested block design having the general balance
property of some desirable pattern. The results follow from a randomization-
derived mixed model, decomposed into stratum submodels. Attention is con-
�ned here to the combined analysis allowing the information from di�erent
strata to be joined together, following Nelder (1968). The paper is essen-
tially an extension of some results presented in Chapter 5 of Cali«ski and
Kageyama (2000).

Keywords
Combined analysis, General balance property, Nested block design, Rando-
mization-derived model, Stratum submodels.
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Abstract

Up to now, see e.g. [3] and [1], linear and quadratic su�ciency have been
mainly used in obtaining BLUE and BQUE for models with one variance
component.
We use the orthogonal structure of variance-covariance matrix of models with
orthogonal block structure to extend the use of linear and quadratic su�-
ciency, as de�ned in [2], in obtaining best linear unbiased estimators and
best quadratic unbiased estimators.
We will consider the model

Mσ : Y = Xβ + X1β1 + ε

where β is �xed and β1 and ε are independent with null mean vectors and
variance-covariance matrices σ2

1Ic1 and σ2In.

Keywords

Linear su�ciency, Quadratic su�ciency, Variance components, Mixed model.
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The magic behind the construction of certain

Agrippa�Cardano type magic matrices
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Abstract

We build on results [5] presented at the International Workshop on Combina-
torial Matrix Theory and Generalized Inverses of Matrices (Manipal Univer-
sity, January 2012). In this talk we will present procedures for the construc-
tion of certain Agrippa�Cardano [1,2] type magic matrices using magic-basis
matrices. We generate classic rank-3 n× n Agrippa�Matlab [1,4] magic ma-
trices with n doubly-even, and classic nonsingular Agrippa�Fermat magic
matrices [1,3] with n singly-even. We investigate some matrix-theoretic prop-
erties and present some interesting �ndings.
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Abstract

The �rst time I met George Styan was in July 2004 in Lisbon when he was
on his way to the 11th ILAS Conference in Coimbra.
But George had already been in Portugal before and I learned how much he
was fond of Conventual, a very �ne and nice old style restaurant in Lisbon.
Then I also learned that George really is an appreciator of good food and
a very well-educated wine drinker. With this detail in common it was really
easy to become a good friend with George.
Since then we met a number of times, the most signi�cant of which was at
the time of the 17th IWMS held in Tomar, Portugal, in 2008.
Before this event, during a short stay of George and Evelyn in Lisbon, we
had the opportunity to go to some nice spots like Sintra and to hang around
a few nice places near Lisbon and even to attend a Leonard Cohen concert,
together with some friends.
Actually, even more than good food and a good wine, and more than a
good mathematical challenge, George enjoys the company of his family and
his friends. We may even say that more than Mathematics, it is his family
and his friends that play and have always played a central role in his life.
Everybody knows well how much he cares about Evelyn, the great woman
behind the great man, and also everybody knows the looks in George's face
when he meets the ones he cares about.
Inevitably, besides addressing some of George's honors and also his scienti�c
work and his interest in mathematics related stamps, it is based on a number
of pictures, either taken by the author or by other friends and a couple of them
even taken by George himself, that this little contribution to the celebration
of George Styan's 75th birthday will be indeed more a celebration of the way
George enjoys and nurtures the company of the ones he loves.
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chi-square random variables
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Abstract

The distribution of linear combinations of independent chi-square random
variables is intimately related with the distribution of quadratic forms in
normal random variables [1,6�11,13,14] and thus it also appears as the limit
distribution of quadratic forms in non-normal random variables. As such, this
distribution has been studied by many authors [2,4�15]. However, there is still
much room left for improvement, since while some simpler approximations do
not yield su�ciently good results, other approximations which show a better
performance are sometimes too complicated to be implemented in practical
terms.
In this paper the exact distribution of linear combinations of independent chi-
square random variables is obtained, for some particular cases, in a closed
�nite highly manageable form, while for the general case a near-exact ap-
proximation [3] is obtained, which is able to yield very manageable and well-
performing approximations.

Keywords

Characteristic function, Gamma distribution, Generalized integer gamma dis-
tribution, Generalized near-integer gamma distribution, Mixtures.
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Multivariate analysis of polarimetric SAR

images

Knut Conradsen
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Abstract

The author �rst met G.P.H. Styan at a meeting in Greece 40 years ago.
During the years, they have shared the interest in matrices and multivariate
statistics, GPHS from a mathematical perspective, KC an applied do. In
the presentation those perspectives are combined in some applications of the
multivariate complex Wishart distribution in the analysis of radar images.
Due to its all-weather mapping capability independently of e.g. cloud cover,
synthetic aperture radar (SAR) data holds a strong potential for change
detection studies in remote sensing applications. The radar backscattering is
sensitive to the dielectric properties of the vegetation and the soil, to the plant
structure (i.e., the size, shape, and orientation distributions of the scatterers),
to the surface roughness, and to the canopy structure (e.g., row direction and
spacing, and cover fraction). The polarimetric SAR measures the amplitude
and phase of backscattered signals in four combinations of the linear receive
and transmit polarizations: HH, HV, VH, and VV. These signals form the
complex scattering matrix. The inherent speckle in the SAR data is reduced
by spatial averaging (at the expense of loss of spatial resolution). In this so-
called multi-look case a more appropriate representation of the backscattered
signal is the covariance matrix in which the average properties of a group of
resolution cells can be expressed in a single matrix. This averaged covariance
matrix follows a complex Wishart distribution.
In [2,4] change detection was analyzed on bi-temporal data. In [3] these results
are extended to multitemporal data. A good survey on the relevant theory
on multivariate analysis in the complex normal setting is given in [1].
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Abstract

Electricity is an interesting commodity for mathematicians to work on. In
fact, the variety of �nancial and real options traded are far from being plain
vanilla and, nevertheless, being most quite exotic, they have been priced with
standard tools. No doubt, the literature is sparse and it's a growing subject.
One of the interesting options which, nowadays, exist in Europe is the di�er-
ent electricity prices between countries. If one has the ability to trade energy
across countries, these electricity spreads are spread options. Since this pos-
sibility to trade is limited in time and capacity, the existing spread option is,
somehow, unique.
Selling energy across countries implies o�er and demand bids for electricity
in each country, thus having positive probabilities of negative cash�ows, by
which the option to use transfer capacities cannot be priced with the Black-
Scholes Formulas. In this work it's proposed a new way of pricing the daily
electricity transfer capacity, where we take into account the traders daily
operation (which has changed since [2]) and, therefore, all the inherent risks
factors not included in the Black & Scholes world.
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Mutual Principal Components, reduction of

dimensionality in statistical classi�cation
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Abstract

Linear discriminant analysis (LDA) and principal components analysis (PCA)
are two fundamental tools of multivariate statistics. Given a p-dimensional
random variable X, PCA �nds its optimal representation in a lower dimen-
sional space. LDA assumes that the sample space of X is partitioned into
two di�erent categories. Given x, a particular realization of X, LDA lets us
infer whether x comes from one category or the other. We present an original
combination of PCA and LDA where the area under the ROC curve appears
as the link between both methods; we call thisMutual Principal Components.
Our objective is to represent X in terms of a small number of non correlated
factors and maximum separability. Assuming that X is distributed accord-
ing to a Gaussian mixture, a parametric approach selects those components
with maximum contribution to the area under the ROC curve of an optimal
linar discriminant function. A distribution free alternative shows that this
principle is equivalent to maximize the square cosine between this discrimi-
nant function and the vector space generated by the colums of the resulting
principal components transformation matrix.
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Abstract

We introduce a method of constructing non-parametric regression estimators
of state occupation probabilities in a multistate model. In order to tackle
potentially large number of predictors in modern genomic and proteomic
data sets we use partial least squares to compute estimated latent factors
from the transition times along with the covariates which are then used in
an additive model in order to avoid curse of dimensionality. We illustrate the
methodology using simulated and real data sets.
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con�dence interval in linear mixed models
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Abstract

The methodology proposed in this study is motivated by an example from the
medical �eld. Oncologists delineate organs for radiotherapy and it is essential
that the measurements agree in these procedures. To assess the consistency
of measurements among oncologists, on a random sample of subjects, the
intraclass correlation (ICC) would yield a suitable estimate for studying the
agreement.
In technical terms, the ICC is a ratio of sum of variances that are related to
di�erences among measured subjects and the total variance. What variance
is considered relevant depends on the design of agreement study; respectively,
the number of variance components changes in the numerator and the denom-
inator of the ICC. For statistical inference, it is important but challenging to
determine the distribution of estimators of such ratios and to construct the
con�dence intervals. In most literature, the ICC has been studied for one-way
and two-way analysis of variance only. Most proposed approximate methods
are based on functions of the mean squares which are model-speci�c (e.g. two
factorial) and lack generalization to higher order (e.g. three factorial) models.
The objective of this study is to extend the construction of con�dence inter-
vals for the linear mixed models, but in particular to our three-way mixed
models for delineation of organs. The generalization will coincide with ex-
isting methods for two-way and one-way mixed e�ects models. To obtain an
approximate upper and lower con�dence limits, we approximate the ICC with
a function of F-distributed variable and a Beta distribution. Our proposed
methodology is supported by simulation studies.
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Linear mixed model, Con�dence interval, Intraclass correlation, Small sam-
ple.
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Linear models in the face of Diabetes Mellitus:

the in�uence of physical activity

Hilmar Drygas
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Abstract

A linear model for Diabetes Mellitus is described. The in�uence factors are
nutrition, time and physicals activity. Two models are compared, one with
moderate physical activity and another one with strong physical activity. The
question is whether strong physical activity leads to a signi�cant reduction
of the blood-sugar. It is shown that there are substantial reductions of blood-
sugar due to physical activity, but due to a high variance signi�cance can
only be achieved in very rare cases.
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kurtosis
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Abstract

In statistical analysis, the test for normality is an important problem. The
most widely applied tests of multivariate normality are based on Mardia's
multivariate generalization of skewness and kurtosis. Mardia [1], Srivastava
[3] and Song [2] gave de�nitions of the multivariate sample kurtosis. We con-
sider the multivariate normality test based on the sample measure of multi-
variate kurtosis de�ned by Song [2]. We derive expectation and variance of
Song's kurtosis and a new test statistic for assessing multivariate normality.
Moments of Song's kurtosis are calculated easily using independency of ran-
dom vectors. We investigate the accuracies of upper percentiles, type I error
and of power for the test statistic via a Monte Carlo simulation for selected
values of parameters.
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A graphical evaluation of Robust Ridge
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Abstract

In mixture experiments, estimation of the parameters is generally based on
Ordinary Least Squares (OLS). However, in the presence of multicollinearity
and outlier, OLS can result in very poor estimates. In this case, e�ects due
to the combined outlier-multicollinearity problem can be reduced to certain
extent by using alternative approaches. One of these approaches is to use
biased-robust regression techniques for the estimation of the parameters. In
this paper, we suggest the use of robust ridge regression based on M-estimator
in the cases where there is multicollinearity and outliers during the analysis
of mixture experiments. Also, for selection of biasing parameter, we use a
new graphical approach for evaluating the e�ect of the robust ridge regression
estimator with respect to the scaled prediction variance and fraction of design
space plots. The suggested graphical approaches are illustrated on hot-melt
adhesive data set.

Keywords

Experiments with mixture, Robust regression, Robust Ridge Regression, Mul-
ticollinearity, Scaled prediction variance, Fraction of design space plot.
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A comparison of di�erent parameter estimation

methods in fuzzy linear regression
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Abstract

Fuzzy logic is the concept that concerns people's thinking with imprecise
statements. It is easy to work with accurate data through the classic linear
regression analysis. However, it is inevitable to use fuzzy linear regression
if the dependent or independent variables or the relation between them are
fuzzy. The estimation of the fuzzy linear regression parameters generally are
gained by two approaches. The �rst one includes the methods that are based
on linear programming. The second one is based on the methods of the fuzzy
least squares. The main object of this paper is to apply and compare the
performance of the di�erent fuzzy logic approximation methods using a real
world data set (the Ataþehir district housing prices).
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On universal optimality of circular repeated

measurements designs
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Abstract

Our aim is to characterize the universally optimal design among the class of
circular repeated measurements designs. We show, that some circular weakly
neighbor balanced designs de�ned by Filipiak and Markiewicz [2] for an inter-
ference model, which are uniform on periods, are universally optimal under
the model of repeated measurements design. Our results correspond to the
work of Magda [3] and Kunert [2].

Keywords

Repeated measurements designs, Uniform design, Circular balanced design,
Universal optimality.
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Constructing e�cient exact designs of

experiments using integer quadratic

programming

Lenka Filová and Radoslav Harman
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Abstract

We propose a method of computing exact experimental designs by integer
quadratic programming. The key idea is a suitable quadratic approximation
of the criterion of D-optimality in the neighbourhood of the approximate
D-optimal information matrix, which we call the criterion of Q-optimality.
We demonstrate on several examples that the D-e�ciency of the exact Q-
optimal designs is usually very high. An important advantage of the method
is that it can be applied to situations with marginal and cost constraints on
the design.

