Tilastollinen tietojenkäsittely

Exercise 2
31.10.2006

1. Define $\boldsymbol{x}=(1,2,2)^{\prime}, \boldsymbol{y}=(1,1,2)^{\prime}, \boldsymbol{J}=\mathbf{1}_{3}\left(\mathbf{1}_{3}^{\prime} \mathbf{1}_{3}\right)^{-1} \mathbf{1}_{3}^{\prime}, \boldsymbol{X}=\left(\mathbf{1}_{3}, \boldsymbol{x}\right)$ and $\boldsymbol{A}=(\boldsymbol{x}, \boldsymbol{y})$. Compute a) Jx, b) $\boldsymbol{J} \boldsymbol{A}$, c) $\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}$, d) $\boldsymbol{R}=$ $(\operatorname{diag} \boldsymbol{T})^{-1 / 2} \boldsymbol{T}(\operatorname{diag} \boldsymbol{T})^{-1 / 2}$, where $\boldsymbol{T}=\boldsymbol{A}^{\prime}(\boldsymbol{I}-\boldsymbol{J}) \boldsymbol{A}$.
2. Let

$$
\boldsymbol{Y}=\left(\begin{array}{ccc}
7 & 26 & 78.5 \\
1 & 29 & 74.3 \\
11 & 56 & 104.3 \\
11 & 31 & 87.6 \\
7 & 52 & 95.9 \\
11 & 55 & 109.2 \\
3 & 71 & 102.7 \\
1 & 31 & 72.5 \\
2 & 54 & 93.1 \\
21 & 47 & 115.9 \\
1 & 40 & 83.8 \\
11 & 66 & 113.3 \\
10 & 68 & 109.4
\end{array}\right)
$$

Calculate (using matrix operations) $\overline{\boldsymbol{x}}=n^{-1} \mathbf{1}^{\prime} Y, \boldsymbol{S}=(n+1)^{-1} \boldsymbol{T}$ and \boldsymbol{R}.
3. Fit a third degree polynomial to the following data

$$
\boldsymbol{y}=(1,3,3,7,5)^{\prime} \text { and } \boldsymbol{x}=(2,3,7,9,8)^{\prime} .
$$

Calculate also \hat{y} and $e=y-\hat{y}$.
4. Solve

$$
\left\{\begin{array}{lc}
x_{1}+x_{2}-x_{3}= & 1 \\
-x_{1}+x_{2}+x_{3}= & -1 \\
x_{1}-x_{2}+x_{3}= & 1
\end{array}\right.
$$

5. Compute (avoid looping)

$$
\text { a) } \sum_{i=1}^{10} \sum_{j=1}^{10}(\sin i \pi / 6)(\cos j \pi / 6) \text {, b) } \sum_{i=1}^{10} \sum_{j=1}^{10} \frac{i}{j+1} \text {. }
$$

6. What is the number of ways 2 euros can be calculated as a sum of 1 euros, $50,20,10$ and 5 cents coins?
