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Abstract

These lecture notes gives an introduction to computatistnalegies for non-linear struc-
tural analysis. Some techniques, based on Newton’s iberati solve the global equi-

librium equations are explaned. Continuation or pathefeing methods to solve the

parametrized non-linear equations are presented. Spaujathasis is given to the deter-
mination of critical points along equilibrium paths. Asytapc techniques in structural

stability analysis are also briefly discussed. As suppleargmaterial, some videly used

algorithms in solving algebraic eigenvalue problems anedr equation systems are pre-
sented.
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Chapter 1

Solution methods for non-linear
equations

1.1 Somehistorical notes

Numerical solution of non-linear equations has a long nystA common iterative pro-
cedure bears the name of Newton or Newton-Raphson [27]hbu texist many names
which could be credited either before Newton’s time or [§1€8]. The general idea of
solving an equation by improving an estimate of a solutioraligling a correction term
had been in use in many cultures millenia prior to this tin@g]J1 Certain ancient Greek
and Babylonian methods for extracting roots have this f@asgo some methods of Ara-
bic algebraist from at least the time of al-Khayy am (10481} [198].

French algebraist Francois Viete published in 1600 insParwork concerning the
numerical solution of non-linear algebraic equatidde:numerosa potestatuniete re-
stricted his attention to monic polynomial equations ant gasome sense, be viewed as
a forerunner in using the finite-difference scheme of the fdavRaphson method.

Newton’s tractDe analysi per aequationes numero terminorum infintté®n anal-
ysis by equations unlimited in the number of their term),badoly dating from the mid
1669, is the first recorded discussion by Newton of what canebegnized as an in-
stance of the Newton-Raphson method. It seems to be thatatieis a reworking of
old material of Viete and Nicolaus Mercatot'®garithmotechniapublished in London
in September 1668 [84], [198]. No calculus is used in thegmegion and references to
fluxional derivatives first appear later in that tract, sugog that Newton regarded his
method as a purely algebraic procedure [198]. The first phbtl use by Newton of his
method applied to a nonpolynomial equation appears in tbenskedition of his treatise
Philosophiae Naturalis Principia Mathematita

1The tract remained semi-secret a long time until Williameloprinted it, with other early mathemati-
cal essays by Newton, idnalysis per quantitatum series, fluxiones, ac differexitial 711 [84].
2First edition of thePrincipia was published in London in 1687.

1



2 1 Solution methods for non-linear equations

Joseph Raphson (1648-17127?) published in 1690 a Anaalysis aequationum uni-
versalisin which he presented a method for solving polynomial equmsti Newton’s and
Raphson’s methods were long regarded as distinct, untd@81.-L. Lagrange observed
that the difference is only due to the presentation and nettduhe underlying method
and credited Raphson’s method as being simpler. It is atsodsting to note, that the for-
mulation of the method using the now familiar calculus notats also due to Lagrange.

Thomas Simpson (1710-1761) seems to be the first to give ttigocha general for-
mulation, in terms of fluxional calculus, applicable to nolymomial equations. Simpson
published his work in London in 1740 and describes “A new roétfor the solution of
equations in numbers” without making reference to the wdr&ny predecessors. In his
work the technique is also described for a system of equatlwowever, restricted to the
case of two equations [198].

As expressed by Ypma [198], the Newton-Raphson-Simpsohadetould be a des-
ignation which represents the facts of history in a more eyppate way rather than calling
the method simply by Newton’s name. This major lack of recogmis probably due to
Lagrange and especially due to Fourier, who did not mentitveeRaphson or Simpson
in his influental bookAnalyse deg€quations Determidespublished in 1831 [198].

The modern literature on the solution of non-linear algebeguations is vast. The
bibliography of the classical monograph by James Ortega/égrher Rheinboldt [130]
published in 1970 is 35 pages long and contains approxign&&€-900 references. Path
following, continuation, embedding or homotopy methodstley are also called, are
constantly used for a wide range of scientific applicationsdlve parametrizechon-
linear equation systems. One reason for their successirsvéirsatility and robustness.
Recent books dealing with continuation are written e.g. bgawer and Georg [6], Keller
[102], Rheinboldt [148], Seydel [169].

Even though the idea of continuation dates back to the lasupg ® the earliest
application of techniques for the numerical solution ofgmaetrized equations appears to
have been made by E. Lahaye in 1934 for a single equationg d&wton’s method to
move along the solution curve [130]. Later Lahaye also @ersid systems of equations
(1948) [130].

In structural mechanics, interest towards continuatice rafter the invention of the
finite element method and the advent of digital computersnduhe 1960’s. The con-
tinuation was first realized by incremental loading withany equilibrium iterations, i.e.
Euler-forward approach by Turnet al. in 1960 [186] and Argyris in 1965 [9]. Later
Newton’s iteration was adapted by Oden [129] and Mallet arzdiddl [120]. Early work
involving limit point instabilities was due Sharifi and Pap[d71] and Sabir and Lock
[157].

Finally, it is noted that the solution of non-linear equascave a close relation to
unconstrained optimization, see refs. [10], [52], [L2ReTirst application of Newton’s
method to the problem of multivariate unconstrained opation seems to be due to

3For a historical summary of continuation see Ficken [67].
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1.2. Introduction 3

Simpson in hiA New Treatise of Fluxiongublished in 1737 [198].

1.2 Introduction

Discretization of the non-linear equations of static efuiim result in a system of the
form

flg)=r(q) —p(q) = 0. (1.1)

The unbalanced or residual force is denotedfby; is the state variable vector which,
in the displacement based FE-formulation, is a nodal pastidcement vector. External
loads and internal resistance forces are denotea &ydr, respectively.

In dynamics, the relation of the equations of motion is tfarmmsed using d’Alembert’s
principle to a problem of finding dynamic equilibrium

flg,t)=r(q) —p(q,t) + M= 0. (1.2)

This ordinary differential equation system can be solvetthwither explicit or implicit
time integration schemes. Explicit integration algorithprovide the most straightfor-
ward solution method, but since they are almost allways itiom@lly stable the limita-
tion of maximum stepsize puts severe restrictions on thetiged use of these schemes.
They are mainly used in analyses where the high frequendgocbaf the structure con-
tributes significantly to the response, as is the case isigats induced by shocks, blast
or any type of loading with a broad frequency range. Impkcihemes benefit the fact
that the step length is not so severely limited by stabildgsiderations and they are ef-
ficiently used in transient problems with frequency contarthe lower range, in which
the behaviour of the structure is mainly inertial [77].

A multistep ¢-step) method to integrate the time dependency of (1.2) earxd
pressed in the form

k

k k k
Z aiqn—i = h Z bl Qn—m Z & qn—i - h2 Z 9i dn—i? (13)
=0

i=0 = i=0 1=0

wherea;, b;, ¢; andg; are coefficients anflis the latest step-length. Solvirgg from these
equations and substituting it into (1.2) gives an algebegieation ing,,

k k

=0 =1
Denoting the effective load vector by
k k
Pei (@0 tn) = P(g,, 1) — (900°) "M (Y ciq, i —h* Y ¢id, ;) (L.5)
=0 =1
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4 1 Solution methods for non-linear equations

the equation of dynamic equilibrium

f(qrwtn) = T(qn> - peﬁ(qnﬂtn) = 0 (16)

is of the same form as the equation of static equilibrium)(1.1

Solution of the non-linear set of equations (1.1) is usuddige in an stepwise manner,
by incrementin the external logel from un unloaded state to a spesific value. Consider-
ing a certain increment, the application of Taylor’s series expansion on the veafor
unbalanced forces at stagé results in

fla;th) ~ fa,) + f'(q,)0q, =0 (1.7)
where quadratic and higher order terms are neglectegadenotes the Jacobian matrix
, Of Or Op
7 dq Oq Oq " P (1.8)

which becomes the tangent stiffness matrix at an equilibpoint. The Newton-Raphson

iteration formula is then
" =dq, - [f'(g.)]"'f(q.) 1.9)
=q,+dq,=q, , +Aq,+dq, =q, , +Ag}", '

where the superscript denotes the iteration count and thsxgpt the step number which
usually will be omitted when reference is made to quantiifehe same step.

The load stiffness matri¥, is symmetric provided the load is conservative. The lack
of symmetry in constitutive equations, e.g. in non-assv@alasticity models, can also
produce an unsymmetric stiffness matrix. In addition, smoeotational formulations
lead to unsymmetric Jacobian matrices when evaluated at-&aquilibrium point even if
the loading is conservative and the material model possaysemetry properties.

1.3 Local convergence

Local convergence of the iteration scheme (1.9) can be privbe following standard
assumptions hold [130], [52]:

1. f is continuously differentiable in an open convex domaimr RY
2. there existg* andr > 0 such that3(q*,r) € D andf(q*) = 0
3. the Jacobian matrif’ is invertible atg* and|| [f'(¢*)] " || < 8

4. the Jacobian matrix is Lipschitz continuoudifg*,r), i.e.

I (@) = FWl<~llg—yll  Vg,y €Blg"r). (1.10)
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1.3. Local convergence 5

Then there exist > 0 such that for allg® € B(q°, ¢) the sequenceg!, ¢, ... generated
by the Newton’s iteration (1.9) convergesdbd and obeys

1" — q*|| < Bvlld" — q*|>. (1.11)

Practically, this asymptotic result can be interpretedagoting of the number of signifi-
cant digits ing* as an approximation tg*.

The Newton attraction theorem also expresses the existéracgomain of attraction,
which implies that if the Newton iterates ever land in thisrdon then they will remain
there and eventually converge ¢o; a result which insures some measure of stability for
the iteration process [51].

A well known convergence result for Newton’s method is du&amtorovich. It dif-
fers from the theorem presented mainly in that it makes neragson about the existence
of the solutiong*. It assumes only that the Jacobian is nonsingular at thialipiint ¢°,
f'is Lipschitz continuous in a region containig8, and the first step of Newton’s method
is sufficiently small. Under these assumptions the Kaniolotheorem shows that there
exists a unique solution in the region. Formally statedyassg that

1. f is continuously differentiable in a bafi(¢°, ), r > 0,
2. the Jacobian matrif’ is nonsingular ag® and|| [f'(¢°)] " || < 3

3. the Jacobian matrix is Lipschitz continuousifg®, r), see eq. (1.10), with Lips-
chitz constanty,

4. the first Newton step is sufficently smallf’'(¢°)] ' f(q°)| <n

then if hy = pByn < % the Newton sequence (1.9) converges to a unique solution in
B(q°,r,), wherer; = min(r, o)

1-V1-2
ro = L= V1= 2ho (1.12)
By
and .
la" = a'l < @) 35 k=0.12... (113)
0

It is also worth noticing, that the Newton’s method is selfrecting, which means that
q"*! only depends upoji and ¢* implying that the bad effects from previous iterations
are not carried along, an advantage which is not shared lgi-fjleavton methods [51].

However, there are some serious drawbacks in the Newtortlsadeln large nonlin-
ear structural finite element analysis the need to evalbatdacobian of and its possile
factorization for each iteration can be extremely costiyother disadvantage is that the
domain of attraction for a particular problem can be verylsthas requiring a very good
initial approximation tog* in order to get convergence of the iteration process. Ircstru
tural analyses this is usually not a problem, since choasirfiiciently small time or load
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6 1 Solution methods for non-linear equations

steps, the previously known equilibrium configuration pdeg a good initial estimate to
the next step. Nevertheless, if a good initial approxinmateg* is not available, special
techniques have been developed to circumvent this prolldsy.

Several modifications to the basic Newton's method have besduced in order to
avoid the formation and factorization of the Jacobian. Tihgpkest possible choice is to
hold the Jacobian fixed for a certain period, for instanceinduone load or time incre-
ment. Especially in engineering literature this schemaribiguously named “the modi-
fied Newton-Raphson iteration”. This technique is usefuéwkhe Jacobian is changing
slowly, however, it is very difficult to decide how long thecd@ian should be held fixed.
Evidently, the rate of convergence is decreased, but thebbedficiency in some partic-
ular problems may increase.

Example 1.3.1. A Mises truss will be considered. Length and the initial &fithe bars
at the initial state arel. and «, respectively. and the axial stiffness equalsitd. The
bars are assumed to be absolutely rigid in bending. Deteertiie equilibrium equations
and solve with some value of the load and investigate theetgexice of the Newton’s

process.
2P
u

cosal cosal

Length of the bars in the deformed configuration is

Liget = v/ (Lcosa +u)? + (Lsina — v)?

= L\/l—l—qu cosa + ¢ — 2qz sina + ¢3 (1.14)
Loget = \/(Lcosa —u)?2 + (Lsina — v)?
= L\/l —2q1cosa + ¢ — 2qpsina + ¢2 (1.15)
whereq; = u/L andg, = v/ L. Using the Green-Lagrange definition for the strain
1 Lzzdef - L’ .
gives
€1 = ¢ oS v + %q% — @ sina + %qg, (1.17)
€y = —(q COS ¥ + %q% — @osina + %qg (1.18)
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1.3. Local convergence 7

The principle of virtual work is

L L
/ Niydedx +/ Nydeodr = 2Pdv (1.19)
0 0

where the axial force is defined A5 = E Ae; and the virtual strains have the expressions:

de; = (cosa+ q1)dq + (—sina + ¢2)dqs, (1.20)
deg = (—cosa+ q1)dq1 + (—sina + ¢2)dqa, (1.21)

wheredq; = du/L anddgs = dv/L. The expression of the virtual work is thus
[EA(cqi + 247 — sqo + 2go)(c + 1) + (cq1 — 267 + sqo — 2q0) (¢ — q1)]ou
+ [BA(G; — 2502+ 63) (g2 — ) — 2P)6v = 0, (1.22)

wheres = sina andc = cosa. Since the variationsu and dv are arbitrary, the the
equilibrium equations must satisfy

fi = 2cq + qj? — 25q1q2 + CI1€I§ =0
= 1.2

where\ = P/EA.
Elements of the Jacobian matrix are

0f _ 2¢% + 37 — 255 + q2, (1.24)
0q1

0fi dfs

g _ o _ )= 22 1.25
gy a1(e =) oq (1.25)
0 _ 25? + ¢7 — 65y + 3¢5 (1.26)
8q2

Solution for the given load is symmetric (prior bifurcat)pthusg, = 0, and the Jacobian
matrix is

22— 2sqs+ @3 0
K= 0 252 — 65g2 + 3¢5 | (1.27)
It is clearly seen that the Jacobian is positive definite if
2¢% — 2s5q2 + q2 > 0 (1.28)
25% — 65y + 3q3 > 0. (1.29)

The first inequality is always satisfied if = tana < /2, i.e. for initial anglesa <
54.74°. The second inequality is satisfied for dispacaments (1 — /3/3) sin a.
Solution of the symmetric deformation is equivalent in sodva single non-linear
equation
f(go, N) = 25%q2 — 3s¢3 + g5 — 2\ = 0. (1.30)
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8 1 Solution methods for non-linear equations

i i ' exact —O— |
Kantorovich - -+ -
rel. change —H5—

0.0001 0.0001

error 1le-06 1e-06

1e-08 1e-08

le-10 le-10

exact —o— —
Kantorovich - -+ - L i
1e-12 = rel. change —5— 1e-12 4
le-14 ' ' ' le-14
1 2 3 4 5 1 2 3 4 5
iteration iteration

Figure 1.1: Mises truss; convergence of Newton’s methadelatep on the |hs and small
step on the rhs.

For this system, estimation of the Lipschitz constamtan be done from the expression
of the second derivative

v <max|f(g)] g € (0,79). (1.31)
Using the valuex = 30° gives the following values
v=3, B=I|f(0)""=2 (1.32)

In fig.1.1 convergence of the Newton’s method on the first seghown using two
different step sizes. In real computations convergenceesked with some estimate of
the error, here in the figure a relative norm
16g" _ 19¢"|
0¢°] 7

estimated erroe= e, = (1.33)

In fig.1.1 the estimated error (1.33) is compated to theivdatue errorl¢* — ¢.|/n and
the relative Kantorovich estimate, i.e. sequence (1.1dyled byn. The load is chosen
such that the exact solution is either 0.1 or 0.01.

It is clearly seen, that the Kantorovich estimate is far tonaervative for the large
step case, whenmg= 0.072, hg = 0.432 thus giving the radius of the convergence domain
ro = 0.1052. In the small step case the corresponding valuesrare:0.009702, hy =
0.0582,ry = 0.010002.
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1.4. Convergence near singularity 9

1.4 Convergencenear singularity

Another, purely numerical, problem is also present neayudar points. It is well known
that the convergence rate of Newton’s method downgrades dueadratic to linear when
the solution of the equation system corresponds to a singalat [50]. Many techniques
to speed up the convergence have been presented in the rasittedriterature, which
can in theory give a superlinear rate of convergence.