Keywords

D-optimal design, Q-optimal design, Exact design, Marginal restrictions,
Cost restrictions, Integer quadratic programming.
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Abstract

Statistical models for experiments in geodesy, biology, environmental re-
search, etc. usually involve unknown parameters not only in a regression
function but also in a covariance matrix (variance components). For mea-
surement it is used two or more di�erent measurement devices. Since it is not
known whether precision of measurement speci�ed in certi�cates is true, the
variance components must be estimated, e.g. by minimum norm quadratic un-
biased estimator (MINQUE) [1], [3], and plug-in estimators for the regression
parameters can be used. To �nd statistical properties of plug-in estimators
is rather di�cult. In some cases the sensitivity approach can be used. If we
know that the true value of the variance components is with su�ciently high
probability in so-called insensitivity region, then the plug-in estimator is al-
most the best linear unbiased estimator [2]. Consequently, approximations of
variance components can destroy the optimum quality of statistical inference,
e.g. con�dence and signi�cance levels, what can also be analyzed by sensitiv-
ity approach. In the contribution the sensitivity analysis will be applied on
geodetical example.
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Abstract

We study the general linear model (GLM) with doubly exchangeable dis-
tributed error for m observed random variables. The doubly exchangeable
general linear model (DEGLM) arises when the m−dimensional error vec-
tors are �doubly exchangeable" (de�ned later), jointly normally distributed,
which is a much weaker assumption than the independent and identically dis-
tributed error vectors as in the case of GLM or classical GLM (CGLM). We
estimate the parameters in the model and also �nd their distributions. We
show that the testings of intercept and slope are possible in DEGLM as a par-
ticular case using parametric bootstrap as well as multivariate Satterthwaite
approximation.

Keywords

Doubly exchangeable covariance structure, Linear model, Parametric boot-
strap, Multivariate Satterthwaite approximation.
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Abstract

Computer simulations are usually needed to study a complex physical process.
In this paper, some procedures for constructing orthogonal block-circulant
Latin hypercube designs are proposed. The basic concept of these methods is
to use vectors with a constant periodic autocorrelation function to obtain suit-
able block-circulant Latin hypercube designs. Using this method one is able
to construct orthogonal and near-orthogonal Latin hypercube designs with fa-
vorable properties. Orthogonal Latin hypercube designs
(OLHDs) with �xed number of factors and �exible run sizes can be con-
structed using a slightly modi�ed technique. Some new multiplication struc-
tures and constructions are also provided. For example, it is shown how
one may obtain orthogonal Latin hypercube designs with (runs, factors) =
(2n` + s,m`), for ` = 12, 16, 20, 24 and s = 0, 1 by using an OLHD(n,m) .
The properties of the generated designs are further investigated and a brief
comparison with known designs is given.

Keywords

Computer experiments, Fold-over designs, Circulant matrices, Autocorrela-
tion function, Orthogonal designs, Construction.
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Abstract

We provide a general framework that incorporates experimenters' prior be-
liefs into the design selection process for the study of saturated two-level
main e�ects designs, which are commonly used for screening experiments. We
show that under the sets of priors with more weights on models of small size,
p-e�cient designs should be recommended; when models with more parame-
ters are of interest, D-optimal designs would be better. Also, we present new
classes designs which can be found between these two designs under di�erent
sets of priors. The way in which the choice of designs depends on experi-
menters' prior beliefs will be demonstrated for the cases when N ≡ 2 mod 4.
Some constructions using conference matrices will also be discussed.
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Abstract

Logit and probit models are two members of generalized linear models fam-
ily that are widely used especially when the dependent variable is observed
to be binary. The properties that make a di�erence for these two models
for the same data set are resulted from the assumptions they use and their
mathematical functions. There is no study specifying a certain judgment on
the preference of these models to make a decision which model is better in
what condition. In this study, a new data generalization technique has been
proposed for the simulation study conducted to make a comparison of the
model �ts to binary logit and probit models for the generated data set under
certain conditions to reach an end to which condition is better.
In the process of the simulation study, a dependent and explanatory variables
are generated from multivariate normal distribution which is very much dif-
ferent from the ordinary generating procedure. As is already known, this
procedure uses the information of the interested model itself. Hence the gen-
eration of this type would always be in favor of the interested model not the
alternative and there would be no sense to make a comparison from such
data generalization. In the proposed generating process since the generated
dependent variable is always continuous, it should be classi�ed as binary
to make the dataset usable for logit and probit models. After �tting logit
and probit models to the generated data sets, goodness-of-�t-test results re-
lated to both models, residuals, deviances and some pseudo R2's used for
binary dependent variables have been obtained to make signi�cant compar-
isons. These procedures have been performed for two di�erent cut points
used to classify response variables, three di�erent relationship levels among
variables (high, medium, none) and �ve di�erent sample sizes. For each cut
point, relationship level and sample size the simulation has been replicated
for a thousand time. Since the obtained estimated probabilities from both
models are considerably close, it is found that there has been no statisticaly
signi�cant di�erence among most pseudo R2's. However, when the residuals
are taken into account, probit model has a priority to be used for a sample
size that is less than 200, whereas the Logit model is superior for a sample
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size that is greater than 200. Another remarkable �nding is that the di�erent
cut-o� levels and relationship have not any e�ect on the choice of the model.
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Binary logit, Binary probit, Pseudo R-square, Deviance.
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Abstract

In our previous work [2] we developed some new distance function based
on a derivative and showed that our algorithm is e�cient. In contrast to
well-known measures from the literature, our approach considers the general
shape of a time series rather than point-to-point function comparison. The
new distance was used in classi�cation with the nearest neighbor rule. Now,
we improve on our previous technique adding second derivative. In order
to provide a comprehensive comparison, we conducted a set of experiments,
testing e�ectiveness on 20 time series data sets from a wide variety of applica-
tion domains. Our experiments show that our method provides a signi�cant
higher quality of classi�cation.
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Abstract

The general linear model A = {y,Xβ, σ2V } known as full model and its
transformed model T = {Fy, FXβ, σ2FV F ′} are considered. The expression
for the di�erence between the best linear unbiased estimator (BLUE) of FXβ
under the full model and its BLUE under the transformed model is given. The
necessary and su�cient conditions between the equality of BLUEs of FXβ are
obtained under the full and transformed models. Furthermore, some results
are given for the special choices of the transformation matrix F . The results
obtained in this study are based on a generalized inverse of a symmetric
matrix which is obtained from the Pandora's Box equation called by [10].
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BLUE, General linear model, Transformed models, Sub-sample models, Re-
duced models.
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Abstract

Estimation of population parameters is considered by several statisticians
when additional information such as coe�cient of variation, kurtosis or skew-
ness is known. This estimation technique is called improved estimation. Searls
(1964), Khan (1968) and Arnholt and Hebert (1995) utilized the known co-
e�cient of variation on improved estimating the population mean.
RSS, which has been developed by McIntyre (1952), is a sampling procedure
that can be viewed as a generalization of the simple random sample (SRS).
This method is applied for situations in which measuring a variable is costly
or di�cult, but where ranking in small subsets is easy. As it was proved by
McIntyre, mean of this sample is an unbiased estimator of the population
mean. Additionally, it is well-known that population parameters can be es-
timated more e�ciently using a RSS as opposed to a SRS. This paper is
concerned with the improved estimation of the population mean by using
coe�cient of variation as a prior information in ranked set sampling (RSS).
Compare it with the estimator of the mean in RSS, the estimator of the mean
in Simple Random Sampling (SRS) and improved estimator of the mean in
Simple Random Sampling (SRS) in the sense of Mean Square Errors (MSE).
It is observed that the proposed RSS estimator is more e�cient than others.
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Abstract

The W statistic proposed by Shapiro and Wilk ([2]) is frequently used for
testing of the univariate and multivariate normality. However, the table of
coe�cients in the W statistic, its critical values and also constants in John-
son's SB transformation to normal distribution ([3]), are not correct. Royston
([1]) gave an approximation for coe�cients in the W statistic and use them
to evaluate proper critical values of the Shapiro-Wilk test. In the paper, we
determine new constants for the W statistic and Johnson's SB transforma-
tion. Empirical signi�cant levels of the improved Shapiro-Wilk test and the
power against chosen alternatives are evaluated via simulation study.
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Abstract

For the mixed linear model, there is a collection of results giving conditions
under which �xed parameter estimates, and/or random parameter predictors
remain unchanged. Some of these results were initially developed for models
with only �xed parameters, others include situations where at least some pa-
rameters are random. These equivalence results cover a range of situations
- the covariance structure of error processes, design matrices, and even data
may be altered. Covariance structure changes have a broad range, from con-
ditions under which ordinary least squares estimates (OLSE) are best linear
unbiased estimates (BLUE) ([9], [2]), to conditions for two sets of BLUEs
and/or two sets of BLUPs to be equivalent ([10], [11], [1], [6], [7]). Changes
in design structure link to adding or deleting regressors or parameters ([5]).
Data changes are related to data cloning techniques ([3]), and to adding new
observations ([8], [4]). These types of model modi�cation will be discussed
and various possible applications will be outlined.
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Abstract

Properties of eigenvalues of matrices used in statistical analysis provide an
important base in the description of statistical properties within analyzed
problem, see e.g., [1] and [2]. The paper extends some characterizations of
diagonalizable matrices whose sum has nonnegative eigenvalues. In the paper
there are presented some general comments as well as examples of matrices
from speci�c subsets.
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Abstract

In recent years, support Vector Regression (SVR) has been applied in vari-
ous �elds such as �nancial time series prediction and engineering applications.
Di�erent from the classical regression approach, SVR attempts to minimize
the generalization error bound instead of minimizing the observed training
error. This paper deals with the application of wavelet-based support vec-
tor regression (WSVR) on multiple time series data. WSVR is the straight-
forward extension from linear regression to nonlinear regression using the
wavelet kernel. The main objective of this paper is to examine the feasibility
of WSVR in time series forecasting by comparing it with generalized least
squares (GLS) approach.

Keywords

Support vector regression, Wavelet kernel, Generalized least squares, Time
series.

References

[1] Hamel, L.(2009). Knowledge Discovery with Support Vector Machines. Wiley.
[2] Makridakis, S., S.C. Wheelwright, and R.J. Hyndman (1998). Forecasting Meth-

ods and Applications (Third Edition). Wiley.
[3] Palancz, B., L. Völgyesi, and G. Popper (2005). Support Vector Regression Via

Mathematica. Periodica PolyTechnica Civ. Eng. 49, 59�84.
[4] Myers, R.H., D.C. Montgomery, and G.G. Vinning (2002). Generalized Linear

Models. Wiley.
[5] Tay, F.E.H. and L. Cao (2001). Application of support vector machines in �-

nancial time series forecasting. Omega: Int. J. Management Sci. 29, 309�317.
[6] Wang, L. and X. Jin (2011). Stock exchange index prediction based on wavelet-

based adaptive support vector regression algorithm. J. Inf. Comput. Sci. 8,
4053�4059.



118 A. Khalili, Y. Du, R. Steele, J. Neslehova

Simultaneous �xed and random e�ect selection

in �nite mixture of linear mixed-e�ect models
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Abstract

Linear mixed-e�ects (lme) models are frequently employed for modeling lon-
gitudinal data. One complicating factor in the analysis of such data is that
samples are sometimes obtained from a population with signi�cant underly-
ing heterogeneity, which would be hard to capture by a single lme model.
Such problems may be addressed by a �nite mixture of linear mixed-e�ects
(fmlme) models, which segments the population into subpopulations and
models each subpopulation by a distinct lme model. Often in the initial
stage of a study, a large number of covariates are introduced. However, their
associations to the response variable vary from one component to another of
the fmlme model. To enhance predictability and to obtain a parsimonious
model, it is of great practical interest to identify the important e�ects, both
�xed and random, in the model. Traditional variable selection techniques such
as stepwise deletion and subset selection are computationally expensive as the
number of covariates and components in the mixture model increases. In this
article, we introduce a new penalized likelihood approach for simultaneous
selection of �xed and random e�ects in fmlme models. We also propose a
nested em algorithm for e�cient numerical computations. The estimators are
shown to possess consistency and sparsity properties and asymptotic normal-
ity. We illustrate the performance of our method through simulations and a
real data example.

Keywords

Linear mixed-e�ect models, Mixture models, Regularization methods, em
algorithm.



D. Klein, I. �eºula 119

Estimators of serial covariance parameters in

multivariate linear models
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Abstract

The basic model we consider is the multivariate linear model with serial
correlation structure:

Y = XB + e, vec(e) ∼ N (0, Σ ⊗ In) , Σ = σ2ρ|i−j|.

