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Abstract

These lecture notes gives an introduction to computationalstrategies for non-linear struc-
tural analysis. Some techniques, based on Newton’s iteration to solve the global equi-
librium equations are explaned. Continuation or path-following methods to solve the
parametrized non-linear equations are presented. Specialemphasis is given to the deter-
mination of critical points along equilibrium paths. Asymptotic techniques in structural
stability analysis are also briefly discussed. As supplementary material, some videly used
algorithms in solving algebraic eigenvalue problems and linear equation systems are pre-
sented.
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Chapter 1

Solution methods for non-linear
equations

1.1 Some historical notes

Numerical solution of non-linear equations has a long history. A common iterative pro-
cedure bears the name of Newton or Newton-Raphson [27], but there exist many names
which could be credited either before Newton’s time or later[198]. The general idea of
solving an equation by improving an estimate of a solution byadding a correction term
had been in use in many cultures millenia prior to this time [198]. Certain ancient Greek
and Babylonian methods for extracting roots have this form,as do some methods of Ara-
bic algebraist from at least the time of al-Khayy ām (1048-1131) [198].

French algebraist Francois Viète published in 1600 in Paris a work concerning the
numerical solution of non-linear algebraic equations:De numerosa potestatum. Viète re-
stricted his attention to monic polynomial equations and can, in some sense, be viewed as
a forerunner in using the finite-difference scheme of the Newton-Raphson method.

Newton’s tractDe analysi per aequationes numero terminorum infinitas1 (On anal-
ysis by equations unlimited in the number of their term), probably dating from the mid
1669, is the first recorded discussion by Newton of what can berecognized as an in-
stance of the Newton-Raphson method. It seems to be that the tract is a reworking of
old material of Viète and Nicolaus Mercator’sLogarithmotechnia, published in London
in September 1668 [84], [198]. No calculus is used in the presentation and references to
fluxional derivatives first appear later in that tract, suggesting that Newton regarded his
method as a purely algebraic procedure [198]. The first published use by Newton of his
method applied to a nonpolynomial equation appears in the second edition of his treatise
Philosophiae Naturalis Principia Mathematica2

1The tract remained semi-secret a long time until William Jones printed it, with other early mathemati-
cal essays by Newton, inAnalysis per quantitatum series, fluxiones, ac differentias in 1711 [84].

2First edition of thePrincipia was published in London in 1687.
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2 1 Solution methods for non-linear equations

Joseph Raphson (1648-1712?) published in 1690 a tractAnalysis aequationum uni-
versalisin which he presented a method for solving polynomial equations. Newton’s and
Raphson’s methods were long regarded as distinct, until in 1798 J.-L. Lagrange observed
that the difference is only due to the presentation and not due to the underlying method
and credited Raphson’s method as being simpler. It is also interesting to note, that the for-
mulation of the method using the now familiar calculus notation is also due to Lagrange.

Thomas Simpson (1710-1761) seems to be the first to give the method a general for-
mulation, in terms of fluxional calculus, applicable to nonpolynomial equations. Simpson
published his work in London in 1740 and describes “A new method for the solution of
equations in numbers” without making reference to the work of any predecessors. In his
work the technique is also described for a system of equations, however, restricted to the
case of two equations [198].

As expressed by Ypma [198], the Newton-Raphson-Simpson method would be a des-
ignation which represents the facts of history in a more appropriate way rather than calling
the method simply by Newton’s name. This major lack of recognition is probably due to
Lagrange and especially due to Fourier, who did not mention either Raphson or Simpson
in his influental bookAnalyse deśEquations Determińeespublished in 1831 [198].

The modern literature on the solution of non-linear algebraic equations is vast. The
bibliography of the classical monograph by James Ortega andWerner Rheinboldt [130]
published in 1970 is 35 pages long and contains approximately 850-900 references. Path
following, continuation, embedding or homotopy methods, as they are also called, are
constantly used for a wide range of scientific applications to solveparametrizednon-
linear equation systems. One reason for their success is their versatility and robustness.
Recent books dealing with continuation are written e.g. by Allgower and Georg [6], Keller
[102], Rheinboldt [148], Seydel [169].

Even though the idea of continuation dates back to the last century, 3 the earliest
application of techniques for the numerical solution of parametrized equations appears to
have been made by E. Lahaye in 1934 for a single equation, using Newton’s method to
move along the solution curve [130]. Later Lahaye also considered systems of equations
(1948) [130].

In structural mechanics, interest towards continuation rose after the invention of the
finite element method and the advent of digital computers during the 1960’s. The con-
tinuation was first realized by incremental loading withoutany equilibrium iterations, i.e.
Euler-forward approach by Turneret al. in 1960 [186] and Argyris in 1965 [9]. Later
Newton’s iteration was adapted by Oden [129] and Mallet and Marcal [120]. Early work
involving limit point instabilities was due Sharifi and Popov [171] and Sabir and Lock
[157].

Finally, it is noted that the solution of non-linear equations have a close relation to
unconstrained optimization, see refs. [10], [52], [127]. The first application of Newton’s
method to the problem of multivariate unconstrained optimization seems to be due to

3For a historical summary of continuation see Ficken [67].
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1.2. Introduction 3

Simpson in hisA New Treatise of Fluxions, published in 1737 [198].

1.2 Introduction

Discretization of the non-linear equations of static equilibrium result in a system of the
form

f (q) ≡ r(q) − p(q) = 0 . (1.1)

The unbalanced or residual force is denoted byf , q is the state variable vector which,
in the displacement based FE-formulation, is a nodal point displacement vector. External
loads and internal resistance forces are denoted byp andr , respectively.

In dynamics, the relation of the equations of motion is transformed using d’Alembert’s
principle to a problem of finding dynamic equilibrium

f (q , t) ≡ r(q) − p(q , t) + Mq̈ = 0 . (1.2)

This ordinary differential equation system can be solved with either explicit or implicit
time integration schemes. Explicit integration algorithms provide the most straightfor-
ward solution method, but since they are almost allways conditionally stable the limita-
tion of maximum stepsize puts severe restrictions on the practical use of these schemes.
They are mainly used in analyses where the high frequency content of the structure con-
tributes significantly to the response, as is the case in transients induced by shocks, blast
or any type of loading with a broad frequency range. Implicitschemes benefit the fact
that the step length is not so severely limited by stability considerations and they are ef-
ficiently used in transient problems with frequency contentin the lower range, in which
the behaviour of the structure is mainly inertial [77].

A multistep (k-step) method to integrate the time dependency of (1.2) can be ex-
pressed in the form

k
∑

i=0

aiqn−i = h

k
∑

i=0

biq̇n−i,

k
∑

i=0

ciqn−i = h2

k
∑

i=0

giq̈n−i, (1.3)

whereai, bi, ci andgi are coefficients andh is the latest step-length. Solving̈qn from these
equations and substituting it into (1.2) gives an algebraicequation inqn

f (qn, tn) = r(qn) − p(qn, tn) + (g0h
2)−1M (

k
∑

i=0

ciqn−i − h2
k
∑

i=1

giq̈n−i) = 0 . (1.4)

Denoting the effective load vector by

peff(qn, tn) = p(qn, tn) − (g0h
2)−1M (

k
∑

i=0

ciqn−i − h2
k
∑

i=1

giq̈n−i) (1.5)
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4 1 Solution methods for non-linear equations

the equation of dynamic equilibrium

f (qn, tn) ≡ r(qn) − peff(qn, tn) = 0 (1.6)

is of the same form as the equation of static equilibrium (1.1).
Solution of the non-linear set of equations (1.1) is usuallydone in an stepwise manner,

by incrementin the external loadp from un unloaded state to a spesific value. Consider-
ing a certain incrementn, the application of Taylor’s series expansion on the vectorof
unbalanced forces at stateq i

n results in

f (q i+1
n ) ≈ f (q i

n) + f ′(q i
n)δq i

n = 0 (1.7)

where quadratic and higher order terms are neglected andf ′ denotes the Jacobian matrix

f ′ =
∂f

∂q
=

∂r

∂q
− ∂p

∂q
= K r −K p = K (1.8)

which becomes the tangent stiffness matrix at an equilibrium point. The Newton-Raphson
iteration formula is then

q i+1
n = q i

n − [f ′(q i
n)]−1f (q i

n)

= q i
n + δq i

n = qn−1 + ∆q i
n + δq i

n = qn−1 + ∆q i+1
n ,

(1.9)

where the superscript denotes the iteration count and the subscript the step number which
usually will be omitted when reference is made to quantitiesof the same step.

The load stiffness matrixK p is symmetric provided the load is conservative. The lack
of symmetry in constitutive equations, e.g. in non-associative plasticity models, can also
produce an unsymmetric stiffness matrix. In addition, someco-rotational formulations
lead to unsymmetric Jacobian matrices when evaluated at a non-equilibrium point even if
the loading is conservative and the material model possesses symmetry properties.

1.3 Local convergence

Local convergence of the iteration scheme (1.9) can be proved if the following standard
assumptions hold [130], [52]:

1. f is continuously differentiable in an open convex domainD ∈ R
N

2. there existsq ∗ andr > 0 such thatB(q ∗, r) ∈ D andf (q∗) = 0

3. the Jacobian matrixf ′ is invertible atq ∗ and‖ [f ′(q ∗)]
−1 ‖ ≤ β

4. the Jacobian matrix is Lipschitz continuous inB(q ∗, r), i.e.

‖f ′(q) − f ′(y)‖ ≤ γ‖q − y‖ ∀q , y ∈ B(q ∗, r). (1.10)

R. Kouhia: Computational techniques for the non-linear ..., draft, May 2009



1.3. Local convergence 5

Then there existǫ > 0 such that for allq 0 ∈ B(q 0, ǫ) the sequenceq1, q2, . . . generated
by the Newton’s iteration (1.9) converges toq ∗ and obeys

‖qk+1 − q ∗‖ ≤ βγ‖qk − q ∗‖2. (1.11)

Practically, this asymptotic result can be interpreted as doubling of the number of signifi-
cant digits inqk as an approximation toq ∗.

The Newton attraction theorem also expresses the existenceof a domain of attraction,
which implies that if the Newton iterates ever land in this domain then they will remain
there and eventually converge toq ∗; a result which insures some measure of stability for
the iteration process [51].

A well known convergence result for Newton’s method is due toKantorovich. It dif-
fers from the theorem presented mainly in that it makes no assumption about the existence
of the solutionq∗. It assumes only that the Jacobian is nonsingular at the initial pointq0,
f ′ is Lipschitz continuous in a region containingq0, and the first step of Newton’s method
is sufficiently small. Under these assumptions the Kantorovich theorem shows that there
exists a unique solution in the region. Formally stated; assuming that

1. f is continuously differentiable in a ballB(q 0, r), r > 0,

2. the Jacobian matrixf ′ is nonsingular atq 0 and‖ [f ′(q 0)]
−1 ‖ ≤ β

3. the Jacobian matrix is Lipschitz continuous inB(q 0, r), see eq. (1.10), with Lips-
chitz constantγ,

4. the first Newton step is sufficently small:‖[f ′(q 0)]−1f (q 0)‖ ≤ η

then if h0 = βγη < 1
2

the Newton sequence (1.9) converges to a unique solution in
B(q 0, r1), wherer1 = min(r, r0)

r0 ≡
1 −

√
1 − 2h0

βγ
. (1.12)

and
‖qk − q ∗‖ ≤ (2h0)

2k η

h0
, k = 0, 1, 2, . . . (1.13)

It is also worth noticing, that the Newton’s method is self correcting, which means that
qk+1 only depends uponf andqk implying that the bad effects from previous iterations
are not carried along, an advantage which is not shared by quasi-Newton methods [51].

However, there are some serious drawbacks in the Newton’s method. In large nonlin-
ear structural finite element analysis the need to evaluate the Jacobian off and its possile
factorization for each iteration can be extremely costly. Another disadvantage is that the
domain of attraction for a particular problem can be very small thus requiring a very good
initial approximation toq ∗ in order to get convergence of the iteration process. In struc-
tural analyses this is usually not a problem, since choosingsufficiently small time or load
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6 1 Solution methods for non-linear equations

steps, the previously known equilibrium configuration provides a good initial estimate to
the next step. Nevertheless, if a good initial approximation to q∗ is not available, special
techniques have been developed to circumvent this problem [143].

Several modifications to the basic Newton’s method have beenintroduced in order to
avoid the formation and factorization of the Jacobian. The simplest possible choice is to
hold the Jacobian fixed for a certain period, for instance, during one load or time incre-
ment. Especially in engineering literature this scheme is ambiguously named “the modi-
fied Newton-Raphson iteration”. This technique is useful when the Jacobian is changing
slowly, however, it is very difficult to decide how long the Jacobian should be held fixed.
Evidently, the rate of convergence is decreased, but the overall efficiency in some partic-
ular problems may increase.

Example 1.3.1. A Mises truss will be considered. Length and the initial angle of the bars
at the initial state areL and α, respectively. and the axial stiffness equals toEA. The
bars are assumed to be absolutely rigid in bending. Determine the equilibrium equations
and solve with some value of the load and investigate the convergence of the Newton’s
process.

u
v

2P

cos αL cos αL

Length of the bars in the deformed configuration is

L1,def =
√

(L cos α + u)2 + (L sin α − v)2

= L
√

1 + 2q1 cos α + q2
1 − 2q2 sin α + q2

2 (1.14)

L2,def =
√

(L cos α − u)2 + (L sin α − v)2

= L
√

1 − 2q1 cos α + q2
1 − 2q2 sin α + q2

2 (1.15)

whereq1 = u/L andq2 = v/L. Using the Green-Lagrange definition for the strain

ǫi =
1

2

L2
i,def − L2

L2
i = 1, 2 (1.16)

gives

ǫ1 = q1 cos α + 1
2
q2
1 − q2 sin α + 1

2
q2
2, (1.17)

ǫ2 = −q1 cos α + 1
2
q2
1 − q2 sin α + 1

2
q2
2. (1.18)
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1.3. Local convergence 7

The principle of virtual work is
∫ L

0

N1δǫ1dx +

∫ L

0

N2δǫ2dx = 2Pδv (1.19)

where the axial force is defined asNi = EAǫi and the virtual strains have the expressions:

δǫ1 = (cos α + q1)δq1 + (− sin α + q2)δq2, (1.20)

δǫ2 = (− cos α + q1)δq1 + (− sin α + q2)δq2, (1.21)

whereδq1 = δu/L andδq2 = δv/L. The expression of the virtual work is thus

[EA(cq1 + 1
2
q2
1 − sq2 + 1

2
q2)(c + q1) + (cq1 − 1

2
q2
1 + sq2 − 1

2
q2)(c − q1)]δu

+ [EA(q2
1 − 2sq2 + q2

2)(q2 − s) − 2P ]δv = 0, (1.22)

wheres = sin α and c = cos α. Since the variationsδu and δv are arbitrary, the the
equilibrium equations must satisfy

f (q) =

{

f1 = 2c2q1 + q3
1 − 2sq1q2 + q1q

2
2 = 0

f2 = −sq2
1 + q2

1q2 + 2s2q2 − 3sq2
2 + q3

2 − 2λ = 0
, (1.23)

whereλ = P/EA.
Elements of the Jacobian matrix are

∂f1

∂q1

= 2c2 + 3q2
1 − 2sq2 + q2

2, (1.24)

∂f1

∂q2
= 2q1(q2 − s) =

∂f2

∂q1
(1.25)

∂f2

∂q2

= 2s2 + q2
1 − 6sq2 + 3q2

2 (1.26)

Solution for the given load is symmetric (prior bifurcation), thusq1 = 0, and the Jacobian
matrix is

K =

[

2c2 − 2sq2 + q2
2 0

0 2s2 − 6sq2 + 3q2
2

]

. (1.27)

It is clearly seen that the Jacobian is positive definite if

2c2 − 2sq2 + q2
2 > 0 (1.28)

2s2 − 6sq2 + 3q2
2 > 0. (1.29)

The first inequality is always satisfied ifs = tanα <
√

2, i.e. for initial anglesα <
54.74◦. The second inequality is satisfied for dispacamentsq2 < (1 −

√
3/3) sin α.