1.5 Quasi-Newton Iterations

1.5.1 Basic properties

A class of algorithms called quasi-Newton (or variable moetrariance, secant, update or
modification methods) have been developed in order to spedldeuconvergence of the
modified Newton method, but which could still be more effitidran the true Newton-
Raphson scheme. The very essence of these methods lies pdate dormula of the
Jacobian matrix, performed in such a way which avoids thermeihg and factorization
of the global matrix.

The problem is now how to develop a good approximation to #welian at the state
q,; based on information at the iterationandi — 1.#

Available data are: the Jacobian at iteration gtepl (or an earlier approximation of
it), the unbalanced forces and the state variables atiesat i — 1. It seems natural to
require that the approximatiaH ; to f'(q,) satisfies theecant relationship

flg,)) = flg;i1)+ ‘l:'_[i(qi —q; 1),
= ﬂi5qz'—1 = 0fi1, (1.34)

where

0, 1=4,—q;.1 Of, . =F,—Ffi_1
This equation is central to the development of the quasitNiewnethods and it is there-
fore called the quasi-Newton, or secant equation.

In the case of a scalar equation, the secant relationst8g)(@ompletely determines

H ,, but for a system of equations, additional requirements habe imposed. It is rea-
sonable to require that the updated mafix is close to the previous matril,;_;. This
nearness is measured by matrix norms, and the requiremebiecgiven as follows: find
H ; such that

min {||H; — H;_1|| : Hi0q,_, =0f,_1}. (1.35)
Usually, in connection to quasi-Newton updates, the Friksemorm or its weighted form

are used
|H|| = ||H||p =\/tr(H"H), ||H|lwr=|WHW|p,

4The position for the symbal showing the iteration count is now placed at the lower righther of
the quantity and the incremental step counter is not shown.
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10 1 Solution methods for non-linear equations

in which W is a positive definite symmetric matrix. Note that the Frabsmorm does
not satisfy the submultiplicative property which is usyaatisfied by matrix norms.

It is also desirable that the updated matrix should inherte properties which are
characteristic to the system. In structural finite elem@pliaations such properties usu-
ally are symmetry and positive definiteness of the stiffrmassrix. So, the updatdd;
should also satisfy

Hi—IZHZT_l —_— _E_[Z:_E_[?
e 'H, ;x>0 — «'H,x >0, Ve # 0.

However, it should be remembered that the new iterative ghag, has to be easily
and cost effectively computed, otherwise the benefit ofkimd of update is lost since the
price which is paid for omitting the full Newton step is thegdadation of the convergence
rate.

The guasi-Newton techniques are closely related to theugag-Newton methods,
see Refs. [26], [92], [136].

1.5.2 Rank oneupdates
Derivation
A single rank update to the stiffness matrix is a correctibtne form
H=H+ajz", (1.36)

where the unit vectorg, £ and the scalar are to be determined. Substituting this ex-
pression into the quasi-Newton equation (1.34) gives

Héq — 0f = —ag2"dq,
where the superscripts, indicating the iteration court canitted. Denoting the Euclidian
vector norm byj| - ||2, it is easily seen that by choosing

y=0f — Hogq, gjzﬁ, and «=

Y2 zTcSq

the secant relationship is fulfilled for all vectaswvhich are not orthogonal tdq. Thus,
the single rank update is expressed as

1

H=H+ T (6f —HSq)2", V2, £276q#0, |2||2=1. (1.37)
z

q
The vectorz can now be determined from the closeness requirement (1.35)

min |H — H|r = min ||agz”||r = min [tr(a’2§" §27)]

(1.38)
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1.5. Quasi-Newton lIterations 11

It is clear that the minimum is obtained when the vectdranddq are parallel, i.e. by
choosingZ = d¢q/||dq||, and the resulting update formula is

= (0f — Hiq)oq"
H=H+ SaToa

(1.39)

Broyden [33] derived this approximation basing the consitien on somewhat dif-
ferent reasoning. It was supposed tkhtand H operate identically on a vector belonging
to the orthogonal complement 6§, i.e.

Hw=(H +yz")w = Hw, if w'dq=0. (1.40)

It yields immediatelyz = 0q and substitution into the secant equation (1.34) givegfor
the same expression as earlier.

Broyden’'s update formula does not have the property of hi@mgdsymmetry and
positive definiteness, but its simplicity provides an eassoduction to the quasi-Newton
methods. However, it is interesting to note, that a symmeamnk one update is obtained
from (1.37) by choosingg = y = §f — Hdq. Obviously in this case the closeness
property (1.35) is not satisfied.

A greater variety of suitable symmetric update formulas barderived if the cor-
rection is made by a matrix of rank two. These methods are ewamin the following
sections.

I mplementation

Expression (1.39) for the Broyden’s update formula is ndgasle for practical computa-
tion. Direct use of (1.39) would destroy the specific spgngéttern of the Jacobian and
needs the factorization of the updated matrix, which tlegeefvould be even more costly
than application of Newton's method. The following derigatfollows closely the one
given by Kelley [104].

It is easy to see that the formula (1.39) can be expressed as

= fz'(;qT
H=H + 5qToq’

(1.41)

Applying the Sherman-Morrison-Woodbury formula to the Rien’s update (1.41)
gives the update formula for the inverse matrix

H 'u)v”
Hau) ' = (1 H W\ o 1.42
R ey =) 1.42)

5The Sherman-Morrison-Woodbury formula gives a convenierpression for the inverse of
(S + UVT)whereS is a nonsingulan x n matrix andU, V are bothn x k matrices(S + UVT)~! =
St s 'u(I+ vis'u)'vTs ! AlsoI + VTS U has to be nonsingular [79].
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12 1 Solution methods for non-linear equations

For a sequence of Broyden updates, it can be written

H,=H, +u;, v, (1.43)
where
w1 =f;/[l0q; | and vi1=0q;1/l10g; 4] (1.44)
Defining
H._lluz-_l
i—1 = = 145
o 1+ ”;TF—1H1_—11Ui—1 ( )
then

H' = (I —wiyv] ))(I—wiv] 5) - (I—wovi)H;'
i1
1.46
= [H(I — ’UJj'U;r)] Hala ( )
=0

and the iterative stepg, can be computed witd ;' and the2i vectorsw;,v;,j =
0,...i—1as
i—1
0q; = — [H(I - wjvf)] Hi'f;. (1.47)
j=0
It can be shown that there is no need to store the sequerié8]. To show that, let’s first
show that the computation @#, _; anddgq; can be combined:
0q, = _Hi_lfi =—(I - wi—1”;7F—1)H¢_—11fz’ =—(I - wi—lv?—l)z’ (1.48)

where the auxiliary vectoz is

[\

71—

z=H\f.= [ (I — 'wj'vjr)] H'f.. (1.49)

=0
Using the definition (1.45), gives

H u; z L
= — = =a z, (1.50)
1+ ”;Tp—le'—lfuli—l [6q; 4 [|(1+ ”z'T—1z/||5qz‘—1||)

Ww;—

wherea = ||6g,_,|| + v ;2. Hence

6q; = —(I — wijv?_ﬁz =—z(1- a‘l_vlf_lz) (151)
=—z(1-a (a—[0g;,l])) = —a " [|0g, 1]z = =[|0g; ||wis
and the Broyden formula for the iterative change (1.48) ecawbtten as
i—1
5q...0q7
1641
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1.5. Quasi-Newton lIterations 13

However, this formula cannot be used directly, siige appears on both sides of the

equation
dq.0qt L2 0q;,,0q;
5q; = — I+ 27— I+ 22 H_lfz'
< H(;qj—1||2 H ||5q]'H2 :

. =0 (1.53)

0q;0q; 4
= — | I+ —= | H\f.
( r|5qj_1||2> 1
Solving fordgq, gives
HLf.
5q;, = — ;—1fl_l . (1.54)
14 oq; 1H -\ f;
10g;_1?

If there is no space to store the increasing number of veétgrand their norms, one
can restart the update process, i.e. clear the storage amaatr. Another strategy is to
replace the oldest of the stored vectors are replaced by disenesent. Such methods are
called limited memory formulations in the optimizatatigerfature.

In the algorithm below, the index is the iteration counter and the matrix update
counter is denoted by. The maximum values for iterates and matrix updatesrareit
andkmax, respectively.

Broyden’squasi-Newton algorithm:  evaluatef , = f(q,), compute the initial residual
ro = ||fol| and set = 0,k = —1. Solve Hy0q, = —f,. Iterate until convergence and
1 < maxit:

1. setk = k+1,i =14+ 1and updatey, = q;, , + dq,

2. evaluatef, = f(q,)

3. if k < kmax then

(a) solveHyz = —f,
(b) forj =0,k — 1 updatez = z + dq;0q; ,2/|[0q; 4|
(c) computedq), = z/(1+dq;_12/[0g,4?)

(d) if k = kmax then setc = —1 and solveiq, = —H ' f,
Notice, that the initial matrix{, need not to be the Jacobianpft g,. It can be some
approximation of it or even an identity matrix. This fact neakt an appealing alternative
if the linear system is solved by iterative methods.
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14 1 Solution methods for non-linear equations

1.6 Linesearch

A line search procedure is often used in conjunction withsgdewton methods. It is
meant as an inexpensive way to have an improved iteratieetihn. In a general finite
element context it can be defined as a procedure to find a soaltplier  such that

G(n) =dq"f(g+ndiq) = 0. (1.55)

The approximative sign in the above expression indicataslitne search need not to be
performed very accurately. Matthies and Strang [122] ssigtiee valueSTOL = 0.5
with the criteria

G(n)

G(0)
If this tolerance is tightened, the number of internal foreetor evaluations may increase
drastically, thus requiring too much work with respect te benefit obtained.

Algorithms for line search are presented in Refs. [122]5]1}49] .

< STOL. (1.56)

1.7 Inexact Newton method

The inexact Newton method [57], [71]. [135] is a general@abf Newton’s method. The
idea is to find an iterative changg and a scalan € [0, 1) which satisfy

1f(q)+ ' (@)dqll <nllf(q)ll (1.57)

In many implementations thiercing termn is specified first, and thefy is determined
so that (1.57) holds. The purpose of choosing a proper vdldleecforcing term is to
avoid oversolving the Newton step in the early phase oftit@naThey are mostly used in
connection with iterative linear solvers.

Exercises

1. Experiment the convergence behaviour of the Newton'siatktor the Mises truss
when selecting the load factor as= /3/9sin® , which renders the Jacobian
matrix singular at the root. Try also the chord Newton. Wiaat be concluded.

2. Solve the diffusion-reaction problem (the Bratu problem a unit squaré) =
[0,1] x [0, 1]

—Au = Aexp(u) in £, u=0 on 0. (1.58)

Experiment the convergence of Newton's method with thealues\ = 1,4 and
6.81.
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1.7. Inexact Newton method 15

Discretize the Laplacian operator by the five point diff@@scheme in a uniform
grid

—Aum ~ h_2(4ui,j T Ui—1,5 — Uil — Ui5—-1 — ui,j+l)> (1.59)
wherew; ; = u(z;,z;) andh = x4 — x; = Y41 — y; IS the grid spacingy; =
hi,y; = hiyi = 0,...m + 1,h = 1/(m + 1). The number of unknowns is thus
N = m?. Use at least two discretizations, exg.= 10 andm = 20.
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Chapter 2

Parametrized non-linear equations

2.1 Continuation method

2.1.1 Basicalgorithm

The load vector is usually parametrized by a single variabiee load parameter, defining
the intensity of the load vector and the system (1.1) can lttenras

f(q,\) =r(q) — \p(q) =0. (2.1)

If the loads does not dependent on deformations, like in-@ezidht loading, the system
(1.1) reduces to

flg,\) =r(q) - Ap, =0, (2.2)

wherep, is the reference load vector. Equations (2.1) and (2.2) defione dimensional
equilibrium curve in aV + 1 dimensional displacement-load space. Procedures to trace
such a one dimensional equilibrium path are called contionar path following meth-
ods. They are incremental, step-wise algorithms. A typioatinuation step includes the
predictor and the corrector phases.

To traverse a solution path a proper parametrization isewesimple load control is
the oldest type of parametrization. It is usually the mofitieht one in the regular parts
of a path. However, near the so called limit points, wherestngcture loses its load car-
rying capacity (at least locally), it breaks down. At the ilipoint the Jacobian matrix is
singular and the load parameter is decreasing after sucima pgemedy is to change the
control from the load parameter to some displacement cosmgoBelecting the control-
ling displacement (or component from the scaled vectorainimg both displacements
and the load parameter) to be the largest one from the laseoyed increment, results
in a simple and reliable continuation procedure [60], [148)n-dimensionalizing of the
variables is an essential point of this method.

A common setting of a continuation process is to augment iberete equilibrium
equations with a constraint. These constraints can be dedmpath length measured in a

16



2.1. Continuation method 17

specified manner from the equilibrium point, or as a minimgatondition for the residual,
or constraints in terms of incremental work, or constrabased on some orthogonality
relation.

In many cases the displacement-load constraint can be ddiynequatior: in the

following form:
man={ 4~ 7 @3)

This kind of procedures are also commonly called arc-lengtthods. Using the Newton-
Raphson linearization on the extended system (2.3) rasults

foq+for+f(q.)) = Kig—pdr+f = 0 (2.2)
dSq+cedA+c(q,)) = blégresh+c = 0 '

In order to utilize the spesific sparsity pattern of the tamigéiffness matrixk, the solu-
tion of the augmented equations (2.4) is usually performedding the following three
phase block elimination method, also known as borderingralgn [65, 101, 148, 154,
162, 174]:

1. solveKiq, = —f andKgq, = p, ,
2. computelA = —(c+ b"dq,)/(e+b"q,),
3. computeig = dq; + IdAq,, .

In this format the solution of the linear equation systemtetge 1 is performed by means
of direct solvers. If iterative solvers are used, the nonsgtnic sparse format of the
coefficient matrix in (2.4)

_H@:—h,1yz[§l_?], @:{gg}, h:{i}, (2.5)

is more appropriate. see refs. [5], [6], [7], [13], [42], BI3[134], [136].
Alternatively, the system (2.5) can be written as

(K+e'pb)dqg=—f —elep, and o)X= —e(c+bldq). (2.6)

Note that(K + ¢ 'p,b") is a rank 1 modification ofC . Therefore, its inverse can eas-
ily be determined by the Sherman-Morrison formula, onceitlerse of K is known.
However, utilization of the Sherman-Morrison formula regqae # 0, while the block
elimination strategy does not. The nonsingularityfofis required by both algorithms.

At regular points of the solution path the matgfk = K is nonsingular, and thus
the solvability condition of the bordering algorihm as wadl the nonsingulary of the
augmented matri¥ in (2.5) is guaranted if the Schur complemen#oin H is nonzero:

e+bg,=e+b" K 'p #0. (2.7)
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18 2 Parametrized non-linear equations

At limit and bifurcation points the matriX is singular. Nevertheless, the augmented
matrix H is nonsingular at limit points. More precisely, K is singular andank(K) =
N — 1 then the augmented matr#f is nonsigular if and only if [102]

p, ¢ rangeK and b’ ¢ rangeK”, (2.8)
which are satisfied at limit points. These solvablity colodis (2.8) are equivalent to
P #0, and b’ #0, (2.9)

wherety and¢ are the left, and right eigenvectors, respectively, i.esfang K7 = 0
and K ¢ = 0. Conditions (2.9) can be easily verified by premultiplyihg upper one of
equations (2.4) byy” and solvingd\ giving

P f
O\ = . 2.10
¥ p, (2.10)
and .
Koqg=—f+d\p,=—f+ ¢Tfpr. (2.11)
P p,

At a limit point the matrixK is singular and the iterative changg can thus be expressed
as a sum of a vectap belonging to the nullspace dK and a particular solutior,
orthogonal tap:

0q=q+§o. (2.12)
Substituting it to the lower one of equations (2.4), gives
T ~
bT(G+EP) +edNte=0 = 5:—“6?;1’ . (2.13)

Continuation procedure with linear predictor and Newtdse Icorrector iteration is
also called the Euler-Newton method. Higher order cormsatan also be used [7], [191].