Here Yn×p is a matrix of independent p-variate observations, Xn×m is a de-
sign matrix and en×p is a matrix of random errors. As for the unknown
parameters, Bm×r is an location parameters matrix, and σ2, ρ are (scalar)
covariance parameters.
Our aim is to estimate the unknown parameters of matrix Σ. We propose
a method for obtaining explicit estimators of both σ2 and ρ and we discuss
some properties of the derived estimators.
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Robust monitoring of multivariate data stream
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Abstract

A data stream could be de�ned as continuous sequence of ordered observa-
tions of indeterminate length. Because the data are arriving continuously and
there is no known end to it, the classical approach of reading in all data and
then processing them is not feasible. Data stream carry signals that appear
randomly, are irregularly spaced and the time duration between successive
signals is not deterministic but random. Additionally data streams generally
are generated by multivariate non-stationary models of unknown form.
In this paper we present three approaches to robust analysis of multivariate
economic data streams. We use the information-theoretic approach proposed
by [1] based on the relative Kullback-Leibler entropy and bootstrapping to
extract possible changes and Kulldor�'s spatial scan statistics to identify re-
gions where large changes have occurred. Second approach is a modi�cation
of a concept of a statistical coherence (frequency domain approach) for regres-
sion analysis of time series. It is shown how spectral coherence can be used to
examine the relation between two signals and to detect the change in these
relationship. Our proposal is to estimate spectral coherence using robust ver-
sion of Welch approach. In our third proposition appealing to a data depth
concept we use multivariate Wilcoxon statistic and robust semi-parametric
regression to monitor linear relationship between multivariate data stream
components.
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The Moran coe�cient for non-normal data:

revisited with some extensions
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Abstract

The distributional properties of the Moran coe�cient index (MC) measuring
spatial autocorrelation were investigated by many authors, see e.g. [1]. The
properties of MC for non-normal random variables were analysed by Grif-
�th in [2]. The general idea of that paper was to extend Pitman-Koopmans
theorem for the mean and the variance of this index. The principal conclu-
sion was that under independence assumption and big enough sample size
the Pitman-Koopmans theorem results can be extended to some non-normal
random variables. The independence and identically distributed property re-
duced the necessary sample size for this extension, as did the properties of
symmetry and normal approximation.
In the paper we continue the analysis performing simulations for randomly
generated variables for the following distributions: beta, gamma, hypergeo-
metric, inverse hypergeometric, log-normal, exponential, negative binomial,
and t Student, as well as their mixtures and using Box-Cox power transfor-
mation.
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Optimal designs for the Michaelis Menten

model with correlated observations

Holger Dette1 and Joachim Kunert2

1 Ruhr University Bochum, Germany
2 Technical University of Dortmund, Germany

Abstract

In this paper we investigate the problem of designing experiments for weighted
least squares analysis in the Michaelis Menten model. We study the structure
of exact D-optimal designs in a model with an autoregressive error structure.
Explicit results for locallyD-optimal are derived for the case where 2 observa-
tions can be taken per subject. Additionally standardized maximinD-optimal
designs are obtained in this case. The results illustrate the enormous di�cul-
ties to �nd exact optimal designs explicitly for nonlinear regression models
with correlated observations.

Keywords

Autoregressive errors, Michaelis Menten model, Exact designs, Locally D-
optimal designs, Standardized maximin optimal design.
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A new Liu-Type Estimator
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Abstract

Ridge regression (RR) and Liu estimators, which include single biasing pa-
rameter, specially depend on ordinary least squares (OLS) estimator. Due to
the e�ects of multicollinearity on the OLS estimator, it have recently been
proposed biased estimators include the two biasing parameter. Estimating
biasing parameters of estimators include two biasing parameters are usu-
ally based on the methods proposed to Ridge and Liu estimators. But, very
complicated equations may occur, when these methods are applied to estima-
tors proposed. In this paper, we introduce a general new Liu-type estimator
includes estimators with two biasing parameters as special cases. Also, nec-
essary and su�cient conditions according to the mean squared error matrix
criterion are derived, to show the superiority of the new estimator over the
OLS, RR, Liu estimator, and the other estimators which include two biasing
parameters. Lastly, the superiority to other estimators of the new Liu-type
estimator is illustrated both theoretically and graphically on dataset Portland
cement is widely used in the literature.

Keywords

Biased regression, Mean squared error, Multicollinearity, Ridge Regression,
Liu estimator
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Analysis of an experiment in a generally

balanced nested block design

Agnieszka �acka

Pozna« University of Life Sciences, Poland

Abstract

The aim of the study is to present practical aspects related to the analysis
of an experiment carried out in a nested block design. The considered ex-
perimental design is characterized by the orthogonal block structure and has
the property of general balance. Analysis of the experiment was based on the
theorem presented by prof. Tadeusz Cali«ski in his paper: "On combining
information in a generally balanced nested block design" and includes both
stratum analysis based on basic contrasts and combined analysis allowing for
combining data from a number of strata.
The experiment data used in the presented example originate from the exper-
iment concerning evaluation of e�ciency of some chemical substances in vari-
ous concentrations in reduction of plant damages caused by slugs, A. Lusitan-
icus, and studying their in�uence on behavioral and physiological reactions
of these slugs. The calculations were made with the use of the R platform.
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On inverse prediction in mixed models

Lynn R. LaMotte
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Abstract

This talk will present a general approach to inverse prediction in the context
of mixed models. Given training data on Y at x and covariates z, and a
mystery specimen with Y = y∗ and Z = z∗, the objective is to construct
a con�dence set on the subject's unknown x∗. Simulation results will be
presented for three di�erent settings: (1) heteroscedastic linear regression,
(2) classi�cation, in which x is categorical, and (3) categorical response Y .

Keywords

Multivariate calibration, Categorical response.
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Getting the �correct� answer from survey

responses: an application of regression mixture

models

Nicholas Fisher1 and Alan Lee2
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Abstract

This talk addresses a problem that can arise in surveys, in which some re-
spondents misinterpret the rating method and so assign high ratings when
they intended to assign low ratings, and vice versa. We present a method,
based on �tting regression mixture models, that allows these misinterpreta-
tions to be corrected with high probability, and more meaningful conclusions
drawn. The method is illustrated with data from a community value survey.

Keywords

Community Value Survey, Missing data, EM algorithm, Regression mixture.
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Variance components estimability in multilevel

models with block circular symmetric

covariance structure
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Abstract

The multilevel model with the block circular symmetric covariance struc-
ture is considered. We established the spectral properties of this patterned
covariance matrix. It has been shown that the explicit maximum likelihood
estimators (MLEs) of variance-covariance components do not exist in this
model, unless we put restrictions on the parameter space.
It is shown that by putting restrictions on the spectrum of the block cir-
cular covariance matrices, some natural reparameterization conditions (e.g.
sum-to-zero) are derived. Su�cient conditions of obtaining explicit estima-
tors for variance-covariance components are presented. Di�erent restricted
models are discussed in order to obtain explicit estimators, get interpretable
model reparameterizations and keep invariant properties of the block circular
symmetric covariance structure.
In the class of restricted models, it gives us the �exibility to choose the
reasonable constraints among them according to di�erent data, which is quite
advantageous.
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timator, variance components.
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Model averaging via penalized least squares in

linear regression
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Abstract

We consider parameter estimation under model uncertainty by averaging
across least squares estimates obtained from a set of models. Existing model
averaging methods usually require estimation of a single weight for each can-
didate model. However, in applications the number of candidate models may
be huge. Then the approach based on estimation of single weights becomes
computationally infeasible. Utilizing a connection between shrinkage estima-
tion and model weighting we present an accurate and computationally e�-
cient model averaging estimation method. The performance of our estimators
is displayed in simulation experiments which utilize a realistic set up based
on real data.

Keywords

Shrinkage estimation, Model selection, Mean square error, E�ciency bound,
Simulation experiment.
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Optimality of neighbor designs
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Abstract

The concept of neighbor designs was introduced and de�ned in [5] along with
some methods of their construction. Henceforth many methods of construc-
tion of neighbor designs as well as of their generalizations are available in
the literature; cf. [3] and [4]. However there are only few results on their
statistical properties. Therefore the aim of the talk is to give an overview of
study on their optimality. It will include recent results on optimality of some
neighbor designs under various linear models; cf. [1] and [2].

Keywords

Neighbor design, Circular block design, Universal optimality, Interference
model.
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About the evolution of the genomic diversity in

a population reproducing through partial

asexuality

Solenn Stoeckel and Jean-Pierre Masson
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Abstract

Reproductive systems de�ne how the genetic diversity is transmitted through
generations and thus highly constraint the genetic evolution of species. Many
species of relevant interests for human activities and ecosystems can repro-
duce both through sexual or asexual events during their life. Despite their
widespread interests, we have few tools to predict the evolution of the ge-
netic diversity within those partially asexual species. Moreover, the scarce
previous models propose contradictory or unclear results. We thus formal-
ized the exact probabilities of evolving genotypic states through generations
using transition probabilities as function of the rate of asexuality and embed-
ded them within a Markov chain. The model takes into account for mutation
and drift forces, giving the opportunity to assess the distributions of any ex-
pected genetic index at a locus that did not experiment selection. Such model
computation relies on fat matrices because of the number of genotypic states.
We used massive parallelized algorithm to compute them. It provided unseen
results, enabled precise predictions and clari�ed some controversial biological
points.
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Markov chain, Rate of clonality, Mutation, Genetic drift, Matrix calculus,
Maximum likelihood.
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A sequential generalized DKL-optimum design

for model selection and parameter estimation in

non-linear nested models

Caterina May1 and Chiara Tommasi2

1 University of Eastern Piedmont, Novara, Italy
2 University of Milan, Italy

Abstract

A sequential procedure is proposed to select the best model among several
nested non-linear models and to estimate e�ciently the parameters of the cho-
sen model. The procedure is based on an adaptive generalized DKL-optimum
design, which is optimal for the double goal of model selection and parameter
estimation. The proposed sequential scheme selects the best non-linear model
with probability converging to one; moreover it estimates e�ciently its pa-
rameters, since the adaptive sequential DKL-optimum designs converge to the
D-optimum design for the "true" model. These results are proved by means
of asymptotic theory arguments for argmin of convex random functions.

Keywords

DKL-optimality, Sequential design of experiments, Stochastic convergence,
Semi-continuity, Argmin processes, Convexity.
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Two-stage optimal designs in nonlinear mixed

e�ect models: application to pharmacokinetics
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Abstract

Nonlinear mixed e�ect models (NLMEM) are used in pharmacometrics to
analyse longitudinal data through models. Approaches based on the Fisher
information matrix (MF ) can be used to optimise the design of these stud-
ies. A �rst-order linearization of the model was proposed to evaluate MF
for these models [7] and is implemented in the R function PFIM [1]. Local
optimal design needs some a priori values of the parameters which might be
di�cult to guess. Adaptive designs are useful to provide some exibility and
were applied in pharmacometrics [6,9]. However, two articles in other con-
texts [2,5] discussed that two-stage designs could be more e�cient than fully
adaptive designs. Moreover, two-stage designs are easier to implement in clin-
ical practice. We implemented in a working version of PFIM the optimisation
of the determinant of MF for two-stage designs in NLMEM. We evaluated
the approach by simulation. The example concerns a drug in development
for which a pharmacokinetic study in children is needed and will be analysed
through NLMEM as recommended [4,8]. For the �rst stage, parameters were
estimated using predictions from pharmaco-chemical properties of the drug
[3]. We evaluated one and two-stage designs assuming that some parameter(s)
is (are) di�erent than the initial one(s). We evaluated the impact of the size
of each cohort on the precision of population parameters estimation.

Keywords

Adaptive design, Design optimisation, Fisher information matrix, Nonlinear
mixed e�ect models, PFIM, Population pharmacokinetics.
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On admissibility of decision rules derived from

submodels in two variance components model
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Abstract

The statistical inference on model parameters (e.g. for models ANOVA) is
often conducted through the combined analysis using the information from in-
dependent submodels obtained by orthogonal decomposition of the observed
vector ([7], [6], [1]). The statistical decision rules obtained in this way are
uniquelly given and have under corresponding submodels the desirable statis-
tical properties (e.g. inter- and intra- block estimators of variance components
for a mixed linear model corresponding to a randomized block design). Only,
in special cases (see [2]), estimation and testing under the overall random-
ization model are relevant. Generally, the estimators of variance components
derived from submodels are inadmissible in the class of all invariant quadratic
unbiased estimators (e.g. estimator of variance of block e�ects, see [4]). In
reference to tests concerning variance components the ratio tests allowing the
information from di�erent submodels (strata) have a structure of Wald's test
and generally are admissible, although the tests have weak statistical proper-
ties (cf. [6], where author shows how to recover the intra-block information to
improve tests of hypotheses concerning inter-block parameters, see also [5]).
In this article author presents a subclass of admissible bayesian invariant
quadratic unbiased estimators (cf. [3]) which uniformly dominate the unbi-
ased inter-block estimator of the variance of block e�ects proposed by Cali«ski
and Kageyama in 1991. It will be illustrated by numerical examples for some
connected and disconnected orthogonal block designs. Besides, author gives
some results concerning admissibility of biased bayesian quadratic estimators
of inter-block variance component in mixed linear model with two variance
components corresponding to block designs.

Keywords
Admissibillity, Block designs, Variance components, Inter- and intra-block
estimators, Invariant quadratic unbiased bayesian estimators, Testing of hy-
potheses.
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Weighting, model transformation, and design

optimality
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Abstract

Traditional design optimality criteria place equal emphasis on estimable func-
tions of model parameters. Use of weighted criteria allows experiments to be
designed so to place increased emphasis on estimation of those functions of
the parameters that are of greater interest. Here design weighting is inves-
tigated for the linear model y = Adτ + Lβ + e in which Ad (whose column
space contains the all-one vector) is the design matrix to be selected, the
parameters of interest are τ , the matrix L is �xed by the experimental setup,
and β is comprised of nuisance parameters including an intercept. If Cd is
the information matrix for estimation of τ , then CdW = W−1/2CdW

−1/2 is
a weighted information matrix that for any conventional criterion Φ induces
a weighted criterion ΦW via ΦW (Cd) = Φ(CdW ). The weight matrix W can
be any symmetric, positive de�nite matrix. Among the results established
are: (i) for any desired assignment of (positive) weights to any full rank set of
linearly independent, estimable functions of τ there is a corresponding weight
matrix W ; (ii) every admissible design is weighted E-optimal with respect to
some weighting; (iii) optimal design for a reparameterized model is equivalent
to weighted optimality for the original model. Result (iii) demonstrates, for
instance, why orthogonal arrays need not be optimal fractions under a base-
line parametrization (see [2]). Families of weight matrices W are explored
according to features they encompass. Among these families are the diagonal
weight matrices employed in [1].
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Eigenvalue estimation of covariance matrices of
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Abstract

In many recent applications, one has to face high-dimensional datasets, where
the number of available samples is of the same order as the dimension of each
observation (although usually larger).
In this presentation, we shall address the problem of estimating the covari-
ance matrix associated to such a dataset. Of course, in such a case, the
traditional empirical estimator of the covariance matrix fails to be consistent
and we shall rely on techniques based on large random matrix theory. We
will present results associated to parametrized covariance matrices, where
the number of distinct eigenvalues is known. We will also present estimation
results of speci�c linear statistics. The main motivations come from wireless
communication issues and will be brie�y presented if time permits.
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Change-point detection in two-phase regression

with inequality constraints

Konrad Nosek
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Abstract

Two-phase regression models with inequality constraints on the regression pa-
rameters and with a small number of measurements are considered. Tests for
the presence of a change-point are constructed. The tests procedure are based
on the likelihood ratio in a linear model with inequality constraints. Numer-
ical approximations to the powers against various alternatives are given and
compared with the powers of the likelihood ratio tests in the two-phase re-
gression models without inequality constraints and with the powers of some
other tests.

