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Introduction - fatigue models

Either stress, strain or energy based.
Stress based criteria are commonly used in high-cycle fatigue

stress invariant criteria, Sines 1955, Crossland 1956, Fuchs 1979

critical plane criteria, Findley 1959, Dang Van 1989, McDiarmid
1990

average stress criteria, Grübisic and Simburger 1976,
Papadopoulos 1997.

Cumulative damage approaches.

A more fundamental approach based on evolution equations
proposed by Ottosen, Stenström and Ristinmaa in IJF 2008.
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Evolution equation based fatigue model

Key ingredients are:

Endurance surface

β(σ, {α}; parameters) = 0,

evolution equations for damage
D and the internal variables {α}

{α̇} = {G}(σ, {α})β̇,

and
Ḋ = g(β,D)β̇.

Continuum approach

Proposed by Ottosen, Stenström and Ristinmaa in 2008.

Endurance surface postulated as

β =
1

σoe

(σ̄ + AI1 − σoe),

where

σ̄ =
√

3J2(s − α) =
√

3
2(s − α) : (s − α),

I1 = trσ.

Back stress and damage evolution eqs.

α̇ = C(s − α)β̇,

Ḋ = g(β,D)β̇ = K exp(Lβ)β̇.
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Conditions for evolution

94 CHAPTER 6. Fatigue

σ1

σ2 σ3
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dα
s

ds
β > 0
β̇ ≥ 0
α̇ ̸= 0
Ḋ ≥ 0

(a)
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ds
β > 0
β̇ < 0

α̇ = 0
Ḋ = 0

(b)

Figure 6.9: Ottosen’s HCF model. (a) Movement of the endurance surface and damage
growth when the stress is outside the endurance surface and moving away from it. (b)
When the stress is outside the endurance surface, damage and back stress does not evolve.
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Endurance surface

Original formulation by Ottosen et al. for isotropic fatigue

β =
1

σ−1

[√
3J̄2 +AI1 − σ−1

]
= 0,

where J̄2 = 1
2 tr (s −α)2, I1 = trσ, A = σ−1/σ0 − 1, and

σ−1 = σaf,R=−1, σ0 = σaf,R=0,

In what follows we use such short
hand notation

σ−T = σT,af,R=−1,

σ0T = σT,af,R=0, etc.

σa

σm

σ−1

A

1
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Endurance surface for transverse isotropy

Simple transversely isotropic endurance surface
(Holopainen et al. EJMA, 2016)

β =
{√

3J̄2 +ALIL1 +ATIT1 −
[
(1− ζ)σ−T + ζσ−L

]}
/σ−T = 0

where

IL1 = trσL = I4, IT1 = trσT = I1 − I4

ζ =
(σL : σL

σ : σ

)n
=

(
2I5 − I24

2I2

)n

I4 = tr (σM ), I5 = tr (σ2M ), M = m ⊗m

In uniaxial loading σ = σn ⊗ n the ζ-factor has the form

ζ = (2 cos2 ψ − cos4 ψ)n

where ψ is the angle between n and m .
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Shape in the π-plane and ζ-factor

σ1

σ2 σ3

σ1

σ2 σ3

Figure 3: Endurance surface in the π-plane: AL = 0.225, AT = 0.275, SL/ST = 1, 1.5, 2, b =
(0, 0, 1)T .
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Figure 4: Dependence of the parameter ζ on the exponent n and the angle ψ between the loading
and preferred longitudinal directions n and b, respectively.
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Figure 5: Pulsating uniaxial stress state. The damage development is indicated by a double curve.
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New forms of the endurance surface

Based on reduction of the form similar to the Hill’s orthotropic
yield criteria

β =

(√
k1J̄2

4 + k2J̄5 + 2k3J̄2 +A
L
I
L1

+A
T
I
T1
− σ−L

)
/σ−L

= 0

where

J̄4 = tr [(s −α)M ], J̄5 = tr [(s −α)2M ]

Parameters k1, k2, k3, AL and AT can be determined from simple
fatigue tests as fully reversed and pulsating axial loadings in
longitudinal direction and in the isotropy plane + fully reversed
torsion in the isotropy plane.

A restricted form can be obtained by constraint k3 = 3
2 − k2 and

the torsion test is not needed.
Anisotropic fatigue – RK 24.9.2016 13/22
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Comparison on the π-plane / shear

The restricted transversely isotropic model.

σ1

σ2 σ3

1

τ−T

τ−L

σ−L/σ−T

(τ
−
L
,τ

−
T
)/
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Evolution equations

For the internal variable α and damage

α̇ = C(s −α)β̇, Ḋ =
K

(1−D)k
exp(Lβ)β̇
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Some results

Effect of mean stress

σx = σxm + σxa sin(ωt) σy = σym + σya sin(ωt)

longitudinal transverse(a) (b)
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Figure 10: Effect of mean stress on fatigue life of 106 cycles under (a) longitudinal and (b) transverse uniaxial
cyclic tension. The x-coordinate direction is parallel with the preferred longitudinal direction. Experimental data
for 34CrNiMo6 (BS EN24T) steel depicted by the markers △ is taken from McDiarmid [43].

significantly between the loading situations. Similar difference is also observed in smooth specimens made
of steel considered as isotropic, cf. e.g. Liu and Zenner [20].

Effect of phase difference

For further assessing capability of the model under multiaxial stress states, the effect of a phase shift
between an alternating shear and normal stresses is investigated. Unfortunately, experimental data for
the forged steel employed is not available for out-of-phase loadings, and a qualitative comparison with
the data for both isotropic steels and steels having transverse isotropic fatigue properties has been made.
In all cases, the stress waveform is sinusoidal.

