Modelling of anisotropic fatigue

Sami Holopainen¹, <u>Reijo Kouhia¹</u>, Niels Saabye Ottosen², Matti Ristinmaa² and Timo Saksala¹

¹Tampere University of Technology, Department of Mechanical Engineering and Industrial Systems reijo.kouhia@tut.fi

²Lund University, Division of Solid Mechanics

24th International Congress of Theoretical and Applied Mechanics

Montréal, Canada, August 21-26, 2016

Content

1

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

7 Conclusions

2 Evolution equation based fatigue model

Introduction - fatigue models

- 3 Endurance surface
- 4 New forms of the endurance surface
- 5 Evolution equations
- 6 Some results
- 7 Concluding remarks and *future work*

1	Introduction - fatigue models	1 Introduction
-		2 Fatigue model
		3 Endurance surface
2	Evolution equation based fatigue model	4 New forms
		5 Evolution equations
3	Endurance surface	6 Results
		7 Conclusions
4	New forms of the endurance surface	
5	Evolution equations	
	Evolution equations	
6	Some results	
		< □ >
7	Concluding remarks and future work	
1	Concluding remarks and <i>future</i> work	< <u>₹</u> >
		しょう

Introduction - fatigue models

Either stress, strain or energy based. Stress based criteria are commonly used in high-cycle fatigue

- stress invariant criteria, Sines 1955, Crossland 1956, Fuchs 1979
- critical plane criteria, Findley 1959, Dang Van 1989, McDiarmid 1990
- average stress criteria, Grübisic and Simburger 1976, Papadopoulos 1997.

Cumulative damage approaches.

A more fundamental approach based on *evolution equations* proposed by Ottosen, Stenström and Ristinmaa in IJF 2008.

1 Introduction

1 Introduction - fatigue models

2 Evolution equation based fatigue model

3 Endurance surface

- 4 New forms of the endurance surface
- 5 Evolution equations
- 6 Some results

7 Concluding remarks and *future work*

1 Introduction
2 Fatigue model
3 Endurance surface
4 New forms
5 Evolution equations
6 Results
7 Conclusions

MPERE UNIVERSITY OF TECHNOLOGY

< 戶 →

 </

Evolution equation based fatigue model

Key ingredients are:

Endurance surface

$$\beta(\boldsymbol{\sigma}, \{\boldsymbol{\alpha}\}; \mathsf{parameters}) = 0,$$

evolution equations for damage D and the internal variables $\{\alpha\}$

$$\{\dot{\alpha}\} = \{\boldsymbol{G}\}(\boldsymbol{\sigma}, \{\boldsymbol{\alpha}\})\dot{\boldsymbol{\beta}},$$

and

$$\dot{D} = g(\beta, D)\dot{\beta}.$$

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

7 Conclusions

1 Introduction

Endurance surface

Original formulation by Ottosen et al. for isotropic fatigue

$$\beta = \frac{1}{\sigma_{-1}} \left[\sqrt{3\bar{J}_2} + AI_1 - \sigma_{-1} \right] = 0,$$

where $\bar{J}_2 = \frac{1}{2} \mathrm{tr} \, (\boldsymbol{s} - \boldsymbol{\alpha})^2, \quad I_1 = \mathrm{tr} \, \boldsymbol{\sigma}, \quad A = \sigma_{-1} / \sigma_0 - 1$, and

$$\sigma_{-1} = \sigma_{\mathrm{af},R=-1}, \quad \sigma_0 = \sigma_{\mathrm{af},R=0},$$

In what follows we use such short hand notation

$$\sigma_{-\mathrm{T}} = \sigma_{\mathrm{T,af},R=-1},$$

$$\sigma_{0T} = \sigma_{T,af,R=0}, \quad \text{etc.}$$

UNIVERSITY OF TECHNOLOGY

9/22

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

7 Conclusions

Endurance surface for transverse isotropy

Simple transversely isotropic endurance surface (Holopainen et al. EJMA, 2016)

$$\beta = \left\{ \sqrt{3\bar{J}_2} + A_{\rm L}I_{\rm L1} + A_{\rm T}I_{\rm T1} - \left[(1-\zeta)\sigma_{\rm -T} + \zeta\sigma_{\rm -L} \right] \right\} / \sigma_{\rm -T} = 0$$

where

$$egin{aligned} &I_{ ext{L1}} = ext{tr}\, oldsymbol{\sigma}_{ ext{L}} = I_4, &I_{ ext{T1}} = ext{tr}\, oldsymbol{\sigma}_{ ext{T}} = I_1 - I_4 \ &\zeta = \left(rac{oldsymbol{\sigma}_L: oldsymbol{\sigma}_L: oldsymbo$$

In uniaxial loading $\boldsymbol{\sigma} = \sigma \boldsymbol{n} \otimes \boldsymbol{n}$ the ζ -factor has the form

$$\zeta = \left(2\cos^2\psi - \cos^4\psi\right)^n$$

where ψ is the angle between n and m.