Keywords

Change-point, Two-phase regression, Linear regression model with inequality
constraints, Likelihood ratio test.
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Tests for pro�le analysis based on two-step

monotone missing data
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Abstract

We consider pro�le analysis when the data has two-step monotone missing
observations. For two-sample pro�le analysis, there are three hypotheses of
interest in comparing the pro�les of two samples: two pro�les are parallel,
two pro�les are same level, and two pro�les are �at. The T 2-type statistics
and their asymptotic null distributions for the three hypotheses are given.
We propose the approximate upper percentiles of these test statistics. When
the data dose not have the missing observations, the test statistics reduce
to the usual test statistics given, for example, in Morrison ([1]). Further, we
consider a parallel pro�le model for several groups when the data has two-
step monotone missing observations. Under the assumption of non-missing
data, the likelihood ratio test procedure are derived by Srivastava ([2]). We
derive the test statistic based on the likelihood ratio. Finally the accuracy of
the approximate values are investigated by Monte Carlo simulation for some
selected values of parameters.
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Abstract

Methods of very robust regression, which resist up to 50% of outliers, spend a
large part of the computational time in sampling subsets of observations and
then computing parameter estimates from the subsets. The precision of the
estimates depends on the amount of sampling, as we have to �nd solutions of
non-smooth functions with lot of local minima. For example, Least Trimmed
Squares (LTS) estimators try to minimize the sum of the h smallest squared
residuals, where h is typically (n− p+ 1)/2 and the amount of sampling may
vary from one to three thousands of subsets depending on the problem size
(see e.g. [2]). To address large datasets, say with 1000 < n < 100.000 units
and p = 10 variables, [1] proposed a fast algorithm that can use fewer subsets,
but applies c-steps to get approximations with lower objective function value.
Moreover, to reduce for large datasets the applications of c-steps, which are
O(n), a divide and conquer strategy that partitions the dataset in smaller
blocks of 300 observations is used.
We will show how Least Trimmed Squares (LTS) estimators can be made
faster with an improved combinatorial sampling approach [3]. Then, we will
illustrate the e�ect of increasing the amount of sampling on the precision of
the estimates obtained with the traditional and fast LTS strategies.
Keywords

Least Trimmed Squares, E�cient random samples generation.
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Asymptotic spectral analysis of matrix

quadratic forms
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Abstract

The asymptotic spectral distribution of a sum of matrix quadratic forms

Q = AA′ +
k∑
i=1

1
n
XiX

′
i,

where A is non-random and X ∼ Np,n(0, Σ, Ψ), p and n are, respectively, the
number of variables and observations, and p

n → c > 0 will be discussed. Early
results of Marchenko and Pastur will be related to theorems of Girko and von
Rosen ([2]), and Silverstein and Bai ([3]). Then, after a short introduction to
free-probability theory and justi�cation of free-independence of the quadratic
forms, results regarding the use of the R-transform for asymptotic spectral
analysis of Q will be presented.

Keywords

Asymptotic distribution, Distribution function of eigenvalues, Random ma-
trix, Matrix quadratic form, R-transform, Stieltjes transform, Free-probability.
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Abstract

In the last years random coe�cient regression models have become popular
in many application �elds, especially in biosciences. Besides the estimation
of population parameters describing the mean behavior across all individu-
als a prediction of the individual response or the individual deviations for
the speci�c individuals under investigation may be of interest, the latter for
example in selection studies.
For the determination of optimal designs for estimating the population pa-
rameters some analytical and practical results may be found in the literature.
Concerning prediction of the individual responses the theory developed by
Gladitz and Pilz [1] for optimal designs requires the prior knowledge of the
population parameters.
We develop the theory and solutions for prediction of individual response
and individual deviations for the practical relevant situation of unknown
population parameters. While the optimal designs for individual response
will di�er from the Bayesian designs proposed by Gladitz and Pilz [1], the
Bayesian designs turn out to remain their optimality, if only the individual
deviations are of interest, as long as all individuals are treated under the
same regime. The obtained theoretical results will be illustrated by a simple
example.
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Individual designs, Prediction, Individual parameters, Random coe�cient re-
gression models, Linear mixed models.
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Oh, still crazy after all these years?
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Abstract

Yeah, I think so.

Keywords

Best linear unbiased estimation, Cauchy�Schwarz inequality, Column space,
Eigenvalue decomposition, Estimability, Gauss�Markov model, Generalized
inverse, Idempotent matrix, Linear model, Linear regression, Löwner order-
ing, Matrix inequalities, Oblique projector, Ordinary least squares, Orthogo-
nal projector, Partitioned linear model, Partitioned matrix, Rank cancellation
rule, Reduced linear model, Schur complement, Singular value decomposition.
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From linear to multilinear models

Dietrich von Rosen
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Abstract

The presentation is based on a number of �gures illustrating appropriate
linear spaces. The start is the classical Gauss-Markov model from where we
jump into the multivariate world, i.e. MANOVA. The next stop will be the
Growth Curve model and then a quick exposure of extended growth curves
will take place. The tour is ended with some comments on multilinear models

Keywords

Multilinear models, Growth Curve models, Extended Growth Curve models.
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Abstract

Although devised in 1936 by Fisher [1], discriminant analysis is still rapidly
evolving, as the complexity of contemporary data sets grows exponentially.
Our classi�cation rules explore these complexities by modeling various cor-
relations in higher order data. Moreover, our classi�cation rules are suitable
to data sets where the number of response variables is comparable or larger
than the number of observations. We assume that the higher-order observa-
tions have a separable covariance matrix and two di�erent Kronecker product
structures on the mean vector ([2], [3]). In this article we consider quadratic
discrimination among g di�erent populations where each individual has κth
order (κ ≥ 2) measurements.

Keywords

Higher-order data, Separable covariance structure, Structures on mean vec-
tor.
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Multilevel linear mixed model for the analysis

of longitudinal studies
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Abstract

The use of longitudinal studies (studies in which the response of each in-
dividual is observed on two or more occasions) has been considered a lot
over the last decades. Longitudinal studies beyond the cross-sectional studies
in several ways: longitudinal study gives the opportunity for controlled and
more reliable measurement of exposure history. Also longitudinal study gives
information about individual change over time and factors that a�ected this
change. Finally, this study provides more e�cient estimates of parameters
than cross-sectional study with the same number of individuals. A number of
methods and statistical models on the analysis of hierarchical and longitudi-
nal data have used in most researches, including traditional approaches such
as repeated measurements analysis and multivariate analysis of variance. But
new approaches, including multilevel linear mixed models, also known as hier-
archical linear models, random coe�cient models, and mixed-e�ect models,
have become an increasingly important strategy for analyzing longitudinal
data.
The observations within an individual are assumed to be correlated in such
data and multilevel linear mixed models include the subject-speci�c pro�le in
the model structure, therefore, these models should be well suited to describe
longitudinal data. Recently, multilevel linear mixed models have applied in
a few medical literatures, while this �eld has the potential and possibilities
of these models. In this paper we introduce multilevel linear mixed model
for the analysis of longitudinal data and interpretation of the parameters of
the model at each level. As an example, the data from a sample of dental
composites will analyze using SAS PROC MIXED.
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On the Errors-In-Variables Model with singular

covariance matrices

Burkhard Scha�rin1, Kyle Snow1,2, and Frank Neitzel1,3

1 The Ohio State University, Columbus, USA
2 Topcon Positioning Systems, Inc., Columbus, USA
3 Berlin Institute of Technology, Germany

Abstract

Over the last few years, Total Least-Squares (TLS) estimation within Errors-
In-Variables (EIV) Models has been extended not only to the case of element-
wise weighted observations (corresponding to diagonal weight matrices), but
also � and more importantly � to the case of arbitrary positive-de�nite weight
matrices (de�ned as inverse covariance matrices), in which case "Mahboub's
algorithm" provides the Weighted TLS Solution after a few iterations. Yet,
the case of an EIV-Model with singular covariance matrices has not been con-
sidered in much detail, although unique TLS solutions may exist that take
the (uninvertible) covariance matrices into proper account. Here, a generaliza-
tion of "Mahboub's algorithm" will be developed for this purpose, followed
by its application to a typical geodetic example (such as the 2-D Helmert
transformation).

Keywords

Errors-In-Variables (EIV) Models, Total Least-Squares (TLS), Singular co-
variance matrices, 2-D coordinate transformations.
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Fitting Generalized Linear Models to sample

survey data
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Abstract

Data from large complex surveys like NHANES are being used increasingly
to build regression models. To give some idea of the extent of this, a call
to Google Scholar comes up with more than 30,000 papers containing both
"NHANES" and "regression model". Unfortunately complexities such as vari-
able selection probabilities and multi-stage sampling mean that the assump-
tions underlying standard statistical methods for model-building are not even
approximately valid for survey data. The problem of parameter estimation
has been largely solved through the use of weighted estimating equations,
and software for �tting GLMs to survey data is now available in most major
statistical packages. The big gap in the output from these packages is an
analogue of the deviance and related quantities like AIC. It turns out to be
straightforward to extend the results in Rao & Scott (1984) for loglinear mod-
els in contingency tables to arbitrary GLMs. We show that the asymptotic
distribution of the log-likelihood ratio is a linear combination of chi-squared
random variables whose coe�cients are eigenvalues of a matrix product that
does not involve the inverse of the estimated covariance matrix. We then use
results from Scott & Styan (1985) to obtain usable approximations to this
asymptotic distribution using only information that is routinely available in
large public-release surveys.
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Abstract

We build on results [8] about Euler factorizations of magic matrices presented
at the LINSTAT'2008 Conference in celebration of Tadeusz Cali«ski's 80th
Birthday. Our classic magic matrices are n×n with entries 0, 1, . . . , n2−1 in
some order. These matrices are fully-magic in that the numbers in all rows,
columns, and the two main diagonals all add up to the same magic sum.
The 4 × 4 classic magic matrix M has Euler factorization M = 4L1 + L2,
where the �rst Euler component matrix L1 =

[
1
4M

]
is the 4 × 4 matrix

with entries which are the integer parts of entries in 1
4M. We also build on

seminal results [5] by Friedrich Fitting (1862�1945) and his son Hans Fitting
(1906�1938) about the factorization M = 8B1 + 4B2 + 2B3 + B4, where
the binary Fitting component matrices B1 =

[
1
8M

]
, B2 =

[
1
4M− 2B1

]
and

B3 =
[
1
2M− 4B1 − 2B2

]
.

We believe that the proof that there are precisely 880 essentially distinct
classic 4 × 4 fully-magic squares was �rst given by Fitting [5], though in [6]
Bernard Frénicle de Bessy (c. 1605�1675) enumerated and classi�ed these
880 matrices over 200 years earlier. Fitting [5] also showed that precisely 528
of these 880 have all four binary component matrices B1, B2, B3, B4 fully-
magic, while very recently Amela [1] and Setsuda [7] have shown that 128
more, and so precisely 656 of these 880 have both Euler component matrices
L1, L2 fully-magic. Brigadier-General F.J. Anderson (1860�1920) observed
in [2] that certain 4× 4 classic magic matrices have symmetric graphs.
In this talk we present a new and interesting classi�cation of these 880 ma-
trices using the 5 Frénicle�Amela patterns [1], [6], the 12 Dudeney types [3],
and the Anderson symmetric graph property [2]. We have tried to illus-
trate our �ndings as much as possible, and whenever feasible with images
of postage stamps or other philatelic items, with special emphasis on those
associated with Leonhard Euler (1707�1783), Friedrich Fitting (1862�1945),
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Hans Fitting (1906�1938), and Brigadier-General Sir Francis James Anderson
CB KBE (1860�1920).
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Construction and analysis of D-optimal edge

designs

Stella Stylianou
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Abstract

Edge designs are screening experimental designs that allow a model-indepen-
dent estimate of the set of relevant variables, thus providing more robustness
than traditional designs. In this paper, new classes of D-optimal edge de-
signs are constructed. This construction uses weighing matrices of order n
and weight k together with permutation matrices of order n to obtain D-
optimal edge designs. Linear and quadratic simulated screening scenarios are
studied and compared using linear regression and edge designs analysis. An
alternative method for constructing and analyzing expanded edge designs is
introduced. This method provides a model-independent estimate of the set
of active factors and also gives a linearity test for the underlying model.
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Screening, Linear models, Regression analysis, Conference matrices, Weighing
matrices, Simulation experiments.
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Muste � editorial environment for matrix

computations
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Abstract

Practical application of multivariate statistical methods requires appropri-
ate tools for the analyses. Such tools should provide �exible and powerful
instruments to perform matrix computations. We present an editorial envi-
ronment for matrix computations that allows to freely mix natural language
and computation schemes. The presented matrix interpreter is one part of
whole integrated system intended for statistical computing and related tasks.
The history of this system dates back to early 1960s when Seppo Mustonen
developed a library of matrix subroutines for the Elliott 803 computer [2].
This library was expanded to a statistical programming language SURVO 66

[1]. Innovative editorial environment was introduced in SURVO 76 [3] and the
current version of the matrix interpreter (created by Mustonen in 1985) is
based on the �rst C language version SURVO 84C [4,5]. Following SURVO 98

and SURVO MM, the newest generation of the system is called Muste. Muste is
an open source implementation of Survo and developed as a multiplatform R

package [6]. It is freely available from the R-forge development platform.
We demonstrate the use of Muste implementation of the Survo matrix inter-
preter in the case of so called direct factor analysis in which exploratory fac-
tor analysis is considered as a speci�c data matrix decomposition with �xed
unknown matrix parameters. In this recent approach all model unknowns
including common and unique factor scores are estimated simultaneously
by minimizing a speci�c object function with an alternating least squares
(ALS) algorithm utilizing singular value decomposition (SVD) of data ma-
trices. Such technique also allows to generalize factor analysis into cases with
more variables than observations [7].