2.1.2 Different constraint equations
Arc-length constraints
A large class of constraint equations can be written in tiieafo
c(g,\)=t"Cn —cy =0 (2.14)

wheret andn aren + 1 dimensional vectors ang} is a scalar. The weighting matri&
can be partitioned as

C:[ w QQ}, (2.15)
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2.1. Continuation method 19

where W is a positive definite or semidefinite diagonal matrix cqomesling to dis-
placements and is a scaling factor. Updating the weight factors Wi has proved to
be beneficial for overall efficiency. Intuitively it can bederstood easily, since then the
process puts more weight on the most rapidly changing parts.

One of the first attempts to overcome limit points with augtaedrconstraints is due to
Haselgrove in 1961 [85], which remained for a long time uooN®red by structural engi-
neers. Fried [74] presented again this procedure, whiclalledathe orthogonal trajectory
approach.

In structural mechanics the earliest developments areitecetb Riks [150] and
Wempner [195] in early 70’s. They proposed a constraint @ fttrm of a plane per-
pendicular to the prediction stéprhis approach gained popularity only after a decade,
when Ramm [145] and Crisfield [46] proposed the block elimiorastrategy. Ramm’s
procedure is a modification of the Riks-Wempner scheme, evtiex reference direction
is updated to be the secant from the beginning of the presergment through the cur-
rent point. However, fixing the reference direction, suclinahe normal plane method,
seems to stabilize the iteration process resulting in a modmast procedure.

Crisfield [46] uses a quadratic constraint, ite= n in (2.14), which means that
iterations are constrained to the surface of an ellipsoid oylinder depending on the
value of the scaling factar (o # 0 ora = 0, respectively). Crisfield explicitely forces the
cylindrical constraint at every iteration cycle, whichuls in a quadratic scalar equation
for the solution of the load parameter change, in contras$igdinearized procedure of the
block elimination phase 2, which can cause some ambiguityarselection of the proper
root. This feature was improved by Forde and Stiemer [72]p whveloped a scaling
procedure for the consistently linearized version of thgtetal constraint to force the
constraint at every iteration step.

An extension to the constraint equation (2.14) which corabiime arc-length method
with the pure displacement control is given by Runessbal.[154]. In their approach
the displacement vector in the constraint equation is deosed into free and prescribed
components.

If the Haselgrove-Fried orthogonal trajectory procedwseused with the chord
Newton-Raphson scheme, it is identical with the Riks-Weengdamm normal plane
method. In the case of true Newton’s method, the referenceaide to a changing di-
rection (as in the updated normal plane method), which ntighé potential danger for
oscillating behaviour. However, in computations made leyahthor oscillating behaviour
was not observed when using the Haselgrove-Fried methddiéttrue Newton iteration
in analyzing elastic structures.

Some of these variants can be expressed through a constirés form (2.14) and
the formulas are given in Table 1, where references to mdeelelé descriptions are also
given.

1The Haselgrove-Fried orthogonal trajectory method is disoussed in Riks’s work [150].
2Some computations with elastic-plastic behaviour ingitlaat the normal plane method is more robust
than the orthogonal residual procedure with respect taspsiunioading.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



20 2 Parametrized non-linear equations

constraint t’ n’ co  References
NP tlT/HtlHC [qu'Ta AN As [145], [150]
UNP t?—l/Hti—lHC [(qu')Ta AN As [145]
VCP [(Ag;)T, AN] e As  [60], [146], [148]
NP normal plane
UNP updated normal plane
E elliptical
VCP variable control parameter
t? [AQ?’ A)\]]
A incremental quantity
) iterative change
As (pseudo) arc-length
ey a unit vector having a component 1 at position

Table 2.1: Expressions for different constraint types.

Allgower and Georg [6] have used a minimization condition

m&H{Hy—yiHc f(y) ZO}, (2.16)

wherey, = (q,7, ;)" is the current estimate of the solution, alhd ||~ denotes the
weighted Euclidean type vector seminoffg|| = /y’ Cy. The weight matrixC' is
defined in equation (2.15). The shortest distance fggrto the equilibrium curve neces-
sarily means that the tangent at the solution pgim$é orthogonal to the vectay — v,
i.e. the solutiony of (2.16) satisfies

f(y)=0, with t/C(y—-y,) =0. (2.17)
The tangent vectat’ is determined from equation
f'(y)ti=0, (2.18)

in which f' = 0f /0y. Note that here the tangent vector is not a unit vector afirfigle
Linearization of (2.17) ay’ results in the system

f(y) +f'(y;)oy = 0, (2.19)
tTCsy = 0, (2.20)

which can also be solved with the block factorization styatd his algorithm was pro-
posed already by Haselgrove [85] in 1961 and later by Fried, [ho named it the
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2.1. Continuation method 21

orthogonal trajectory method. It has proven to be very eiffitin geometrically non-
linear problems when used with the full Newton-Raphsormatten. When using the chord
(modified) Newton’s method it is identical with the Riks apach [150]. It should be
mentioned that the system (2.19) cannot be written in tha fair(2.4) or (2.5).

Special adaptation for iterative solvers

Walker [193] has proposed a strategy where the constraimteguced within the iterates
of the linear solution. If the constraint is definedas- t'§y = 0, the procedure is as
follows [193]:

1. Find@ € RWV*+UxN gych thatrange) = {¢}+ and|| Qq|| = ||q| for all g € RY.
ThenH Q € RV whereH = [K,—p,] = f'(y).

2. Apply Krylov subspace method to solve approximatEly)éq = —f.
Then seby = Qoq.

To specify the matrix?, the following scheme based on Householder transformaisn
proposed in [193]:

1. Choosei,1 < i < N + 1 and lete; be theith column of I € RO+x(N+1)
Determine the Householder transformatiBrsuch thatPt = +e;.

2. SetQ = P1I,, wherel is obtained by deleting thih column ofI.
As reported in [193] the most successful choice has @en PI v, which is perhaps
rather natural due to the special nature of the control patam
Incremental work and load constraints

Krenk [110] introduced another type of orthogonality coasit equation. His orthogonal
residual approach does not need the block factorizatioamsehonly solution with one

right-hand side per iteration step is required, and it istidleally suited with the use of
iterative linear equation solvers. As argued by Krenk, tlzgnitude of the displacement
increment is optimal when the orthogonality condition

Aglfi =0 (2.21)

is satisfied. This linear condition is used to determine timeent load parametey. The
algorithm can be described briefly as:

1. computer; = r(q, + Aq;), Ar;=17; — Xop,, Ay = AqTAr;/Ag p,,
2. solve:Kdq;,, = —fi1 = Mo+ Ahi1)p, — 74,

3. computeAq, ; = Ag; + g, -

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



22 2 Parametrized non-linear equations

A% and ¢° denote the load level and the displacement vector at thenbiegj of cur-
rent increment. However, even if this elegant algorithmse&o be ideal with the use of
an iterative linear equation solver, it has some drawbabkgwed in numerical experi-
ments. Since the size of the increment is not restrictechduhie iteration, the algorithm
seems to have some tendency to increase the displacememerd near limit points. To
remedy this deficiency Krenk imposed a maximum length foritdrative displacement
increment. However, the rejection usually downgrades timy@ergence of the scheme. It
might be a better choice to control the current iterate whHesady computing the value
of the incremental load parameter in phase 1, if the loacement is beyond some safe-
guard values. In such situations, a standard Newton steld cesult in an acceptable
displacement increment in phase 2.

Krenk and Hededal [111] combined a single cycle BFGS schalse called as mem-
oryless BFGS, with the orthogonal residual procedure. Tiaeged this modification dual
orthogonal residual method.

Bergan [24] has introduced a method in which the load stegjisted by minimizing
the norm of the unbalanced force:

Hgan(yNIZIggMUTq,ANL (2.22)

in which the norm should be a weighted one.

Constant incremental work control method has been propogé&dramanlidiset al.
[96] and Bathe and Dvorkin [17]. The constant increment ofiiie fixed in the predictor
step and during the corrector iteration phase the consigin

W = (A+16)\)pldg=0. (2.23)

Luckily this quadratic constraint will result in a doubleotdor the iterative change of the
load parameter

pg5Qf
plq,
It should also be noted, that the constant incremental woristraint will result in a
symmetric augmented matri{ in eq. (2.5). Itis easily seen that in the case of single load
component in the reference load vector the work constraethod controls only single
displacement. Therefore it can fail in certain snap-battkasions where the denominator
of (2.24) is nearly zero. Chen and Blandford [44] claimedwlek control method to be
superior to other published solution strategies. In thaiopiof present author, this claim

is largely exaggerated.

A number of other modifications of these basic procedures bhaen introduced in
the literature. However, in the opinion of the author, theyv@ecific form of the con-
straint equation, if properly posed, is of secondary imgnace. Efficiency of the solution
algorithm depends mainly on the selection of proper step-and the updating strategy
of the tangent stiffness matrix.

SA = — (2.24)
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2.1. Continuation method 23

2.1.3 Some computational aspects
Step length adaptation

Step length selection is one of the most crucial parts ofinaation in view of efficiency.
Several methods exist, see e.g. [6], [86], [145], [161],3[18n engineering literature
Ramm’s simple method seems to be the most popular. The n@asite is scaled by
relating the number of iterations used in the previous sigpt¢ a desired valué,:

Asnir = (I 1,) s, (2.25)

where the scaling exponent= 0.5 is usually adopted. If the desired number of corrector
iterations is properly chosen this simple arc-length aandrill result in a rather robust
procedure. However, it can produce too small step-sizeshwhiie kept unchanged for
unnecessarily long times. Some safeguard limit valuedi®step-length changes should
also be used together with (2.25).

Alternative choices are presented by Den Heijer and Rh&iblj86] where the
steplength adaptation strategy is based on error modelsebtby analyzing the Newton-
Kantorovich theory and by Georg [76] which is based upon gagtic estimates. In the
latter approach the steplength is continually adaptedatathominal prescribed contrac-
tion rate is maintained. An approach with similar charastis is also proposed in ref.
[64].

Orientation of the curve tracing is also determined in thedmtor phase. The sign
of the load increment can be determined by monitoring eitherinertia of the tangent
stiffness matrix or the angle between the predictor steptla@gbrevious increment. The
latter approach is suitable for continuation with iteratimear solvers.

The predictor step proceeds from a known equilibrium coméigon, i.e. a point of
the equilibrium path, towards the next point on the path. Agwn practice is to use an
Euler predictor, a predictor step in the direction of thegtmt of the path. Higher order
predictors are also possible. Performance studies oféiftemproved predictor schemes
can be found e.g. in refs. [5],[62], [191]. However, simpladt predictor is usually the
most effective.

Stiffness matrix update strategy

For moderate size problems computation of the stiffnessixriatthe most time consum-
ing part in the continuation process. On the other hand,cdhgisen of the linearized equa-
tion system dominates the computational cost for largelprob. If direct linear equation
solvers are used, the factorization is the dominating phak&h has to be performed
after every stiffness matrix update. Therefore, properatpdtrategy has a pronounced
effect on the computational cost.

In the present lecture notes, two different strategies ansidered. The first one is
based simply on higher order Newton schemes. If the numbehi@t Newton steps fol-
lowing a full Newton step is increasing with the iteratiommier, it will result in a robust,
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24 2 Parametrized non-linear equations

automatic and rather efficient procedure without any usesrgadjustment parameters.
The higher order method, also called Shamanski method ifjl@4], is worthwhile to
apply when direct linear equation solvers are used. Theesifiy is due to the fact that
the effort used in the stiffness matrix updates near thdibgum point is usually wasted
since the convergence could be obtained with few chord Newsteps, which are much
cheaper than one full Newton step.

Another strategy is to monitor the convergence rate:

_ omic
|61l

If it is small enough, then the chord Newton is used and in fhgosite case the stiffness
matrix is updated. This approach will require a user spett@vergence rate tolerance,
for which a reasonable value is of the ordér.

Different corrector iteration strategies can also usedlassof Newton algorithms
called quasi-Newton methods have been developed in orcgreted up the convergence
of the chord Newton method and to improve the efficiency otthe Newton scheme see
[51], .

Eigenvector projections can also be utilized to improvecthrevergence of the correc-
tor iterations [58].

2.1.4 Continuation pseudocode

Continuation algorithm  with block elimination method.
1. Predictor phase

(a) starting pointg,, \o) such thatf(q,, \o) = 0.

(b) choose steplengthis

(c) evaluateK, = f'(q,, o) = 9f /9qlo

(d) factorizeK, = LDU and compute singularity test functions (see ch. 5)
(e) solveKq, = p,

(f) computeA ), from the constraint equation

(g) select the direction for traversing, = +=A\q

(h) updateg, = q, + dAoq, andr; = Ao + 6o

2. Corrector phase: iterate=1, . . .,

(a) evaluatef, = f(q;, \i)

(b) decide if the Jacobian should be updated
if yes, then computd, = f'(q;, \;) and factorizeK
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2.1. Continuation method 25

(c) solveK,iq, = —f,andKq, = p,

(d) compute’\; = —(c+ ¢dq;)/(e + ¢q,) anddq; = dq; + d\iq,

(e) updateg; ., = g; +dq; andA; .1 = A; + 0\

(f) if convergence sef, = q,,, and\, = \;;; and go to a new predictor step 1.

Exercises

1. Solve the equilibrium path of the Mises-truss examplell.@ompare some con-
straint equations, like the normal plane and the ellipticed.

2. Solve the solution path of the Bratu problem 2 on page 14.p&th has one limit
point at\ ~ 6.81. Stop traversing the path whéin|| .. = 10.
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Chapter 3

Determination of critical points

3.1 Non-linear eigenvalue problem

A critical point along an equilibrium path can be determirgdsolving the non-linear
eigenvalue problem: find the critical value @f A and the corresponding eigenvector

such that : )
flg,\) = 0
{f’<q,A>¢ ~ 0 1)

where f is the vector of unbalanced forces afiddenotes the Gateaux derivative (Ja-
cobian matrix) with respect to the state variabiesEquation (3.1) is the equilibrium
equation, which has to be satisfied at the critical point,emehtion (3.1) states the zero
stiffness in the direction of the critical eigenmog@ewhich is the actual criticality con-
dition. Such a system is considered in Refs. [167], [196),7]1 Abbot [1] considers a
different extended system where the criticality is ideatifoy means of the determinant
of the tangent stiffness matrix. The drawback of this proceds that the directional
derivative of the determinant is difficult to compute.

The system (3.1) consists 2V + 1 unknowns, the displacement vecigprthe eigen-
modewv and the load parameter valueat the critical state. Since the eigenvectors
defined uniquely up to a constant, the normalizing conditiam be added to the system
(3.1):

N(®)

where the Jacobian matrfX = 0f /0q is denoted byK andN(¢) defines some normal-
izing condition to the eigenvector.

The idea of augmenting the equilibrium equations with thgcality condition ap-
pears to be due to Keener and Keller [99], presented as esily 8973. Most papers
found in literature deal only with simple critical pointspchthe extension to multiple
bifurcations, see Keener [98], will not be considered irsthkecture notes.

flq,N)
g(q,9,\) =4 K(q,\)¢p ; =0, (3.2)
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3.2. Direct method for non-linear eigenvalue problem 27

3.2 Direct method for non-linear eigenvalue problem

For the stable solution of a non-linear system (3.2) usingewtn’s method, it is im-
portant that the solution is isolated. Therefore the usgstesn (3.2) seems to be limited
to the computation of limit points only [196]. However, ithbeen used also to compute
bifurcation points in Refs. [167, 197].