Considering first biaxial pulsating normal stresses given by

σx = σxm + σxa sin(ωt),

σy = σxm + σxa sin(ωt− φy).

The mean stress σxm = 1.105σxa is defined by the ratio R = 0.05 between the smallest and largest
normal stresses. Once the phase difference φy = 30◦ is passed, the model predicts an increase of the
fatigue strength followed by a strong decrease of about 30 %, cf. Fig. 13a. The maximum value occur
near φy = 50◦. The model prediction well corresponds to those features observed both in data and
preceding simulations for isotropic steels, cf. Liu and Zenner [20], and Ottosen et al. [22]. McDiarmid
[43] conducted similar tests on thin wall tubular specimens made of 34CrNiMo6 (BS EN24T) steel which
shows strong directional dependent fatigue properties. Compared to the zero shift, the fatigue strength
under the phase difference of 180◦ was shown to be about 25 % lower, which result is virtually equal with
the model result. The test results in McDiarmid [43] also indicate that the dependence of the reduction
on the fatigue strength is low.

Fig. 13b also shows the effect of a phase difference between a fully reversed shear stress and normal
stress which pulsates in the preferred longitudinal direction as already depicted in Fig. 12 (right), i.e.

σx = σxa sin(ωt)

τxy = 1
2σxa sin(ωt− φxy).

13

4 denotes experimental results from McDiarmid 1985 (34CrNiMo6), •
model predictions (34CrMo6)
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Effect of mean shear stress

τxy = τxym + τxya sin(ωt)
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Figure 10: Effect of mean stress on fatigue life of 106 cycles under (a) longitudinal and (b) transverse uniaxial
cyclic tension. The x-coordinate direction is parallel with the preferred longitudinal direction. Experimental data
for 34CrNiMo6 (BS EN24T) steel depicted by the markers △ is taken from McDiarmid [43].
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Figure 11: (a): Effect of mean shear stress on the fatigue strength as the number of cycles is N = 106 (solid line)
and N = 5 · 104 (dashed line). (b): Damage evolution during 5 · 104 cycles as τxym = 0 (solid line), τxym = τxya
(dash-and-dot line), and τxym = 2τxya (dashed line).

Effect of mean stress

In addition to stress amplitude, fatigue failure also depends on mean stress. For further evaluate the model,
some additional Wöhler curves are depicted in Fig. 10. For a comparison, test data for the 34CrNiMo6
steel (British Standard EN24T) is also presented. According to this test, the transverse fatigue strength
in relation to longitudinal fatigue strength was about 80 % which result is parallel with the experimental
observations for the steel 34CrMo6 in question. Despite the model calibration for zero mean stress, the
model is able to predict the observed characteristics of fatigue strength well.

A firmly experimentally established fact is that the fatigue limit in cyclic torsion is independent on

12

Solid line N = 106, dashed line N = 5 · 104.
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Effect of frequency difference

σx = σxa sin(ωxt), τxy = 1
2
σxa sin(ωxyt)
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Figure 14: (a): Influence of frequency difference on the fatigue strength as the stress state consists of
cyclic normal and shear stresses. The solid and dashed line refer to the transverse isotropic and isotropic
model response, respectively. (b): Influence of frequency difference between two cyclic normal stresses.
The markers △ and ◦ denote the data points for 25CrMo4 and 34CrNiMo6 steel taken from ? and ?,
respectively. The x-coordinate direction is parallel with the preferred longitudinal direction.
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corresponds to the case of torsional loading. The minimum of the fatigue limit is situated here. 
The effect of the phase shift 8y is correctly described by the SIH. 

EFFECT OF FREQUENCY DIFFERENCE 

In the case of uniaxial loading, the fatigue limit of metallic materials can usually be regarded as 
frequency-independent. In the case of multiaxial loading, however, the frequency difference 
between the stress components plays an important role. In contrast to the influence of the phase 
shift, considerably less attention has been paid to the experimental behaviour of the fatigue 
strength in the presence of differences in frequency of the stress components. 

The effect of the frequency ratio X^y between a shear stress r^y and a normal stress (Ĵ  is 
illustrated in Fig. 9. The plotted curve is not continuous; that is, it applies only to discrete 
frequency ratios. The points calculated for discrete values of the frequency ratio have been 
connected with straight lines. As is shown by test results, the fatigue limit is decreased by a 
frequency difference between the normal and shear stresses. If T^yjo^^ is equal to 0.5, a 
frequency ratio X^y of 8 reduces the fatigue limit by about 30 per cent. This behaviour is 
described well by the SIH. For X^y > 1 as well as for A^y < 1, the behaviour of the fatigue limit 
is similar; that is, the behaviour of the fatigue limit is independent of whether the frequency of 
the normal stress is higher or lower than that of the shear stress. 

A frequency difference between two pulsating normal stresses also reduces the fatigue limit, 
Fig. 10. However, only two test results obtained at a frequency ratio ^, of 2 are available. At an 
initial frequency ratio A, of 2, the largest portion (by approximately 20 per cent) of decrease in 
fatigue strength is already achieved, for all practical purposes, as is predicted by the further-
developed shear stress intensity hypothesis SIH. 
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Fig. 9. Effect of a frequency difference between a cyclic normal stress and a cyclic shear stress present model Liu & Zenner

data for isotropic AISI SAE 4340 (dashed line), forged 34CrMo6 (solid line)
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Anisotropic, continuum based
Multiaxial, applicable to
arbitrary loading history
Parameter estimation - data to
the anisotropic fatigue?
Unified LCF-HCF model
Micromechanical motivation of
the evolution equations. Dream, oil painting by

Gisèle L’Épicier
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