Solution of the symmetric deformation is equivalent in solving a single non-linear
equation

f(q2, λ) = 2s2q2 − 3sq2
2 + q3

2 − 2λ = 0. (1.30)
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8 1 Solution methods for non-linear equations
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Figure 1.1: Mises truss; convergence of Newton’s method, large step on the lhs and small
step on the rhs.

For this system, estimation of the Lipschitz constantγ can be done from the expression
of the second derivative

γ < max |f ′′(q2)| q2 ∈ (0, r0). (1.31)

Using the valueα = 30◦ gives the following values

γ = 3, β = |f ′(0)−1| = 2 (1.32)

In fig.1.1 convergence of the Newton’s method on the first stepis shown using two
different step sizes. In real computations convergence is checked with some estimate of
the error, here in the figure a relative norm

estimated error= erel =
|δqk|
|δq0| =

|δqk|
η

(1.33)

In fig.1.1 the estimated error (1.33) is compated to the relative true error|qk − q∗|/η and
the relative Kantorovich estimate, i.e. sequence (1.13) divided byη. The load is chosen
such that the exact solution is either 0.1 or 0.01.

It is clearly seen, that the Kantorovich estimate is far too concervative for the large
step case, whereη = 0.072, h0 = 0.432 thus giving the radius of the convergence domain
r0 = 0.1052. In the small step case the corresponding values are:η = 0.009702, h0 =
0.0582, r0 = 0.010002.
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1.4. Convergence near singularity 9

1.4 Convergence near singularity

Another, purely numerical, problem is also present near singular points. It is well known
that the convergence rate of Newton’s method downgrades from quadratic to linear when
the solution of the equation system corresponds to a singular point [50]. Many techniques
to speed up the convergence have been presented in the mathematical literature, which
can in theory give a superlinear rate of convergence.

1.5 Quasi-Newton Iterations

1.5.1 Basic properties

A class of algorithms called quasi-Newton (or variable metric, variance, secant, update or
modification methods) have been developed in order to speed up the convergence of the
modified Newton method, but which could still be more efficient than the true Newton-
Raphson scheme. The very essence of these methods lies in an update formula of the
Jacobian matrix, performed in such a way which avoids the reforming and factorization
of the global matrix.

The problem is now how to develop a good approximation to the Jacobian at the state
q i based on information at the iterationsi andi − 1.4

Available data are: the Jacobian at iteration stepi − 1 (or an earlier approximation of
it), the unbalanced forces and the state variables at iterations i, i − 1. It seems natural to
require that the approximation̄H i to f ′(q i) satisfies thesecant relationship

f (q i) = f (q i−1) + H̄ i(q i − q i−1),

⇒ H̄ iδq i−1 = δf i−1, (1.34)

where
δq i−1 = q i − q i−1 δf i−1 = f i − f i−1.

This equation is central to the development of the quasi-Newton methods and it is there-
fore called the quasi-Newton, or secant equation.

In the case of a scalar equation, the secant relationship (1.34) completely determines
H̄ i, but for a system of equations, additional requirements have to be imposed. It is rea-
sonable to require that the updated matrixH̄ i is close to the previous matrixH i−1. This
nearness is measured by matrix norms, and the requirement can be given as follows: find
H̄ i such that

min
{

‖H̄ i −H i−1‖ : H̄ iδq i−1 = δf i−1

}

. (1.35)

Usually, in connection to quasi-Newton updates, the Frobenius norm or its weighted form
are used

‖H ‖ = ‖H ‖F =

√

tr(H TH ), ‖H ‖W,F = ‖WHW ‖F ,

4The position for the symboli showing the iteration count is now placed at the lower right corner of
the quantity and the incremental step counter is not shown.
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10 1 Solution methods for non-linear equations

in whichW is a positive definite symmetric matrix. Note that the Frobenius norm does
not satisfy the submultiplicative property which is usually satisfied by matrix norms.

It is also desirable that the updated matrix should inherit some properties which are
characteristic to the system. In structural finite element applications such properties usu-
ally are symmetry and positive definiteness of the stiffnessmatrix. So, the updatēH i

should also satisfy

H i−1 = H T
i−1 −→ H̄ i = H̄

T
i

xTH i−1x > 0 −→ x T H̄ ix > 0, ∀x 6= 0 .

However, it should be remembered that the new iterative change δq i has to be easily
and cost effectively computed, otherwise the benefit of thiskind of update is lost since the
price which is paid for omitting the full Newton step is the degradation of the convergence
rate.

The quasi-Newton techniques are closely related to the conjugate-Newton methods,
see Refs. [26], [92], [136].

1.5.2 Rank one updates

Derivation

A single rank update to the stiffness matrix is a correction of the form

H̄ = H + αŷ ẑ T , (1.36)

where the unit vectorŝy , ẑ and the scalarα are to be determined. Substituting this ex-
pression into the quasi-Newton equation (1.34) gives

H δq − δf = −αŷ ẑ T δq ,

where the superscripts, indicating the iteration count, are omitted. Denoting the Euclidian
vector norm by‖ · ‖2, it is easily seen that by choosing

y = δf −H δq , ŷ =
y

‖y‖2

, and α =
‖y‖2

ẑ T δq

the secant relationship is fulfilled for all vectorsẑ which are not orthogonal toδq . Thus,
the single rank update is expressed as

H̄ = H +
1

ẑ T δq
(δf −H δq)ẑ T , ∀ẑ , ẑ T δq 6= 0, ‖ẑ‖2 = 1. (1.37)

The vector̂z can now be determined from the closeness requirement (1.35)

min ‖H̄ − H ‖F = min ‖αŷ ẑ T‖F = min
[

tr(α2ẑ ŷT ŷ ẑ T )
]

1

2

= ‖y‖2 min

√

ẑ T ẑ

ẑ T δq
= min

1
√

ẑ T δq
. (1.38)
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1.5. Quasi-Newton Iterations 11

It is clear that the minimum is obtained when the vectorsẑ andδq are parallel, i.e. by
choosinĝz = δq/‖δq‖, and the resulting update formula is

H̄ = H +
(δf −H δq)δqT

δqT δq
. (1.39)

Broyden [33] derived this approximation basing the consideration on somewhat dif-
ferent reasoning. It was supposed thatH̄ andH operate identically on a vector belonging
to the orthogonal complement ofδq , i.e.

H̄w = (H + yz T )w = Hw , if wT δq = 0. (1.40)

It yields immediatelyz = δq and substitution into the secant equation (1.34) gives fory

the same expression as earlier.
Broyden’s update formula does not have the property of hereditary symmetry and

positive definiteness, but its simplicity provides an easy introduction to the quasi-Newton
methods. However, it is interesting to note, that a symmetric rank one update is obtained
from (1.37) by choosingz = y = δf − H δq . Obviously in this case the closeness
property (1.35) is not satisfied.

A greater variety of suitable symmetric update formulas canbe derived if the cor-
rection is made by a matrix of rank two. These methods are examined in the following
sections.

Implementation

Expression (1.39) for the Broyden’s update formula is not suitable for practical computa-
tion. Direct use of (1.39) would destroy the specific sparsity pattern of the Jacobian and
needs the factorization of the updated matrix, which therefore would be even more costly
than application of Newton’s method. The following derivation follows closely the one
given by Kelley [104].

It is easy to see that the formula (1.39) can be expressed as

H̄ = H +
f iδq

T

δqT δq
. (1.41)

Applying the Sherman-Morrison-Woodbury formula to the Broyden’s update (1.41)5

gives the update formula for the inverse matrix

(H + uvT )−1 =

(

I − (H −1u)vT

1 + vTH −1u

)

H −1 (1.42)

5The Sherman-Morrison-Woodbury formula gives a convenientexpression for the inverse of
(S + UV T ) whereS is a nonsingularn×n matrix andU ,V are bothn×k matrices:(S + UV T )−1 =
S−1 − S−1U (I + V T S−1U )−1V T S−1. Also I + V T S−1U has to be nonsingular [79].
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12 1 Solution methods for non-linear equations

For a sequence of Broyden updates, it can be written

H i = H i−1 + u i−1v
T
i−1 (1.43)

where
u i−1 = f i/‖δq i−1‖ and v i−1 = δq i−1/‖δq i−1‖. (1.44)

Defining

w i−1 =
H −1

i−1u i−1

1 + vT
i−1H

−1
i−1u i−1

(1.45)

then

H −1
i = (I −w i−1v

T
i−1)(I −w i−2v

T
i−2) · · · (I −w0v

T
0 )H −1

0

=

[

i−1
∏

j=0

(I −w jv
T
j )

]

H −1
0 ,

(1.46)

and the iterative stepδq i can be computed withH −1
0 and the2i vectorswj, vj , j =

0, . . . i − 1 as

δq i = −
[

i−1
∏

j=0

(I −w jv
T
j )

]

H −1
0 f i. (1.47)

It can be shown that there is no need to store the sequencewi [53]. To show that, let’s first
show that the computation ofw i−1 andδq i can be combined:

δq i = −H −1
i f i = −(I −w i−1v

T
i−1)H

−1
i−1f i = −(I −w i−1v

T
i−1)z , (1.48)

where the auxiliary vectorz is

z = H −1
i−1f i =

[

i−2
∏

j=0

(I −w jv
T
j )

]

H −1
0 f i. (1.49)

Using the definition (1.45), gives

w i−1 =
H −1

i−1u i−1

1 + vT
i−1H

−1
i−1u i−1

=
z

‖δq i−1‖(1 + vT
i−1z/‖δq i−1‖)

= α−1z , (1.50)

whereα = ‖δq i−1‖ + vT
i−1z . Hence

δq i = −(I −w i−1v
T
i−1)z = −z (1 − α−1vT

i−1z )

= −z (1 − α−1(α − ‖δq i−1‖)) = −α−1‖δq i−1‖z = −‖δq i−1‖w i−1

(1.51)

and the Broyden formula for the iterative change (1.48) can be written as

δq i = −
[

i−1
∏

j=0

(

I +
δq j+1δq

T
j

‖δq j‖2

)]

H −1
0 f i (1.52)
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1.5. Quasi-Newton Iterations 13

However, this formula cannot be used directly, sinceδq i appears on both sides of the
equation

δq i = −
(

I +
δq jδq

T
j−1

‖δq j−1‖2

)[

i−2
∏

j=0

(

I +
δq j+1δq

T
j

‖δq j‖2

)]

H −1
0 f i

= −
(

I +
δq jδq

T
j−1

‖δq j−1‖2

)

H −1
i−1f i.

(1.53)

Solving forδq i gives

δq i = − H −1
i−1f i

1 +
δqT

i−1H
−1
i−1f i

‖δq i−1‖2

. (1.54)

If there is no space to store the increasing number of vectorsδq i and their norms, one
can restart the update process, i.e. clear the storage and start over. Another strategy is to
replace the oldest of the stored vectors are replaced by the most resent. Such methods are
called limited memory formulations in the optimizatation literature.

In the algorithm below, the indexi is the iteration counter and the matrix update
counter is denoted byk. The maximum values for iterates and matrix updates aremaxit
andkmax, respectively.

Broyden’s quasi-Newton algorithm: evaluatef 0 = f (q 0), compute the initial residual
r0 = ‖f 0‖ and seti = 0, k = −1. SolveH 0δq 0 = −f 0. Iterate until convergence and
i < maxit:

1. setk = k + 1, i = i + 1 and updateq i = q i−1 + δqk

2. evaluatef i = f (q i)

3. if k < kmax then

(a) solveH 0z = −f i

(b) for j = 0, k − 1 updatez = z + δq jδq
T
j−1z/‖δq j−1‖2

(c) computeδqk = z/(1 + δqT
k−1z/‖δqk−1‖2)

(d) if k = kmax then setk = −1 and solveδq0 = −H −1
0 f i

Notice, that the initial matrixH 0 need not to be the Jacobian off at q0. It can be some
approximation of it or even an identity matrix. This fact makes it an appealing alternative
if the linear system is solved by iterative methods.
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14 1 Solution methods for non-linear equations

1.6 Line search

A line search procedure is often used in conjunction with quasi-Newton methods. It is
meant as an inexpensive way to have an improved iterative direction. In a general finite
element context it can be defined as a procedure to find a scalarmultiplier η such that

G(η) = δqT f (q + ηδq) ≈ 0. (1.55)

The approximative sign in the above expression indicates that line search need not to be
performed very accurately. Matthies and Strang [122] suggest the valueSTOL = 0.5
with the criteria

∣

∣

∣

∣

G(η)

G(0)

∣

∣

∣

∣

< STOL. (1.56)

If this tolerance is tightened, the number of internal forcevector evaluations may increase
drastically, thus requiring too much work with respect to the benefit obtained.

Algorithms for line search are presented in Refs. [122], [115], [49] .

1.7 Inexact Newton method

The inexact Newton method [57], [71]. [135] is a generalization of Newton’s method. The
idea is to find an iterative changeδq and a scalarη ∈ [0, 1) which satisfy

‖f (q) + f ′(q)δq‖ ≤ η‖f (q)‖. (1.57)

In many implementations theforcing termη is specified first, and thenδq is determined
so that (1.57) holds. The purpose of choosing a proper value of the forcing term is to
avoid oversolving the Newton step in the early phase of iteration. They are mostly used in
connection with iterative linear solvers.

Exercises

1. Experiment the convergence behaviour of the Newton’s method for the Mises truss
when selecting the load factor asλ =

√
3/9 sin3 α, which renders the Jacobian

matrix singular at the root. Try also the chord Newton. What can be concluded.

2. Solve the diffusion-reaction problem (the Bratu problem) on a unit squareΩ =
[0, 1] × [0, 1]

−∆u = λ exp(u) in Ω, u = 0 on ∂Ω. (1.58)

Experiment the convergence of Newton’s method with theλ valuesλ = 1, 4 and
6.81.
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1.7. Inexact Newton method 15

Discretize the Laplacian operator by the five point difference scheme in a uniform
grid

−∆ui,j ≈ h−2(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1), (1.59)

whereui,j = u(xi, xj) andh = xi+1 − xi = yi+1 − yi is the grid spacing,xi =
hi, yi = hi, i = 0, . . .m + 1, h = 1/(m + 1). The number of unknowns is thus
N = m2. Use at least two discretizations, e.g.m = 10 andm = 20.
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Chapter 2

Parametrized non-linear equations

2.1 Continuation method

2.1.1 Basic algorithm

The load vector is usually parametrized by a single variableλ, the load parameter, defining
the intensity of the load vector and the system (1.1) can be written as

f (q , λ) ≡ r(q) − λp(q) = 0 . (2.1)

If the loads does not dependent on deformations, like in dead-weight loading, the system
(1.1) reduces to

f (q , λ) = r(q) − λpr = 0 , (2.2)

wherepr is the reference load vector. Equations (2.1) and (2.2) define a one dimensional
equilibrium curve in aN + 1 dimensional displacement-load space. Procedures to trace
such a one dimensional equilibrium path are called continuation or path following meth-
ods. They are incremental, step-wise algorithms. A typicalcontinuation step includes the
predictor and the corrector phases.

To traverse a solution path a proper parametrization is needed. Simple load control is
the oldest type of parametrization. It is usually the most efficient one in the regular parts
of a path. However, near the so called limit points, where thestructure loses its load car-
rying capacity (at least locally), it breaks down. At the limit point the Jacobian matrix is
singular and the load parameter is decreasing after such a point. A remedy is to change the
control from the load parameter to some displacement component. Selecting the control-
ling displacement (or component from the scaled vector containing both displacements
and the load parameter) to be the largest one from the last converged increment, results
in a simple and reliable continuation procedure [60], [148]. Non-dimensionalizing of the
variables is an essential point of this method.

A common setting of a continuation process is to augment the discrete equilibrium
equations with a constraint. These constraints can be defined as path length measured in a

16



2.1. Continuation method 17

specified manner from the equilibrium point, or as a minimizing condition for the residual,
or constraints in terms of incremental work, or constraintsbased on some orthogonality
relation.

