

[-**[**] Tampere University

Speech and Cognition research group

COMPUTATIONAL MODELING OF INFANT LANGUAGE LEARNING FROM REALISTIC-SCALE SPEECH AND AUDIOVISUAL INPUT

Khazar Khorrami & Okko Räsänen

Speech and Cognition research group Signal Processing Research Center Tampere University, Finland

Symposium on Computational Approaches to Early Language Development ICIS-2024, Glasgow, UK

Basic framework for computational modeling: statistical learning via predictive processing (e.g., Rao & Ballard, 1999; Friston, 2010; Clark, 2013)

Basic framework for computational modeling: statistical learning via predictive processing (e.g., Rao & Ballard, 1999; Friston, 2010; Clark, 2013)

This work: auditory + audiovisual statistical learning

Background & research question

Previous research with audiovisual computational models:

- Learning from photographs and their spoken descriptions (e.g., Harwath & Glass, 2017; Alishahi et al., 2017; Merkx et al., 2019; Khorrami & Räsänen, 2021; Peng et al., 2023)
- Learning from infant head-mounted camera data + transcribed speech (Vong et al., 2024)
- Main findings: latent representations for phonemes, syllables, and words emerge as a side-product of audiovisual predictive optimization. *No need for linguistic priors or proximal learning goals*!
- Limitations: models trained on thousands of speech-image pairs ("naming events") or with simplified speech representations (text).
- Unclear if word learning succeeds from infant-scale sensory input with real speech
- > This work: simulate auditory and audiovisual learning with realistic-scale input.

Referential ambiguity in audiovisual learning

Basic challenges:

- Segmentation problem in the auditory and visual domains ("where")
- Recognition problem in both domains ("what")
- Referential ambiguity across domains (e.g., Quine, 1960; Smith & Yu, 2008)

Model architecture (adapted from Peng & Harwath, 2022)

A deep neural network with three parts:

- 1) Visual encoder: DINO
- 2) Auditory encoder: Wav2Vec 2.0
- 3) Associative network: contrastive learning.

No supervision or data labels.

Only self-supervised (statistical) learning from sensory input.

Experimental setup

Phonemic discrimina /b <u>o:</u> l/ vs. /b <u>i l</u>

Training data design

Auditory learning:

1049 h of speech input to simulate 6 months of auditory learning (e.g., Cruz-Blandor et al., 2023; Coffey et al., 2024).

From Librispeech + SpokenCOCO corpora

Audiovisual learning:

Photographs and their spoken descriptions from SpokenCOCO dataset.

Empirical estimates of daily object naming rates for the 80 most frequent word-object pairs (from Clerkin &

Smith, 2019; 2022).

 \rightarrow Extrapolate counter 6 months

6 months hat satisfy the statistics.

- Words per utterance: 11.3 ± 2.59
- Content words per utterende#9167 ± 1.47
- Visual targets per image: 2.9 ± 1.84

Model evaluation

Evaluate model at 6, 8, 10, and 12 months for:

- Phonemic discrimination (ABX-test; Schatz et al., 2023)
- Auditory word-form discrimination (CDI-Lextest, Khorrami et al., 2023).
- Word referent knowledge for the 80 audiovisual concepts in SpokenCOCO (an audiovisual forced-choice task)

Lexical discriminat
"ball" vs. "bird"Word referent know
"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?"bird"
?<t

Results

Word referent learning didn't work without the auditory learning stage.

(Phoneme error rate: 7.1% after 6 mo auditory learning (chance: 50%). No change during audiovisual stage.

Phoneme and word comprehension skills emerge from plausible-scale data!

Vocabulary growth: model vs. CDI-norms

CDI data: North-American infants, receptive lexicon (from Wordbank; Frank et al., 2017)

Conclusions

The model succeeds in learning proto-lexical (and phonemic) representations from infant-scale input.

Learning operates on *real speech* and images, and *without linguistic priors*, data labels, or other strong constraints.

Supports the idea of statistical learning as a means to boostrap early language acquisition.

Supports the "Latent Language Hypothesis", according to which linguistic structures are not proximal targets of learning, but side products of predictive optimization (e.g., Khorrami & Räsänen, 2021, *Lang. Dev. Res*).

• No need to "cluster" phone(me)s or segment words as intermediate stages. Only prediction within and across sensory modalities.

Paper pre-print: https://arxiv.org/abs/2406.05259

The end

Speech and Cognition research group

khazar.khorrami@tuni.fi okko.rasanen@tuni.fi

https://webpages.tuni.fi/specog/