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Basic framework for computational modeling: statistical learning via predictive processing
(e.g., Rao & Ballard, 1999; Friston, 2010; Clark, 2013)
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Basic framework for computational modeling: statistical learning via predictive processing
(e.g., Rao & Ballard, 1999; Friston, 2010; Clark, 2013)
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This work: auditory + audiovisual statistical learning



Background & research question

Previous research with audiovisual computational models:

- Learning from photographs and their spoken descriptions
(e.g., Harwath & Glass, 2017; Alishahi et al., 2017; Merkx et al., 2019; Khorrami & Rasanen, 2021; Peng et al.,
2023)

- Learning from infant head-mounted camera data + transcribed speech
(Vong et al., 2024)

- Main findings: latent representations for phonemes, syllables, and words emerge as
a side-product of audiovisual predictive optimization. No need for linguistic priors
or proximal learning goals!

- Limitations: models trained on thousands of speech-image pairs (“naming events”)
or with simplified speech representations (text).

- Unclear if word learning succeeds from infant-scale sensory input with real
speech

- This work: simulate auditory and audiovisual learning with realistic-scale input.



Referential ambiguity in audiovisual
learning

“cake” “milk” “cake” “cup” “cup” “cake”
“bottle”

Basic challenges:

« Segmentation problem in the auditory and visual domains (“where”)
» Recognition problem in both domains (“what”)

» Referential ambiguity across domains (e.g., Quine, 1960; Smith & Yu, 2008)



Model architecture (adapted from Peng & Harwath, 2022)
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A deep neural network with three parts: No supervision or data labels.
1) Visual encoder: DINO Only self-supervised (statistical)
2) Auditory encoder: Wav2Vec 2.0 learning from sensory input.

3) Associative network: contrastive learning.



Experimental setup
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Evaluation

Lexical discrimination
“ball” vs. ”bird”

Word referent knowledge
“bird”

Phonemic discrimination
/bal/ vs. /b1l/



Training data design

Auditory learning:

1049 h of speech input to simulate 6 months of

auditory learning (e.g., Cruz-Blandon et al., 2023; Coffey et al.,
2024).

- From Librispeech + SpokenCOCO corpora
Audiovisual learning:

Photographs and their spoken descriptions from
SpokenCOCO dataset.

Empirical estimates of daily object naming rates for

the 80 most frequent word-object pairs (from Clerkin &
Smith, 2019; 2022).

- Extrapolate counts to 2, 4 or 6 months

—> Select images + utterances that satisfy the statistics.

Words per utterance: 11.3 £ 2.59
Content words per utterance: 5.87 + 1.47
Visual targets per image: 2.9 + 1.84

Auditory learning

Audiovisual
learning

Visual learning
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person ("man")
table ("table/tables")
dog ("dog/dogs")
train ("train/trains")
tennis racket ("tennis")
cat ("cat/cats")
baseball bat ("baseball")
bus ("bus/buses/busses")
pizza ("pizza/pizzas")
skateboard ("skateboard/skateboarder...")

airplane ("airplane/airplanes")
vase ("vase/vases")

wine glass é"glass“)

traffic light ("traffic")

sandwich ("sandwich/sandwiches")
fire hydrant ("hydrant”)

bicycle ("bike/bikes")

orange ("orange")

sn(owb§>ard ("snowboard/snowboarder/snowboards...")
tie ("tie"

couch ("couch/couches")

microwave (“microwave")

remote (“remote")

toothbrush ("toothbrush/toothbrushes")
hot dog ("hotdog/hotdogs")

spoon ("spoon/spoons")

backpack ("backpack/backpacks")
baseball glove ("glove/gloves")

teddy bear ("teddy")
handbag ("purse")
toaster ("toaster")
hair dryer ("dryer")
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audiovisual naming events per day



Model evaluation

Evaluate model at 6, 8, 10, and 12 months for:

Phonemic discrimination (ABX-test; schatzetal,
2023)

Auditory word-form discrimination (CDI-
Lextest, Knorrami et al., 2023).

Word referent knowledge for the 80
audiovisual concepts in SpokenCOCO (an
audiovisual forced-choice task)

Lexical discrimination
“ball” vs. ”bird”

Word referent knowledge
“bird”

Phonemic discrimination
/bail/ vs. /b1l/



Word referent learning didn’t work
Results

without the auditory learning stage.

Word-form discrimination Word-referent knowledge
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Phoneme error rate: 7.1% aftey 6 mo auditory learning (chance: 50%). No change during audiovisual stage.

Phoneme and word comprehension skills
emerge from plausible-scale data!



Vocabulary growth:
model vs. CDI-norms
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CDI data: North-American infants, receptive lexicon (from Wordbank; Frank et al., 2017)



Conclusions

The model succeeds in learning proto-lexical (and phonemic) representations
from infant-scale input.

Learning operates on real speech and images, and without linguistic priors, data
labels, or other strong constraints.

Supports the idea of statistical learning as a means to boostrap early language
acquisition.

Supports the “Latent Language Hypothesis”, according to which linguistic
structures are not proximal targets of learning, but side products of predictive

optimization (e.g., Khorrami & Rasénen, 2021, Lang. Dev. Res).

No need to “cluster” phone(me)s or segment words as intermediate stages. Only
prediction within and across sensory modalities.
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