In many cases the displacement-load constraint can be defined by equationc in the
following form:

h(q , λ) =

{

f (q , λ) = 0

c(q , λ) = 0.
(2.3)

This kind of procedures are also commonly called arc-lengthmethods. Using the Newton-
Raphson linearization on the extended system (2.3) resultsin

{

f ′δq + ḟ δλ + f (q , λ) = K δq − prδλ + f = 0

c′δq + ċδλ + c(q , λ) = bT δq + eδλ + c = 0
. (2.4)

In order to utilize the spesific sparsity pattern of the tangent stiffness matrixK , the solu-
tion of the augmented equations (2.4) is usually performed by using the following three
phase block elimination method, also known as bordering algorithm [65, 101, 148, 154,
162, 174]:

1. solveK δqf = −f andKqp = pr ,

2. computeδλ = −(c + bT δqf)/(e + bTq p) ,

3. computeδq = δqf + δλqp .

In this format the solution of the linear equation system at phase 1 is performed by means
of direct solvers. If iterative solvers are used, the nonsymmetric sparse format of the
coefficient matrix in (2.4)

H δy = −h , H =

[

K −pr

bT e

]

, δy =

{

δq
δλ

}

, h =

{

f

c

}

, (2.5)

is more appropriate. see refs. [5], [6], [7], [13], [42], [133], [134], [136].
Alternatively, the system (2.5) can be written as

(K + e−1prb
T )δq = −f − e−1cpr and δλ = −e−1(c + bT δq). (2.6)

Note that(K + e−1prb
T ) is a rank 1 modification ofK . Therefore, its inverse can eas-

ily be determined by the Sherman-Morrison formula, once theinverse ofK is known.
However, utilization of the Sherman-Morrison formula requires e 6= 0, while the block
elimination strategy does not. The nonsingularity ofK is required by both algorithms.

At regular points of the solution path the matrixf ′ = K is nonsingular, and thus
the solvability condition of the bordering algorihm as wellas the nonsingulary of the
augmented matrixH in (2.5) is guaranted if the Schur complement ofK in H is nonzero:

e + bTq p = e + bTK−1pr 6= 0. (2.7)
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18 2 Parametrized non-linear equations

At limit and bifurcation points the matrixK is singular. Nevertheless, the augmented
matrixH is nonsingular at limit points. More precisely, ifK is singular andrank(K ) =
N − 1 then the augmented matrixH is nonsigular if and only if [102]

pr /∈ rangeK and bT /∈ rangeK T , (2.8)

which are satisfied at limit points. These solvablity conditions (2.8) are equivalent to

pT
r ψ 6= 0, and bTφ 6= 0, (2.9)

whereψ andφ are the left, and right eigenvectors, respectively, i.e. satisfyingK Tψ = 0

andKφ = 0 . Conditions (2.9) can be easily verified by premultiplying the upper one of
equations (2.4) byψT and solvingδλ giving

δλ =
ψT f

ψTpr

. (2.10)

and

K δq = −f + δλpr = −f +
ψT f

ψTpr

pr. (2.11)

At a limit point the matrixK is singular and the iterative changeδq can thus be expressed
as a sum of a vectorφ belonging to the nullspace ofK and a particular solutioñq ,
orthogonal toφ:

δq = q̃ + ξφ. (2.12)

Substituting it to the lower one of equations (2.4), gives

bT (q̃ + ξφ) + eδλ + c = 0 ⇒ ξ = −c + eδλ + bT q̃

bTφ
. (2.13)

Continuation procedure with linear predictor and Newton like corrector iteration is
also called the Euler-Newton method. Higher order correctors can also be used [7], [191].

2.1.2 Different constraint equations

Arc-length constraints

A large class of constraint equations can be written in the form

c(q , λ) = tTCn − c0 = 0 (2.14)

wheret andn aren + 1 dimensional vectors andc0 is a scalar. The weighting matrixC
can be partitioned as

C =

[

W

α2

]

, (2.15)
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2.1. Continuation method 19

whereW is a positive definite or semidefinite diagonal matrix corresponding to dis-
placements andα is a scaling factor. Updating the weight factors inW has proved to
be beneficial for overall efficiency. Intuitively it can be understood easily, since then the
process puts more weight on the most rapidly changing parts.

One of the first attempts to overcome limit points with augmented constraints is due to
Haselgrove in 1961 [85], which remained for a long time undiscovered by structural engi-
neers. Fried [74] presented again this procedure, which he called the orthogonal trajectory
approach.

In structural mechanics the earliest developments are credited to Riks [150] and
Wempner [195] in early 70’s. They proposed a constraint in the form of a plane per-
pendicular to the prediction step.1 This approach gained popularity only after a decade,
when Ramm [145] and Crisfield [46] proposed the block elimination strategy. Ramm’s
procedure is a modification of the Riks-Wempner scheme, where the reference direction
is updated to be the secant from the beginning of the present increment through the cur-
rent point. However, fixing the reference direction, such asin the normal plane method,
seems to stabilize the iteration process resulting in a morerobust procedure.

Crisfield [46] uses a quadratic constraint, i.e.t = n in (2.14), which means that
iterations are constrained to the surface of an ellipsoid ora cylinder depending on the
value of the scaling factorα (α 6= 0 orα = 0, respectively). Crisfield explicitely forces the
cylindrical constraint at every iteration cycle, which results in a quadratic scalar equation
for the solution of the load parameter change, in contrast tothe linearized procedure of the
block elimination phase 2, which can cause some ambiguity inthe selection of the proper
root. This feature was improved by Forde and Stiemer [72], who developed a scaling
procedure for the consistently linearized version of the elliptical constraint to force the
constraint at every iteration step.

An extension to the constraint equation (2.14) which combines the arc-length method
with the pure displacement control is given by Runessonet al. [154]. In their approach
the displacement vector in the constraint equation is decomposed into free and prescribed
components.

If the Haselgrove-Fried orthogonal trajectory procedure is used with the chord
Newton-Raphson scheme, it is identical with the Riks-Wempner-Ramm normal plane
method. In the case of true Newton’s method, the reference ismade to a changing di-
rection (as in the updated normal plane method), which mightbe a potential danger for
oscillating behaviour. However, in computations made by the author oscillating behaviour
was not observed when using the Haselgrove-Fried method with the true Newton iteration
in analyzing elastic structures.2

Some of these variants can be expressed through a constraintof the form (2.14) and
the formulas are given in Table 1, where references to more detailed descriptions are also
given.

1The Haselgrove-Fried orthogonal trajectory method is alsodiscussed in Riks’s work [150].
2Some computations with elastic-plastic behaviour indicate that the normal plane method is more robust

than the orthogonal residual procedure with respect to spurious unloading.
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20 2 Parametrized non-linear equations

constraint tT nT c0 References

NP tT
1 /‖t1‖C [∆qT

i , ∆λi] ∆s [145], [150]
UNP tT

i−1/‖t i−1‖C [(∆q i)
T , ∆λi] ∆s [145]

E [∆qT
i , ∆λi] [∆qT

i , ∆λi] (∆s)2 [46], [49]
VCP [(∆q i)

T , ∆λi] ek ∆s [60], [146], [148]

NP normal plane
UNP updated normal plane

E elliptical
VCP variable control parameter
tT

j [∆qT
j , ∆λj]

∆ incremental quantity
δ iterative change

∆s (pseudo) arc-length
ek a unit vector having a component 1 at positionk

Table 2.1: Expressions for different constraint types.

Allgower and Georg [6] have used a minimization condition

min
y

{

‖y − y i‖C

∣

∣

∣

∣

f (y) = 0

}

, (2.16)

wherey i = (q i
T , λi)

T is the current estimate of the solution, and‖ · ‖C denotes the
weighted Euclidean type vector seminorm‖y‖ =

√

yTCy . The weight matrixC is
defined in equation (2.15). The shortest distance fromy i to the equilibrium curve neces-
sarily means that the tangent at the solution pointy is orthogonal to the vectory − y i,
i.e. the solutiony of (2.16) satisfies

f (y) = 0, with tT
i C (y − y i) = 0. (2.17)

The tangent vectort i is determined from equation

f ′(y i)t i = 0, (2.18)

in which f ′ = ∂f /∂y . Note that here the tangent vector is not a unit vector as in ref. [6].
Linearization of (2.17) aty i results in the system

f (y i) + f ′(y i)δy = 0, (2.19)

tT
i C δy = 0, (2.20)

which can also be solved with the block factorization strategy. This algorithm was pro-
posed already by Haselgrove [85] in 1961 and later by Fried [74], who named it the
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2.1. Continuation method 21

orthogonal trajectory method. It has proven to be very efficient in geometrically non-
linear problems when used with the full Newton-Raphson iteration. When using the chord
(modified) Newton’s method it is identical with the Riks approach [150]. It should be
mentioned that the system (2.19) cannot be written in the form of (2.4) or (2.5).

Special adaptation for iterative solvers

Walker [193] has proposed a strategy where the constraint isintroduced within the iterates
of the linear solution. If the constraint is defined asc = tT δy = 0, the procedure is as
follows [193]:

1. FindQ ∈ R
(N+1)×N such that range(Q) = {t}⊥ and‖Qq‖ = ‖q‖ for all q ∈ R

N .
ThenH̄Q ∈ R

N×N , whereH̄ = [K ,−pr] = f ′(y).

2. Apply Krylov subspace method to solve approximatelyH̄Qδq = −f .
Then setδy = Qδq .

To specify the matrixQ , the following scheme based on Householder transformations is
proposed in [193]:

1. Choosei, 1 ≤ i ≤ N + 1 and lete i be theith column ofI ∈ R
(N+1)×(N+1).

Determine the Householder transformationP such thatPt = ±e i.

2. SetQ = PÎ i, whereÎ is obtained by deleting theith column ofI .

As reported in [193] the most successful choice has beenQ = PÎ N+1, which is perhaps
rather natural due to the special nature of the control parameter.

Incremental work and load constraints

Krenk [110] introduced another type of orthogonality constraint equation. His orthogonal
residual approach does not need the block factorization scheme, only solution with one
right-hand side per iteration step is required, and it is thus ideally suited with the use of
iterative linear equation solvers. As argued by Krenk, the magnitude of the displacement
increment is optimal when the orthogonality condition

∆qT
i f̃ i+1 = 0 (2.21)

is satisfied. This linear condition is used to determine the current load parameterλ. The
algorithm can be described briefly as:

1. compute:r i = r(q 0 + ∆q i), ∆r i = r i − λ0pr, ∆λi+1 = ∆qT
i ∆r i/∆q i

Tpr,

2. solve:K δq i+1 = −f̃ i+1 = (λ0 + ∆λi+1)pr − r i ,

3. compute:∆q i+1 = ∆q i + δq i+1 .
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22 2 Parametrized non-linear equations

λ0 and q0 denote the load level and the displacement vector at the beginning of cur-
rent increment. However, even if this elegant algorithm seems to be ideal with the use of
an iterative linear equation solver, it has some drawbacks observed in numerical experi-
ments. Since the size of the increment is not restricted during the iteration, the algorithm
seems to have some tendency to increase the displacement increment near limit points. To
remedy this deficiency Krenk imposed a maximum length for theiterative displacement
increment. However, the rejection usually downgrades the convergence of the scheme. It
might be a better choice to control the current iterate when already computing the value
of the incremental load parameter in phase 1, if the load increment is beyond some safe-
guard values. In such situations, a standard Newton step could result in an acceptable
displacement increment in phase 2.

Krenk and Hededal [111] combined a single cycle BFGS scheme,also called as mem-
oryless BFGS, with the orthogonal residual procedure. Theynamed this modification dual
orthogonal residual method.

Bergan [24] has introduced a method in which the load step is adjusted by minimizing
the norm of the unbalanced force:

min
y

‖f (y)‖ = min
q ,λ

‖f (q , λ)‖, (2.22)

in which the norm should be a weighted one.
Constant incremental work control method has been proposedby Karamanlidiset al.

[96] and Bathe and Dvorkin [17]. The constant increment of work is fixed in the predictor
step and during the corrector iteration phase the constraint is

δW = (λ + 1
2
δλ)pT

r δq = 0. (2.23)

Luckily this quadratic constraint will result in a double root for the iterative change of the
load parameter

δλ = −pT
r δq f

pT
r qp

. (2.24)

It should also be noted, that the constant incremental work constraint will result in a
symmetric augmented matrixH in eq. (2.5). It is easily seen that in the case of single load
component in the reference load vector the work constraint method controls only single
displacement. Therefore it can fail in certain snap-back situations where the denominator
of (2.24) is nearly zero. Chen and Blandford [44] claimed thework control method to be
superior to other published solution strategies. In the opinion of present author, this claim
is largely exaggerated.

A number of other modifications of these basic procedures have been introduced in
the literature. However, in the opinion of the author, the very specific form of the con-
straint equation, if properly posed, is of secondary importance. Efficiency of the solution
algorithm depends mainly on the selection of proper step-size and the updating strategy
of the tangent stiffness matrix.
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2.1.3 Some computational aspects

Step length adaptation

Step length selection is one of the most crucial parts of continuation in view of efficiency.
Several methods exist, see e.g. [6], [86], [145], [161], [163]. In engineering literature
Ramm’s simple method seems to be the most popular. The new step size is scaled by
relating the number of iterations used in the previous step (In) to a desired valueId:

∆sn+1 = (Id/In)p∆sn, (2.25)

where the scaling exponentp = 0.5 is usually adopted. If the desired number of corrector
iterations is properly chosen this simple arc-length control will result in a rather robust
procedure. However, it can produce too small step-sizes which are kept unchanged for
unnecessarily long times. Some safeguard limit values for the step-length changes should
also be used together with (2.25).

Alternative choices are presented by Den Heijer and Rheinboldt [86] where the
steplength adaptation strategy is based on error models obtained by analyzing the Newton-
Kantorovich theory and by Georg [76] which is based upon asymptotic estimates. In the
latter approach the steplength is continually adapted so that a nominal prescribed contrac-
tion rate is maintained. An approach with similar characteristics is also proposed in ref.
[64].

Orientation of the curve tracing is also determined in the predictor phase. The sign
of the load increment can be determined by monitoring eitherthe inertia of the tangent
stiffness matrix or the angle between the predictor step andthe previous increment. The
latter approach is suitable for continuation with iterative linear solvers.

The predictor step proceeds from a known equilibrium configuration, i.e. a point of
the equilibrium path, towards the next point on the path. A common practice is to use an
Euler predictor, a predictor step in the direction of the tangent of the path. Higher order
predictors are also possible. Performance studies of different improved predictor schemes
can be found e.g. in refs. [5],[62], [191]. However, simple Euler predictor is usually the
most effective.

Stiffness matrix update strategy

For moderate size problems computation of the stiffness matrix is the most time consum-
ing part in the continuation process. On the other hand, the solution of the linearized equa-
tion system dominates the computational cost for large problems. If direct linear equation
solvers are used, the factorization is the dominating phase, which has to be performed
after every stiffness matrix update. Therefore, proper update strategy has a pronounced
effect on the computational cost.

In the present lecture notes, two different strategies are considered. The first one is
based simply on higher order Newton schemes. If the number ofchord Newton steps fol-
lowing a full Newton step is increasing with the iteration number, it will result in a robust,
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24 2 Parametrized non-linear equations

automatic and rather efficient procedure without any user given adjustment parameters.
The higher order method, also called Shamanski method in ref. [104], is worthwhile to
apply when direct linear equation solvers are used. The efficiency is due to the fact that
the effort used in the stiffness matrix updates near the equilibrium point is usually wasted
since the convergence could be obtained with few chord Newton steps, which are much
cheaper than one full Newton step.

Another strategy is to monitor the convergence rate:

q =
‖δx i‖C

‖δx i−1‖C
.

If it is small enough, then the chord Newton is used and in the opposite case the stiffness
matrix is updated. This approach will require a user specified convergence rate tolerance,
for which a reasonable value is of the order10−1.

Different corrector iteration strategies can also used. A class of Newton algorithms
called quasi-Newton methods have been developed in order tospeed up the convergence
of the chord Newton method and to improve the efficiency of thetrue Newton scheme see
[51], .