The main problem in using Newton’s method to the system (8.&%)e computation
of the directional derivative of the tangent stiffness mxaffinite differences are usually
used for the approximation of the directional derivativ&l,[63, 117, 118, 119, 197].
The following description is adopted from Wriggers and Sii@7]. They employed the
penalty regularization to improve the conditioning of thedbian of the extended system,
appending the constraief q = 1 to the system (3.2):

Fla. ) + (el g —pe;
§(@) = gla.g.0p) = KONE LAl om w3y
elq—p

where~ is the non-negative regularizing penalty parametera&rid a unit vector having
the unit value at positioncorresponding to the smallest diagonal entry of the fanéaki
tangent stiffness matrix. The Newton linearization stepystem (3.3) results in a linear
equation system of the following form:

K, 0 —P, —7€;
2 ixg) x, Ly 0 ||,
8q0T i 2\ ; . sy (= 9@ p),  (34)
el 0" 0 ~1 o
where the rank-one updated tangent matrix is
K,=K + veer. (3.5)

If the system (3.4) is to be solved by a direct linear solvdrogk factorization type
strategy is feasible. Solution 6f; is obtained by solving the following three systems of
linear equations:

K.iq,=p,, K)q,=-f, K)q, =e,, (3.6)
and thus
0q =0M\dq, +0q; +y(p+op— el q)dq,. (3.7)
Change in the eigenvector is computed from the second equiat(3.4)
3} 0
- K1 Z i _ .
6= —¢— K. |5 (K$)da+ 5o (KDoA~ 00e:) (38)
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28 3 Determination of critical points

At this stage the evaluation of the second derivatives ofd¢isedual (i.e. the directional
derivatives of the tangent stiffness matrix) has to be peréal. Introducing the vectors

0

E(qu)éq“ ,izp,f,e h>\— _—(K¢), (39)

h= "5 N

and
wi:K;lhia i:p7f7€7)‘ (310)

the expression for the iterative change of the eigenveetobe written in terms of vectors
w;, dq,;. The load vectord; can be computed at element level and they are similar to the
load vectors in Koiter’s initial post-buckling approachsibg the notation of (3.9) and
(3.10) the new value for the eigenvector is

b+ 00 = Nw, +wy) +ws+y(pu+op— e qQw. + dodq.. (3.11)
The final step is to solve the scalar parametarandd . from the two remaining equations
in (3.4):
ezT('wp +w)y) ’yeiT’we N N 1
ejdq,  veldg.—1 |\ op [ g/’ (3.12)
where

g = ¢o—e] {ws+7[¢odg. + (n— e qw.|},
g = p—e! [q+q;+v(n— el q)dq.].

Application of the described method requires completemjatsan of the kinematical
relations especially in cases where the pre-buckling staten-linear and exhibits large
deflections and rotations. In particular, the descriptiaa to be capable to handle large
incremental rotations.

3.3 Polynomial eigenvalue problem

Assuming an equilibrium statgy,, \.) with a regular tangent matrix, a Taylor expansion
of the non-linear eigenvalue problem (3.1) with respechtlbad parametex has the
form

g=4q.+AN + l(A)‘)Q‘h +oe (3.13)
df d2f B
f=r. +A>\d/\ (AA) el +.o=0 (3.14)
<f + AN (AA) AL ) $=0 (3.15)
dr |, da? |, B '

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



3.3. Polynomial eigenvalue problem 29

whereA\ = \ — \,. Expressions for the derivatives dre
df _of 0q  Of _

ﬁ_%ﬁ a_ q—|-‘f7 (316)
d2f / oo I e e o . ry
pe = fatfaat+2fq+f, (3.17)
df’ v s
i (3.18)
d2f, I es " e s o/l . ri
oo S dtfraat2f atf (3.19)
Evaluating these quantities at the equilibrium state \.), gives
q,=gq;, and ¢, = q,, etc. (3.20)
and the expressions (3.16-3.19) result in
d , .
N =i (3.21)
d2f / " H 3
oz =fetfiaa+2fat . (3.22)
df’ " -y
S =i+ £ (3:23)
d2f/ " " ! r

wheref, = f(q,, \.) etc. In the expansion of the equilibrium equations (3.14jeams
dPf /AN p =1,2,... has to vanish, thus giving the equation to solve the figlds

fla, =—f., (3.25)
flay=—|flara, +2f.q, +F. (3.26)
(3.27)

It is worthwhile to notice that the coefficent matrix to solyg g,... is the same for all
cases. In structural mechanics, the symiidk usually used to denote the stiffness matrix,
thus the matrices in (3.15) can be written as

K0|* :ffw

df -/
K1|*:a :f;,ql_'_f*?

d2f .1/ o/
K2|*:W =fla,+fla1qa, +2f.q, + 1.,

INotice the difference between derivativi/d andf = 8f /O, i.e.df /dX = f'(q/ON)+Of JOX.
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30 3 Determination of critical points

and the polynomial eigenvalue problem can be written as
(Ko + ANK 1+ AN Ky +- ) = 0, (3.28)

In the classical linear stability analysis the referenegests the undeformed stress
free configuration. For the linear stability eigenvaluelppeon the matrices are simply the
following:?

KO|O = f,(070)
K1|0 - f”(Oa 0>q1>

where Kooq, = p,. Therefore the strains are linear functions of the dispte@sq,
and the geometric stiffness mati |, is a linear function of the displacements.

It is seen from the definition of th&;, matrix that the “initial stress” state to the
linear eigenvalue problem has to be linear with respectdddad parameter change. This
is not true if the linear stability eigenvalue problem isveal from

(KO‘* + S(KO\* - K0|**)) ¢ = 0,

whereK ., andK .. are the tangent stiffness matrices from two consecutiviequm
states. It will be a correct approximation to the linear eigdue problem only if the load
incrementAX = A\, — X\, issmall, i.e. K, = (AX) (Ko — Kojur)-

Example 3.3.1. The same Mises truss as discussed in example 1.3.1 on padieb@ wi
considered. The symmetric path exhibits snap-through\eba There are now other
equilibrium paths for the symmetric load if the angle< 54.74°. Compute the snap-
through load and displacement using the direct method anhghpmial approximations
of first and second order. Length and the initial angle of theskat the initial state ard.
anda, respectively.

The equilibrium equation (1.30) of the symmetric mode isif#d by two)
f(g, ) = (sin® @)g — d(sina)g® + 3¢° — A =0, (3.29)

where\ = P/EA.

Direct method

The non-linear eigenvalue problem can be stated asfindndg., such that

9. 2) = { flg,A) = (sin® a)g — 3(sina)g* + 3¢ = A =0 (3.30)

f'(g, ) =sin®a — 3(sina)g + 2¢* = 0

2Assuming also dead weight loading, if'é.z 0.
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Figure 3.1: Equilibrium path of the Mises truss £ 30°).

This simple system of two unknowns can be solved analysicall

3

Ag2t = Bin® o & 0.1925sin’ o

{qﬁi‘m = 33 gin o &~ 0.4226 sin & (3.31)

In this case of single state variable, this non-linear eigkre problem can be solved
by the Newton’s method with two unknowng @), starting from the unloaded staige =
0, A = 0). The Newton step is to compute the iterative charged\) from

[ flaes Moo [0 s

Gioz; = —g(x;) (3.33)

or shortly

First iteration:
. 2 1 )
sin“av —1 0 2 sin
= — _ 3
Go { —3sina 0 } 9o { sin? o } 0T { Lsin? o } (3.34)
Second iteration:

1342 - 4 3 1
Gi= | mme e ={ T} e = B )

. 170 92 .
2sina 0 5 sin” o 516 Sin” «

Estimate to the solution after two iterations is thus

5o -
22— @, + 02, = { v sin «v } ~ { 0.4167 sin «v } (3.36)

516 sin” 0.1991 sin* o
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32 3 Determination of critical points

Third iteration:

1 2 23 3 1 .
—sin“a —1 — == sIn° « ——sin «
_ _ 4 — 1
GQ—{ 9% 0 }7 92—{ 3156 }, 5$2—{ 96587 }

—% sin «v 56 SIn” « TSI sin? o

(3.37)

After three iterations the solution vector has four corseghificant digits:

L sina 0.4226 sin o
— — 168 ~ . .
T3 = T2 0% { 2109 G2 o 0.1925sin% (3.38)
Note, that the Jacobia@¥ is regular at the solution point
0 -1

G exact )\exact — ; . 339
(qcr » \er ) |i —?sina 0 :| ( )

Polynomial eigenvalue problem

To perform the linear stability analysis at the initial stahe reference displacemenis
solved from

fom = —fo (3.40)
Now f = —1 and f, = sina, thusq; = sin~2a. The initial stress matrix, or initial
geometric stiffness matrix is
- 3
Kio=fom+fo=fia = —= (3.41)
S1n v
and the eigenvalue problem
3
K0|0 + )\KI\O = sin2 a— A " =0 (342)
S1n &«
giving the result
Aar = % sin® o (3.43)
For the quadratic eigenvalue problem, the displacemen¢ciiong, is solved from
fotr = —(femar + 2far + fo) = = flma (3.44)
giving the resuly, = 3sin™ a. The stiffness “matrix’Ky, is computed from
6
Koo = fow+ fo'evqn = ——— (3.45)
Sin- v
and the resulting quadratic eigenvalue problem is
3 6
Kojo + AK1j0 + A2 Ky = sin®a — A—— — \*—— =10 (3.46)
S1n &« SN v

The positive root of this equation is

Lo /H e
Acr—4( 3 1) sin® « (3.47)
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Figure 3.2: Stiffness as a function of the load parametet 30°).

Example 3.3.2. Compute the critical points of the Mises truss using thedqlilibrium
system (1.23) and the augmentation

flg, N
g(z) =g(q, 0.\ = J’T’(ﬁ,k)qb = 0. (3.48)
B>~ 1

Consider both cases when< 54.74° anda > 54.74°.

The elements of the stiffness mati#& are denoted by

0

1= i = 26" + 3q7 — 252 + 43, (3.49)
oq
0 0

Ky = —02 = QQ1(Q2 - 3) = —ai;f = Ky (3.50)
CO0fr o 2

20 = =— = 25"+ qi — 65¢2 + 3¢5, (3.51)

gy

and the Jacobian matri& = g’ = dg/0x is

Ky Ky 0 0
Koy Koo 0 0 -
G=|2Zu Zi2 Kn Kp
Zn Zay Ko Ko
0 0 201 209

(3.52)

S OO NO
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34 3 Determination of critical points

where
Z11 = 6q101 + 2(q2 — 5) 2 (3.53)
Zvo =2(q2 — 8)P1 + 2102 = Zn (3.54)
Zao = 2q1¢01 + 6(q2 — 5) 2 (3.55)

Notice, that the Jacobian matrix is singular. if the inifirting vector:® is a zero vector.
If o = 30° and using an initial guess = (0, 0,0, 0.5,0)” gives the solution

q1 0
G2 0.2113
T=< ¢ = 0 (3.56)
®2 1
A 0.024056

Six iterations are needed to reduce the residual smaller tha® using the criteria
|0z < TOL||Ax||s.

At the exact solution point the ternisyy, Ko = Ko, Z15 = Zo; are zero and the
Jacobian has the form

Ky O 0 O 0
0 0 0O 0 =2
G(iBexact) = Zn 0 K O 0 (3-57)
0 Zyp 0 0 O
0 0 0 2 0

It is clearly nonsingular sincéet(G) = —4 K% Zas # 0.
If o = 70°, the bifurcation point is the first critical point to be fouad the equilibrium
path. Using the initial guess = (0,0, 0.5, 0, 0)7 gives the solution

q1 0
G2 0.134046
r = 01 = 1 (3.58)
o 0
A 0.094243

Five iterations are required with the same tolerance.
At the exact solution point the ternis,;, K1, = Ks1, Z1; andZ,, in the Jacobian are
zero.

0 0 0 0 0
0 Ky 0 0 =2
G(wexact> - 0 Ziz 0 0 0 (359)
Zy 0 0 Ky 0
0 0 2 0 0

Clearly this matrix is singular.
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3.3. Polynomial eigenvalue problem 35

Exercises

1. In practical computations critical points with positil@ad factor are of interest.
Extended systems, like (3.3) or (3.48) can in principle @vge to a critical point
where the load parametaris negative. To avoid such situations, investigate the
convergence of Newton’s method to the following extendestesys for the Mises
truss example:

(@)

f(q, )
g(xz)=g(qg.0.\) =< f'(a, N ; =0. (3.60)
[o]> — A
(b)
AU
g(z)=g(qg.0.\) =< flla,\N)p =0. (3.61)
Mol]> =1

Use different starting values for the eigenvecir and useq, = 0 and )\, =
0. Make conclusions of the applicability of such extensiamsarge systems for

realistic practical computations.

2. Investigate the behaviour of Broyden’s quasi-Newtonhoeétor the extended sys-
tems.

3. Investigate the behaviour of Newton’s method to the edg¢ersystem

g(z) =g(q,\) = { dethJ(”(’](q)\,))\)) } = 0. (3.62)

for the Mises truss example.

4. For large systems, the Jacobian of the extended systéR) (g&as the form

9 _
% - { fT é’} (3.63)

whered” = ddet(K)/0q and = 0 det(K)/O\. These derivatives are difficult
to obtain in practical large scale computations. Investigiae possibility to replace
them by some properly chosen quantities and keep them cartkteng the itera-

tion.
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Chapter 4

Asymptotic approach

4.1 Introduction

Stability is a classical subject in structural mechanidse history of the early days of
structural stability analysis encompasses many of thet gr@aes in mechanics. Koi-
ter lists the following names in the introduction of his rest@nary thesis [105]: Leon-
hard Euler, William Thomson, G.H. Bryan, R.V. SouthwellBCBiezeno, H. Hencky,
E. Reissner, E. Trefftz, K. Marguerre, R. Kappus and MauBicg. Those early consid-
erations were mainly restricted to the investigation oftreduequilibrium and directed
towards the determination of stability limit. Phenomenat tppear on reaching or even
exceeding the stability limit were not considered.

A general theory of post-buckling phenomena of elasticcstimes was developed by
Warner Tjardus Koiter (1914 — 1997) during the second worédt and culminated in
his doctoral thesis on November 14, 1945 [105]. Unfortuly®iter’s work remained
relatively unknown for a period of over two decades, untd tnglish translation was
published in 1967. During that period a similar theory ofbdity was developed by
Sewell [164], Thompson and Hunt [181]. In contrast to Kdgeontinuum formulation
the British school of post-buckling theorists used the laage of finite dimensional sys-
tems. In the works of Budiansky [37] and Hutchinson [91] &adns of Koiter's energy
formulation have usually been based on continuum conceypig the principle of virtual
work.

Koiter's approach is asymptotic in nature, therefore chatlee initial post-buckling
theory, and relies on perturbation methods. It gives caial answers on the type of
post-buckling behaviour but its quantitative results argtéd to the neighbourhood of the
critical state. Actually it is an application of the Liapun&chmidt reduction to elasticity
equations.

In perturbation methods the difficulty of solving non-limesuilibrium equations is
avoided by solving a sequence of linear problems. Howelrey, have gained little foot-

IHere we mean the general theory of stability. Post-bucKbielgaviour of specific structures, e.g. rods
was considered by Leonhard Euler as early as 1744.
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4.2. Liapunov-Schmidt reduction 37

ing in computerized buckling analyses. One of the first gpisntio implement Koiter's
asymptotic initial post-buckling theory was the work by tkaf Mallett and Nachbar [83].
However, their attempt was somewhat unorthodox, focusimg t the snap-through in-
stability. Non-linearities in the pre-buckling state we@nsidered as generalized initial
imperfections of the perfect structure. Later, implemgates which are more faithful to
the original theory were presented, e.g. [66, 113, 139,.160]

The main stream of computer analyses of non-linear strestuses the incremen-
tal approach. It allows the handling of fully non-linear dduium equations without
any restrictions to the kinematics. Therefore the problémssessing the validity of the
asymptotic approach is overcome. However, it is not easydaté the singularities and to
switch onto the post-buckling branches in a reliable, rotay. In addition, the literature
deals mainly with simple critical points.

In the incremental approach a natural choice for the com@ohmeter in structural
mechanics is the load intensity. However, in many casedgiaddl information of pertur-
bations on the response of the system are of extreme impert#ms is especially true
near critical points. Extending the parameter space widtifip perturbations of geome-
try, material characteristics or loading conditions pdeva more complete picture of the
system behaviour [63], [149].

It is evident that both of these methods, perturbation amdiicoation, have their pros
and cons. Thus, some kind of synthesis would be welcome. Twtatjons which are ap-
propriate at this point are due to Potier-Ferry [144]h& most typical feature of instability
theory is that its fundamental characteristics can be foumdery simple models. More-
over, any complicated structural system is equivalent messense to one of these simple
models, at least in the neighbourhood of a critical staged due to Seydel [169]:The
analysis of non-linear phenomena requires, on the othedh#ools that provide quan-
titative results(continuation methodand, on the other hand, the theoretical knowledge
(perturbation method)f nonlinear behaviour that allows one to interpret thesarmita-
tive results.