PERE UNIVERSITY OF TECHNOLOGY

Anisotropic fatigue - RK

10/22

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

7 Conclusions

Shape in the π -plane and ζ -factor

 $\sigma_{-L}/\sigma_{-T} = 1$ dotted black line, 1.5 dashed blue line, 2 red line $A_{\rm L} = 0.225, A_{\rm T} = 0.275 \ \boldsymbol{m} = (0, 0, 1)^T$

1 3.0

∃ →

Э nac

1	Introduction - fatigue models	1 Introduction
		2 Fatigue model
		3 Endurance surface
2	Evolution equation based fatigue model	4 New forms
		5 Evolution equations
		6 Results
	Endurance surface	7 Conclusions
4	Now former of the and women overfore	
4	New forms of the endurance surface	
5	Evolution equations	
	Some results	
7	Concluding remarks and future work	$\leftarrow \equiv \rightarrow$
		< 분 > 표
		うえで

New forms of the endurance surface

Based on reduction of the form similar to the Hill's orthotropic yield criteria

$$\beta = \left(\sqrt{k_1 \bar{J}_4^2 + k_2 \bar{J}_5 + 2k_3 \bar{J}_2} + A_{\rm L} I_{\rm L1} + A_{\rm T} I_{\rm T1} - \sigma_{\rm -L}\right) / \sigma_{\rm -L} = 0$$

where

$$ar{J}_4 = ext{tr}\left[(oldsymbol{s}-oldsymbol{lpha})oldsymbol{M}
ight], \quad ar{J}_5 = ext{tr}\left[(oldsymbol{s}-oldsymbol{lpha})^2oldsymbol{M}
ight]$$

Parameters $k_1,k_2,k_3,A_{\rm L}$ and $A_{\rm T}$ can be determined from simple fatigue tests as fully reversed and pulsating axial loadings in longitudinal direction and in the isotropy plane + fully reversed torsion in the isotropy plane.

A restricted form can be obtained by constraint $k_3 = \frac{3}{2} - k_2$ and the torsion test is not needed.

TAMPERE UNIVERSITY OF TECHNOLOGY

Anisotropic fatigue - RK

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

7 Conclusions

Comparison on the π -plane / shear

The restricted transversely isotropic model.

black line isotropic, $\sigma_{-\rm L}/\sigma_{-\rm T}=1.5$ blue line, 2 red line simple model dashed lines, Hill based model solid lines

TAMPERE UNIVERSITY OF TECHNOLOGY

≣ ⊳

Sac

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

1	Introduction - fatigue models	1 Introduction 2 Fatigue model
2	Evolution equation based fatigue model	3 Endurance surface 4 New forms
3	Endurance surface	5 Evolution equations 6 Results 7 Conclusions
4	New forms of the endurance surface	
5	Evolution equations	
6	Some results	
7	Concluding remarks and future work	日 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10

Evolution equations

For the internal variable lpha and damage

OF TECHNOLOGY

$$\dot{\boldsymbol{\alpha}} = C(\boldsymbol{s} - \boldsymbol{\alpha})\dot{\boldsymbol{\beta}}, \qquad \dot{\boldsymbol{D}} = \frac{K}{(1-D)^k}\exp(L\boldsymbol{\beta})\dot{\boldsymbol{\beta}}$$

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

7 Conclusions

1	Introduction - fatigue models	1 Introduction
		2 Fatigue model
		3 Endurance surface
2	Evolution equation based fatigue model	4 New forms
		5 Evolution equations
0		6 Results
	Endurance surface	7 Conclusions
4	New forms of the endurance surface	
5	Evolution equations	
6	Some results	
		< □ >
7	Concluding remarks and future work	
1	Concluding remarks and <i>future work</i>	< ≣ →
		S ≥ C

Some results

Effect of mean stress

$$\sigma_x = \sigma_{xm} + \sigma_{xa} \sin(\omega t) \qquad \sigma_y = \sigma_{ym} + \sigma_{ya} \sin(\omega t)$$

longitudinal transverse

 \triangle denotes experimental results from McDiarmid 1985 (34CrNiMo6), • model predictions (34CrMo6) 1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

7 Conclusions

Effect of mean shear stress

TAMPERE UNIVERSITY OF TECHNOLOGY

1 Introduction 2 Fatigue model

3 Endurance surface

Effect of frequency difference

$$\sigma_x = \sigma_{xa} \sin(\omega_x t), \quad \tau_{xy} = \frac{1}{2} \sigma_{xa} \sin(\omega_{xy} t)$$

data for isotropic AISI SAE 4340 (dashed line), forged 34CrMo6 (solid line)

TAMPERE UNIVERSITY OF TECHNOLOGY

≣ ⊳

1 Introduction

2 Fatigue model

3 Endurance surface

4 New forms

5 Evolution equations

6 Results

1 Introduction - fatigue models	1 Introduction
2 Evolution equation based fatigue model	2 Fatigue model 3 Endurance surface 4 New forms 5 Evolution equations
3 Endurance surface	6 Results 7 Conclusions
4 New forms of the endurance surface	
5 Evolution equations	
6 Some results	
7 Concluding remarks and <i>future work</i>	日

Concluding remarks and future work

- Anisotropic, continuum based
- Multiaxial, applicable to arbitrary loading history
- Parameter estimation data to the anisotropic fatigue?
- Unified LCF-HCF model
- Micromechanical motivation of the evolution equations.

Dream, oil painting by Gisèle L'Épicier

Acknowledgements: The work was partially funded by TEKES - The National Technology Foundation of Finland, project MaNuMiES.

Thank you for your attention!

AMPERE UNIVERSITY OF TECHNOLOGY

Anisotropic fatigue - RK

Sac

1 Introduction

- 2 Fatigue model
- 3 Endurance surface
- 4 New forms

5 Evolution equations

6 Results