Eigenvector projections can also be utilized to improve theconvergence of the correc-
tor iterations [58].

2.1.4 Continuation pseudocode

Continuation algorithm with block elimination method.

1. Predictor phase

(a) starting point(q 0, λ0) such thatf (q 0, λ0) = 0 .

(b) choose steplength∆s

(c) evaluateK 0 = f ′(q 0, λ0) = ∂f /∂q |0
(d) factorizeK 0 = LDU and compute singularity test functions (see ch. 5)

(e) solveK 0q p = pr

(f) compute∆λ0 from the constraint equationc

(g) select the direction for traversingδλ0 = ±∆λ0

(h) updateq 1 = q 0 + δλ0qp andλ1 = λ0 + δλ0

2. Corrector phase: iteratei = 1, . . . ,

(a) evaluatef i = f (q i, λi)

(b) decide if the Jacobian should be updated
if yes, then computeK k = f ′(q i, λi) and factorizeK k
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2.1. Continuation method 25

(c) solveK kδq f = −f i andK kq p = pr

(d) computeδλi = −(c + cT δqf)/(e + cTqp) andδq i = δq f + δλiq p

(e) updateq i+1 = q i + δq i andλi+1 = λi + δλi

(f) if convergence setq0 = q i+1 andλ0 = λi+1 and go to a new predictor step 1.

Exercises

1. Solve the equilibrium path of the Mises-truss example 1.3.1. Compare some con-
straint equations, like the normal plane and the ellipticalone.

2. Solve the solution path of the Bratu problem 2 on page 14. The path has one limit
point atλ ≈ 6.81. Stop traversing the path when‖u‖∞ = 10.
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Chapter 3

Determination of critical points

3.1 Non-linear eigenvalue problem

A critical point along an equilibrium path can be determinedby solving the non-linear
eigenvalue problem: find the critical value ofq , λ and the corresponding eigenvectorv

such that
{

f (q , λ) = 0

f ′(q , λ)φ = 0
(3.1)

wheref is the vector of unbalanced forces andf ′ denotes the Gateaux derivative (Ja-
cobian matrix) with respect to the state variablesq . Equation (3.1)1 is the equilibrium
equation, which has to be satisfied at the critical point, andequation (3.1)2 states the zero
stiffness in the direction of the critical eigenmodeφ, which is the actual criticality con-
dition. Such a system is considered in Refs. [167], [196], [197]. Abbot [1] considers a
different extended system where the criticality is identified by means of the determinant
of the tangent stiffness matrix. The drawback of this procedure is that the directional
derivative of the determinant is difficult to compute.

The system (3.1) consists of2N + 1 unknowns, the displacement vectorq , the eigen-
modev and the load parameter valueλ at the critical state. Since the eigenvectorv is
defined uniquely up to a constant, the normalizing conditioncan be added to the system
(3.1):

g(q ,φ, λ) =







f (q , λ)
K (q , λ)φ

N(φ)







= 0 , (3.2)

where the Jacobian matrixf ′ = ∂f /∂q is denoted byK andN(φ) defines some normal-
izing condition to the eigenvector.

The idea of augmenting the equilibrium equations with the criticality condition ap-
pears to be due to Keener and Keller [99], presented as early as in 1973. Most papers
found in literature deal only with simple critical points, and the extension to multiple
bifurcations, see Keener [98], will not be considered in these lecture notes.
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3.2. Direct method for non-linear eigenvalue problem 27

3.2 Direct method for non-linear eigenvalue problem

For the stable solution of a non-linear system (3.2) using a Newton’s method, it is im-
portant that the solution is isolated. Therefore the use of system (3.2) seems to be limited
to the computation of limit points only [196]. However, it has been used also to compute
bifurcation points in Refs. [167, 197].

The main problem in using Newton’s method to the system (3.2)is the computation
of the directional derivative of the tangent stiffness matrix. Finite differences are usually
used for the approximation of the directional derivative, [61, 63, 117, 118, 119, 197].
The following description is adopted from Wriggers and Simo[197]. They employed the
penalty regularization to improve the conditioning of the Jacobian of the extended system,
appending the constrainteT

i q = µ to the system (3.2):

g̃(x ) = g̃(q ,φ, λ, µ) =















f (q , λ) + γ(eT
i q − µ)e i

K (q , λ)φ+ γ(eT
i φ− φ0)e i

eT
i φ− φ0

eT
i q − µ















= 0 , (3.3)

whereγ is the non-negative regularizing penalty parameter ande i is a unit vector having
the unit value at positioni corresponding to the smallest diagonal entry of the factorized
tangent stiffness matrix. The Newton linearization step ofsystem (3.3) results in a linear
equation system of the following form:













K γ 0 −pr −γe i

∂

∂q
(Kφ) K γ

∂

∂λ
(Kφ) 0

0 T eT
i 0 0

eT
i 0 T 0 −1



























δq
δφ
δλ
δµ















= −g̃(q ,φ, λ, µ), (3.4)

where the rank-one updated tangent matrix is

K γ = K + γe ie
T
i . (3.5)

If the system (3.4) is to be solved by a direct linear solver, ablock factorization type
strategy is feasible. Solution ofδq is obtained by solving the following three systems of
linear equations:

K γδq p = pr, K γδqf = −f , K γδq e = e i, (3.6)

and thus
δq = δλδq p + δq f + γ(µ + δµ − eT

i q)δq e. (3.7)

Change in the eigenvector is computed from the second equation in (3.4)

δφ = −φ−K−1
γ

[

∂

∂q
(Kφ)δq +

∂

∂λ
(Kφ)δλ − γφ0e i

]

. (3.8)
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28 3 Determination of critical points

At this stage the evaluation of the second derivatives of theresidual (i.e. the directional
derivatives of the tangent stiffness matrix) has to be performed. Introducing the vectors

h i = − ∂

∂q
(Kφ)δq i, , i = p, f, e hλ = − ∂

∂λ
(Kφ), (3.9)

and
w i = K−1

γ h i, i = p, f, e, λ (3.10)

the expression for the iterative change of the eigenvector can be written in terms of vectors
w i, δq i. The load vectorsh i can be computed at element level and they are similar to the
load vectors in Koiter’s initial post-buckling approach. Using the notation of (3.9) and
(3.10) the new value for the eigenvector is

φ+ δφ = δλ(wp + wλ) + w f + γ(µ + δµ − eT
i q)w e + φ0δq e. (3.11)

The final step is to solve the scalar parametersδλ andδµ from the two remaining equations
in (3.4):

[

eT
i (w p + wλ) γeT

i w e

eT
i δq p γeT

i δq e − 1

]{

δλ
δµ

}

=

{

g1

g2

}

, (3.12)

where

g1 = φ0 − eT
i

{

w f + γ
[

φ0δq e + (µ − eT
i q)w e

]}

,

g2 = µ − eT
i

[

q + δq f + γ(µ − eT
i q)δq e

]

.

Application of the described method requires complete description of the kinematical
relations especially in cases where the pre-buckling stateis non-linear and exhibits large
deflections and rotations. In particular, the description has to be capable to handle large
incremental rotations.

3.3 Polynomial eigenvalue problem

Assuming an equilibrium state(q∗, λ∗) with a regular tangent matrix, a Taylor expansion
of the non-linear eigenvalue problem (3.1) with respect to the load parameterλ has the
form

q = q∗ + ∆λq 1 + 1
2
(∆λ)2q2 + · · · , (3.13)

f = f ∗ + ∆λ
df

dλ

∣

∣

∣

∣

∗
+

1

2
(∆λ)2 d2f

dλ2

∣

∣

∣

∣

∗
+ · · · = 0 (3.14)

(

f ′
∗ + ∆λ

df ′

dλ

∣

∣

∣

∣

∗
+

1

2
(∆λ)2d2f ′

dλ2

∣

∣

∣

∣

∗
+ · · ·

)

φ = 0 (3.15)
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3.3. Polynomial eigenvalue problem 29

where∆λ = λ − λ∗. Expressions for the derivatives are1

df

dλ
=

∂f

∂q

∂q

∂λ
+

∂f

∂λ
= f ′q̇ + ḟ , (3.16)

d2f

dλ2
= f ′q̈ + f ′′q̇ q̇ + 2ḟ

′
q̇ + f̈ , (3.17)

df ′

dλ
= f ′′q̇ + ḟ

′
, (3.18)

d2f ′

dλ2
= f ′′q̈ + f ′′′q̇ q̇ + 2ḟ

′′
q̇ + f̈

′
. (3.19)

Evaluating these quantities at the equilibrium state(q ∗, λ∗), gives

q̇ ∗ = q 1, and q̈ ∗ = q 2, etc.. (3.20)

and the expressions (3.16-3.19) result in

df

dλ

∣

∣

∣

∣

∗
= f ′

∗q1 + ḟ ∗, (3.21)

d2f

dλ2

∣

∣

∣

∣

∗
= f ′

∗q2 + f ′′
∗q1q1 + 2ḟ

′
∗q1 + f̈ ∗, (3.22)

df ′

dλ

∣

∣

∣

∣

∗
= f ′′

∗q1 + ḟ
′
∗, (3.23)

d2f ′

dλ2

∣

∣

∣

∣

∗
= f ′′

∗q2 + f ′′′
∗ q 1q1 + 2ḟ

′′
∗q1 + f̈

′
∗, (3.24)

wheref ∗ = f (q ∗, λ∗) etc. In the expansion of the equilibrium equations (3.14) all terms
dpf /dλp, p = 1, 2, . . . has to vanish, thus giving the equation to solve the fieldsq i

f ′
∗q 1 = −ḟ ∗, (3.25)

f ′
∗q 2 = −

[

f ′′
∗q 1q 1 + 2ḟ

′
∗q 1 + f̈ ∗

]

(3.26)

... (3.27)

It is worthwhile to notice that the coefficent matrix to solveq 1, q2... is the same for all
cases. In structural mechanics, the symbolK is usually used to denote the stiffness matrix,
thus the matrices in (3.15) can be written as

K 0|∗ = f ′
∗,

K 1|∗ =
df

dλ

∣

∣

∣

∣

∗
= f ′′

∗q 1 + ḟ
′
∗,

K 2|∗ =
d2f

dλ2

∣

∣

∣

∣

∗
= f ′′

∗q2 + f ′′′
∗ q1q1 + 2ḟ

′′
∗q1 + f̈

′
∗,

1Notice the difference between derivativesdf /dλ andḟ = ∂f /∂λ, i.e.df /dλ = f ′(∂q/∂λ)+∂f /∂λ.
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and the polynomial eigenvalue problem can be written as

(

K 0|∗ + ∆λK 1|∗ + 1
2
(∆λ)2K 2|∗ + · · ·

)

φ = 0 , (3.28)

In the classical linear stability analysis the reference state is the undeformed stress
free configuration. For the linear stability eigenvalue problem the matrices are simply the
following:2

K 0|0 = f ′(0 , 0)

K 1|0 = f ′′(0 , 0)q1,

whereK 0|0q1 = pr. Therefore the strains are linear functions of the displacementsq 1

and the geometric stiffness matrixK 1|0 is a linear function of the displacementsq1.
It is seen from the definition of theK 1|0 matrix that the “initial stress” state to the

linear eigenvalue problem has to be linear with respect to the load parameter change. This
is not true if the linear stability eigenvalue problem is solved from

(

K 0|∗ + s(K 0|∗ −K 0|∗∗)
)

φ = 0 ,

whereK 0|∗ andK 0|∗∗ are the tangent stiffness matrices from two consecutive equilibrium
states. It will be a correct approximation to the linear eigenvalue problem only if the load
increment∆λ = λ∗ − λ∗∗ is small, i.e.K 1|∗ ≈ (∆λ)−1(K 0|∗ −K 0|∗∗).

Example 3.3.1. The same Mises truss as discussed in example 1.3.1 on page 6 will be
considered. The symmetric path exhibits snap-through behaviour. There are now other
equilibrium paths for the symmetric load if the angleα < 54.74◦. Compute the snap-
through load and displacement using the direct method amd polynomial approximations
of first and second order. Length and the initial angle of the bars at the initial state areL
andα, respectively.

The equilibrium equation (1.30) of the symmetric mode is (divided by two)

f(q, λ) = (sin2 α)q − 3
2
(sin α)q2 + 1

2
q3 − λ = 0, (3.29)

whereλ = P/EA.

Direct method

The non-linear eigenvalue problem can be stated as: findλcr andqcr such that

g(q, λ) =

{

f(q, λ) = (sin2 α)q − 3
2
(sin α)q2 + 1

2
q3 − λ = 0

f ′(q, λ) = sin2 α − 3(sin α)q + 3
2
q2 = 0

(3.30)

2Assuming also dead weight loading, i.e.ḟ
′ ≡ 0 .
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Figure 3.1: Equilibrium path of the Mises truss (α = 30◦).

This simple system of two unknowns can be solved analytically:
{

qexact
cr = 3−

√
3

3
sin α ≈ 0.4226 sinα

λexact
cr =

√
3

9
sin3 α ≈ 0.1925 sin3 α

. (3.31)

In this case of single state variable, this non-linear eigenvalue problem can be solved
by the Newton’s method with two unknowns (q, λ), starting from the unloaded state(q =
0, λ = 0). The Newton step is to compute the iterative change (δq, δλ) from

[

f ′(qi, λi) −1
f ′′(qi, λi) 0

]{

δqi

δλi

}

= −
{

f(qi, λi)
f ′(qi, λi)

}

(3.32)

or shortly
G iδx i = −g(x i) (3.33)

First iteration:

G0 =

[

sin2 α −1
−3 sin α 0

]

, g0 =

{

0
sin2 α

}

, δx 0 =

{

1
3
sin α

1
3
sin2 α

}

. (3.34)

Second iteration:

G1 =

[

1
6
sin2 α −1

−2 sin α 0

]

, g1 =

{

− 4
27

sin3 α
1
6
sin2 α

}

, δx 1 =

{

1
12

sin α
− 29

216
sin2 α

}

. (3.35)

Estimate to the solution after two iterations is thus

x 2 = x 1 + δx 1 =

{

5
12

sin α
43
216

sin2 α

}

≈
{

0.4167 sinα
0.1991 sin2 α

}

. (3.36)
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Third iteration:

G2 =

[

1
96

sin2 α −1
−21

12
sin α 0

]

, g2 =

{

− 23
3456

sin3 α
1
96

sin2 α

}

, δx 2 =

{

1
168

sin α
− 957

145152
sin2 α

}

.

(3.37)
After three iterations the solution vector has four correctsignificant digits:

x 3 = x 2 + δx 2 =

{

71
168

sin α
27939
145152

sin2 α

}

≈
{

0.4226 sinα
0.1925 sin2 α

}

. (3.38)

Note, that the JacobianG is regular at the solution point

G(qexact
cr , λexact

cr ) =

[

0 −1

−
√

3
3

sin α 0

]

. (3.39)

Polynomial eigenvalue problem

To perform the linear stability analysis at the initial state, the reference displacementq1 is
solved from

f ′
0q1 = −ḟ0 (3.40)

Now ḟ ≡ −1 andf ′
0 = sin2 α, thusq1 = sin−2 α. The initial stress matrix, or initial

geometric stiffness matrix is

K1|0 = f ′′
0 q1 + ḟ ′

0 = f ′′
0 q1 = − 3

sin α
(3.41)

and the eigenvalue problem

K0|0 + λK1|0 = sin2 α − λ
3

sin α
= 0 (3.42)

giving the result
λcr = 1

3
sin3 α (3.43)

For the quadratic eigenvalue problem, the displacement correctionq2 is solved from

f ′
0q2 = −(f ′′

0 q1q1 + 2ḟ ′
0q1 + f̈0) = −f ′′

0 q1q1 (3.44)

giving the resultq2 = 3 sin−5 α. The stiffness “matrix”K2|0 is computed from

K2|0 = f ′′
0 q2 + f ′′′

0 q1q1 = − 6

sin4 α
(3.45)

and the resulting quadratic eigenvalue problem is

K0|0 + λK1|0 + λ2K2|0 = sin2 α − λ
3

sin α
− λ2 6

sin4 α
= 0 (3.46)

The positive root of this equation is

λcr =
1

4

(

√

11

3
− 1
)

sin3 α (3.47)
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Figure 3.2: Stiffness as a function of the load parameter (α = 30◦).