4.2 Liapunov-Schmidt reduction

In the Liapunov-Schmidt or Liapunov-Schmidt-Koiter retlan procedure the large non-
linear system of equations (dimensid¥f) is reduced into a locally equivalent system
of non-linear equations the dimension of which is much senathan the original one.
Originally Koiter’s initial postbuckling theory is a redtien from the infinite dimensional
continuous problem into a small system of polynomial equreti Usually, as also in Koi-
ter’s thesis [105], the number of “post-buckling equilibm equations” derived from the
reduced potential energy expression equals the multipbéithe buckling load. The early
analytical investigations concentrated predominantlyh@ninteraction between the local
and the overall buckling of compressed structural memloerssequently, the number of
discrete equilibrium equations in most cases was two [I4dyvever, especially in com-
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38 4 Asymptotic approach

pressed shell structures many critical loads are invol#@iter suggested a method to
handle nearly coincident critical loads, while Byskov anat¢hinson presented a formu-
lation for well separated critical loads [39]. It has als@beshown experimentally that
the interaction between well separated critical loads @auio[124]. Asymptotic analy-
sis has been used to solve the initial post-buckling resp@orsvarious structures in e.g.
refs. [40], [113].

In the following the generalized Liapunov-Schmidt-Koi(e6K) technique is briefly
presented following the lines of refs. [80], [185], and [139uang and Atluri [87] have
used a similar technique for simple critical points. A keyinpan the LSK-reduction
technique is the decomposition of the ambient space intorsamds related to the tangent
operator at the critical point [80]. The residyals a non-linear mapping fro x R to
Y and the following notations for the decompositions are uséde sequel:

X = NNt (4.1a)
Y = MMt (4.1b)

where both spaceX and Y are equal toR".2 In the classical formulation\\ =
kerK , N+ = range KT, M = kerK”, M+ = range K. However, since the mode inter-
action problems are of interest, the generalized LSK-fdatnon [93] is adopted, where
the \/-space is enlarged from only being the nullspace of the t@nggerator. Thus, it is
assumed that:

kerK C N, dim(kerK) =L < dimN = M. (4.2)

The original equilibrium equations (1.1) can thus be exjgantd an equivalent pair of
equations

Pf(q,\) = 0, (4.3a)
(I-P)f(q,)) = 0, (4.3b)

where P is a projector fromY — M, with ker P = M. Analogously,I — P is a
projector fromY — M with ker(I — P) = M. Expression for the projector can be
written asP = I — W@’ where® is a matrix containing the basevectors.bf, i.e.
=, o Py

In view of the decomposition (4.1a), the displacement veatdo the post-bifurcation
regime can be written in the forfim

q=4q. + ai¢z’ + v(ai> )‘)7 (44)

whereg,’s denote the base vectors spanning the spaemda;’s are the unknown ampli-
tudes. The unknown vectaris required to be orthogonal to the vectgrsi.e.v € Nt

°The spaceX andY can be regarded as displacement and load spaces, reslyective
SEinstein’s summation convention is adopted for repeategi@ase indexes.
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Since the matrixK ., is invertible fromN+ — M, solution forv is unique near the crit-
ical point. Substituting the solution into (4.3b) the reduced set of equilibrium equations
is obtained

g(ai7>‘) = !pT(I - P)f(ch +ai¢i + v(ai,)\),A)
!I,Tf(qcr + a'i¢i + v(ai? )‘)7 )‘) (45)

The Taylor series expansion of the vectoin the orthogonal complement &f is:
’U(CLZ', )\) = a;v; + A)\’UA + % (CLZ'CLj’l)Z'j + 2A)\CEZ"U¢>\ + (A)\)2’U)\>\) + - (46)

(AN = X — )\.) and substituting it into the Taylor’s series expansion484) about the
critical point, i.e.a; = 0, A = A, gives the equations for the solution of the higher order
terms. From the expansion, it can be concluded thand v, vy,... will vanish. The
only remaining displacement fields, up to second order, essolved from equations:

—Pf'v;; = Pf'¢,¢;, (4.7a)
—Pf'v;, = PfngbZ-, (4.7b)
where the notatioif’ = 0f /0q has been used.
Expansion of the reduced equilibrium equations at thecalistate ¢; = 0, A = \.,)
is:
9(ai, \) = Gor + Gorii + G NN+ 5 (90r,ij0i05 + 200 126 AN + g 5\ (AN)?)
+ % (gcr,ijkaiajak + 3Gcrijnaia; AN + 3gcr,i)\)\ai(A>\)2 + 97)\)\)\(A>‘)3> ... (4.8)

and can be written as

GZA)\ + Gijaj + %(Gijkajak + 2Gij,\A)\aj)
+ %(Gijkgajakag -+ 3Gijk,\A)\ajak) +--=0, 2=1,...,.M (49)

where

G, = d’rirfcr,)n
Gz’j - d’z‘Tfi;rﬁbp
Gk = ¥ (frvp+ fodidr),
Gijx = ] furd;,
Gire = P! [Frvine + Fre(@;000 + Do+ dpvji) + Fnd;rdy]
Gijkn = lb;fp [.flcr'vjk:)\ + ffﬂfjk + fgr(¢jlvk)\ + ¢Ppvjn) + f/c,;,)\¢j¢k} .

Some remarks are in order. If the spa¢eequals the nullspace of the tangent matrix,
then all the components; andG;; vanish. However, iflim ker K., = L < dim N = M,
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then the product;;a; is necessarily zero in the vicinity of the critical pointnee the
branch directions are to be found from components=1,..., L, thusa; = 0,
i=L+1,...,MandG;; =0,wheni,j =1,..., L.

As a summary the branch switching algorithm based on the tegkiction technique
consists of the following steps:

1. Computation of the critical point, which can be done in gnamys, either with
standard incremental approach or in the case of simpledaifion directly using an
augmented system.

2. Solution of the eigenvalue problem in order to get thevaalieeigenmodes. A stan-
dard eigenvalue problem is solved using the tangent stéfmeatrix from the step
nearest to the estimated bifurcation point.

3. Solution of the second-order (or higher) displacemelddi€his is necessary only
when the bifurcation is symmetric. However, it can be berafio compute it in
any case.

4. Computation of the coefficients of the asymptotic expamsi
5. Solution of the reduced set of polynomial equilibrium agons.

6. Construction of the predictor of the bifurcating brar&cbased on the solutions of
the reduced system.

Since the dimension of the reduced problem is very smallralnyst solution scheme
can be applied. Notice that these equations are polynoheake, it is possible to find
all the solutions with complex valued polynomial continaatalgorithms described in
ref. [125]. Alternatively, the multiresultant approachndze used to compute all real solu-
tions of the polynomial system [8]. In the case of nearly dtameous buckling loads, the
system can be divided into two simmpler ones, see ref. [160].

Solving the amplitude equation in the vicinity of the craipoint gives the local form
of the equilibrium surface of the structure. The most selierigation is that the range of
validity of the results obtained is difficult to judge. Thinee, the perturbation method has
primarily been considered as an “analytical tool” to getlijative picture of the behaviour
of the initial post-buckling regime.

The number of emanating branches can be large, see equé@idhand (5.4), there-
fore, for practical reasons the LSK-method is feasible witiennumber of interacting
modes is of order ten, at maximum. However, solution of adl thots of the reduced
polynomial equations can be done in parallel, if such a cderps available.

Another problem in the initial post-buckling method is tocai®e how many eigen-
modes are relevant in the expansion. If one interacting nedeé out from the expansion,
numerical computations show that it will appear in the selaaraer field [107]. However,
no mathematical proof is available. The range of validityiaf asymptotic approach can
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be extremely small in those cases. An example of this is giveef. [107] where a T-
beam is analysed. The interacting buckling modes compwseldcal and one overall
mode, the critical load of which is higher than the loads esponding the local modes.
If the overall mode is left out from the series expansion radsilting two mode analysis
deviates rapidly from the three mode analysis after thersssmy bifurcation point, which
lies in the immediate vicinity of the primary bifurcationipt

Example 4.2.1. Perform the LSK reduction for the Mises truss at the bifumapoint.
To have a bifurcation along the equilibrium path defined byagpns (1.23) the angle
should satisfyv > 54.74°.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



Chapter 5

Branch switching algorithms

5.1 Introduction

As explaned in section 2.1 continuation algorithms can leel is overcome limit (turn-
ing) points, but bifurcation points where two or more eduilim paths cross each other,
need special treatment To distinguish limit and bifuraapoints a simple criteria

T o . . .
{qb p, = 0 bifurcation point (5.1)

o'p, #0 limit point

can be used, whekg is the eigenvector corresponding to the singular valueefahgent
stiffness matrixK . The difficulty in criteria (5.1) is that the decision is uyanade based
on inadequate data; i.e. the equilibrium point in questian be at some finite distance
drom the critical state.

When traversing the equilibrium path, a fundamental tagk is1onitor some criti-
cality indicators, or singularity test functions. Suchdtions can be used to predict the
possible existence of a critical point in subsequent steps.

5.2 Estimation of thecritical point

Computation of the critical point along an equilibrium pa#in be done either by monitor-
ing the evolution of certain singularity indicators or tesictions during the incremental
procedure or by evoking the directly solution scheme thelim@ar eigenvalue problem
[1, 68, 90, 99, 112, 167, 196, 197]. Such a procedure can alstepted at some specific
point on an equilibrium path, however, there should be sordation on the existence
of a possible critical point.

To predict the existence of singular points several testtfans are plausible if the
linear equation is solved with direct methods. The most comones are the following:
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5.2. Estimation of the critical point 43

Determinant of the tangent stiffness matrix at an equilibrium point israde byprod-
uct of the factorization step. It is unreliable if it is usedthvout modifications. It cannot
separate stable and unstable solution paths if the charije mumber of negative eigen-
values is an even number. Since it is a product of all eigele&lithe rate of change can be
unrealistically high and cause uncertainty in the predicof the critical point [108]. If

it is used as a scaled quantity, the robustness as a tesioiumetncreased. However, the
number of negative diagonal entries has to be monitoredigmaously. It is impossible
to use with iterative linear equation solvers. A properiscatan be defined as

N
sdet(K) = [ ] Idi|"™"
=1

whered;; are the diagonals of the root free Cholesky decomposios: LDL”, v is a
parametery € (0, 1), which should reflect the proportion of the average rate ahge in
the eigenvalues. The valge= 0 is mostly used in the technical literature, however, it will
resultin high variations in the values of the test functespecially for large FE models. If
a priori knowledge is available, the proper choiceyokill improve the predictive quality
of the determinant based singularity test function.

The determinant based singularity test function can be egf@s a relative quantity

, sdet(K )
dbstf = chsign(K ) ————= 5.2
s chsign( )sdet(Kl)’ (5.2)
where the subscript refers to the increment. The “changmimature”- function (chsign)
is defined to bet1, and changes sign when a change in the signature of theestffn
matrix occurs along the path.

Current stiffnessparameter  (CSP) [25] can only be used with limit point singularities.
Easiness of evaluation is the main advantage of the CSP arah ibe also used with
iterative linear equation solvers. When the tangent to thelierium path is parallel to
the load axis the CSP goes to infinity, which makes the designstep-length control
algorithm based on CSP somewhat difficult.

Thesmallest eigenvalue (in absolute value) is perhaps the most reliable singyl&egt
function. If the decomposition of the tangent stiffness/gilable, the inverse iteration can
be easily used to evaluate the nearest to zero eigenvaluesgg the inverse iteration is
not fully robust, since the convergence is obtained onlleflbwest eigenvalue is single.
In addition, the convergence is towards the lowest eigemrevial absolute value, therefore
special care has to be paid on unstable equilibrium pathgid aonvergence towards the
smallest positive eigenvalue. Since the eigenvalue ard#sciated eigenvector from pre-
vious equilibrium configuration provides good startingues for the iteration, in practice
only two or three inverse iterations are required for cogeace.
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Computation of the lowest eigenvalue is easy if an unpreitioned iterative linear
solver is used. Supression of the preconditioning stepdimrescycles in the PCG-iteration
facilitates computation of the extreme eigenvalues ofdngént stiffness matrix from the
triadiagonal matrix

T, = tridiag [1;, 6;, 9i+1] ,

associated with then-th step of the Lanczos iteration. Expressions for the coefits
n;, 0; are easily obtained from the CG algorithm, see [155]. Anosiiategy would be to
combine the inverse iteration with Rayleigh quotient itena[180].

Unfortunately the signature of the matrix is not easily &le if iterative linear
solvers are used.

The smallest pivot (in absolute value) can only be used with the direct linearaéiqn
solvers. Easy to compute.

As can be seen from the above list, none of these are goodd@stimation of bifur-
cation points if iterative linear algebra is used.

5.2.1 Number of bifurcating branches

An essential feature for construction of a reliable biftiaa procedure is the determi-
nation of the number of possible solutions branches emapé&tbm the critical point.
This problem has been explored in the late 60’s by Sewell,[166], Johns and Chilver
[95, 94]. Depending on the symmetry properties of the systeenmaximum number of
different post-buckling branches is

oM _q (5.3)

for a system without symmetry, and

13M—1) (5.4)
when the system is perfectly symmetric. The minimum numlfgrost-buckling paths
is 1 for the former case antl for the latter. The complexity of a multi-mode buckling
problem grows enormously with the multiplicity of the ccii point. Unfortunately, there
exist no simple rules for the number of real branches. Howewang complex poly-
nomial continuation methods in connection with the Liap$zhmidt-Koiter reduction
technique, all branches can, in principle, be found.

5.3 Critical points

5.3.1 Characterization and algorithmic requirements

Continuation methods characterized by the augmented iequatstem (2.3) are espe-
cially designed to handle the simplest case of critical {ire. the limit point. Since the
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Jacobian of the augmented system remains regular at linmtgpdahe implicit function
theorem guarantees locally the uniqueness of the solufiois.is not the case in other
singular states. Bifurcations, i.e. points where two or enequilibrium paths intersect,
can also emerge from the equilibrium path [179]. An algonitbapable to handle limit
and bifurcation points should include the following proosss:

1. estimation and detection of a critical state [28], [5926], [151], [168], [172],
[173], [175], [197],

2. reliable and cost-effective distinction between limmtabifurcation points [151],
[153], [194],

3. branching capability on secondary paths in the case wfdafion [28], [147], [151],
[152] [183], [192], [194],

4. verification of the existence of all possible solutionfmiaes

5.3.2 Some existing branching procedures

In this section a short review of existing branch switchieghiniques for multiple bifurca-
tions is given. The objective of these algorithms is to sedktons for the load parameter
A and the projections; of the tangent vectors of the branches onto the criticalegales
¢, i=1,..., M.

Rheinboldt [147] developed an elegant and computatiofehyurable branch switch-
ing algorithm for simple bifurcation. He also described aayalization of his method to
multiple bifurcation. However, the question of initial uals for the projections; re-
mained unanswered. In ref. [108] a variant of Rheinboldgeathm is proposed.

Keller [100] presented four algorithms, which are denotedihads I-1V. The method
| uses a perturbation approach and the solutions for thechrdimections are obtained
from the algebraic bifurcation equation (ABE), see also[tg3]. In the evaluation of the
coefficients in ABE, second derivatives of the residual eeftare needed, or they have
to be approximated by finite differences. This method will\ighen ABE is degenerate,
e.g. at symmetric bifurcations. In order to avoid the deteation of coefficients of ABE,
Keller proposed method Il where the idea is to seek solutmnsome subset parallel
to the tangent but displaced from the bifurcation point imedirection normal to the
tangent. Obviously this method will work well in simple biéations, but the problem
with multiple bifurcation is how to parametrize in a reasoleavay the subset where the
solution is to be found. Remaining two methods IIl and IV seéenbe the most robust
and also computationally the most demanding. However, éneylescribed in ref. [100]
only in the case of simple bifurcation.

Kearfott [97] developed a technique where, in principlesalution arcs can be found
by locating the minima of f|| in the region near the critical point spanned by the critical
eigenvectors, i.e finding the solution branches on a sphameered to the estimate of
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the critical point. A drawback of this method is that it re@s numerous evaluations of
the residualf. Determination of the necessary resolution needed to finsbaltions is
an open question. If the resolution to scan over the sphamitow, the probability of
missing some branches increases, on the other hand, tigiptire resolution increases
the computational cost. Huitfeldt [89] included also thagent vector of the primary
path in the definition of the sphere where the minimizatikesgplace. Pajunen [132] has
used the residual minimization technique to solve doubigrcation problem of a truss
structure.