Keywords
Survo, Muste, R-project, Factor analysis, Singular value decomposition, Al-
ternating least squares.
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Simultaneous con�dence intervals among mean

components in elliptical distributions
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Abstract

We consider simultaneous con�dence intervals for pairwise comparisons among
components of mean vector. Such a situation arises, for example, in multiple
comparisons of the components of repeated measurements of the same quan-
tity in di�erent conditions. Actually, in order to construct the simultaneous
con�dence intervals, it is required to give the upper percentiles of F 2

max ·p
statistic. However, in general, it is di�cult to �nd the exact values even un-
der normality. So the approximate upper percentiles of F 2

max ·p statistic have
been discussed by many authors (see, e.g., [1]). In this study, we consider
approximation to the upper percentiles of F 2

max ·p statistics based on Bon-
ferroni's inequality in elliptical distributions. Further, in order to evaluate
the accuracy of the approximations, some numerical results by Monte Carlo
simulations are given.
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A new approach to adaptive spline threshold

autoregression by using Tikhonov

regularization and continuous optimization
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Abstract

This paper investigates the use of conic adaptive spline treshold autoregres-
sion (C-ASTAR) which was developed using adaptive spline treshold autore-
gression (ASTAR) and conic quadratic programming (CQP).
MARS, a modern technology in statistical learning, has importance in regres-
sion and classi�cation [1]. MARS is very useful for high dimensional problems
and shows a great promise for �tting nonlinear multivariate functions. MARS
technique does not impose any particular class of relationship between the
predictor variables and outcome variable of interest. In other words, a special
advantage of MARS lies in its ability to estimate the contribution of the basis
functions so that both the additive and interaction e�ects of the predictors
are allowed to determine the response variable.
By letting the predictor variables in the MARS algorithm be lagged in values
of a time series system, one obtains a univariate ASTAR model for nonlin-
ear autoregressive threshold modeling and analysis of time series, thereby
extending the threshold autoregression (TAR) time series methodology [2].
ASTAR consists of two complementary algorithms as MARS. To estimate the
model function, as MARS algorithm, ASTAR has two stepwise algorithms,
which provide to determinate basis functions stand in the model and to get
the best appropriate model. Because the model obtained with the forward
stepwise algorithm used in the �rst step has a very complex structure in the
second step using backward stepwise algorithm basis functions remove in turn
to reach optimum model.
In this study, a new approach was applied for the second stepwise algorithm
of ASTAR. With this approach, ASTAR model turned to the Tikhonov reg-
ularization problem was transformed to CQP problem. When bounds of this
optimization problem are determined using multiobjective optimization ap-
proach, too many solutions can be obtained. Thus, it is aimed to attain an
optimum solution.
In conclusion, linear regression, ASTAR algorithm and C-ASTAR algorithm
were applied to two di�erent time series data sets, and these approaches
performances were compared by using di�erent measures.
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The Luoshu and most perfect pandiagonal

magic squares

Götz Trenkler1 and Dietrich Trenkler2

1 Dortmund University of Technology, Germany
2 University of Osnabrück, Germany

Abstract

First the structure of 3×3 magic squares is investigated. It is shown that these
squares can be represented by dyadic products of three mutually orthogonal
vectors. Their Moore-Penrose inverse, numerical range and polar decompo-
sition are derived. In the second part 4 × 4 pandiagonal magic squares are
studied. Based on a simple representation with four mutually orthogonal vec-
tors, many features of these magic squares like EP-ness, normality, symmetry
and associatedness are considered. The talk is highlighted by a 4 × 4 pan-
diagonal magic square with numerous patterns, consisting of prime numbers
only.
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Cook's distance for ridge estimator in

semiparametric regression

Semra Türkan and Oniz Toktamis

Hacettepe University, Ankara, Turkey

Abstract

The detection of in�uential observations has attracted a great deal of atten-
tion in last few decades. Most of the ideas of determining in�uential observa-
tions are based on single-case diagnostics with ith case deleted. The Cook's
distance are most commonly used among the other single-case diagnostics
and successfully applied to various statistical models. In this article, we pro-
pose Cook's distance for the ridge regression estimator of the parametric
component in the semiparametric regression model to detect in�uential ob-
servations. We investigate the performance of proposed diagnostic to detect
in�uential observations by using real data and simulation data.
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tance, In�uential observations.
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D-optimum hybrid sensor network deployment

for parameter estimation of spatiotemporal

processes
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Abstract

Process control often requires models in which non-negligible spatial dynam-
ics has to be included in addition to the temporal one. Modelling then in-
volves partial di�erential equations and a major di�culty in model calibra-
tion is the impossibility to measure process variables over the entire spatial
domain. This leads to the question of how to optimally place sensors. Many
sensor placement strategies have been developed [2]. They usually exploit the
Fisher information matrix associated with the parameters to be identi�ed.
A revived interest in optimal sensor location is correlated with advances in
Sensor Networks (SNs) which highly increase the �exibility of observation
systems [1].
In this talk, a SN is considered which includes a number of mobile nodes
which can move in a given spatial domain and, therefore, we would like their
trajectories to be optimal in a sense. In addition to that, the data from mo-
bile sensors are to be complemented by the ones gathered by a given number
of nodes selected from among a greater number of nodes whose locations
in space are �xed. Therefore, a decision must be made about which subset
of non-mobile sensors is to be activated. Mathematically, the problem is a
mixed discrete optimal control one and, due to its potential high dimension-
ality, naive solutions are deemed to failure. We apply the branch-and-bound
method to drastically reduce the search space. The key idea behind it is
alternation between two relaxed problems, namely a discrete optimization
one related to stationary sensors and an optimal control one associated with
moving sensors.
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Multilevel Rasch model and item response

theory
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Abstract

The analysis of response data to test items requires psychometric methods to
investigate characteristics of items and individuals that answer those items.
Item Response Models (IRMs) consider that a latent variable explains these
responses. The applications of IRT modeling have increased considerably in
recent years because of its utility in developing of measuring instruments.
Often the relations between the items and latent variable are of interest. Some
procedures (factor analysis, discriminant analysis) allow the links between the
items and the latent variables to be de�ned, but none of them make direct
estimation of latent variable.
In 1960 Georg Rasch suggested a statistical Rasch Model (RM) that makes
it possible to de�ne these links and obtain scales with a good �t of an IRM.
It transforms the cumulative raw scores (achieved by a subject across items
or by an item across subjects) into linear continuous measures of ability of
person and di�culty of item. Unidimensionality is a primary assumption of
the Rasch model, that is, responses to the items should measure a single
construct so the Rasch model is a unidimensional IRM. In Rasch model, raw
data from a rating scale is converted to an equal interval scale measured in
logits (log odd units) that allows one to use more variant parametric statistics
instead of nonparametric statistics.
RM actually is a member of Hierarchical Generalized Linear Model (HGLM).
In the simpler formulation of this model it is possible to consider a dichoto-
mous RM as a two-level multilevel logistic model with random intercept,
where the items and subjects are the level-1 and level-2 units, respectively
and also item parameter is �xed and the person parameter is random. So
with RM it is possible to incorporate a nested structure of the data and to
include covariates at di�erent hierarchical levels.
In this paper, we will present Item Response Theory and Multilevel Rasch
Model, and will show the results on the basis of a data set of quality of life
(SF36) by running WINSTEPS software.

Keywords
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Conditional AIC for linear mixed e�ects models

Florin Vaida
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Abstract

We show that for a linear mixed e�ects model where the question of inter-
est concerns cluster-speci�c inference the commonly-used de�nition for AIC
is not appropriate. We propose a new de�nition for this context, which we
call the conditional Akaike information criterion (cAIC). The cAIC is ob-
tained from �rst principles, and we show that the penalty for the random
e�ects is related to the e�ective number of parameters, rho, proposed by
Hodges and Sargent; rho re�ects a level of complexity between a �xed-e�ects
model with no cluster e�ects, and a corresponding model with �xed cluster-
speci�c e�ects. We provide �nite-sample results for the linear mixed-e�ects
model with known random e�ects variances, and an asymptotic approxima-
tion for a special case with unknown random e�ects variances. We compare
the conditional AIC with the marginal AIC (in current standard use), and we
argue that the latter is only appropriate when the inference is focused on the
marginal, population-level parameters. A pharmacokinetics data application
is used to illuminate the distinction between the two inference settings, and
the usefulness of the conditional AIC. Extensions to generalized linear mixed
model and proportional hazards mixed e�ects models, based on asymptotic
arguments, are also considered.
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On testing linear hypotheses in general mixed

models

Júlia Volaufová and Je�rey Burton
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Abstract

Testing linear hypotheses about parameters of the mean (�xed e�ects) in
linear mixed models has been studied extensively for decades. The method-
ology developed for linear mixed models can be adapted to nonlinear mixed
models. Here we look into existing tests and discuss adjustment of a test
based on a correction (approximation) of the estimated covariance matrix of
�xed e�ects estimators. The correction takes into account the estimates of
variance-covariance components, and the development is similar to the one
done by Kackar-Harville and Kenward-Roger. The Satterthwaite approxima-
tion is used for calculation of degrees of freedom. The approach via �rst
order approximation and via two-stage estimation for a nonlinear random-
coe�cient regression model is investigated.
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Functional discriminant coordinates
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Abstract

Let be ylij the observed value of the tested statistical feature on the the i-
th individual belogning to the l-th class in the j-th time point, where i =
1, 2, . . . , Nl, j = 1, 2, . . . , Ji, l = 1, 2, . . . , L, N1 +N2 + . . .+NL = N .
The moments of observation tlij of the statistical feature can vary from
individual to individual and intervals between observation moments need
not be identical. Then our data consist of pairs {tlij , ylij}, where tlij ∈ I,
i = 1, 2, . . . , Nl, j = 1, 2, . . . , Ji, l = 1, 2, . . . , L.
We convert discrete data {tlij , ylij} to functional data:

{xli(t), i = 1, 2, . . . , Nl, l = 1, 2, . . . , L, t ∈ I}, where

xli(t) =
N−1∑
k=0

ckϕk(t), t ∈ I,

{ϕk(t)} is the chosen orthonormal base system. The coe�cients ck are esti-
mated from the data by least squares method.
The method of construction of discriminant coordinates in L2(I)-space for
functional data is described in the mongraph [1]. In this paper we propose a
new method of construction of discriminant coordinates and its kernel vari-
ant.

Keywords

Functional data, Orthonormal basis, Discriminant coordinate, Reproducing
kernel Hilbert space, Kernel.
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On the linear aggregation problem in the

general Gauÿ-Markov model
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Abstract

We consider the linear aggregation problem in the general possibly singular
Gauÿ-Markov model. For the true underlying micro relations, which explain
the micro behavior of the individuals, no restrictive rank conditions are as-
sumed. We investigate several estimators for certain linear transformations
of the systematic part of the corresponding macro relations and discuss their
properties.

Keywords

Aggregation bias, Best linear unbiased estimator, Linear aggregation, Micro
relation, Macro relation.
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Robust model-based sampling designs

Douglas P. Wiens

University of Alberta, Edmonton, Canada

Abstract

I will describe some work currently being carried out with Alan Welsh at
Australian National University. The problem addressed is to draw a sample,
from which to estimate a population total. The data are completely known
covariates, to which the unknown response variable is related. Di�culties to
be overcome are that the relationship between these variables is only approxi-
mately, and perhaps erroneously, speci�ed; similarly the variance/covariance
structure of the data must be anticipated at the design stage. We derive
minimax designs, and a genetic algorithm for computing the designs.