Example 3.3.2. Compute the critical points of the Mises truss using the fullequilibrium
system (1.23) and the augmentation

g(x ) = g(q ,φ, λ) =







f (q , λ)
f ′(q , λ)φ
‖φ‖2 − 1







= 0 . (3.48)

Consider both cases whenα < 54.74◦ andα > 54.74◦.

The elements of the stiffness matrixK are denoted by

K11 =
∂f1

∂q1
= 2c2 + 3q2

1 − 2sq2 + q2
2, (3.49)

K12 =
∂f1

∂q2

= 2q1(q2 − s) =
∂f2

∂q1

= K21 (3.50)

K22 =
∂f2

∂q2
= 2s2 + q2

1 − 6sq2 + 3q2
2, (3.51)

and the Jacobian matrixG = g ′ = ∂g/∂x is

G =













K11 K12 0 0 0
K21 K22 0 0 −2
Z11 Z12 K11 K12 0
Z21 Z22 K21 K22 0
0 0 2φ1 2φ2 0













(3.52)
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34 3 Determination of critical points

where

Z11 = 6q1φ1 + 2(q2 − s)φ2 (3.53)

Z12 = 2(q2 − s)φ1 + 2q1φ2 = Z21 (3.54)

Z22 = 2q1φ1 + 6(q2 − s)φ2 (3.55)

Notice, that the Jacobian matrix is singular. if the initialstarting vectorx 0 is a zero vector.
If α = 30◦ and using an initial guessx = (0, 0, 0, 0.5, 0)T gives the solution

x =























q1

q2

φ1

φ2

λ























=























0
0.2113

0
1

0.024056























(3.56)

Six iterations are needed to reduce the residual smaller than 10−8 using the criteria
‖δx‖2 < TOL‖∆x‖2.

At the exact solution point the termsK22, K12 = K21, Z12 = Z21 are zero and the
Jacobian has the form

G(x exact) =













K11 0 0 0 0
0 0 0 0 −2

Z11 0 K11 0 0
0 Z22 0 0 0
0 0 0 2 0













. (3.57)

It is clearly nonsingular sincedet(G) = −4K2
11Z22 6= 0.

If α = 70◦, the bifurcation point is the first critical point to be foundon the equilibrium
path. Using the initial guessx = (0, 0, 0.5, 0, 0)T gives the solution

x =























q1

q2

φ1

φ2

λ























=























0
0.134046

1
0

0.094243























(3.58)

Five iterations are required with the same tolerance.
At the exact solution point the termsK11, K12 = K21, Z11 andZ22 in the Jacobian are

zero.

G(x exact) =













0 0 0 0 0
0 K22 0 0 −2
0 Z12 0 0 0

Z21 0 0 K22 0
0 0 2 0 0













. (3.59)

Clearly this matrix is singular.
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Exercises

1. In practical computations critical points with positiveload factor are of interest.
Extended systems, like (3.3) or (3.48) can in principle converge to a critical point
where the load parameterλ is negative. To avoid such situations, investigate the
convergence of Newton’s method to the following extended systems for the Mises
truss example:

(a)

g(x ) = g(q ,φ, λ) =







f (q , λ)
f ′(q , λ)φ
‖φ‖2 − λ







= 0 . (3.60)

(b)

g(x ) = g(q ,φ, λ) =







f (q , λ)
f ′(q , λ)φ
λ‖φ‖2 − 1







= 0 . (3.61)

Use different starting values for the eigenvectorφ0 and useq0 = 0 andλ0 =
0. Make conclusions of the applicability of such extensions to large systems for
realistic practical computations.

2. Investigate the behaviour of Broyden’s quasi-Newton method for the extended sys-
tems.

3. Investigate the behaviour of Newton’s method to the extended system

g(x ) = g(q , λ) =

{

f (q , λ)
det(f ′(q , λ))

}

= 0 . (3.62)

for the Mises truss example.

4. For large systems, the Jacobian of the extended system (3.62) has the form

∂g

∂x
=

[

K −pr

dT β

]

(3.63)

wheredT = ∂ det(K )/∂q andβ = ∂ det(K )/∂λ. These derivatives are difficult
to obtain in practical large scale computations. Investigate the possibility to replace
them by some properly chosen quantities and keep them constant during the itera-
tion.
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Chapter 4

Asymptotic approach

4.1 Introduction

Stability is a classical subject in structural mechanics. The history of the early days of
structural stability analysis encompasses many of the great names in mechanics. Koi-
ter lists the following names in the introduction of his revolutionary thesis [105]: Leon-
hard Euler, William Thomson, G.H. Bryan, R.V. Southwell, C.B. Biezeno, H. Hencky,
E. Reissner, E. Trefftz, K. Marguerre, R. Kappus and MauriceBiot. Those early consid-
erations were mainly restricted to the investigation of neutral equilibrium and directed
towards the determination of stability limit. Phenomena that appear on reaching or even
exceeding the stability limit were not considered.1

A general theory of post-buckling phenomena of elastic structures was developed by
Warner Tjardus Koiter (1914 – 1997) during the second world war and culminated in
his doctoral thesis on November 14, 1945 [105]. Unfortunately Koiter’s work remained
relatively unknown for a period of over two decades, until the English translation was
published in 1967. During that period a similar theory of stability was developed by
Sewell [164], Thompson and Hunt [181]. In contrast to Koiter’s continuum formulation
the British school of post-buckling theorists used the language of finite dimensional sys-
tems. In the works of Budiansky [37] and Hutchinson [91] variations of Koiter’s energy
formulation have usually been based on continuum concepts using the principle of virtual
work.

Koiter’s approach is asymptotic in nature, therefore called the initial post-buckling
theory, and relies on perturbation methods. It gives qualitative answers on the type of
post-buckling behaviour but its quantitative results are limited to the neighbourhood of the
critical state. Actually it is an application of the Liapunov-Schmidt reduction to elasticity
equations.

In perturbation methods the difficulty of solving non-linear equilibrium equations is
avoided by solving a sequence of linear problems. However, they have gained little foot-

1Here we mean the general theory of stability. Post-bucklingbehaviour of specific structures, e.g. rods
was considered by Leonhard Euler as early as 1744.
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ing in computerized buckling analyses. One of the first attempts to implement Koiter’s
asymptotic initial post-buckling theory was the work by Haftka, Mallett and Nachbar [83].
However, their attempt was somewhat unorthodox, focusing only to the snap-through in-
stability. Non-linearities in the pre-buckling state wereconsidered as generalized initial
imperfections of the perfect structure. Later, implementations which are more faithful to
the original theory were presented, e.g. [66, 113, 139, 160].

The main stream of computer analyses of non-linear structures uses the incremen-
tal approach. It allows the handling of fully non-linear equilibrium equations without
any restrictions to the kinematics. Therefore the problem of assessing the validity of the
asymptotic approach is overcome. However, it is not easy to locate the singularities and to
switch onto the post-buckling branches in a reliable, robust way. In addition, the literature
deals mainly with simple critical points.

In the incremental approach a natural choice for the controlparameter in structural
mechanics is the load intensity. However, in many cases additional information of pertur-
bations on the response of the system are of extreme importance; this is especially true
near critical points. Extending the parameter space with specific perturbations of geome-
try, material characteristics or loading conditions provide a more complete picture of the
system behaviour [63], [149].

It is evident that both of these methods, perturbation and continuation, have their pros
and cons. Thus, some kind of synthesis would be welcome. Two quotations which are ap-
propriate at this point are due to Potier-Ferry [142]: “The most typical feature of instability
theory is that its fundamental characteristics can be foundin very simple models. More-
over, any complicated structural system is equivalent in some sense to one of these simple
models, at least in the neighbourhood of a critical state”; and due to Seydel [169]: “The
analysis of non-linear phenomena requires, on the other hand, tools that provide quan-
titative results(continuation method)and, on the other hand, the theoretical knowledge
(perturbation method)of nonlinear behaviour that allows one to interpret these quantita-
tive results”.

4.2 Liapunov-Schmidt reduction

In the Liapunov-Schmidt or Liapunov-Schmidt-Koiter reduction procedure the large non-
linear system of equations (dimensionN) is reduced into a locally equivalent system
of non-linear equations the dimension of which is much smaller than the original one.
Originally Koiter’s initial postbuckling theory is a reduction from the infinite dimensional
continuous problem into a small system of polynomial equations. Usually, as also in Koi-
ter’s thesis [105], the number of “post-buckling equilibrium equations” derived from the
reduced potential energy expression equals the multiplicity of the buckling load. The early
analytical investigations concentrated predominantly onthe interaction between the local
and the overall buckling of compressed structural members;consequently, the number of
discrete equilibrium equations in most cases was two [141].However, especially in com-
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38 4 Asymptotic approach

pressed shell structures many critical loads are involved.Koiter suggested a method to
handle nearly coincident critical loads, while Byskov and Hutchinson presented a formu-
lation for well separated critical loads [39]. It has also been shown experimentally that
the interaction between well separated critical loads can occur [124]. Asymptotic analy-
sis has been used to solve the initial post-buckling response for various structures in e.g.
refs. [40], [113].

In the following the generalized Liapunov-Schmidt-Koiter(LSK) technique is briefly
presented following the lines of refs. [80], [185], and [139]. Huang and Atluri [87] have
used a similar technique for simple critical points. A key point in the LSK-reduction
technique is the decomposition of the ambient space into summands related to the tangent
operator at the critical point [80]. The residualf is a non-linear mapping fromX × R to
Y and the following notations for the decompositions are usedin the sequel:

X = N ⊕N⊥, (4.1a)

Y = M⊕M⊥, (4.1b)

where both spacesX and Y are equal toR
N .2 In the classical formulation,N =

kerK ,N⊥ = rangeK T ,M = kerK T ,M⊥ = rangeK . However, since the mode inter-
action problems are of interest, the generalized LSK-formulation [93] is adopted, where
theN -space is enlarged from only being the nullspace of the tangent operator. Thus, it is
assumed that:

kerK ⊂ N , dim(kerK ) = L ≤ dimN = M. (4.2)

The original equilibrium equations (1.1) can thus be expanded to an equivalent pair of
equations

Pf (q , λ) = 0, (4.3a)

(I −P)f (q , λ) = 0, (4.3b)

whereP is a projector fromY → M⊥, with kerP = M. Analogously,I − P is a
projector fromY → M with ker(I − P) = M⊥. Expression for the projector can be
written asP = I − 		T , where	 is a matrix containing the basevectors ofM, i.e.	 =

[

ψ1 · · · ψM

]

.
In view of the decomposition (4.1a), the displacement vector onto the post-bifurcation

regime can be written in the form3

q = q cr + aiφi + v(ai, λ), (4.4)

whereφi’s denote the base vectors spanning the spaceN andai’s are the unknown ampli-
tudes. The unknown vectorv is required to be orthogonal to the vectorsφi, i.e.v ∈ N⊥.

2The spacesX andY can be regarded as displacement and load spaces, respectively.
3Einstein’s summation convention is adopted for repeated lower case indexes.
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4.2. Liapunov-Schmidt reduction 39

Since the matrixK cr is invertible fromN⊥ → M⊥, solution forv is unique near the crit-
ical point. Substituting the solutionv into (4.3b) the reduced set of equilibrium equations
is obtained

g(ai, λ) = 	T (I −P)f (q cr + aiφi + v(ai, λ), λ)

= 	T f (q cr + aiφi + v(ai, λ), λ). (4.5)

The Taylor series expansion of the vectorv in the orthogonal complement ofN is:

v(ai, λ) = aiv i + ∆λvλ + 1
2

(

aiajv ij + 2∆λaiv iλ + (∆λ)2vλλ

)

+ · · · , (4.6)

(∆λ = λ − λcr) and substituting it into the Taylor’s series expansion of (4.3a) about the
critical point, i.e.ai = 0, λ = λcr gives the equations for the solution of the higher order
terms. From the expansion, it can be concluded thatv i andvλ, vλλ... will vanish. The
only remaining displacement fields, up to second order, can be solved from equations:

−Pf ′v ij = Pf ′′φiφj , (4.7a)

−Pf ′v iλ = Pf ′
,λφi, (4.7b)

where the notationf ′ = ∂f /∂q has been used.
Expansion of the reduced equilibrium equations at the critical state (ai = 0, λ = λcr)

is:

g(ai, λ) = g cr + g cr,iai + g cr,λ∆λ + 1
2

(

g cr,ijaiaj + 2g cr,iλai∆λ + g ,λλ(∆λ)2
)

+ 1
6

(

g cr,ijkaiajak + 3g cr,ijλaiaj∆λ + 3g cr,iλλai(∆λ)2 + g ,λλλ(∆λ)3
)

. . . (4.8)

and can be written as

Gi∆λ + Gijaj + 1
2
(Gijkajak + 2Gijλ∆λaj)

+ 1
6
(Gijkℓajakaℓ + 3Gijkλ∆λajak) + · · · = 0, i = 1, . . . , M (4.9)

where

Gi = ψT
i f cr,λ,

Gij = ψT
i f

′
crφj,

Gijk = ψT
i (f ′

crv jk + f ′′
crφjφk),

Gijλ = ψT
i f

′
cr,λφj,

Gijkℓ = ψT
i

[

f ′
crv jkℓ + f ′′

cr(φjvkℓ + φkv jℓ + φℓv jk) + f ′′′
crφjφkφℓ

]

,

Gijkλ = ψT
i

[

f ′
crv jkλ + f ′

,λv jk + f ′′
cr(φjvkλ + φkv jλ) + f ′′′

cr,λφjφk

]

.

Some remarks are in order. If the spaceN equals the nullspace of the tangent matrix,
then all the componentsGi andGij vanish. However, ifdim kerK cr = L < dimN = M ,
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then the productGijaj is necessarily zero in the vicinity of the critical point, since the
branch directions are to be found from componentsai, i = 1, . . . , L, thusai = 0,
i = L + 1, . . . , M andGij ≡ 0, wheni, j = 1, . . . , L.

As a summary the branch switching algorithm based on the LSK-reduction technique
consists of the following steps:

1. Computation of the critical point, which can be done in many ways, either with
standard incremental approach or in the case of simple bifurcation directly using an
augmented system.

2. Solution of the eigenvalue problem in order to get the relevant eigenmodes. A stan-
dard eigenvalue problem is solved using the tangent stiffness matrix from the step
nearest to the estimated bifurcation point.

3. Solution of the second-order (or higher) displacement fields. This is necessary only
when the bifurcation is symmetric. However, it can be beneficial to compute it in
any case.

4. Computation of the coefficients of the asymptotic expansion.

5. Solution of the reduced set of polynomial equilibrium equations.

6. Construction of the predictor of the bifurcating branches based on the solutions of
the reduced system.

Since the dimension of the reduced problem is very small, anyrobust solution scheme
can be applied. Notice that these equations are polynomial,hence, it is possible to find
all the solutions with complex valued polynomial continuation algorithms described in
ref. [125]. Alternatively, the multiresultant approach can be used to compute all real solu-
tions of the polynomial system [8]. In the case of nearly simultaneous buckling loads, the
system can be divided into two simmpler ones, see ref. [160].

Solving the amplitude equation in the vicinity of the critical point gives the local form
of the equilibrium surface of the structure. The most severelimitation is that the range of
validity of the results obtained is difficult to judge. Therefore, the perturbation method has
primarily been considered as an “analytical tool” to get qualitative picture of the behaviour
of the initial post-buckling regime.

The number of emanating branches can be large, see equations(5.3) and (5.4), there-
fore, for practical reasons the LSK-method is feasible whenthe number of interacting
modes is of order ten, at maximum. However, solution of all the roots of the reduced
polynomial equations can be done in parallel, if such a computer is available.