Allgower and Chien [4] used the local perturbation methddoiduced by Georg [75]
to multiple bifurcation problems. The idea is to introdugeeaturbation near the bifurca-
tion point and solve the perturbed problem

flg,\)+7b=0 (5.5)

from a point on the primary path and traverse a perturbedypathit is near a point on a
branch. The theoretical foundation of this method is based wersion of a generalized
Sard’s theorem. For successful branching the choice of ¢nigiation vectors plays a
key role. In their numerical examples the components in greupbation vectors are cho-
sen in such a way that they oscillate correspondingly togldshe bifurcating solutions.
This means that one should haw@rioriknowlegde of the solution of the problem which
has to be solved. No specific theory or rules for the seleaifdhe perturbation vectors
was given in ref. [4], and the method seems to be used bestnaguting the solution
curves interactively by trial and error fashion.

A major improvement to the local perturbation algorithmiigeg by Huitfeldt [89]. He
introduced an auxiliary equation which defines with the ymdxed equilibrium equations
(5.5) a closed one dimensional curve M+ 2-dimensional space. This curve passes
exactly through one point on each branch (or half branctérdened by the unperturbed
equation (1.1). When passing such a point the perturbaticampeter- changes sign. The
problem is then to locate the zero points of perturbatioaipaterr while traversing the
branch connecting curve (BCC). Thus the branch switchinglpm is reduced to a path
following task of the augmented system

nann) = { [T = 0 (5.6)

which can be solved with standard continuation algorithfsonstraint that defines a
closed surface around the critical point is of sphericaipigtal) form:

Cb(qa )\77—) = % (Hq _ qu||‘2/V + OKQ()\ - )\01“)2 + ﬁ27—2 - 02) ) (57)

whereq, 3 are scaling factors angdlis the radius of the sphere. In principle this method
does not require expensive evaluation of the basis of tHepade of the tangent stiffness
matrix. Huitfeldt [89] used a random vector as perturbaton
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There are some shortcomings with this conceptually simpdeedegant method. It is
not known if the branch connecting equation always defindssed curve. It is believed,
as also argued by Huitfeldt, that using a constraint defiaidpsed surface guarantees
a closed path defined by the branch connecting equations (5.8). No mathematical
proof of this is known to the author. Secondly, there is norgntee that all bifurcating
branches have been found. This obviously depends on theechbthe perturbation. In
addition, the computational expense can be very high fgelaroblems, fortunately it
grows only linearily with respect to the emanating brandnes the bifurcation poirit
However, the number of branches in multimode buckling witthkr multiplicity can be
very large as will be explained in the following.

5.3.3 Asymptotic approach

However, in the case of multimode buckling it is not easy tda&wonto the post-buckling
branches in a reliable, robust way. In comparison to the hyidsed continuation proce-
dure, the asymptotic approach can provide some additiof@ination such as the shape
of the worst imperfection; it also enables the classificatbbuckling problem in terms
of the catastrophe theory as described, for example, by psomand Hunt [182], so
giving insight into the mechanism of the non-linear modetiaction. Therefore it seems
to be ideal (except the evaluation of higher order derieatiof f to combine some of
the features of the asymptotic analysis to the general woation procedure in order to
handle multiple bifurcation and mode interaction probleses [109].

Lt is assumed that for reliable detection of the zeros of tegupbation parameter on the BCC, a
minimum number of steps, say 4-5, has to separate two cotiseooots.
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Chapter 6

Some linear algebra

6.1 Algebraiceigenvalueproblem
6.1.1 Polynomial eigenvalue problem
The non-linear eigenvalue problem
(Ko + A\K, + M Ky+--+ )N K,)g=0 (6.1)
can be transformed into a linear eigenvalue probleminines the size of problem (6.1)

by defining:q, = \q, g, = \q,, ... [140], which results in an eigenvalue problem of the
form

K, 0 0 0 K, K, --- K, K, q
0 I 0 0 1 0 - 0 0 a,

. + A\ . . _ . ) ) =0.
o 0 --- 0 I 0 o --- -1 0 q,_;

(6.2)
At first glance the formulation seems unattractive it large. However, solving linear
equations with the first matrix of (6.2) requires only sadatiwith K, and the Arnoldi
type iteration can be easily applied.
The quadratic form of the non-linear eigenvalue problem5Bis often utilized to
correct the linear eigenvalue predictions. Using the fansation to a linear eigenvalue
problem (using the notation = q,)

(1% e[ 5 D{e)-o o3

This is not the only legitimate linearized version of a q@didreigenvalue problem, other
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6.1. Algebraic eigenvalue problem 49

possible forms of the problem are:

(5 s o[ 5Dt o oo

(% ]l % D{e) -0 s

These forms are not as useful for practical computationthmyt can give some insight
to the problem [138], see also [184] for a review of quadreigenvalue problems. In the
form (6.4), both matrices are symmetric, if the submatrikesare symmetric, however,
the global matrices are indefinite. In the second form (61, first matrix is positive
definite if the submatrices are also positive definite, bistigrvachieved at the expense of
symmetry in the other.

6.1.2 Linear eigenvalue problem
Introduction

There are many algorithms to solve linear algebraic eigeevaroblem. However, for
efficient solution, one has to specify what to compute: (aigkenvalues and eigenvectors,
(b) only eigenvalues, (c) only a small number of eigenvalras (d) possibly associated
eigenvectors. In structural analysis we are most oftendfagigh eigenvalue problems
where the matrices are large and sparse and only some ph# efggenvalue spectrum is
of interest.

Power iteration method finds the dominant eigenvalue and the corresponding eigen-
vector of a give matrix4d. Suppose the matrid is diagonaliizable, that i A& =
diag(A1, ..., Ay) with @ = [¢4, ..., @] and the eigenvalues satighy | < |Xo| < -+ <
|An—1] < |An|. Starting from a initial vectoz, such that|z||» = 1, iteratei = 1,2, . ..

1. computez; = Ax;
2. normalizer; = z;/||zi|2
3. compute\; = 27 Ax;

and if the iterate converges afteiiterations, then\,, is an approximation to the largest
eigenvalue\y and thex,, to the corresponding eigenvecipy,. Convergence of the Power
method is linear and depends on the distance betwgenand y:

An — Akl :O(}XV;\’“). (6.6)

This can be easily seen if we assume that the initial guesbeaxpressen as a linear
combination of the eigenvectors

To= 1) + Py + -+ andy (6.7)
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50 6 Some linear algebra

and assume thaty # 0. Then

N N
Azo =Y (Ndid]) Y (o Zazx ¢, (6.8)

i=1 j=1

N .
= anAN <¢N + Z aN )\ ) ’ (6.9)
and afterk iterations
)\ k

A" o —04N>\N oy + Z ( N) ¢z] : (6.10)

Thus the algorithm converges toy and ¢, provided that the initial vectog, has a
component in the direction of the dominant eigenvediQr The rate of convergence of
the iteration vector is linear.

In structural stability analysis the lowest eigenvaluessally of interest. Modifying
the step 1 in the power iteration method to solve system = x,_;, gives the inverse
power method which converges towards the smallest eigaexa) provided it is simple,
|e‘)\1‘ < |>\2|

The inverse iteration for a generalized eigenvalue problem

A¢p = \B¢ (6.11)

can be stated dsstarting with an initial vector,, computey, = Bz, and iterate; =
1,2,...

1. solveAz; =y,
2. computey, = Bzx;

zyzl
Z?/z

3. computey; =

4. normalizey; = ¥,/ (2! g,)"/?

then, provided thag, has a nonzero component in the direction of the eigenmqodnd
the lowest eigenvalue is isolated, the iteration convesgel as

Pr R A Yy, ~ Bo. (6.12)

Observe, that the eigenmode is now normalized wrt the m&trike. ¢, B¢, = 1, and
thusg, Ag, = ).

Lif the matrix B is nonsingular, then the generalized eigenvalue probllstn= AB¢ can be also
written asB~ ' A¢ = \¢.
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Rayleigh quotiet iteration  Shifting can improve the rate of convergence in vector itera
tion methods. One possibility is to use the Rayleigh quoiiefat phase 3 in the previous
algorithm), calculated during the iteration process. § Rayleigh quotient is used as a
shift at every iteration, the procedure is called the Rayieuotient iteration and its rate
of convergence is cubic if the starting vector has a big ehaamponent of the eigen-
vector ¢,. The procedure can be stated as: starting with an initiaiovec,, compute
y, = Bz, select a starting shiff, (usually zero) and iterate= 1,2, . ..

1. solve(A + p;-1B)&; = y,_4

2. computey, = Bzx;

4. normalizey; = ,/(z!y,)"/?

Notice, that the phase 1 requires the solution of a systemdiffierent coefficient matrix
at every iteration. Therefore the cost of the procedure isimhigher in comparison to
inverse iteration if direct solvers are used. However, theation is different in the case
of iterative linear solvers, see ref. [180].

Solution of large eigenproblems

Two videly used strategies to solve this generalized eiglelevproblem in large scale
finite element computations are the subspace (simultahéeuation and the Lanczos
method [137], [18]. There is growing evidence that the Laxsanethod is faster in solving
the generalized eigenvalue problem, especially in the obt@ge clustered eigenvalue
spectrum, which appear in multi-mode buckling problemssehtwo methods are based
on the shift and invert strategy, which requires the fagtdron of a matrix. For very large
problems this can be impossible. Van der Vorst and his cdersrhave proposed Jacobi-
Davidson method for polynomial eigenvalue problems [29,1189]. It can be applied
without inversion of matrices or transformation to the si@al case. In the present notes
this promising method is not considered.

Since the buckling eigenvalue problem is slightly diffdrsom the frequency analy-
sis, a version of the subspace iteration suitable for stalaihalysis is briefly described.
This slight difference is due to the properties of the ihg&teess matrix, which is indefinite
in many cases.

2In frequency analysis the corresponding matrix (mass ®jasialways positive definite or positive
semidefinite.
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Subspace iteration method

The generalized eigenvalue problem in question is to stledawestp eigenvalues and
corresponding eigenvectors satisfying

K@= K, 3A, (6.13)

where the diagonal matriA = diag()\;) contains the critical eigenvalues and the matrix
®=lqy,.., q,,] the corresponding eigenvectors. The subspace solutionithg of this
problem is the following [16]:
For,k = 1,2, ..., iterate:
Ky®,., =K ¥,.

Find the projections of operato¥s, and K ;:
A = @£+1K0@k+17 and  Bpi = _&5£+1K14_5k+1-
Solve for the eigensystem of projected operators:

Ak+1 Qk+1 = By Qk+1Ak+1‘ (6-14)
Find an improved approximation to eigenvectors:

D1 =Pr1Qp

If the vectors in®, are not orthogonal to one of the required eigenvectors, Itiee a
rithm converges, i.ed;,; — A and®,,.; — P ask — oo.

Since the projected matriB, ., IS not necessarily positive definite, the projected
generalized eigenvalue problem (6.14) is first written mitiverse form

Bit1Qpy = Ap1 Qi Al (6.15)

Now, the projected matrix4,,; is positive definite and the Cholesky decomposition
A, = LL" is possible. The generalized problem (6.15) is then redtecede stan-
dard eigenvalue problem

CX =XA, (6.16)

whereC = L 'By (L) andX = L" Q, ;.

Solution of the standard eigenvalue problem (6.16) can lhairdx in three phases.
First, the coefficient matribxC' is reduced to tridiagonal form by Householder transfor-
mations. The eigenvalues of the tridiagonal matrix areiobthby the QL decomposition
algorithm using implicit shifts in order to speed up the cengeence and to maintain good
numerical conditioning. Finally, the eigenvectors are pated using the inverse iteration.

Convergence of the iterative process can be acceleratesiiy a shift. However, the
requirement that the projected matéxof the shifted stiffness matrik’, + o K, has to
be positive definite, restricts the shiftto satisfy

lo| < min |A;].

Acceleration of the subspace iteration has been consigegeth refs. [3], [15], [144].
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L anczos method

Krylov subspaces based methods such as Lanczos and Arlgudilams are widely used
for treating eigenproblems with large sparse matricesy Hne shown to perform better
than vector iteration methods. For an overview of these autisee refs. [79], [137]. A
well-known robust implementation is due to Grimes, Lewid &mon [81] which is also

incorporated in th&SC/NASTRAN structural analysis code.

Thebasicidea Cornelius Lanczos presented the algorithm in 1950 to coengarne of
the extreme eigenvalues of a given symmetric madrixt is based on sequence of vectors
like z, Az, A%z, . ..,, and the method generates a sequence of tridiagonal nsaffice
which have the property that the extremal eigenvalueE pE R7*/ are progressively bet-
ter estimates of the extremal eigenvaluestofLet T = Q" AQ, andQ = [q,, ... q,]
and

aq 51 0
B oor :
T = : (6.17)
i Bn-1
| 0o - fn-1  an i

SinceAQ = QT, the orthonormal vectorg; satisfy

Aq; = Pj—19;1 + ;9 + Biq;14- (6.18)

The entries of the symmetric tridiagonal matrix are easyrta, fmultiplying (6.18) byg;
gives
a; = q;Fqu. (6.19)

The 3; term can be obtained by rewriting equation (6.18) as
B = Aq; — ajq; — Bj—1q;_1 = T;. (6.20)
The Lanczos iteration can be stated as:
1. Initializej =0, g, = 0, 5y = 1 selectq, such that|q,|| = 1 and setr, = ¢;.
2. lterate while3; # 0
(@) j:=j+1
(b) i = q] Agq,

€ rj=(A—-a;I)g; —Bi-19;
(d) 8; = |l

The sequence of the Lanczos vectgrshas two basic properties
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1. eachq; , is a combination ofy;, Aq;;, . .. Alq,
2. eachq;,, is orthogonal to all combinations af, Aq,... A’ 'q,

The main problem in Lanczos iteration is its numerical ib8ify. In practice after a
few steps orthogonality is lost and the vectors are not figgadependent. A complete
reorthogonalization is expensive, thus selective andgbaeiorthogonalization strategies
have been developed, see section 10.6 in [88] and [121].

Block Lanczos algorithm: The approach by blocks allows better convergence proper-
ties when there are multiple eigenvalues which is of primiamyortance in stability anal-
yses of thin shells. Next, the block Lanczos algorithm asdadd the program package
BLzPACK of Marques [121] will be briefly described. TisezPACK employs a combina-
tion of modified partial reorthogonalization and selectivéhogonalization strategies to
preserve the orthogonality of the bases generated by tobeitilg.

The eigenvalue problem (6.13) in tBezPACK is transformed to a form

KQ(K0+UK1)_1KQ¢: 9K0¢ i.e. A¢ZHB¢, (621)

wheref) = \/(A — o) ando # 0 is the shift. Implementational details concerning the
monitoring of the orthogonality, the spectral transforim@atthe spectrum slicing strategy
and the data management during the generation process @aumiokin ref. [121] and are
not repeated here.

The algorithm can be summarized as [121} (and R; are N x m matrices,flj is

m x m andB ism x m upper triangular)
1. Initialization:

(a) setthe number of vectors in a bloek the shifto
(b) computed, = A —oB

(c) setQ,=0,R,# 0

(d) factorizeR, = Q, B, suchthatQ” BQ, = I

2. Lanczos steps;, iterate for=1,2,..., NSTEPS
(a) computeR; = A, 'BQ,
(b) updateR; := R, — Q,_, B,
(c) computed; = QT BR;
(d) updateR; = R; — Q,A;
(e) factorizeR; = Q, B, suchthaQ?, ,BQ,., = I

(f) if required ortogonalizeR); and Q;_, against the vectors i,
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(9) insertQ; into Q; andA;, B; into T
(h) solve the reduced probleffi;s; = 0;s;, k=1,2,...m x j
(i) seth, = o +1/6;

() test convergence by checking the number of eigenparsvioch TOL >
||Bj+13§-k)|| = |A¢, — \ B, ||, and exit if enough eigenpairs have con-
verged

3. compute the converged eigenvecigys= Q;sy.

The block tridiagonal matrixI’; is

S) P)
Uj) [g;> tU>
w N

h;) bd>

(6.22)

w

AT
;B
B. :

L J ya—

6.2 Solution of thelinear equation system

6.2.1 Introduction

In most non-linear structural codes the solution of thedimgystem is performed with a
direct solver. If the stiffness matrix is symmetric, thetrree Cholesky or CrouL DL”
decomposition is used, while for unsymmetric matrices B¢ decomposition is used.
For large 3-dimensional problems the decomposition tintethe storage requirements
will be prohibitively high when Gaussian elimination typectorizations are used. The
decomposition time dominates the overall cost of the coation process, since the
asymptotic operation count for standard decompositiorf srder £3~2/¢, where E is
the number of elements aads the space dimensidrwhile the time needed to compute
and assemble the internal force vector and stiffness migtmaturally linearly propor-
tional to the number of elements. Special sparse matrixnigales have been developed
which try to minimize the fill in during the decompositionettative methods seem to be
ideal for modern vector and parallel computers to solveesgstof linear equations. For
large problems they require much less storage than diréatérsoand computing times
are also in many cases reduced.