Keywords

Design, Genetic algorithm, Minimax, Robust.
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On exact and approximate simultaneous

con�dence regions for parameters in normal

linear model with two variance components
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Abstract

We consider normal linear regression model with two variance-covariance
components

Y ∼ Nn(Xβ, σ2V (λ)),

where X is known (n × p) matrix, β ∈ Rp is unknown vector of parameters
and σ2V (λ) = σ2(In + λV ) is the variance-covariance matrix, with known
n.n.d. matrix V , which depends on unknown parameters σ2 > 0 and λ ≥ 0.
We will present a brief overview the standard LRT/RLRT test statistics and
will present the form and properties of their exact and/or approximate dis-
tributions under null hypothesis, see e.g. [1,2], which could be used for con-
struction of the simultaneous con�dence regions for some combinations of
the parameters θ, λ, σ2, where θ = H ′β, H being a known matrix such that
R(H) ⊆ R(X ′), based on inverting the exact (restricted) likelihood ratio tests
of the following null hypotheses:

H0 : θ = θ0 and λ = λ0 (1)

H0 : θ = θ0 and λ = λ0 and σ2 = σ2
0 (2)

H0 : λ = λ0 (3)

H0 : λ = λ0 and σ2 = σ2
0 . (4)

Keywords

Linear regression model with two variance components, Exact likelihood ratio
test, Simultaneous con�dence regions.
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Using methods of stochastic optimization for

constructing optimal experimental designs with

cost constraints

Alena Bachratá and Radoslav Harman

Comenius University in Bratislava, Slovakia

Abstract

We propose a stochastic optimization method related to simulated annealing
for constructing e�cient designs of experiments under a broad class of linear
constraints on the design weights.
The linear constraints can represent restrictions on various types of �costs�
associated with the experiment.
To illustrate the method we computed DA-optimal designs for estimating a
set of treatment contrasts in the case of block experiments with blocks of size
two.
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Regression model of AMH
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Abstract

Anti-Mullerian hormone (AMH), which is also known as Mullerian inhibitory
substance (MIS), is produced in the ovary by granulosa cells in pre-antral and
small-antral follicles. AMH is a marker for ovarian reserve and it has been
shown to be a good predictor of the number of oocytes retrieved from patiens
undergoing IVF. There is a relationship between AMH levels and ovarian re-
sponse during IVF. Many studies found a high level of correlation between
the AMH level and the number of oocytes retrieved. Women with lower levels
of AMH have lower count of the antral follicules and produce a lower number
of oocytes. Unlike other levels of hormonal biomarkers - FSH, estradiol, in-
hibin B - AMH has a relatively stable expression during the menstrual cycle
therefore the AMH test can be done on any day of woman´s cycle. Along
with the evaluation of the age, basal FSH, inhibin B, antral follicle counts
by ultrasound AMH allows much more precise estimate of ovarian reserve -
fertility potential, ovarian response and estimates the chances of pregnancy
success with IVF treatment. The objective of the study was to determine
how AMH levels a�ect probability of the fertility.

Keywords

Anti-Mullerian hormone, Follicle-stimulating hormone, Logistic regression,
Probability of the fertility.
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Calibration between log-ratios of parts of

compositional data

Sandra Donevska, Eva Fi²erová, and Karel Hron

Palacký University Olomouc, Czech Republic

Abstract

Compositional data are multivariate observations carrying only relative infor-
mation, popularly represented as proportions or percentages. Consequently,
only ratios between parts of compositional data are informative [1,4]. They
are characterized by the simplex sample space with the Aitchison geometry
that has Euclidean vector space structure. Thus, since compositional data
have di�erent nature from the standard multivariate observations that rely
on the Euclidean geometry in real space, they need to be expressed in real
space using proper log-ratio transformation before standard statistical anal-
ysis is applied.
In the contribution we will perform calibration between parts of composi-
tional data. One possible way to solve this problem is to apply orthogonal
regression to all log-ratios of pairs of compositional parts. We will focus on
some properties and interpretation on matrices of predicted averages and
residual variances as results for all the mentioned combinations of log-ratios.
The corresponding statistical inference will be performed using a linear re-
gression model with type-II constraints [2,3].

Keywords

Compositional data, Log-ratio transformation, Orthogonal regression, Linear
model with type-II constraints.

References

[1] Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman
and Hall, London.

[2] Donevska, S., E. Fi²erová, and K. Hron (2011). On the equivalence between
orthogonal regression and linear model with type-II constraints. Acta Univ.
Palacki. Olomuc., Fac. rer. nat. Math. 50, 19�27.

[3] Fi²erová, E. and K. Hron (2010). Total least squares solution for compositional
data using linear models. J. Appl. Stat. 37, 1137�1152.

[4] Pawlowsky-Glahn, V. and A. Buccianti (2011). Compositional Data Analysis:
Theory and Applications. Wiley, Chichester.



178 C. Fernandes, P. Ramos, J. T. Mexia

COBS and stair nesting - segregation and

crossing?
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2 Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Portugal

Abstract

Stair nesting leads to very light models since the number of their treatments
is additive on the numbers of observations in which only the level of one factor
various. These groups of observations will be the steps of the design. In stair
nested designs we work with fewer observations when compared with balanced
nested designs and the amount of information for the di�erent factors is
more evenly distributed. We now integrate these models into a special class
of models with orthogonal block structure for which there are interesting
properties.

Keywords

COBS, Stair nesting, Segregation, Cross.

References

[1] Carvalho, F., J.T. Mexia, and M. Oliveira (2008). Canonic inference and com-
mutative orthogonal block structure. Discuss. Math. Probab. Stat. 28, 171�181.

[2] Fernandes, C., P. Ramos, and J.T. Mexia (2007). Variance components estima-
tion in generalized orthogonal models. Discuss. Math. Probab. Stat. 27, 99�115
(2007).

[3] Fernandes, C., P. Ramos, and J.T. Mexia (2010a). Balanced and step nesting
designs - Application for cladophylls of asparagus. J. Biostat. 4, 279�287.

[4] Fernandes, C., P. Ramos, and J.T. Mexia (2010b). Algebraic structure of step
nesting designs. Discuss. Math. Probab. Stat. 30, 221�235.

[5] Fernandes, C., P. Ramos, S. Saraiva, and J.T. Mexia (2005). Optimization of
nested step designs. Biom. Lett. 42, 143�151.

[6] Fonseca, M., J.T. Mexia, and R. Zmy±lony (2006). Binary operations on Jordan
algebras and orthogonal normal models. Linear Algebra Appl. 417, 75�86.

[7] Vanleeuwen, D., J. Seely, and D. Birkes (1998). Su�cient conditions for orthog-
onal designs in mixed linear models. J. Statist. Plann. Inference 73, 373�389.

? This work was partially supported by the Portuguese Foundation for Science and
Technology through PEst-OE/MAT/UI0297/2011 (CMA).



C. Fernandes, P. Ramos, J. T. Mexia 179

[8] Vanleeuwen, D., D. Birkes, and J. Seely (1999). Balance and orthogonality in
designs for mixed classi�cation models. Ann. Statist. 27, 1927�1947.

[9] Zmy±lony, R. (1978). A Characterization of Best Linear Unbiased Estimators
in the General Linear Model. Lectures Notes in Statistics 2, Springer-Verlag,
Berlin.



180 Ö. Akku³, S. Dem�r, A. Gökta³

Validity of the assumed link functions for some

binary choice models based on the bootstrap

con�dence band with R
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Muğla University, Turkey

Abstract

In this study, we have introduced the commands testing the validity of the
assumed link functions of the binomial logit, probit and complementary log-
log models based on the bootstrap con�dence bands in R. Some parts of the
commands are designed to be optional and provide users to have the results
with respect to the di�erent parametric models such as logit, probit and com-
plementary log-log model and di�erent semiparametric estimators such as the
semiparametric maximum likelihood estimator and the weighted semipara-
metric least square estimator. Researchers studying in this area could easily
test the accuracy of the assumed parametric link functions for binary out-
comes using the commands in R, which is free, widely used and a very popular
statistical package as well. The applicability of the codes was supported over
hypothetical and real data sets.
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Bootstrap con�dence band, Validity test, Binomial choice, R package.
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Regular E-optimal spring balance weighing

design with correlated errors
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Abstract

The problems linked with an E-optimal spring balance weighing design with
correlated errors are discussed. The concept of the paper is the generalization
of ideas of optimal designs presented in [1] and [2]. The topic is focus on the
determining the maximal eigenvalue of the information matrix for the design.
There is given the lowest of the eigenvalue and the conditions under which
the lowest bound is ful�ll. The constructing method of the E-optimal design,
based on the incidence matrices of balanced incomplete block designs, is
presented.
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Estimation of parameters of structural change

under small sigma approximation theory
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Abstract

In this paper, the structural change in a linear regression model over two dif-
ferent periods of time is estimated. The ordinary least squares and Stein-rule
estimators are employed to estimate the structural change. Their e�ciency
properties are derived using the small sigma theory and dominance conditions
are derived.
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Abstract

Tropospheric ozone e�ects negatively crop plants causing the biomass and
yield losses, which might be connected with plant photosynthesis activity
decrease. Chlorophyll content has been discovered as one of the parameters,
which responses for higher ozone concentrations. However, these results were
usually obtained during fully controlled conditions. Hence, it is necessary to
conduct investigations in ambient air conditions to con�rm these �ndings.
Ozone-sensitive and -resistant tobacco cultivars were employed in presented
investigations. Plants were exposed in 6 sites for 7 two-week series in growing
season of 2006. Simultaneously, one site was located in control conditions with
no ozone. Chlorophyll a, b and a + b in fresh and dry weight content were
measured after every exposure series with using the extraction by DMSO
method.
The aim of presented study was to examined if ozone a�ects chlorophyll con-
tent in these two cultivars exposed in various sites in several series. As well
as, the determination di�erences in leaf response for further choice the best
leaf to physiological plant investigations. For these purposes canonical variate
analyses was employed. Graphical presentation of obtain results is presented
here. Experimental objects were placed in space of canonical variates, while
points described the chlorophyll content were located in dual space of canon-
ical variates.
The results revealed di�erences between chlorophyll content measured in dif-
ferent exposed series, although there was no di�erences between sites, except
control and site located in the city centre. Probably, sites of exposure did not
di�er the ozone e�ect due to small di�erences in tropospheric ozone concen-
trations. While higher di�erences were noted between certain series, which
might be connected with favorable meteorological conditions for ozone cre-
ation as well as for plant photosynthesis activity and chlorophyll creation.
Moreover, both tobacco cultivars responded similarly for ozone occurrence in
the ambient air, which might be a very good indicator of ozone e�ect without
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visible symptoms. Additionally, the obtained results pointed out the best leaf
for further investigations.
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Latin square designs and fractional factorial

designs
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Abstract

A Latin square of order s is an arrangement of the s letters in an s×s square
so that every letter appears exactly once in every row and exactly once in
every column. The fractional factorial designs, a subset of the full factorial,
are widely used in industrial research or other �elds to reduce the cost of the
experiment. In fact, Latin squares may also be used for fractional factorial
designs, and there are some relationships between these two kinds of design.
[5] used two examples to show that a Latin square can be chosen such that
it corresponds to a fractional factorial design. In this presentation, we are
going to study this topic more precisely. Furthermore, we will explore the
relationship between fractional factorial design and Latin square design in
general, where s is a prime or a power of a prime.
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Abstract

The introduction of weights in the phenotypic trait (e.g. yield) for di�er-
ent genotypes in di�erent environments enables us to generalize the joint
regression analysis (JRA) [1,2], for the case when the error variance is not
homogeneous across environments. Moreover it is possible to use incomplete
blocks, while the environments are "better" represented accordingly to the
accuracy in the measurements.
To �t the regressions for the weighted linear JRA, an algorithm is derived
to minimize the sum of sums of weighted residuals [3,4]. An application with
data sets from spring barley (Hordeum vulgare L.) breeding programme car-
ried out in Czech Republic is presented and the results are compared with
the standard JRA.
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Modeling resistance to oat crown rust in series

of oat trials
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Abstract

Based on the results of post registration variety trials a recommendation for
farmers is produced which varieties should be sown. In trials on spring oat one
of the observed characteristics is resistance to oat crown rust. This is main
disease which a�ects all regions of crop growth ([2]). Crown rust reduces oat
yield and causes thin kernels with low weight. Moderate to severe epidemics
can reduce grain yield by 10 to 40%.
To answer the question which oat varieties in the Polish post registration trial
system are the best in terms of resistance to crown rust, we analyzed series of
40 oat �eld trials from two consecutive years 2009 and 2010. For this purpose
the generalized linear mixed model ([3]) with single variance component rep-
resenting variety×site interaction was applied. The most resistant varieties
were identi�ed and signi�cant di�erences were detected. One of the varieties
was also more resistant to crown rust then standard (the combination of three
varieties pointed by specialist as standard varieties). Maximum likelihood es-
timates were obtained using Laplace transformation to compute likelihood
function. All computations were performed using R package ordinal ([1]).

Keywords

Generalized linear mixed model, Multinomial distribution, Ordinal data, Oat
crown rust.
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staggered and stair nested designs?
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Abstract

Traditional balanced nested designs are the most popular form of nesting
but we are forced to divide repeatedly the plots and we have few degrees of
freedom for the �rst levels. Meanwhile the number of treatments increases
rapidly with the number of factors and the number of levels in each factor.
These designs are orthogonal and the estimators of the variance components
are independent. As an alternative we have the unbalanced nesting. The
most popular unbalanced nested design is the staggered nested design. This
design requires less observations than the balanced case and the degrees of
freedom are almost the same for the di�erent factors. However this design is
not orthogonal. Another alternative is the stair nested design. In this design
we can work with fewer observations than the balanced case, the amount
of information for the di�erent factors is more evenly distributed and the
number of degrees of freedom is not very di�erent among the factors. However
this design have an orthogonal structure unlike the staggered nested designs
so they retain the simplicity associated with orthogonality in balanced nested
designs. In this work we compare the results obtained for the estimators of
the variance components using these three designs.