Another problem in the initial post-buckling method is to decide how many eigen-
modes are relevant in the expansion. If one interacting modeis left out from the expansion,
numerical computations show that it will appear in the second order field [107]. However,
no mathematical proof is available. The range of validity ofthe asymptotic approach can
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4.2. Liapunov-Schmidt reduction 41

be extremely small in those cases. An example of this is givenin ref. [107] where a T-
beam is analysed. The interacting buckling modes comprise two local and one overall
mode, the critical load of which is higher than the loads corresponding the local modes.
If the overall mode is left out from the series expansion, theresulting two mode analysis
deviates rapidly from the three mode analysis after the secondary bifurcation point, which
lies in the immediate vicinity of the primary bifurcation point.

Example 4.2.1. Perform the LSK reduction for the Mises truss at the bifurcation point.
To have a bifurcation along the equilibrium path defined by equations (1.23) the angleα
should satisfyα > 54.74◦.
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Chapter 5

Branch switching algorithms

5.1 Introduction

As explaned in section 2.1 continuation algorithms can be used to overcome limit (turn-
ing) points, but bifurcation points where two or more equilibrium paths cross each other,
need special treatment To distinguish limit and bifurcation points a simple criteria

{

φTpr = 0 bifurcation point

φTpr 6= 0 limit point
(5.1)

can be used, whereφ is the eigenvector corresponding to the singular value of the tangent
stiffness matrixK . The difficulty in criteria (5.1) is that the decision is usually made based
on inadequate data; i.e. the equilibrium point in question can be at some finite distance
drom the critical state.

When traversing the equilibrium path, a fundamental task isto monitor some criti-
cality indicators, or singularity test functions. Such functions can be used to predict the
possible existence of a critical point in subsequent steps.

5.2 Estimation of the critical point

Computation of the critical point along an equilibrium pathcan be done either by monitor-
ing the evolution of certain singularity indicators or testfunctions during the incremental
procedure or by evoking the directly solution scheme the non-linear eigenvalue problem
[1, 68, 90, 99, 112, 167, 196, 197]. Such a procedure can also be started at some specific
point on an equilibrium path, however, there should be some indication on the existence
of a possible critical point.

To predict the existence of singular points several test functions are plausible if the
linear equation is solved with direct methods. The most common ones are the following:
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5.2. Estimation of the critical point 43

Determinant of the tangent stiffness matrix at an equilibrium point is a simple byprod-
uct of the factorization step. It is unreliable if it is used without modifications. It cannot
separate stable and unstable solution paths if the change inthe number of negative eigen-
values is an even number. Since it is a product of all eigenvalues, the rate of change can be
unrealistically high and cause uncertainty in the prediction of the critical point [108]. If
it is used as a scaled quantity, the robustness as a test function is increased. However, the
number of negative diagonal entries has to be monitored simultaneously. It is impossible
to use with iterative linear equation solvers. A proper scaling can be defined as

sdet(K ) =

N
∏

i=1

|dii|1/Nγ

wheredii are the diagonals of the root free Cholesky decompositionK = LDLT , γ is a
parameterγ ∈ (0, 1), which should reflect the proportion of the average rate of change in
the eigenvalues. The valueγ = 0 is mostly used in the technical literature, however, it will
result in high variations in the values of the test function,especially for large FE models. If
a priori knowledge is available, the proper choice ofγ will improve the predictive quality
of the determinant based singularity test function.

The determinant based singularity test function can be defined as a relative quantity

dbstf = chsign(K )
sdet(K n)

sdet(K 1)
, (5.2)

where the subscript refers to the increment. The “change in signature”- function (chsign)
is defined to be±1, and changes sign when a change in the signature of the stiffness
matrix occurs along the path.

Current stiffness parameter (CSP) [25] can only be used with limit point singularities.
Easiness of evaluation is the main advantage of the CSP and itcan be also used with
iterative linear equation solvers. When the tangent to the equilibrium path is parallel to
the load axis the CSP goes to infinity, which makes the design of a step-length control
algorithm based on CSP somewhat difficult.

The smallest eigenvalue (in absolute value) is perhaps the most reliable singularity test
function. If the decomposition of the tangent stiffness is available, the inverse iteration can
be easily used to evaluate the nearest to zero eigenvalue. However, the inverse iteration is
not fully robust, since the convergence is obtained only if the lowest eigenvalue is single.
In addition, the convergence is towards the lowest eigenvalue in absolute value, therefore
special care has to be paid on unstable equilibrium paths to avoid convergence towards the
smallest positive eigenvalue. Since the eigenvalue and itsassociated eigenvector from pre-
vious equilibrium configuration provides good starting values for the iteration, in practice
only two or three inverse iterations are required for convergence.
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Computation of the lowest eigenvalue is easy if an unpreconditioned iterative linear
solver is used. Supression of the preconditioning step for some cycles in the PCG-iteration
facilitates computation of the extreme eigenvalues of the tangent stiffness matrix from the
triadiagonal matrix

Tm = tridiag [ηi, δi, ηi+1] ,

associated with them-th step of the Lanczos iteration. Expressions for the coefficients
ηi, δi are easily obtained from the CG algorithm, see [155]. Another strategy would be to
combine the inverse iteration with Rayleigh quotient iteration [180].

Unfortunately the signature of the matrix is not easily available if iterative linear
solvers are used.

The smallest pivot (in absolute value) can only be used with the direct linear equation
solvers. Easy to compute.

As can be seen from the above list, none of these are good for the estimation of bifur-
cation points if iterative linear algebra is used.

5.2.1 Number of bifurcating branches

An essential feature for construction of a reliable bifurcation procedure is the determi-
nation of the number of possible solutions branches emanating from the critical point.
This problem has been explored in the late 60’s by Sewell [165, 166], Johns and Chilver
[95, 94]. Depending on the symmetry properties of the system, the maximum number of
different post-buckling branches is

2M − 1 (5.3)

for a system without symmetry, and

1
2
(3M − 1) (5.4)

when the system is perfectly symmetric. The minimum number of post-buckling paths
is 1 for the former case andM for the latter. The complexity of a multi-mode buckling
problem grows enormously with the multiplicity of the critical point. Unfortunately, there
exist no simple rules for the number of real branches. However, using complex poly-
nomial continuation methods in connection with the Liapunov-Schmidt-Koiter reduction
technique, all branches can, in principle, be found.

5.3 Critical points

5.3.1 Characterization and algorithmic requirements

Continuation methods characterized by the augmented equation system (2.3) are espe-
cially designed to handle the simplest case of critical points, i.e. the limit point. Since the
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Jacobian of the augmented system remains regular at limit points, the implicit function
theorem guarantees locally the uniqueness of the solution.This is not the case in other
singular states. Bifurcations, i.e. points where two or more equilibrium paths intersect,
can also emerge from the equilibrium path [179]. An algorithm capable to handle limit
and bifurcation points should include the following procedures:

1. estimation and detection of a critical state [28], [59], [126], [151], [168], [172],
[173], [175], [197],

2. reliable and cost-effective distinction between limit and bifurcation points [151],
[153], [194],

3. branching capability on secondary paths in the case of bifurcation [28], [147], [151],
[152] [183], [192], [194],

4. verification of the existence of all possible solution branches

5.3.2 Some existing branching procedures

In this section a short review of existing branch switching techniques for multiple bifurca-
tions is given. The objective of these algorithms is to seek solutions for the load parameter
λ and the projectionsai of the tangent vectors of the branches onto the critical eigenmodes
φi, i = 1, ..., M .

Rheinboldt [147] developed an elegant and computationallyfavourable branch switch-
ing algorithm for simple bifurcation. He also described a generalization of his method to
multiple bifurcation. However, the question of initial values for the projectionsai re-
mained unanswered. In ref. [108] a variant of Rheinboldt’s algorithm is proposed.

Keller [100] presented four algorithms, which are denoted methods I-IV. The method
I uses a perturbation approach and the solutions for the branch directions are obtained
from the algebraic bifurcation equation (ABE), see also ref. [103]. In the evaluation of the
coefficients in ABE, second derivatives of the residual vector f are needed, or they have
to be approximated by finite differences. This method will fail when ABE is degenerate,
e.g. at symmetric bifurcations. In order to avoid the determination of coefficients of ABE,
Keller proposed method II where the idea is to seek solutionson some subset parallel
to the tangent but displaced from the bifurcation point in some direction normal to the
tangent. Obviously this method will work well in simple bifurcations, but the problem
with multiple bifurcation is how to parametrize in a reasonable way the subset where the
solution is to be found. Remaining two methods III and IV seemto be the most robust
and also computationally the most demanding. However, theyare described in ref. [100]
only in the case of simple bifurcation.

Kearfott [97] developed a technique where, in principle, all solution arcs can be found
by locating the minima of‖f ‖ in the region near the critical point spanned by the critical
eigenvectors, i.e finding the solution branches on a sphere centered to the estimate of
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the critical point. A drawback of this method is that it requires numerous evaluations of
the residualf . Determination of the necessary resolution needed to find all solutions is
an open question. If the resolution to scan over the sphere istoo low, the probability of
missing some branches increases, on the other hand, tightening the resolution increases
the computational cost. Huitfeldt [89] included also the tangent vector of the primary
path in the definition of the sphere where the minimization takes place. Pajunen [132] has
used the residual minimization technique to solve double bifurcation problem of a truss
structure.

Allgower and Chien [4] used the local perturbation method introduced by Georg [75]
to multiple bifurcation problems. The idea is to introduce aperturbation near the bifurca-
tion point and solve the perturbed problem

f (q , λ) + τb = 0 (5.5)

from a point on the primary path and traverse a perturbed pathuntil it is near a point on a
branch. The theoretical foundation of this method is based on a version of a generalized
Sard’s theorem. For successful branching the choice of the perturbation vectors plays a
key role. In their numerical examples the components in the perturbation vectors are cho-
sen in such a way that they oscillate correspondingly to those of the bifurcating solutions.
This means that one should havea prioriknowlegde of the solution of the problem which
has to be solved. No specific theory or rules for the selectionof the perturbation vectors
was given in ref. [4], and the method seems to be used best as computing the solution
curves interactively by trial and error fashion.

A major improvement to the local perturbation algorithm is given by Huitfeldt [89]. He
introduced an auxiliary equation which defines with the perturbed equilibrium equations
(5.5) a closed one dimensional curve inN + 2-dimensional space. This curve passes
exactly through one point on each branch (or half branch) determined by the unperturbed
equation (1.1). When passing such a point the perturbation parameterτ changes sign. The
problem is then to locate the zero points of perturbation parameterτ while traversing the
branch connecting curve (BCC). Thus the branch switching problem is reduced to a path
following task of the augmented system

h(q , λ, τ) =

{

f (q , λ) + τb = 0
cb(q , λ, τ) = 0

, (5.6)

which can be solved with standard continuation algorithms.A constraint that defines a
closed surface around the critical point is of spherical (elliptical) form:

cb(q , λ, τ) = 1
2

(

‖q − q cr‖2
W

+ α2(λ − λcr)
2 + β2τ 2 − ρ2

)

, (5.7)

whereα, β are scaling factors andρ is the radius of the sphere. In principle this method
does not require expensive evaluation of the basis of the nullspace of the tangent stiffness
matrix. Huitfeldt [89] used a random vector as perturbationb.
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There are some shortcomings with this conceptually simple and elegant method. It is
not known if the branch connecting equation always defines a closed curve. It is believed,
as also argued by Huitfeldt, that using a constraint defininga closed surface guarantees
a closed path defined by the branch connecting equations (5.6), (5.7). No mathematical
proof of this is known to the author. Secondly, there is no guarantee that all bifurcating
branches have been found. This obviously depends on the choice of the perturbation. In
addition, the computational expense can be very high for large problems, fortunately it
grows only linearily with respect to the emanating branchesfrom the bifurcation point1.
However, the number of branches in multimode buckling with higher multiplicity can be
very large as will be explained in the following.

5.3.3 Asymptotic approach

However, in the case of multimode buckling it is not easy to switch onto the post-buckling
branches in a reliable, robust way. In comparison to the widely used continuation proce-
dure, the asymptotic approach can provide some additional information such as the shape
of the worst imperfection; it also enables the classification of buckling problem in terms
of the catastrophe theory as described, for example, by Thompson and Hunt [182], so
giving insight into the mechanism of the non-linear mode-interaction. Therefore it seems
to be ideal (except the evaluation of higher order derivatives off to combine some of
the features of the asymptotic analysis to the general continuation procedure in order to
handle multiple bifurcation and mode interaction problems, see [109].

1It is assumed that for reliable detection of the zeros of the perturbation parameter on the BCC, a
minimum number of steps, say 4-5, has to separate two consecutive roots.
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Chapter 6

Some linear algebra

6.1 Algebraic eigenvalue problem

6.1.1 Polynomial eigenvalue problem

The non-linear eigenvalue problem

(K 0 + λK 1 + λ2K 2 + · · · + λrK r)q = 0 (6.1)

can be transformed into a linear eigenvalue problem ofr-times the size of problem (6.1)
by defining:q 1 = λq , q2 = λq1, ... [140], which results in an eigenvalue problem of the
form





















K 0 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I











+ λ











K 1 K 2 · · · K r−1 K r

−I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0







































q

q1
...

q r−1



















= 0 .

(6.2)
At first glance the formulation seems unattractive ifr is large. However, solving linear
equations with the first matrix of (6.2) requires only solution with K 0 and the Arnoldi
type iteration can be easily applied.

The quadratic form of the non-linear eigenvalue problem (3.15) is often utilized to
correct the linear eigenvalue predictions. Using the transformation to a linear eigenvalue
problem (using the notationv = q 1)

([

K 0 0

0 I

]

+ λ

[

K 1 K 2

−I 0

]){

q

v

}

= 0 . (6.3)

This is not the only legitimate linearized version of a quadratic eigenvalue problem, other
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possible forms of the problem are:
([

K 0 0

0 −K 2

]

+ λ

[

K 1 K 2

K 2 0

]){

q

v

}

= 0 , (6.4)
([

K 0 0

0 K 2

]

+ λ

[

K 1 K 2

−K 2 0

]){

q

v

}

= 0 . (6.5)

These forms are not as useful for practical computation, butthey can give some insight
to the problem [138], see also [184] for a review of quadraticeigenvalue problems. In the
form (6.4), both matrices are symmetric, if the submatricesK i are symmetric, however,
the global matrices are indefinite. In the second form (6.5),the first matrix is positive
definite if the submatrices are also positive definite, but this is achieved at the expense of
symmetry in the other.

6.1.2 Linear eigenvalue problem

Introduction

There are many algorithms to solve linear algebraic eigenvalue problem. However, for
efficient solution, one has to specify what to compute: (a) all eigenvalues and eigenvectors,
(b) only eigenvalues, (c) only a small number of eigenvaluesand (d) possibly associated
eigenvectors. In structural analysis we are most often faced with eigenvalue problems
where the matrices are large and sparse and only some part of the eigenvalue spectrum is
of interest.

Power iteration method finds the dominant eigenvalue and the corresponding eigen-
vector of a give matrixA. Suppose the matrixA is diagonaliizable, that isΦ−1AΦ =
diag(λ1, . . . , λN) with Φ = [φ1, . . . ,φN ] and the eigenvalues satisfy|λ1| ≤ |λ2| ≤ · · · ≤
|λN−1| < |λN |. Starting from a initial vectorx 0, such that‖x 0‖2 = 1, iteratei = 1, 2, . . .

1. computez i = Ax i−1

2. normalizex i = z i/‖z i‖2

3. computẽλi = x T
i Ax i

and if the iterate converges afterk iterations, theñλk is an approximation to the largest
eigenvalueλN and thex k to the corresponding eigenvectorφN . Convergence of the Power
method is linear and depends on the distance betweenλN−1 andλN :

|λN − λ̃k| = O
(

∣

∣

λN−1

λN

∣

∣

k
)

. (6.6)

This can be easily seen if we assume that the initial guess canbe expressen as a linear
combination of the eigenvectors

x 0 = α1φ1 + α2φ2 + · · · + αNφN (6.7)
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and assume thatαN 6= 0. Then

Ax 0 =

N
∑

i=1

(λiφiφ
T
i )

N
∑

j=1

(αjφj) =

N
∑

i=1

αiλiφi (6.8)

= αNλN

(

φN +
N−1
∑

i=1

αi

αN

λi

λN

φi

)

, (6.9)

and afterk iterations

Akφ0 = αNλk
N

[

φN +

N−1
∑

i=1

αi

αN

(

λi

λN

)k

φi

]

. (6.10)

Thus the algorithm converges toλN andφN , provided that the initial vectorx 0 has a
component in the direction of the dominant eigenvectorφN . The rate of convergence of
the iteration vector is linear.