For a discussion of state of the art of direct solution teghes of linear systems, see
ref. [55].

3Assuming uniform mesh with approximately same number ahelets in each coordinate axis direc-
tion.
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In the sequel, a generic linear equation system will be d=hy
Ax = b,

where the coefficient matrid can be symmetric or unsymmetric. An equivalent precon-
ditioned system is
M 'AM;'y = M'b, (6.23)

whereM = M M, is the preconditioning matrix and ;, M, are the left- and right-
preconditioning matrices, respectively. In practices #plit form is not always needed. It
is usually possible to rewrite the iterative method in a wagt tonly one computational
step: findu from v = M 'v, is necessary, so the preconditioner applies in its eptiret
However, the system (6.23) gives possibility for differ@néconditioning strategies. It
should be noted that the spectra of the three associatedtomM A, AM ' and
M 'AM;" are identical. Therefore, similar convergence behavibaukl be expected.
However, it is well known that the eigenvalues do not alwaygegn convergence [155].
For these preconditioning versions different residuatésavailable which in each case
may affect the stopping criterion and may cause the algartthstop either prematurely
or with delay. This can happen in cas# is ill-conditioned.

Most of the preconditioned iterative techniques requiee pheconditioning to be a
constant operator. However, several iterative procedaresleveloped in the literature
that can accomodate the variations in the preconditiorexhdps one of the most well-
known of such iterations is the flexible variant of the getized minimum residual algo-
rithm. These flexible variants are not considered in thegarestudy.

Different preconditioning techniques are briefly desalibethe subsequent section.

6.2.2 Krylov subspace methods

Krylov subspace methods seem to be among the most impadeeative techniques avail-
able for solving large linear systems [11], [155], [190].€Bk techniques are based on
projections onto Krylov subspaces, which are subspacemsgpaby vectors which are
obtained recursively by multiplying the previous residwith the matrix: i.e?

Kin(A, rg) = span {ro, Arg, A27“o, - Am_1r0} 7

wherer, = b— Ax,. Approximate solution of the system is found frormadimensional
subspace:, + IC,,, by imposing the Petrov-Galerkin condition requiring theideial to be
orthogonal to anothen-dimensional subspaag,,.

Next, the following algorithms will be presented withoutigations:

e conjugate gradient

e symmetric QMR

e bi-conjugate gradient

“In place ofA there couldbe e.g ' A or AM .
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e bi-conjugate gradient stabilized
The algorithms are presented as left preconditioned vessio

The most well known Krylov subspace method is the precooniil conjugate gra-
dient (PCG) method for symmetric positive definite (SPD)nmas. There are many dif-
ferent implementations of the PCG-iteration, but the felltg algorithm is perhaps the
most common.

Preconditioned conjugate gradient algorithm: constructM (or directly M 1), ini-
tialize ro = b — Az, apply preconditioned, = M ~'r,, computer, = rl'd, and
iterate; = 0, 1, 2, ... until convergence:

1. computes = Ad;, «; =7;/d! s,

2. updatex;,, = x; + a;d;, T =T — Q;S,
3. apply preconditionez = M 7,4,

4. computeriyy = rh,z, Bi = Ti1/Ti,

5. updated;,; = z + 3;d;.

It is a Galerkin (orthogonal projection) type Krylov subspanethod, i.eC,, = K,,,. One
iterate of the PCG method requires one matrix-vector prodive® level-1-operations
and one application of the preconditioning operation: M 7. The residual norm can
be evaluated after step 2 in the above algorithm, howevéeagrmeasure for monitoring
the convergence is obtained in the weighted nogm:= |||y, = (r" M ~'r)'/2,

If the matrix A is symmetric but indefinite, the PCG-algorithm can beconstabie
and even break down. Paige and Saunders [131] were the fasvige stable algorithms
for symmetric indefinite systems. These two algorithmseceYMMLQ and MINRES
are based on Lanczos tridiagonalization, which existsialgadefinite case.

The drawback of the SYMMLQ and MINRES algorithms are thatgheconditioner
M need to be a SPD-matrix. For highly indefinite systems, #ss$riction seems to be
rather unnatural. The symmetric QMR algorithm [73] allowws tise of arbitrary symmet-
ric nonsingular preconditioner. The QMR iterate is chagazed by a quasi-minimization
of the preconditioned residual norm. If the preconditioisgrositive definite, then MIN-
RES and symmetric QMR iterations are mathematically edgitaand the residual
norms are tryly minimized.

Preconditioned symmetric QMR algorithm: constructM (or directly M 1), initial-
ize sy = b — Az, apply preconditioneg, = M ~'r,, computery = || g, ||, po = 52 q,,
setyy = 0,d = 0 and iterate = 1, 2, ... until convergence:

1. computet = Aq, |, 0,1 =g/ t, a1 =pi_1/0i1

SPCG requires an additional norm evaluation if the convergésichecked from the residual

R. Kouhia: Computational techniques for the non-linegrdraft, May 2009



58 6 Some linear algebra

2. updates; = s;_1 — o;t,
apply preconditionett = M 's;,
Compute%- = ||t||/7’i_1, C; = 1/\/ 1+ 7912, T = Tilﬁici

5. Updat&ll = 62192 di—l + C?Oéi_l q;, 1 andwi =1+ dl

1 i—1

W

6. computey; = ts;, Bi = pi/ pi-1
7. updateg; = f3;q;_, + ¢.

For unsymmetric matrices the situation is much more compiee CG method for
SPD systems has two important properties. It is based oe teren recurrence, and it
minimizes the error with respect to the energy norm. Unfuately these two proper-
ties can only be fulfilled for nonsymmetric CG-type schenarsaf very limited class of
matrices, namely the shifted and rotated Hermitean matrice

Most of the existing iterative algorithms for solving nonayetric linear systems are
based either on the full orthogonalization method of Arnoldthe Lanczos biorthogo-
nalization methods. Saad and Schultz [156] suggested thergezed minimum resid-
ual method (GMRES), which is a projection method with theicddC,,(A, ro) and
L, = AK,, (A, ry).Itcan also be viewed as an extension of the MINRES to nonsstmm
ric problems. There are many possible variations of the GEBRtethod, see ref. [155].
The main disadvantage of the GMRES is long recurrenciesrapdhctical computations
its restarted versions are mostly used.

In this work only those algorithms are considered whichinetiae short recurrencies
thus being more favourable with respect to memory requirgsdiconjugate gradient
(Bi-CG) type algorithms are based on the Lanczos biorthatipation algorithm which
builds a pair of biorthogonal bases for the two subspdGeéA, ry) and L,,(A”, 7).
The Bi-CG algorithm can be implemented as follows.

Preconditioned bi-conjugate gradient algorithm: constructM (or directly J\/:I‘l),
initialize r, = b — Az, chooser,, apply preconditioneel, = M 'r, andd, =
M~T#,, computer, = 7 d, and iteraté = 0, 1, 2, ... until convergence:

1. computes = Ad;, 5= ATd;,, o =7/d, s,

2. Update'il:i+1 =x; + Oéz‘dz', Tiy1 = T; — Q4y8, 'Fz'—i-l = 'Fz — OZZ'S~,

3. apply preconditionerz = M 'r;q, £2= M 17,4,

4. computer;y, = 7,2, Bi = Tiy1/Ti,

5. Updat&li_i_l =z + ﬁldl, CL-H =zZ+ ﬁzglz
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The algorithm fails whenevet = #' z = 0. Although such a breakdown is very unprob-
able in practice, near breakdowns when: 0 are possible and cause a serious numerical
stability problem.

In some applications the multiplications with” and preconditioning steps with
M7 can be impossible to perform. Sonneveld [178] developedibenjugate gradi-
ent squared (CGS) method which eliminated the need of tosespmatrice&.How-
ever, since CGS is derived by squaring the polynomials @ssacto the residual and
direction vectors, rounding errors can be more harmful thahe standard Bi-CG algo-
rithm. Van der Vorst [188] devised a stabilized version af t8GS which is called the
bi-conjugate gradient stabilized iteration, Bi-CGSTAB &hort. Many modifications of
the Bi-CGSTAB scheme have been proposed in the literateeegy. refs. [43], [176]
[199]. Here, the procedure is given in the original form [L88

Preconditioned bi-conjugate gradient stabilized algorithm: constructM (or directly
MY, initialize 7y = b — Az, chooser, computey, = 7' ry, setd, = r, and iterate
1=0,1,2,... until convergence:

apply preconditionerz = M ~'r;,

computew; = Az, o; =p;/F v, §=17T;— ;v
apply preconditioned = M 's,

computew = A3, w; = wls/wlw,

updatex;,; = x¢; + a;z + w;§, T = S — w;w,
computep;; = 7 74y andf, = (piv1/pi)(ci/wi),
updated;; = rip1 + Bip1(di — wiv;) .

Since both coefficientsandw have to be nonzero, there are three possible breakdown
points in the Bi-CGSTAB method, i.€” v; # 0, w”s # 0 and#” r; # 0. In the literature
a common choice for the vectaris the initial residualb-,. Bulgakov [38] recommends
the vector? = M 'r,. If the initial approximationz,, is chosen to be a random vector
these two approaches perform almost identically. Howefvére initial approximation is
a zero vector and the load vectbiconsists of only few nonzero components, the choice
7 = 1y IS not recommendable. A reasonable choice seems fobe, + a, wherea is
a random vector.

To cure the situation the look-ahead Lanczos algorithme leen developed. The
drawback of look-ahead steps is the increased complexithefalgorithm. Therefore
simpler remedies, like restarting the Lanczos procedane be adequate.

For a unified general description of these methods with naogereferences see
refs. [14], [155], [190].

SMany other transpose free modifications of the Bi-CG algonitexist, although the CGS and the
Bi-CGSTAB are perhaps the most well known, see discussioefi36].

N o o~ w Dd PP
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6.2.3 Preconditioning

It is well known that the performance of iterative solverpeleds on the eigenvalue dis-
tribution and on the possible non-normalityf the coefficient matrix. These problems
can be avoided, to some extent, by employing a preconditittreeems to be generally
agreed that the choice of the preconditioner is even motiearthan the choice of the
type of the Krylov subspace iteration [21].

There are two major conflicting requirements in the develepinof a preconditioned
iteration, namely, the constructidand use of a preconditioner should be inexpensive and
its resemblance with matriXd should be as close as possible. The most general precon-
ditioning strategies can be grouped into classes:

1. preconditioners based on classical iterations likeia&SOR,

2. incomplete sparse LU-decompositions (ILU or IC for synmenatrices),
3. polynomial preconditioners,

4. explicit sparse approximate inverse preconditioners,

5. multigrid or multilevel preconditioners.

Incomplete factorization is perhaps the most well knowatstyy. There are many variants
of ILU-decompositions differing, for instance on the wayhthe nonzero pattern of
the preconditioner is defined. The simplest strategy is \@ lthe same nonzero pattern
for the L and U factors asA. This incomplete factorization known as ILU(0) is easy
and inexpensive to compute, but often leads to a crude appabtion resulting in many
iterations in the accelerator to converge. Several altef_U factorizations have been
developed in which the fill-in is determined either by usihg toncept of level of fill
or by a threshold strategy where the nonzero pattern of theopditioner is determined
dynamically neglecting small elements in the factorizatio

Meijerik and Van der Vorst [123] proved the existence of th&l factorization for
arbitrary fill patterns when the coefficient matrix is a M-mvet. This is often the case,
e.g. for matrices arising from discretizations of the hepta¢ion. However, matrices aris-
ing from problems in structural mechanics usually do notehidns property. In order to
circumvent this problem different strategies exist. $iftis perhaps the most straight-
forward remedy, the factorization is carried out for theftelai matrix A + pdiag(A),

A matrix A is said to be normal ifAA” = A A, where the superscrigi denotes the conjugate
transposition. A normal matrix is the most general matrixolhhas a diagonal Schur form. Therefore,
all its eigenvalues and eigenvectors are well-conditiotieel spectral representation is stable with respect
to perturbations. The bad effect of non-normality is thegiue deterioration of the numerical quality for
iterative methods run in finite precision arithmetic [3@]1].

8]f the preconditioner has to be used many times more effariddoe paid to its construction.

%A matrix is a M-matrix if its off-diagonal elements are nosjtive and all the elements of the inverse
are positive.
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wherep is a parameter. However, finding an optimal value for thet gl@ifametep is a
non-trivial task. Another approach is to apply an additlaeduction step where an M-
matrix is determined from the stiffness matrix and the inptete factorization scheme
is applied to this matrix [158]. The incomplete factoripatiis then guaranteed to exist,
but, unfortunately, the reduction step can produce a mtttexesemblage of which to the
original matrix is not good enough.

Ajiz and Jennings [2] proposed the corrected IC factora(CIC),° which guaran-
tees a positive definite preconditioner if the matrix itslBPD, but it often results in too
large modifications to the diagonal which slows down the eogence of the accelerator
iteration.

Mathematical analysis reveals that for second-ordertalipundary value problems
the ILU(O) approach is asymptotically no better than theraopnditioned iteration. More
precisely, the condition number of the ILU preconditiongebi@tor is of the same order
as that of matrixA. Several variants of the basic ILU have been presented ititdre
ature e.g. MILU, RILU and DRILU (modified, relaxed and dynaally relaxed) [158].
However, when considering real engineering problems theséified versions do not
necessarily perform any better than the basic ILU.

It should be remembered that the effectiveness of a pretonitig strategy is highly
problem and architecture dependent. For instance, inamfdctorizations are difficult
to implement on high-performance computers, due to theesagu nature of the triangu-
lar solves. On the other hand, sparse approximate inveesepditioning required only
matrix-vector products, which are relatively easy to veagtand parallelize, but they are
usually not as robust as ILU-factorization based strasei@#].

For second-order elliptic PDE’s discretized by low ordeitéirelements many of the
listed preconditioning techniques can be used. Howevetinite element models of thin-
shells only the incomplete factorization allowing someréegf fill-in [19] or a multilevel
preconditioner [38], [69], [187] seems to be the only readxa choices.

For a certain type of a preconditioning technique, the cdatmnal complexity can
be reduced. Construction of a preconditioning maivixin a form

M = (D + E)D(D + F), (6.24)

whereD, D are diagonal matrices arld and F' are the strictly lower and upper parts of
A = diag(A) + E + F, allows implementation of the preconditioned CG or Bi-G/péd
methods in which the computational labor is comparable ¢outpreconditioned case.
This strategy is due to Eisenstat [56], and it is commonljedalthe Eisenstat trick, see
also refs. [190],[155]. Unfortunately, the usefulnesshi$ strategy is somewhat limited.
For a very sparse matrices, such as resulting from a low d¢tHedliscretizations of the
diffusion equation, the triangular solution including shmows is the main bottleneck
in a typical supercomputer implementation. Also, the duaif the split-preconditioners
(6.24), which can be used in the Eisenstat trick, is not gamligh in shell problems.

10The name corrected incomplete Cholesky is adopted fronfilrg$].
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Sparse approximate inverse preconditioners have recertived considerable at-
tention, mainly because of their good vectorization analpelization properties. These
techniques are based on the explicit construction of a epaadrix M ~! which directly
approximatesd —'. This is in contrast to more traditional implicit techniguehere the
matrix M, rather thamM ~!, is explicitly available. The preconditioning step with
proximate inverse preconditiondd ~* requires only matrix-vector products, and is easily
implemented on vector and parallel architectures. On therdiand, the construction of
the preconditioner itself can be time-consuming, and thevemence rates obtained are
often not as good as those obtained with implicit techniques

Approximate inverse techniques rely on the assumptionftiha given sparse matrix
A it is possible to find a sparse matrix which is a good approtionaf A~'. However,
this is not necessarily obvious, since the inverse of a sparix is usually dense see
refs.[22], [23]. There are two main categories of approxemaverse techniques: methods
which directly computes the entries of the approximaterswgl?2], [82], [155], or the
inverse factors of the matrix [20], [106].