Keywords

Balanced nested designs, Staggered nested designs, Stair nested designs, Vari-
ance components.
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D-optimal chemical balance weighing designs

for three objects if n ≡ 2 (mod 4)

Krystyna Katulska and �ukasz Smaga
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Abstract

In this paper, chemical balance weighing design problem for three objects
and the errors between the observations follow a �rst-order autoregressive
process is considered. From such assumptions, the covariance matrix of error
components depends on the known parameter ρ. We prove the D-optimality
of some designs in the class of designs for three objects, when the number of
observations n ≡ 2 (mod 4) and some ρ ≥ 0. Some necessary and su�cient
conditions under which the design is D-optimal in considered class of designs
are also proved.
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Is the skew t distribution truly robust?
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Abstract

The skew t distribution is considered by many a �exible model for modeling
general asymmetric data. The model parameters are believed to be able to
properly capture the skewness and kurtosis possessed in data.
The alleged robustness property of the skew t distribution is inspected in de-
tails in the independent and identically distributed and regression situations.
It is found that the skew t distribution is robust only when the extent of
asymmetry is mild and the magnitude of kurtosis is small.
We recommend using an existing parametric robust likelihood approach to
analyze data when one is uncertain about the distribution underlying the
data.
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Design of experiment for regression models
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Abstract

We consider the linear regression model with parameter constraints, i.e. re-
gression model with constraints of the type I. For this model we present the
exact form of the criterial function and the iterative computation of optimum
designs.
We focused on the criterion of local A-optimality, the criterion of local D-
optimality and the criterion of local C-optimality. The aim of the presented
contribution is to show the exact form of the gradient of the considered local
criterion functions.

Keywords

Regression model with parameter constrains, A-optimal design, D-optimal
design, C-optimal design.
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Abstract

Inference on the parent-o�spring correlation coe�cient is an important prob-
lem in the analysis of familial data, and point estimates and likelihood based
inference are available in the literature. In this work, corrections for the signed
log-likelihood ratio test statistics are proposed, based on small sample asymp-
totics, in order to achieve accurate small sample performance. The corrected
statistic can be used for hypothesis testing as well as for interval estimation.
Numerical results are reported to show that the resulting tests and con�dence
intervals exhibit satisfactory performance regardless of the sample sizes. The
results are illustrated using an example.
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George P. H. Styan's Editorial Positions and
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George P. H. Styan has a long and honorable career in Mathematics. He has
served in the Editorial Boards of many scienti�c journals and published ten
books and over one hundred �fty papers. In the following pages we attempt to
compile an almost complete listing of his editorial positions and publications
(books and papers) up to now.
Many thanks to Simo Puntanen and George Styan himself for the help in
gathering the information.

I. Editorial Positions

Editor�in�Chief:

� Chance Magazine: vol. 9, no. 1 (1996)�vol. 11, no. 4 (1998);
� Forthcoming Events/Activités Prévues: supplement to The Canadian Jour-

nal of Statistics/La Revue Canadienne de Statistique: 1979�1984;
� Image�The Bulletin of the International Linear Algebra Society: no. 13

(July 1994)�no. 30 (April 2003) jointly with Steven J. Leon: no. 13 (July
1994)�no. 18 (Winter/Spring 1997, with Hans Joachim Werrner: no. 25
(October 2000)�no. 30 (April 2003);

� The IMS Bulletin: vol. 16 (1987)�vol. 21 (1992);
� International Calendar of Statistical Events: In The IMS Bulletin, vol. 16

(1987)�vol. 25 (1996); Supplément à La Gazette des Sciences Mathéma-
tiques du Québec: 1977�1978;

� Statistical Science Association of Canada/Association Canadienne de Sci-
ence Statistique Newsletter: 1972.

Abstracting Editor:

� Current Index to Statistics: 2000�to date; pub. American Statistical As-
sociation (Alexandria, Virginia) & Institute of Mathematical Statistics
(Beachwood, Ohio), ISBN 1�931586�15�2, ISSN 1094�7469. [Bibliogra-
phy of over 250,000 items referencing the literature in statistics and prob-
ability.]
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Managing Editor:

� The Canadian Journal of Statistics/La Revue Canadienne de Statistique:
1977�1984, 1999�2009, vol. 5, no. 2 (June 1977)�vol. 12, no. 2 (June 1984),
vol. 27, no. 1 (March 1999)�vol. 36, no. 4 (December 2008); Editor: McGill
University Reports from the Department of Mathematics and Statistics
(ISSN 0824�4944): 1982�1984 (jointly with W. O. J. Moser), 2002�to
date.

Associate Editor:

� Far East Journal of Mathematics: 2007�to date;
� Journal of Inequalities in Pure and Applied Mathematics: 1999�2005;
� Journal of Statistics & Management Systems: 2005�to date;
� Mathematical Inequalities & Applications: 1997�to date;
� Communications in Statistics: 1977�2000;
� Journal of Statistical Planning and Inference: 1992�2000;
� Istatistik�Journal of the Turkish Statistical Association: 1995�1999;
� Linear Algebra and its Applications: 1986�2004;
� SIAM Journal on Matrix Analysis and Applications: 1995�1997;
� SSC Liaison�The Newsletter of the Statistical Society of Canada: 1987�

1999 & Production Editor: 2005�2007.

Book Reviews Editor:

� The Canadian Journal of Statistics: 1985�1988.

Corresponding Editor:

� The IMS Bulletin: 1993�2000.

Joint Editor:

� (with A. J. Wright), European Aviation News: February 1958�1963;
� (with L. F. Sarjeant), Overseas Civil Register News: 1956�1957;
� European Aviation News: January 1958.

Advisory Editor:

� Chance Magazine: 1999�2007.

Member of the International Editorial Board:

� Research Group on Mathematical Inequalities and Applications (RGMIA),
Melbourne, Australia: 1999� .
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II. Special Issues Guest Edited

1. I. Olkin, C. R. Rao & G. P. H. Styan, eds. (1985�1986). First Special Issue
on Linear Algebra and Statistics: Linear Algebra Appl. 67 (June 1985),
279 pp.; vol. 70 (October 1985), 369 pp. & vol. 82 (October 1986), pp.
143�279.

2. M. D. Perlman, F. Pukelsheim & G. P. H. Styan, eds. (1990). Second
Special Issue on Linear Algebra and Statistics: Linear Algebra Appl. 127
(January 1990), viii + 656 pp.

3. J. K. Baksalary & G. P. H. Styan, eds. (1992). Third Special Issue on Lin-
ear Algebra and Statistics: Linear Algebra Appl. 176 (November 1992),
viii + 289 pp. [Includes papers presented at the International Workshop
on Linear Models, Experimental Designs & Related Matrix Theory: Tam-
pere, Finland, August 1990.]

4. J. K. Baksalary & G. P. H. Styan, eds. (1993). Special Issue, Papers Pre-
sented at the International Workshop on Linear Models, Experimental
Designs, and Related Matrix Theory. J. Statist. Plann. Inference 36(2,3)
(August/September 1993), ii + pp. 127�432. [Zbl 783.00013; 24 research
papers presented at the Workshop held in Tampere, Finland, 6�8 August
1990.]

5. F. Pukelsheim, G. P. H. Styan, H. Wolkowicz & I. Zaballa, eds. (1994).
Special Issue Honoring Ingram Olkin. Linear Algebra Appl. 199 (March
1994), viii + 445 pp. [Special Issue in Honor of Ingram Olkin's 70th
Birthday.]

6. J. J. Hunter, S. Puntanen & G. P. H. Styan, eds. (1994). Fourth Special
Issue on Linear Algebra and Statistics: Linear Algebra Appl. 210 (October
1994), ii + 273 pp.

7. R. B. Bapat, G. P. H. Styan & H. J. Werner, eds. (1996). Fifth Special Issue
on Linear Algebra and Statistics: In Celebration of the 75th Birthday of
C. R. Rao. Linear Algebra Appl. vol. 237/238 (April 1996), vii + 592 pp.
[MR1382661.]

8. R. W. Farebrother, S. Puntanen, G. P. H. Styan & H. J. Werner, eds.
(1997). Sixth Special Issue on Linear Algebra and Statistics: Linear Al-
gebra Appl. 264 (October 1997), ix + 506 pp. [Zbl 881.00016.]

9. R. W. Farebrother, S. Puntanen, G. P. H. Styan & H. J. Werner, eds.
(1999). Seventh Special Issue on Linear Algebra and Statistics: Linear
Algebra Appl. 289 (March 1999), iv + 344 pp. [Includes papers from
the Sixth International Workshop on Matrices and Statistics, Istanbul,
Turkey, August 16�17, 1997. MR 99i:00019, Zbl 928.00027.]

10. S. Puntanen, G. P. H. Styan & H. J. Werner, eds. (2000). Eighth Special
Issue on Linear Algebra and Statistics. Linear Algebra Appl. 321 (15
December 2000), xi + 412 pp. [MR1799634, Zbl 0972.00016.]

11. S. Puntanen, G. P. H. Styan & H. J. Werner, eds. (2002). Ninth Special
Issue on Linear Algebra and Statistics. Linear Algebra Appl. 354 (15
October 2002), xii + 291 pp. [MR1927644.]
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12. S. Puntanen, G. P. H. Styan & H. J. Werner, eds. (2004). Tenth Special
Issue (Part 1) on Linear Algebra and Statistics. Linear Algebra Appl. 388
(1 September 2004), 400 pp.

13. S. Puntanen, G. P. H. Styan & H. J. Werner, eds. (2005). Tenth Special
Issue (Part 2) on Linear Algebra and Statistics. Linear Algebra Appl. 410
(15 November 2005), 290 pp.

14. S. E. Ahmed, J. J. Hunter, G. P. H. Styan & G. Trenkler, eds. (2009).
Special Issue devoted to selected papers presented at the 16th Interna-
tional Workshop on Matrices and Statistics (IWMS�2007): Windsor, On-
tario, Canada, June 1-3, 2007. Linear Algebra Appl. 430(10), pp. 2563�
2834 (1 May 2009).

III. Publications

Books

1. T. W. Anderson, S. Das Gupta & G. P. H. Styan (1972, 1977). A Bibliogra-
phy of Multivariate Statistical Analysis. Oliver & Boyd, Edinburgh, Scot-
land, x+642 pp., ISBN 0�05�002548�1. Reprinted by Halsted Press, New
York, 1972, ISBN 0�470�02650�2 & by R. E. Krieger, Huntington, New
York, 1997, ISBN 0�88275�477�7. [MR56: 1585;
Zbl 263.62001, 421.62033.]

2. S. Puntanen & G. P. H. Styan (1988). A Personal Guide to the Litera-
ture in Matrix Theory for Statistics and Some Related Topics. Report A
205, Dept. of Mathematical Sciences, University of Tampere, iii+157 pp.,
December 1988, ISBN 951�44�2385�2, ISSN 0356�3134.

3. G. P. H. Styan, ed. (1990). Abstracts of Papers Presented in Uppsala,
Sweden, 13�18 August 1990 (2nd World Congress of the Bernoulli Society
for Mathematical Statistics and Probability, 53rd Annual Meeting of the
Institute of Mathematical Statistics). Bernoulli Society for Mathematical
Statistics and Probability & Institute of Mathematical Statistics, [iii +]
217 pp.

4. G. P. H. Styan, ed. (1990). The Collected Papers of T. W. Anderson: 1943�
1985. With commentaries. John Wiley & Sons, New York, vol. 1: xlvi +
825 pp., vol. 2: pp. i�viii & 827�1681, ISBN 0�471�62442�5. [MR 91j:
01064.]
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Celebrating George P. H. Styan's 75th birthday

and my meetings with him

Carlos A. Coelho

Departamento de Matemática and Centro de Matemática e Aplicações, Faculdade
de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

Cheers Geo(rge)!

The �rst time I met George Styan was in July 2004 in Lisbon when he was
on his way to the 11th ILAS Conference in Coimbra.
But George had already been in Portugal before and I learned how much he
was fond of Conventual, a very �ne and nice old style restaurant in Lisbon.
Then I also learned about George's taste for good food and good wine. With
this detail in common it was really easy to become a good friend with George.
Since then we met a number of times, the most signi�cant of which was at
the time of the 17th IWMS held in Tomar, Portugal, in 2008.
Before this event, during a short stay of George and Evelyn in Lisbon, we
had the opportunity to go to some nice spots like Sintra, to hang around a
few nice places near Lisbon and even to attend a Leonard Cohen concert,
together with some friends.
It was at that time that when going for some beer, which we decided to 'con-
vert' into a nice white wine that I took the picture in Figure 1 at Hennessy's
in downtown Lisbon, not far from the Tagus river.

 

Figure 1 � George Styan
and Evelyn at Hennessy's in
Lisbon (2008)

By that time I had no idea that this picture came out so appropriately. It not
only seems that indeed George is having one of his bright ideas (look at the
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lamp that seems to sit on top of his head) but also the saying that 'behind a
great man there is always a great woman' seems to be most adequate.
That wherever George is there is cheer and joy is well documented in the
pictures in Figure 2, which I had a chance to take during a boat trip at
Castelo-do-Bode dam, near Tomar, at the time of IWMS'08, with his friends
Mike Perlman and T.W. Anderson.