In structural stability analysis the lowest eigenvalue is usually of interest. Modifying
the step 1 in the power iteration method to solve systemAz i = x i−1, gives the inverse
power method which converges towards the smallest eigenvalueλ1, provided it is simple,
i.e. |λ1| < |λ2|.

The inverse iteration for a generalized eigenvalue problem

Aφ = λBφ (6.11)

can be stated as:1 starting with an initial vectorx 0, computey0 = Bx 0 and iteratei =
1, 2, . . .

1. solveAx̄ i = y i−1

2. computēy i = Bx̄ i

3. computeρi =
x̄T

i y i−1

x̄T
i ȳ i

4. normalizey i = ȳ i/(x̄T
i ȳ i)

1/2

then, provided thaty 1 has a nonzero component in the direction of the eigenmodeφ1 and
the lowest eigenvalue is isolated, the iteration convergessuch as

ρk ≈ λ1 yk ≈ Bφ1. (6.12)

Observe, that the eigenmode is now normalized wrt the matrixB , i.e.φ1Bφ1 = 1, and
thusφ1Aφ1 = λ1.

1If the matrix B is nonsingular, then the generalized eigenvalue problemAφ = λBφ can be also
written asB−1Aφ = λφ.
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Rayleigh quotiet iteration Shifting can improve the rate of convergence in vector itera-
tion methods. One possibility is to use the Rayleigh quotient ρi (at phase 3 in the previous
algorithm), calculated during the iteration process. If the Rayleigh quotient is used as a
shift at every iteration, the procedure is called the Rayleigh quotient iteration and its rate
of convergence is cubic if the starting vector has a big enough component of the eigen-
vectorφ1. The procedure can be stated as: starting with an initial vector x 0, compute
y 0 = Bx 0, select a starting shiftρ0 (usually zero) and iteratei = 1, 2, . . .

1. solve(A + ρi−1B)x̄ i = y i−1

2. computēy i = Bx̄ i

3. computeρi =
x̄T

i y i−1

x̄T
i ȳ i

+ ρi−1

4. normalizey i = ȳ i/(x̄T
i ȳ i)

1/2

Notice, that the phase 1 requires the solution of a system with different coefficient matrix
at every iteration. Therefore the cost of the procedure is much higher in comparison to
inverse iteration if direct solvers are used. However, the situation is different in the case
of iterative linear solvers, see ref. [180].

Solution of large eigenproblems

Two videly used strategies to solve this generalized eigenvalue problem in large scale
finite element computations are the subspace (simultaneous) iteration and the Lanczos
method [137], [18]. There is growing evidence that the Lanczos method is faster in solving
the generalized eigenvalue problem, especially in the caseof large clustered eigenvalue
spectrum, which appear in multi-mode buckling problems. These two methods are based
on the shift and invert strategy, which requires the factorization of a matrix. For very large
problems this can be impossible. Van der Vorst and his co-workers have proposed Jacobi-
Davidson method for polynomial eigenvalue problems [29, 177, 189]. It can be applied
without inversion of matrices or transformation to the standard case. In the present notes
this promising method is not considered.

Since the buckling eigenvalue problem is slightly different from the frequency analy-
sis, a version of the subspace iteration suitable for stability analysis is briefly described.
This slight difference is due to the properties of the initial stress matrix, which is indefinite
in many cases.2

2In frequency analysis the corresponding matrix (mass matrix) is always positive definite or positive
semidefinite.
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Subspace iteration method

The generalized eigenvalue problem in question is to solve the lowestp eigenvalues and
corresponding eigenvectors satisfying

K 0�̄ = −K 1�̄�, (6.13)

where the diagonal matrix� = diag(λi) contains the critical eigenvalues and the matrix�̄ = [q1, ..., qp] the corresponding eigenvectors. The subspace solution algorithm of this
problem is the following [16]:

For,k = 1, 2, ..., iterate:
K 0�̄k+1 = −K 1�̄k.

Find the projections of operatorsK 0 andK 1:

Ak+1 = �̄T
k+1K 0�̄k+1, and Bk+1 = −�̄T

k+1K 1�̄k+1.

Solve for the eigensystem of projected operators:

Ak+1Qk+1 = Bk+1Qk+1�k+1. (6.14)

Find an improved approximation to eigenvectors:�̄k+1 = �̄k+1Qk+1.

If the vectors in�̄1 are not orthogonal to one of the required eigenvectors, the algo-
rithm converges, i.e.�k+1 −→ � and�̄k+1 −→ �̄ ask −→ ∞.

Since the projected matrixBk+1 is not necessarily positive definite, the projected
generalized eigenvalue problem (6.14) is first written in the inverse form

Bk+1Qk+1 = Ak+1Qk+1�−1
k+1. (6.15)

Now, the projected matrixAk+1 is positive definite and the Cholesky decomposition
Ak+1 = LLT is possible. The generalized problem (6.15) is then reducedto the stan-
dard eigenvalue problem

CX = X�−1, (6.16)

whereC = L−1Bk+1(L
−1)T andX = LTQk+1.

Solution of the standard eigenvalue problem (6.16) can be obtained in three phases.
First, the coefficient matrixC is reduced to tridiagonal form by Householder transfor-
mations. The eigenvalues of the tridiagonal matrix are obtained by the QL decomposition
algorithm using implicit shifts in order to speed up the convergence and to maintain good
numerical conditioning. Finally, the eigenvectors are computed using the inverse iteration.

Convergence of the iterative process can be accelerated by using a shift. However, the
requirement that the projected matrixA of the shifted stiffness matrixK 0 + σK 1 has to
be positive definite, restricts the shiftσ to satisfy

|σ| < min |λi|.
Acceleration of the subspace iteration has been considerede.g. in refs. [3], [15], [144].
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Lanczos method

Krylov subspaces based methods such as Lanczos and Arnoldi algorithms are widely used
for treating eigenproblems with large sparse matrices. They are shown to perform better
than vector iteration methods. For an overview of these methods see refs. [79], [137]. A
well-known robust implementation is due to Grimes, Lewis and Simon [81] which is also
incorporated in theMSC/NASTRAN structural analysis code.

The basic idea Cornelius Lanczos presented the algorithm in 1950 to compute some of
the extreme eigenvalues of a given symmetric matrixA. It is based on sequence of vectors
like x ,Ax ,A2x , . . . ,, and the method generates a sequence of tridiagonal matrices T j

which have the property that the extremal eigenvalues ofT j ∈ R
j×j are progressively bet-

ter estimates of the extremal eigenvalues ofA. Let T = QTAQ , andQ = [q1, . . .qN ]
and

T =

















α1 β1 · · · 0

β1 α1
. . .

...
. . . . . . . . .

...
. . . . . . βN−1

0 · · · βN−1 αN

















. (6.17)

SinceAQ = QT , the orthonormal vectorsq j satisfy

Aq j = βj−1q j−1 + αjq j + βjq j+1. (6.18)

The entries of the symmetric tridiagonal matrix are easy to find, multiplying (6.18) byq j

gives
αj = qT

j Aq j . (6.19)

Theβj term can be obtained by rewriting equation (6.18) as

βjq j+1 = Aq j − αjq j − βj−1q j−1 = r j. (6.20)

The Lanczos iteration can be stated as:

1. Initializej = 0, q0 = 0, β0 = 1 selectq 1 such that‖q1‖ = 1 and setr 0 = q1.

2. Iterate whileβj 6= 0

(a) j := j + 1

(b) αi = qT
j Aq j

(c) r j = (A− αjI )q j − βj−1q j−1

(d) βj = ‖r j‖

The sequence of the Lanczos vectorsq j has two basic properties
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1. eachq j+1 is a combination ofq1,Aq1, . . .A
jq 1

2. eachq j+1 is orthogonal to all combinations ofq 1,Aq 1, . . .A
j−1q1

The main problem in Lanczos iteration is its numerical instability. In practice after a
few steps orthogonality is lost and the vectors are not linearly independent. A complete
reorthogonalization is expensive, thus selective and partial reorthogonalization strategies
have been developed, see section 10.6 in [88] and [121].

Block Lanczos algorithm: The approach by blocks allows better convergence proper-
ties when there are multiple eigenvalues which is of primaryimportance in stability anal-
yses of thin shells. Next, the block Lanczos algorithm as coded in the program package
BLZPACK of Marques [121] will be briefly described. TheBLZPACK employs a combina-
tion of modified partial reorthogonalization and selectiveorthogonalization strategies to
preserve the orthogonality of the bases generated by the algorithm.

The eigenvalue problem (6.13) in theBLZPACK is transformed to a form

K 0(K 0 + σK 1)
−1K 0φ = θK 0φ i.e. Aφ = θBφ, (6.21)

whereθ = λ/(λ − σ) andσ 6= 0 is the shift. Implementational details concerning the
monitoring of the orthogonality, the spectral transformation, the spectrum slicing strategy
and the data management during the generation process can befound in ref. [121] and are
not repeated here.

The algorithm can be summarized as [121]: (Q j andRj areN × m matrices,Âj is
m × m andB̂ is m × m upper triangular)

1. Initialization:

(a) set the number of vectors in a blockm, the shiftσ

(b) computeAσ = A− σB

(c) setQ0 = 0 , R0 6= 0

(d) factorizeR0 = Q1B̂ 1, such thatQT
1 BQ1 = I

2. Lanczos steps:, iterate forj = 1, 2, . . . , NSTEPS

(a) computeRj = A−1
σ BQ j

(b) updateRj := Rj −Q j−1B̂
T

j

(c) computêAj = QT
j BRj

(d) updateRj := Rj −Q jÂ
T

j

(e) factorizeRj = Q j+1B̂ j+1, such thatQT
j+1BQ j+1 = I

(f) if required ortogonalizeQ j andQ j−1 against the vectors inQj−1
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(g) insertQ j into Qj andÂj , B̂ j into T j

(h) solve the reduced problemT jsk = θksk, k = 1, 2, . . .m × j

(i) setλ̂k = σ + 1/θk

(j) test convergence by checking the number of eigenpairs for which TOL ≥
‖B̂ j+1s

(k)
j ‖ = ‖Aφk − λ̂kBφk‖, and exit if enough eigenpairs have con-

verged

3. compute the converged eigenvectorsφk = Qjsk.

The block tridiagonal matrixT j is

T j =

















Â1 B̂
T

2

B̂2 Â2 B̂
T

3

B̂3 Â3
. . .

. . . . . . B̂
T

j

B̂ j Âj

















(6.22)

6.2 Solution of the linear equation system

6.2.1 Introduction

In most non-linear structural codes the solution of the linear system is performed with a
direct solver. If the stiffness matrix is symmetric, the root free Cholesky or CroutLDLT

decomposition is used, while for unsymmetric matrices theLU decomposition is used.
For large 3-dimensional problems the decomposition time and the storage requirements
will be prohibitively high when Gaussian elimination type factorizations are used. The
decomposition time dominates the overall cost of the continuation process, since the
asymptotic operation count for standard decomposition is of order E3−2/d, whereE is
the number of elements andd is the space dimension3, while the time needed to compute
and assemble the internal force vector and stiffness matrixis naturally linearly propor-
tional to the number of elements. Special sparse matrix techniques have been developed
which try to minimize the fill in during the decomposition. Iterative methods seem to be
ideal for modern vector and parallel computers to solve systems of linear equations. For
large problems they require much less storage than direct solvers and computing times
are also in many cases reduced.

For a discussion of state of the art of direct solution techniques of linear systems, see
ref. [55].

3Assuming uniform mesh with approximately same number of elements in each coordinate axis direc-
tion.
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In the sequel, a generic linear equation system will be denoted by

Ax = b,

where the coefficient matrixA can be symmetric or unsymmetric. An equivalent precon-
ditioned system is

M −1
1 AM −1

2 y = M −1
1 b, (6.23)

whereM = M 1M 2 is the preconditioning matrix andM 1,M 2 are the left- and right-
preconditioning matrices, respectively. In practice, this split form is not always needed. It
is usually possible to rewrite the iterative method in a way that only one computational
step: findu from u = M −1v , is necessary, so the preconditioner applies in its entirety.
However, the system (6.23) gives possibility for differentpreconditioning strategies. It
should be noted that the spectra of the three associated operatorsM −1A,AM −1 and
M −1

1 AM −1
2 are identical. Therefore, similar convergence behaviour should be expected.

However, it is well known that the eigenvalues do not always govern convergence [155].
For these preconditioning versions different residuals are available which in each case
may affect the stopping criterion and may cause the algorithm to stop either prematurely
or with delay. This can happen in caseM is ill-conditioned.

Most of the preconditioned iterative techniques require the preconditioning to be a
constant operator. However, several iterative proceduresare developed in the literature
that can accomodate the variations in the preconditioner. Perhaps one of the most well-
known of such iterations is the flexible variant of the generalized minimum residual algo-
rithm. These flexible variants are not considered in the present study.

Different preconditioning techniques are briefly described in the subsequent section.

6.2.2 Krylov subspace methods

Krylov subspace methods seem to be among the most important iterative techniques avail-
able for solving large linear systems [11], [155], [190]. These techniques are based on
projections onto Krylov subspaces, which are subspaces spanned by vectors which are
obtained recursively by multiplying the previous residualwith the matrix: i.e.4

Km(A, r 0) = span
{

r 0,Ar 0,A
2r 0, ...,A

m−1r 0

}

,

wherer 0 = b−Ax 0. Approximate solution of the system is found from am-dimensional
subspacex 0 +Km by imposing the Petrov-Galerkin condition requiring the residual to be
orthogonal to anotherm-dimensional subspaceLm.

Next, the following algorithms will be presented without derivations:
• conjugate gradient
• symmetric QMR
• bi-conjugate gradient

4In place ofA there could be e.g.M−1A or AM−1.
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• bi-conjugate gradient stabilized
The algorithms are presented as left preconditioned versions.

The most well known Krylov subspace method is the preconditioned conjugate gra-
dient (PCG) method for symmetric positive definite (SPD) matrices. There are many dif-
ferent implementations of the PCG-iteration, but the following algorithm is perhaps the
most common.

Preconditioned conjugate gradient algorithm: constructM (or directlyM −1), ini-
tialize r 0 = b − Ax 0, apply preconditionerd 0 = M −1r 0, computeτ0 = rT

0 d 0 and
iteratei = 0, 1, 2, ... until convergence:

1. compute:s = Ad i, αi = τi/d
T
i s ,

2. update:x i+1 = x i + αid i, r i+1 = r i − αis ,

3. apply preconditioner:z = M −1r i+1,

4. computeτi+1 = rT
i+1z , βi = τi+1/τi,

5. updated i+1 = z + βid i.

It is a Galerkin (orthogonal projection) type Krylov subspace method, i.e.Lm = Km. One
iterate of the PCG method requires one matrix-vector product, five5 level-1-operations
and one application of the preconditioning operation:z = M −1r . The residual norm can
be evaluated after step 2 in the above algorithm, however, a cheap measure for monitoring
the convergence is obtained in the weighted norm:

√
τ = ‖r‖M−1 = (rTM −1r)1/2.

If the matrixA is symmetric but indefinite, the PCG-algorithm can become unstable
and even break down. Paige and Saunders [131] were the first todevise stable algorithms
for symmetric indefinite systems. These two algorithms called SYMMLQ and MINRES
are based on Lanczos tridiagonalization, which exists alsoin indefinite case.

The drawback of the SYMMLQ and MINRES algorithms are that thepreconditioner
M need to be a SPD-matrix. For highly indefinite systems, this restriction seems to be
rather unnatural. The symmetric QMR algorithm [73] allows the use of arbitrary symmet-
ric nonsingular preconditioner. The QMR iterate is characterized by a quasi-minimization
of the preconditioned residual norm. If the preconditioneris positive definite, then MIN-
RES and symmetric QMR iterations are mathematically equivalent, and the residual
norms are tryly minimized.

Preconditioned symmetric QMR algorithm: constructM (or directlyM −1), initial-
izes0 = b −Ax 0, apply preconditionerq0 = M −1r 0, computeτ0 = ‖q0‖, ρ0 = sT

0 q0,
setϕ0 = 0,d = 0 and iteratei = 1, 2, ... until convergence:

1. compute:t = Aq i−1, σi−1 = qT
i−1t , αi−1 = ρi−1/σi−1

5PCG requires an additional norm evaluation if the convergence is checked from the residualr .
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2. update:s i = s i−1 − αit ,

3. apply preconditioner:t = M −1s i,

4. computeϑi = ‖t‖/τi−1, ci = 1/
√

1 + ϑ2
i , τi = τi1ϑici

5. updated i = c2
i ϑ

2
i−1d i−1 + c2

jαi−1q i−1 andx i = x i−1 + d i

6. computeρi = tTs i, βi = ρi/ρi−1

7. updateq i = βiq i−1 + t .

For unsymmetric matrices the situation is much more complex. The CG method for
SPD systems has two important properties. It is based on three term recurrence, and it
minimizes the error with respect to the energy norm. Unfortunately these two proper-
ties can only be fulfilled for nonsymmetric CG-type schemes for a very limited class of
matrices, namely the shifted and rotated Hermitean matrices.

Most of the existing iterative algorithms for solving nonsymmetric linear systems are
based either on the full orthogonalization method of Arnoldi or the Lanczos biorthogo-
nalization methods. Saad and Schultz [156] suggested the generalized minimum resid-
ual method (GMRES), which is a projection method with the choice Km(A, r 0) and
Lm = AKm(A, r 0). It can also be viewed as an extension of the MINRES to nonsymmet-
ric problems. There are many possible variations of the GMRES method, see ref. [155].
The main disadvantage of the GMRES is long recurrencies and in practical computations
its restarted versions are mostly used.

In this work only those algorithms are considered which retain the short recurrencies
thus being more favourable with respect to memory requirements. Biconjugate gradient
(Bi-CG) type algorithms are based on the Lanczos biorthogonalization algorithm which
builds a pair of biorthogonal bases for the two subspacesKm(A, r 0) andLm(AT , r̃ 0).
The Bi-CG algorithm can be implemented as follows.

Preconditioned bi-conjugate gradient algorithm: constructM (or directly M −1),
initialize r 0 = b − Ax 0, choosẽr 0, apply preconditionerd 0 = M −1r 0 and d̃ 0 =
M −T r̃ 0, computeτ0 = r̃T

0 d 0 and iteratei = 0, 1, 2, ... until convergence:

1. compute:s = Ad i, s̃ = AT d̃ i, αi = τi/d̃
T

i s ,

2. update:x i+1 = x i + αid i, r i+1 = r i − αis , r̃ i+1 = r̃ i − αis̃ ,

3. apply preconditioner:z = M −1r i+1, z̃ = M −T r̃ i+1,

4. computeτi+1 = r̃T
i+1z , βi = τi+1/τi,

5. updated i+1 = z + βid i, d̃ i+1 = z̃ + βid̃ i.
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The algorithm fails wheneverτi = r̃Tz = 0. Although such a breakdown is very unprob-
able in practice, near breakdowns whenτi ≈ 0 are possible and cause a serious numerical
stability problem.

In some applications the multiplications withAT and preconditioning steps with
M T can be impossible to perform. Sonneveld [178] developed thebiconjugate gradi-
ent squared (CGS) method which eliminated the need of transposed matrices.6 How-
ever, since CGS is derived by squaring the polynomials associated to the residual and
direction vectors, rounding errors can be more harmful thanin the standard Bi-CG algo-
rithm. Van der Vorst [188] devised a stabilized version of the CGS which is called the
bi-conjugate gradient stabilized iteration, Bi-CGSTAB for short. Many modifications of
the Bi-CGSTAB scheme have been proposed in the literature, see e.g. refs. [43], [176]
[199]. Here, the procedure is given in the original form [188].

Preconditioned bi-conjugate gradient stabilized algorithm: constructM (or directly
M −1), initialize r 0 = b − Ax 0, choosẽr , computeρ0 = r̃Tr 0, setd 0 = r 0 and iterate
i = 0, 1, 2, ... until convergence:

1. apply preconditioner:z = M −1r i,

2. compute:v i = Az , αi = ρi/r̃
Tv i, s = r i − αiv i,

3. apply preconditioner:̃s = M −1s ,

4. compute:w = As̃ , ωi = wTs/wTw ,

5. update:x i+1 = x i + αiz + ωis̃ , r i+1 = s − ωiw ,

6. computeρi+1 = r̃Tr i+1 andβi+1 = (ρi+1/ρi)(αi/ωi),

7. updated i+1 = r i+1 + βi+1(d i − ωiv i) .

Since both coefficientsρ andω have to be nonzero, there are three possible breakdown
points in the Bi-CGSTAB method, i.e.̃rTv i 6= 0,wTs 6= 0 andr̃Tr i 6= 0. In the literature
a common choice for the vector̃r is the initial residualr 0. Bulgakov [38] recommends
the vector̃r = M −1r 0. If the initial approximationx 0 is chosen to be a random vector
these two approaches perform almost identically. However,if the initial approximation is
a zero vector and the load vectorb consists of only few nonzero components, the choice
r̃ = r 0 is not recommendable. A reasonable choice seems to ber̃ = r 0 + a , wherea is
a random vector.

To cure the situation the look-ahead Lanczos algorithms have been developed. The
drawback of look-ahead steps is the increased complexity ofthe algorithm. Therefore
simpler remedies, like restarting the Lanczos procedure, can be adequate.

For a unified general description of these methods with numerous references see
refs. [14], [155], [190].

6Many other transpose free modifications of the Bi-CG algorithm exist, although the CGS and the
Bi-CGSTAB are perhaps the most well known, see discussion inref. [36].
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6.2.3 Preconditioning

It is well known that the performance of iterative solvers depends on the eigenvalue dis-
tribution and on the possible non-normality7 of the coefficient matrix. These problems
can be avoided, to some extent, by employing a preconditioner. It seems to be generally
agreed that the choice of the preconditioner is even more critical than the choice of the
type of the Krylov subspace iteration [21].

There are two major conflicting requirements in the development of a preconditioned
iteration, namely, the construction8 and use of a preconditioner should be inexpensive and
its resemblance with matrixA should be as close as possible. The most general precon-
ditioning strategies can be grouped into classes:

1. preconditioners based on classical iterations like Jacobi, SSOR,

2. incomplete sparse LU-decompositions (ILU or IC for symmetric matrices),

3. polynomial preconditioners,

4. explicit sparse approximate inverse preconditioners,

5. multigrid or multilevel preconditioners.

Incomplete factorization is perhaps the most well known strategy. There are many variants
of ILU-decompositions differing, for instance on the way how the nonzero pattern of
the preconditioner is defined. The simplest strategy is to have the same nonzero pattern
for the L andU factors asA. This incomplete factorization known as ILU(0) is easy
and inexpensive to compute, but often leads to a crude approximation resulting in many
iterations in the accelerator to converge. Several alternative ILU factorizations have been
developed in which the fill-in is determined either by using the concept of level of fill
or by a threshold strategy where the nonzero pattern of the preconditioner is determined
dynamically neglecting small elements in the factorization.

Meijerik and Van der Vorst [123] proved the existence of the ILU factorization for
arbitrary fill patterns when the coefficient matrix is a M-matrix9. This is often the case,
e.g. for matrices arising from discretizations of the heat equation. However, matrices aris-
ing from problems in structural mechanics usually do not have this property. In order to
circumvent this problem different strategies exist. Shifting is perhaps the most straight-
forward remedy, the factorization is carried out for the shifted matrixA + ρdiag(A),

7A matrix A is said to be normal ifAAH = AHA, where the superscriptH denotes the conjugate
transposition. A normal matrix is the most general matrix which has a diagonal Schur form. Therefore,
all its eigenvalues and eigenvectors are well-conditioned: the spectral representation is stable with respect
to perturbations. The bad effect of non-normality is the possible deterioration of the numerical quality for
iterative methods run in finite precision arithmetic [30], [41].

8If the preconditioner has to be used many times more effort could be paid to its construction.
9A matrix is a M-matrix if its off-diagonal elements are nonpositive and all the elements of the inverse

are positive.
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whereρ is a parameter. However, finding an optimal value for the shift parameterρ is a
non-trivial task. Another approach is to apply an additional reduction step where an M-
matrix is determined from the stiffness matrix and the incomplete factorization scheme
is applied to this matrix [158]. The incomplete factorization is then guaranteed to exist,
but, unfortunately, the reduction step can produce a matrixthe resemblage of which to the
original matrix is not good enough.

Ajiz and Jennings [2] proposed the corrected IC factorization (CIC),10 which guaran-
tees a positive definite preconditioner if the matrix itselfis SPD, but it often results in too
large modifications to the diagonal which slows down the convergence of the accelerator
iteration.

Mathematical analysis reveals that for second-order elliptic boundary value problems
the ILU(0) approach is asymptotically no better than the unpreconditioned iteration. More
precisely, the condition number of the ILU preconditioned operator is of the same order
as that of matrixA. Several variants of the basic ILU have been presented in theliter-
ature e.g. MILU, RILU and DRILU (modified, relaxed and dynamically relaxed) [158].
However, when considering real engineering problems thesemodified versions do not
necessarily perform any better than the basic ILU.

It should be remembered that the effectiveness of a preconditioning strategy is highly
problem and architecture dependent. For instance, incomplete factorizations are difficult
to implement on high-performance computers, due to the sequential nature of the triangu-
lar solves. On the other hand, sparse approximate inverse preconditioning required only
matrix-vector products, which are relatively easy to vectorize and parallelize, but they are
usually not as robust as ILU-factorization based strategies [21].

For second-order elliptic PDE’s discretized by low order finite elements many of the
listed preconditioning techniques can be used. However, for finite element models of thin-
shells only the incomplete factorization allowing some degree of fill-in [19] or a multilevel
preconditioner [38], [69], [187] seems to be the only reasonable choices.

For a certain type of a preconditioning technique, the computational complexity can
be reduced. Construction of a preconditioning matrixM in a form

M = (D̃ + E )D̂(D̃ + F ), (6.24)

whereD̃ , D̂ are diagonal matrices andE andF are the strictly lower and upper parts of
A = diag(A) +E +F , allows implementation of the preconditioned CG or Bi-CG-type
methods in which the computational labor is comparable to the unpreconditioned case.
This strategy is due to Eisenstat [56], and it is commonly called the Eisenstat trick, see
also refs. [190],[155]. Unfortunately, the usefulness of this strategy is somewhat limited.
For a very sparse matrices, such as resulting from a low orderFE discretizations of the
diffusion equation, the triangular solution including short rows is the main bottleneck
in a typical supercomputer implementation. Also, the quality of the split-preconditioners
(6.24), which can be used in the Eisenstat trick, is not good enough in shell problems.

10The name corrected incomplete Cholesky is adopted from ref.[159].
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Sparse approximate inverse preconditioners have recentlyreceived considerable at-
tention, mainly because of their good vectorization and parallelization properties. These
techniques are based on the explicit construction of a sparse matrixM −1 which directly
approximatesA−1. This is in contrast to more traditional implicit techniques where the
matrixM , rather thanM −1, is explicitly available. The preconditioning step with anap-
proximate inverse preconditionerM −1 requires only matrix-vector products, and is easily
implemented on vector and parallel architectures. On the other hand, the construction of
the preconditioner itself can be time-consuming, and the convergence rates obtained are
often not as good as those obtained with implicit techniques.

Approximate inverse techniques rely on the assumption thatfor a given sparse matrix
A it is possible to find a sparse matrix which is a good approximation of A−1. However,
this is not necessarily obvious, since the inverse of a sparse matrix is usually dense see
refs.[22], [23]. There are two main categories of approximate inverse techniques: methods
which directly computes the entries of the approximate inverse [12], [82], [155], or the
inverse factors of the matrix [20], [106].

Advantages of theFactorizedsparse approximate inverse technique, commonly ref-
ered to as the FSAI method, in comparison to the sparse approximate inverse precondi-
tioners (SPAI) are that the symmetry and positive definiteness are easy to insure. In the
FSAI approach a lower triangular matrixG is computed as the (unique) solution of the
constrained minimization problem

min ‖I −GL‖ subject to G ∈ L

whereL now denotes the Cholesky factor ofA andL is a set of lower triangular matri-
ces with a prescribed nonzero pattern (which must include the main diagonal). Here the
matrix norm is the Frobenius norm or some weighted variant ofit. It is possible to solve
the above minimization problem without any knowledge ofL, just working with the orig-
inal matrixA; see [106]. The minimization problem decouples inn independent linear
systems of relatively small size which can be solved in parallel. The approximate inverse
preconditioner is thenM −1 = GTG. The main difficulty associated with this approach
is the choice of the sparsity pattern ofG, i.e., the determination of the constraint setL.
A simple solution is to restrictG to have the same sparsity pattern as the lower trian-
gular part ofA, but this choice works well only for simple problems. Nonzero patterns
associated with higher powers ofA could also be used, but then the costs associated with
the preconditioner construction and application increase. Moreover, for difficult problems
even this more expensive approach may be ineffective.

Another approach to factorized approximate inverse preconditioning was proposed in
[20]. This approach, which does not require that the sparsity pattern be known in advance,
is based on aA-orthogonalization process—that is, a Gram–Schmidt process with respect
to the energy inner product〈x , y〉 = xTAy . GivenA and an arbitrary set ofn linearly in-
dependent vectors, this algorithm computes a set ofn vectors{z i}n

i=1 which are conjugate
with respect toA, i.e. A-orthogonal. If we introduce the matrixZ = [z 1, z 2, . . . , z n]
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then
Z TAZ = D = diag(p1, p2, . . . , pn)

wherepi = z T
i Az i 6= 0. It follows that

A−1 = ZD−1Z T =
n
∑

i=1

z iz
T
i

pi

and a factorized form ofA−1 is obtained.
When theA-orthogonalization process is applied to the standard basis vectors

e1, . . . , en, it is easy to see thatZ is unit upper triangular, and indeedZ = L−T where
A = LDLT is the root-free Cholesky factorization ofA.

In order to get a sparse preconditioner,Z is computed incompletely, by dropping
entries in the vector update operations. This can be done either on the basis of position,
whereby nonzero entries outside a prescribed nonzero pattern are dropped, or on the basis
of magnitude, whereby nonzeros are dropped if smaller than aprescribed drop tolerance
in absolute value. This leads to approximate factorsZ̄ ≈ Z andD̄ ≈ D , and a factorized
approximate inverse is obtained asM −1 = Z̄ D̄

−1
Z̄

T
. The stability of this procedure

for certain classes of matrices, including diagonally dominant ones, was proved in [20].
In addition, numerical experiments in [20] and [22] showed that this approach performs
well on linear systems arising from various applications, such as the discretization by
finite differences of elliptic partial differential equations and the finite element analysis of
simple structures. In particular, the experiments in [22] showed that on vector computers
this technique can be superior to IC methods because of good vectorization properties.
However, for thin shells the FSAI approach seems to be more robust.

The difficulty with the drop tolerance based AINV strategy isthat the rejection strat-
egy seems to drop out all the terms related to membrane deformations. This problem is
also present in the drop tolerance based incomplete factorization preconditioners.11 The
dropping criteria used by Ajiz and Jennings [2] for IC factorizations seems to perform
fairly well.

Orderings can also have a profound effect on the convergenceof the accelerator iter-
ation. Classical paper on the effect of orderings on incomplete factorizations is by Duff
and Meurant [54]. For approximative inverse preconditioners the effect is studied in refs.
[23], [31].

Element by element techniques are attractive due to their good parallelization proper-
ties [116], [128]. However, their convergence in thin shellapplications seems to be slower
than the IC-factorization based preconditioners [159].

11In this case the dropping strategy easily neglects terms relevant for bending deformations.
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