 

Figure 2 � Triptic: Michael Perlman, T. W. Anderson, George Styan
right before lunch on a boat at Castelo-do-Bode dam

(Portugal � IWMS'08)

George's almost mythic appreciation of good table makes it easy to picture
good moments around a table, and as documented in Figure 3, it almost
seems that he carefully chooses his friends as people with the same interests.

Figure 3 � From left to right in a clockwise manner:
The author - George Styan - T. W. Anderson - Michael Perlman

lunch time on the boat at Castelo-do-Bode dam
(Portugal � IWMS'08)

The capacity George has to change things, for the better, with his presence
is well documented in the group picture for IWMS'07 in Figure 4. Nothing
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remains the same after his arrival and actually when we look at the �rst
picture we feel that there is something, more precisely, someone missing.

Figure 4 � IWMS'07 - Windsor, Canada
The group picture, before, during and after the arrival of George Styan

Everybody who knows George also knows about his interest in recent years for
stamps related with mathematical aspects. This was one of the reasons why
in IWMS'08 the organizers presented him with a stamp from the Portuguese
post depicting him in his nice out�t from the promotion for his honorary
degree from the University of Tampere in 2000, with some of the most cel-
ebrated buildings from Tomar in the background. As such I though most
adequate to try to build a gallery of some of the existing stamps depicting
great mathematicians of all times, from several countries around the world.
This gallery, for sure incomplete, is in Figures 5-7. Many of the stamps were
taken from the extraordinary web-site
http://www.mlahanas.de/Stamps /Data/Mathematician/.
Actually, besides the stamp where George is depicted, other pictures would
give very good stamps as the ones in Figure 8.
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Figure 8 � Three pictures from IWMS'08 which would give good stamps
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George also got more important honors than the stamp awarded to him at
IWMS'08, as his Doctor Honoris Causa degree in Tampere, Finland (2000)
and his nomination as Honorary Member of the Statistical Society of Canada,
in June 2009, documented in Figure 8.
As the statement of his own University, The McGill University, concerning
this latter award says: �Honorary Membership of the Statistical Society of
Canada is awarded to a statistical scientist of outstanding distinction who
has contributed to the development of the statistical sciences in Canada�, and
as the statement from the Statistical Society of Canada itself says, this award
is �for his deep research at the interface of Matrix Theory and Statistics; for
his remarkable editorial work within Canada and beyond, his mentoring of
graduate and postdoctoral students; and for innumerable other scholarly and
professional contributions to the international statistical community�.

12-02-11 8:28 PMAnnouncement: George Styan – named an Honorary Member in the Statistical Society of Canada

Page 1 of 2http://www.mcgill.ca/channels/announcements/item/?item_id=107258

George Styan – named an Honorary Member in the Statistical
Society of Canada

Posted on: Jun. 12, 2009

Congratulations to Professor George P.H. Styan, Department of Mathematics and Statistics, who has been
named an Honorary Member in the Statistical Society of Canada (SSC).  Honorary Membership of the SSC
is awarded to a statistical scientist of outstanding distinction who has contributed to the development of the
statistical sciences in Canada. The SSC has given Professor Styan this honour "for his deep research at the
interface of Matrix Theory and Statistics; for his remarkable editorial work within Canada and beyond, his
mentoring of graduate and postdoctoral students; and for innumerable other scholarly and professional
contributions to the international statistical community." The award was presented at the banquet for the
Statistical Society of Canada Annual Meeting in Vancouver, British Columbia on Tuesday, June 2, 2009.

Professor Styan's research focuses on statistics at the interface of linear algebra and its broad spectrum of
applications. He has contributed substantially to the statistics profession through exemplary service to
numerous editorial boards and conference organization, including over ten years as Abstracting Editor for
Current Index to Statistics and seventeen years at the helm of the managing editorship for The Canadian
Journal of Statistics.

Doctor Honoris Causa Honorary Member
University of Tampere Statistical Society of Canada

Finland (2000) June, 2009

Figure 9 � George P. H. Styan honors

Family and friends

For George, we may say that maybe even more important than Mathematics,
it is his family and his friends that play and have always played a central role
in his life. How much George cheers Evelyn may be seen from the form he
keeps her heavily guarded as it may be seen in Figure 10. Actually this is a
magni�cation of a larger picture taken from Evelyn in front of the Queluz
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palace, near Lisbon, which is in Figure 11. In this Figure we may also see
Evelyn, now guarded by a much better looking body-guard.

Figure 10 � Evelyn heavily guarded

Evelyn in front of Queluz palace Evelyn and the author

Figure 11 � Evelyn in Queluz palace, near Lisbon (2008)

And how much George cheers and enjoys his friends company may be easily
seen from his looks when we �nd him around those he loves. Indeed even
better looks than when he is enjoying good food together with a good wine,
which are a must for an extremely well-educated wine drinker and apprecia-
tor. In Figures 12-15 we may see George enjoying the company of a number of
his closer friends, being this the opportunity to apologize for all those other
many who remained not depicted in any of these pictures.
The �rst picture in Figure 12 was taken by Soile Puntanen and it surely would
make one the most beautiful stamps ever, not needing any further framing.
We would say that only Soile is really missing there, but I think we may all
easily imagine her with all care, love and enjoyment taking such a beautiful
picture.



226 C. A. Coelho

Simo Puntanen, George Styan Bernardete Ribeiro, Alexander Kovacec,
and Evelyn at a restaurant Evelyn, George Styan and Soile Puntanen,
in St. John's, Canada Coimbra, Portugal, 2008

Figure 12 � George, Evelyn and their friends I.

In the second picture in Figure 12 we have a good take of Soile, but since we
cannot have it all, now Simo Puntanen was taking the photo.
Simo is also the author of both pictures in Figure 13, depicting George and
Evelyn Styan at two di�erent dinner times in 2008.
In Figure 14 we have George together with a number of some of his friends.

T.W. Anderson, George Styan, the author, Evelyn Styan,
Evelyn Styan and Dorothy Anderson, Soile Puntanen and George Styan,

dinner at IWMS'08 dinner time in Lisbon, 2008

Figure 13 � George, Evelyn and their friends II.

Shuangzhe Liu, Augustyn Markiewicz, Stephen Haslett, George Styan
George Styan and Yogendra Chaubey and Je�rey Hunter
at the time of IWMS'07, Windsor heading for dinner (IWMS'08)

Figure 14 � George and some of his closer friends.



George P. H. Styan. A celebration of 75 years.

A personal tribute.

Je�rey Hunter

Auckland University of Technology, New Zealand

Fig. 1. GPHS at his residence at Vermont, 2001.

George Peter Hansbenno Styan was born 75 years ago on 10 September 1937,
in Hendon, a suburb of Greater London in England, U.K. Following a BSc
(Hons) degree in Mathematics (1959) from the University of Birmingham and
a Certi�cate in Statistics (1960) from Wadham College, Oxford he pursued
post graduate studies at Columbia University with an MA in Mathematical
Statistics in 1964, with a thesis on selected topics in Markov Chains with
Lajos Tackacs as his supervisor, and a PhD in Mathematical Statistics in 1969
on "Multivariate Normal Inference with Correlation Structure" under the
supervision of T.W. Anderson with whom he established a life long friendship.
My association with George goes back to 1973 when I attended an Institute
of Mathematical Statistics meeting at Ithaca College to hear George talk on
some research on Markov chains that included reference to generalized in-
verses. This was of much interest to me as I had published a paper in 1969
identifying Kemeny and Snell's fundamental matrix of Markov chains as a
generalized inverse. Starting from that meeting our subsequent association
has spanned the globe with George visiting the University of Auckland over
the period July 1984 to June 1985 on a sabbatical leave to spend time pri-
marily with George Seber and Alastair Scott. At that time I was a member of
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the Department of Mathematics and Statistics at the University of Auckland.
I followed up his visit with me visiting McGill University for a month in May
1988 and again visiting McGill in June 2001 (when I was based at Massey
University). Both of these latter visits occurred while I was on a sabbatical
leave. In 1988 George tried to discourage me from pursuing any further ac-
tivity on generalized inverses but not all was known about their properties
when associated with Markov chains so that I failed to take his advice!

However, it is the series of International Workshops on Matrices and Statis-
tics that we owe a debt of gratitude to George for promoting and maintaining
the impetus that has seen this annual series of meetings continue to �ourish.
I think that initially it was an opportunity for George to maintain links with
his by now very extensive group of friends and research colleagues but the
workshops continue to attract much interest. I was a member of the organ-
ising committee of the second such workshop that was held 4-5 December
1992 in Auckland immediately preceding the International Biometrics Con-
ference that was held in Hamilton, New Zealand. Some of those participating
in that workshop meeting � Alastair Scott, Simo Puntanen, Bill Farebrother,
Thomas Mathew, Chris Paige, Shayle Searle have also maintained their as-
sociation with the workshops and George over the years. It was following
my visit with George in Montreal in 2001 that I was persuaded to Chair the
Local Organising Committee of IWMS in Auckland in 2005. As a precursor
to that I renewed my association with the workshop series in 2003 at Dort-
mund and 2004 at Bedlewo. After the Auckland meeting we met again in
2006 (Uppsala), 2007 (Windsor), 2008 (Tomar), 2009 (Smolenice) and 2011
(Tartu). The expansion of the International Organising Committee in 2007
saw George taking on the Honorary Chair role with a rotation of Chairs of the
IOC being established. I chaired the IOC in 2010 for the very large meeting
that we held in Shanghai. However with a bereavement in Evelyn's family he
was not able to attend that meeting � the �rst held in China.

George has been a very hospitable host over the years of our association � we
have progressed from cask wines served in 1984 to more sophisticated tastes.
George however at that time had a liking of Montana Fairhall River Claret
on our weekly Friday evening drinks at the Senior Common at the University
of Auckland. He also has a passion for New Zealand Blu� Oysters requesting
that they be on the menu at a dinner at our home in 2005 following the IWMS
meeting in Auckland. George's gastronomic tastes are legendary with some
wonderful meals invariably scheduled whenever he has a group of friends to
partake of the opportunities!

George has been very generous of his time and commitments that he has
made with these workshops in many cases bringing with him his graduate
students so that they could share in the experiences.

George's research interests are wide ranging including matrices and statis-
tics, with particular emphasis on canonical correlations, canonical e�ciency
factors in experimental design, e�ciency and optimality of ordinary least
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squares, generalized inverses, Hadamard products, matrix inequalities, ma-
trix partial orderings, matrix rank additivity and subtractivity, rank equali-
ties and inequalities, Schur complements. Applications to electrical networks.
Bibliography and biography. Experimental designs involving Graeco-Latin
squares, Latin squares, Youden squares, and magic squares, Bibliography,
biography and history. Postage stamps, playing cards and other artefacts as-
sociated with statistics and mathematics. Because of these extensive interests
he has developed a very broad academic community with which he collabo-
rates and interacts with. For fear of omitting any names I refrain from naming
individuals but his range activity is extensive scholarly and noteworthy.
George has a wealth experience and knowledge in matrices and statistics and
his recent book with Simo Puntanen and Jarkko Isotalo was a wonderful
opportunity for them to share with the scienti�c community many of the
"tricks" that they have developed and fostered over a number of years of
active and supportive collaboration.
When he retired from McGill in 2005 ago he was honoured with Professor
Emeritus status, a recognition that he was very proud of. He has also been
honoured with a variety of awards based upon his contributions to numerous
professional associations. His honorary doctorate "For his great scienti�c con-
tributions and merits in mathematics and statistics, and in the promotion of
research in the University of Tampere" in May 2000, was a signi�cant event
in his career.
George and Götz Trenkler also honoured my retirement with an article on
a philatelic excursion in probability and matrix theory with references to
mathematicians featured in my books, and published in a festschrift devoted
to my research activities. I appreciated that recognition from such valued
colleagues.
My wife Hazel has been able to share some times with both Evelyn and
George be it in our respective homes in Auckland or at the VV (Villa Ver-
mont) or at their apartment, initially in Wilderton Ave and later on Nuns
Island in Montreal.
There are many personal anecdotes that I could share with you all but I think
that this is best done through a series of photographs taken mainly by me
over the years and appended below.
It is with regret that due to the timing of the Workshop I will not be able to
be with you in Bedlewo this year but I do wish to convey to George my very
best wishes for the occasion of celebrating this milestone birthday. George,
you are a larger than life personality, may you have many more years of active
and enjoyable pursuit of things mathematical and statistical. I wish you all
the best for the future. Celebrate well!
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Fig. 2. Adi Ben-Israel with George Fig. 3. Gene Golub and George
on the excursion at IWMS'2003 at a Barbecue at IWMS'2004

in Dortmund at B�edlewo

Fig. 4. George with a partially Fig. 5. George at IWMS'2006,
consumed plate of oysters, Uppsala

April 2005
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Fig. 6. Simo, Jochen, Je�, George, Götz at IWMS'2005, Auckland

Fig. 7. George, Je� and Simo at Je�'s home, April 2005

Fig. 8. George and C.R. Rao, with Simo, Jarkko Isotalo & Götz
in the background, IWMS'2005, Auckland
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Fig. 9. George honouring Jerzy Baksalary
at a special session at IWMS'2005

Fig. 10. Shuangzhe Liu, Augustyn, George, and Yogendra
Chaubey at IWMS'2007, Windsor, Canada

Fig. 11. George at IWMS'2008, Tomar, Portugal
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Fig. 12. George, Fikri Akdenis & Jochen at IWMS'2009, Smolenice,
Slovakia

Fig. 13. George and Je� with Ingram Olkin seated at the right
at IWMS'2011, Tartu, Estonia
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