Advantages of thé-actorizedsparse approximate inverse technique, commonly ref-
ered to as the FSAI method, in comparison to the sparse appatxinverse precondi-
tioners (SPAI) are that the symmetry and positive defingsrae easy to insure. In the
FSAI approach a lower triangular matr&® is computed as the (unique) solution of the
constrained minimization problem

min ||[I — GL|| subject to G € L

where L now denotes the Cholesky factor df and L is a set of lower triangular matri-
ces with a prescribed nonzero pattern (which must includenthin diagonal). Here the
matrix norm is the Frobenius norm or some weighted variaiitt ¢fis possible to solve
the above minimization problem without any knowledgd.fust working with the orig-
inal matrix A; see [106]. The minimization problem decouples:imdependent linear
systems of relatively small size which can be solved in pardlhe approximate inverse
preconditioner is thedZ ~' = G G. The main difficulty associated with this approach
is the choice of the sparsity pattern 6f, i.e., the determination of the constraint get
A simple solution is to restricG to have the same sparsity pattern as the lower trian-
gular part of A, but this choice works well only for simple problems. Noreeatterns
associated with higher powers df could also be used, but then the costs associated with
the preconditioner construction and application increlgg®eover, for difficult problems
even this more expensive approach may be ineffective.

Another approach to factorized approximate inverse praitioning was proposed in
[20]. This approach, which does not require that the spgpsittern be known in advance,
is based on & -orthogonalization process—that is, a Gram—-Schmidt p®eath respect
to the energy inner produ¢t, y) = =’ Ay. GivenA and an arbitrary set of linearly in-
dependent vectors, this algorithm computes a setvafctors{ z;}!_, which are conjugate
with respect toA, i.e. A-orthogonal. If we introduce the matri& = [z, zo,..., z,]
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then
ZTAZ = D = diag(p, p2. - - -, Pn)

wherep; = z!' Az; # 0. It follows that

A =2ZD'Z" = zn: 2
i1 Di

and a factorized form oft ! is obtained.

When the A-orthogonalization process is applied to the standardsbesctors
e1,..., ey, itis easy to see thaf is unit upper triangular, and indee#l = L~7 where
A = LDL" is the root-free Cholesky factorization df.

In order to get a sparse preconditiongr,is computed incompletely, by dropping
entries in the vector update operations. This can be doheresn the basis of position,
whereby nonzero entries outside a prescribed nonzerapatte dropped, or on the basis
of magnitude, whereby nonzeros are dropped if smaller thaescribed drop tolerance
in absolute value. This leads to approximate fac#rs Z andD ~ D, and a factorized
approximate inverse is obtained A ' = ZD 'Z". The stability of this procedure
for certain classes of matrices, including diagonally dwent ones, was proved in [20].
In addition, numerical experiments in [20] and [22] showledttthis approach performs
well on linear systems arising from various applicationglsas the discretization by
finite differences of elliptic partial differential equatis and the finite element analysis of
simple structures. In particular, the experiments in [2®&)vged that on vector computers
this technique can be superior to IC methods because of gectdrization properties.
However, for thin shells the FSAI approach seems to be mdmesto

The difficulty with the drop tolerance based AINV strategyhat the rejection strat-
egy seems to drop out all the terms related to membrane dafams. This problem is
also present in the drop tolerance based incomplete faatmn preconditioners- The
dropping criteria used by Ajiz and Jennings [2] for IC fatzations seems to perform
fairly well.

Orderings can also have a profound effect on the convergefrite accelerator iter-
ation. Classical paper on the effect of orderings on inceteplactorizations is by Duff
and Meurant [54]. For approximative inverse preconditisribe effect is studied in refs.
[23], [31].

Element by element techniques are attractive due to theil garallelization proper-
ties [116], [128]. However, their convergence in thin slag@lplications seems to be slower
than the IC-factorization based preconditioners [159].

1n this case the dropping strategy easily neglects terresaat for bending deformations.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

J.P. Abbot. An efficient algorithm for the determinatiohcertain bifurcation pointsJour-
nal Computational and Applied Mathematigs19-27, 1987.

M.A. Ajiz and A. Jennings. A robust incomplete Choleskyngugate gradient algorithm.
International Journal for Numerical Methods in Engineegj20:949-966, 1984.

F.A. Akl, W.H. Dilger, and B.M. Irons. Acceleration of bgpace iterationInternational
Journal for Numerical Methods in Engineering3:583-589, 1982.

E.L. Allgower and C.-S. Chien. Continuation and locattpebation for multiple bifurca-
tions. SIAM Journal on Scientific and Statistical Computiigl265-1281, 1986.

E.L. Allgower, C.-S. Chien, K. Georg, and C.-F. Wang. @mate gradient methods for
continuation problemsJournal Computational and Applied Mathemati8:1-16, 1991.

E.L. Allgower and K. GeorgNumerical Continuation Methods - An Introductid®pringer-
Verlag, 1990.

E.L. Allgower and K. GeorgContinuation and path followingrolume 2 ofActa Numerica
pages 1-64. Cambridge University Press, 1993.

E.L. Allgower, K. Georg, and R. Miranda. The method ofukants for computing real
solutions of polynomial system&IAM Journal on Numerical Analysi29:831-844, 1992.

[9] J.H. Argyris. Continua and discontinua. @onference of Matrix Methods in Structural

[10]

[11]

[12]

[13]

Mechanics Wright Patterson AFB, Ohio, 1965.

M. Avriel. Nonlinear Programming, Analysis and Metho#sentice-Hall, Inc., Englewood
Cliffs, NJ, 1976.

O. Axelsson.lterative Solution MethodsCambridge University Press, 1994.

S.T. Barnard, L.M. Bernardo, and H.D. Simon. An MPI imiplentation of the SPAI pre-
conditioner on the T3E. Technical Report 40794, Lawrenad&&ey National Laboratory,
Berkeley, CA 94720, USA, September 1997.

E. Barragy and C.F. Carey. A partitioning scheme an@iiee solution for sparse bordered
systems.Computer Methods in Applied Mechanics and Engineertig321-327, 1988.

64



BIBLIOGRAPHY 65

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, Jn@ara, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorstemplates for the Solution of Linear Systems: Building
Blocks for iterative methodsSIAM, 1994.

K.-J. Bathe and S. Ramaswamy. An accelerated subspaetion method. Computer
Methods in Applied Mechanics and Engineeri@g:313-330, 1980.

K.J. Bathe.Finite Element Procedures in Engineering Analys$®sentice-Hall, Englewood
Cliffs, New Jersey, 1982.

K.J. Bathe and E.N. Dvorkin. On the automatic solutidmaon-linear finite element equa-
tions. Computers and Structure$7:871-879, 1983.

K. Bell. Eigensolvers for Structural ProblemBelft University Press, 1998.

M. Benzi, R. Kouhia, and M. Tima. An assesment of sonee@nditioning techniques in
shell problemsCommunications in Numerical Methods in Engineefih§98. in press.

M. Benzi, C.D. Meyer, and M. Tima. A sparse approximiateerse preconditioner for
the conjugate gradient metho8IAM Journal on Scientific Computing5(5):1135-1149,
1996.

M. Benzi and M. Tima. Numerical experiments with twgegpximate inverse precondi-
tioners, 1997. CERFACS TR/PA/97/11.

M. Benzi and M. Tima. A comparative study of sparse agipnative inverse precondition-
ers, January 1998. Technical Report LA-UR-98-0024, LogvAla National Laboratory,
Los Alamos, MN.

M. Benzi and M. Tma. Orderings for sparse approxiugatinverse preconditioners, May
1998. Technical Report LA-UR-98-2175, Los Alamos Natiobnaboratory, Los Alamos,
MN.

P.G. Bergan. Solution by iteration in displacement &vatl spaces. In W. Wunderlich,
E. Stein, and K.-J. Bathe, editofdpnlinear Finite Element Analysis in Structural Mechan-
ics, pages 217-235, Bochum, Germany, 1981. Ruhr UniverSifittnger Verlag.

P.G. Bergan, G. Horrigmoe, and B. Krakeland. Solutiechniques for nonlinear finite
element problemdnternational Journal for Numerical Methods in Engineeg;jri2:1677—
1696, 1978.

L. Bernspang. lterative and adaptive solution teghes in computational plasticity. Tech-
nical Report 91:8, Chalmers Univ. of Tech., Department oi&tral Mechanics, 1991.

N. Bi¢anict and K.H. Johnson. Who was ‘-Raphsoiriternational Journal for Numerical
Methods in Engineeringl4:148-152, 1979.

R.O. Bjeerum.Finite element formulations and solution algorithms foickling and col-
lapse analysis of thin shell®hD thesis, Division of Structural Engineering, The Nogiaa
Institute of Technology, 1992.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



66

BIBLIOGRAPHY

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J.G.L. Booten, H.A. van der Vorst, P.M. Meijer, and H.JXe Riele. A preconditioned
Jacobi-Davidson method for solving large generalizedreigieie problems. Technical Re-
port NM-R9414, CWI, July 1994,

T. Braconnier, F. Chatelin, and V. Frayssé. The infiieeaof large nonnormality on the qual-
ity of convergence of iterative methods in linear algebrachhical Report TR/PA/94/07,
Cerfacs, 1994.

R. Bridson and W.-P. Tang. Ordering, anisotropy andoisxl sparse approximate inverses,
1998. Preprint, Department of Computer Science, UniyeositVaterloo.

K.W. Brodlie, A.R. Gourlay, and J. Greenstadt. Ranle@and rank-two corrections to
positive definite matrices expressed in product forth.Inst. Maths Applics11:73-82,
1973.

C.G. Broyden. A class of methods for solving nonlineianidtaneous equationdMathe-
matics of Computatiqrl9:577-593, 1965.

C.G. Broyden. A new double-rank minimization algonth Notices Amer. Math. Sqc.
16:670, 1969.

C.G. Broyden. The convergence of single-rank quasitoe methods. Mathematics of
Computation24:365-382, 1970.

A.M. Bruaset. A Survey of Preconditioned Iterative Method®lumber 328 in Pitman
Research Notes in Mathematics Series. Longman Scientifiedafiical, 1995.

B. Budiansky. Theory of buckling and post buckling of elastic structuresume 14 of
Advances in Applied Mechanjgsages 1-65. Academic Press, London, 1974.

V.E. Bulgakov. The use of the multi-level iterative aggation method in 3-D finite element
analysis of solid, truss, frame and shell structur€emputers and Structure63(5):927—
938, 1997.

E. Byskov and J.W. Hutchinson. Mode interaction in #yiatiffened cylindrical shells.
AlAA Journa) 15:941-948, 1977.

R. Casciaro, G. Salerno, and A.D. Lanzo. Finite elensmymptotic analysis of slender
elastic structures: a simple approadhternational Journal for Numerical Methods in En-
gineering pages 1397-1426, 1992.

F. Chaitin-Chatelin. Is nonnormality a serious congpiainal difficulty in practice? Tech-
nical Report TR/PA/96/33, Cerfacs, 1996.

T.F. Chan and Y. Saad. lterative methods for solvingdboed systems with applications
to continuation methodsSIAM Journal on Scientific and Statistical Computi6(?):438—
451, 1985.

T.F. Chan and T. Szeto. Composite step product methmdsofving nonsymmetric linear
systems.SIAM Journal on Scientific Computing7(6):1491-1508, 1996.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



BIBLIOGRAPHY 67

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

H. Chen and G.E. Blandford. Work-increment-controlthoel for non-linear analysidn-
ternational Journal for Numerical Methods in Engineer;rg$:909-930, 1993.

M.A. Crisfield. A faster modified newton-raphson itéoat Computer Methods in Applied
Mechanics and Engineering@0:267-278, 1979.

M.A. Crisfield. A fast incremental/iterative solutiggrocedure that handles snap-through.
Computers and Structure$3:55-62, 1981.

M.A. Crisfield. Accelerated solution techniques andaete crackingComputer Methods
in Applied Mechanics and Engineering3:585-607, 1982.

M.A. Crisfield. A quadratic Mindlin element using sheamnstraintsComputers and Struc-
tures 18:833-852, 1984.

M.A. Crisfield. Non-linear Finite Element Analysis of Solids and Structud®hn Wiley &
Sons, 1991.

D.W. Decker and C.T. Kelley. Expanded convergence dosnéor Newton's method at
nearly singular roots.SIAM Journal on Scientific and Statistical Compufisg951—-966,
1985.

J.E. Dennis and J.J. Moré. Quasi-Newton methods,vaiidin and theorySIAM Review
19:46-89, 1977.

J.E. Dennis and R.B. SchnabeNumerical methods for unconstrained optimization and
nonlinear equations Classics in Applied Mathematics. SIAM, Philadelphia, @9%irst
published by Pretice-Hall, Inc., Englewood Cliffs, NJ, 398

P. Deuflhard, R. Freund, and A. Walter. Fast secant naistifor the iterative solution
of large nonsymmetric linear systemémpact of Computing in Sciece and Engineering
2:244-276, 1990.

I. Duff and G.A. Meurant. The effect of ordering on preditioned conjugate gradients.
BIT, 29:635-657, 1989.

I.S. Duff. Sparse numerical linear algebra: direct moells and preconditioning. Technical
Report TR/PA/96/22, CERFACS, 1996.

S.C. Eisenstat. Efficient implementation of a class m@fcpnditioned conjugate gradient
methods.SIAM Journal on Scientific and Statistical Computi@dl—4, 1981.

S.C. Eisenstat and H.F. Walker. Choosing the forcinghgein inexact Newton method.
SIAM Journal on Scientific Computing7(1):16—-32, 1996.

A. Eriksson. Using eigenvector projections to impraeavergence in non-linear finite ele-
ment equilibrium iterationsinternational Journal for Numerical Methods in Engineegjn
24:497-512, 1987.

A. Eriksson. On some path-related measures for naafiistructural F.E. probleminter-
national Journal for Numerical Methods in Engineerjr&$:1791-1803, 1988.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



68

BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

A. Eriksson. On linear constraints for Newton-Raphsmmrections and critical point
searches in structural F.E. problenisternational Journal for Numerical Methods in En-
gineering 28:1317-1334, 1989.

A. Eriksson. Derivatives of tangential stiffness nias for equilibrium path descriptions.
International Journal for Numerical Methods in Engineggir82:1093-1113, 1991.

A. Eriksson. On improved predictions for structurabéidprium path evaluationslnterna-
tional Journal for Numerical Methods in Engineering6:201-220, 1993.

A. Eriksson. Fold lines for sensitivity analyses inustiural instability. Computer Methods
in Applied Mechanics and Engineering14.:77-101, 1994.

A. Eriksson and R. Kouhia. On step size adjustmentsrircgiral continuation problems.
Computers and Structure§5:495-505, 1995.

A. Eriksson, C. Pacoste, and A. Zdunek. Numerical asialpf complex instability be-
haviour using incremental-iterative strategigSomputer Methods in Applied Mechanics
and Engineering179:265-305, 1999.

G.M. van Erp.Advanced Buckling Analyses of Beams with Arbitrary Crossi@es PhD
thesis, Eindhoven University of Technology, 1989.

F. Ficken. The continuation method for functional etipras. Communications on Pure and
Applied Mathematics4:435-456, 1951.

J.P. Fink and W.C. Rheinboldt. The role of tangent magpn analyzing bifurcation be-
haviour. Zeitschrift fir Angewandte Mathematik und Mecharti(9):407-412, 1984.

J. Fish and V. Belsky. Generalized aggregation mukitesolver.International Journal for
Numerical Methods in Engineering0:4341-4361, 1997.

R. Fletcher. A new approach to variable metric algenghComputer Journall13:317-322,
1970.

D.R. Fokkema, G.L.G. Sleijpen, and H.A. van der Vorst.ccAlerated inexact Newton
schemes for large systems of nonlinear equations. TedhRigport 918, Universiteit
Utrecht, Department of Mathematics, July 1995.

B.W.R. Forde and S.F. Stiemer. Improved arc-lengthagbnality methods for nonlinear
finite element analysisComputers and Structure®7:625-630, 1987.

R.W. Freund. Preconditioning of symmetric, but highhdefinite linear systems. In
A. Sydow, editor,15th IMACS World Congress on Scientific Modelling and Apiplath-
ematics, Vol 2 Numerical Mathematjgsages 551-556, 1997.

I. Fried. Orthogonal trajectory accession to the aquim curve. Computer Methods in
Applied Mechanics and Engineering7:283—-297, 1984.

R. Kouhia: Computational techniques for the non-linegrdraft, May 2009



BIBLIOGRAPHY 69

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

K. Georg. On tracing an implicitely defined curve by geldswton steps and calculating
bifurcation by local perturbationsSIAM Journal on Scientific and Statistical Computing
2:35-50, 1981.

K. Georg. A note on stepsize control for numerical cufekowing. In B.C. Eaves, F.J.
Gould, H.-O. Peitgen, and M.J. Todd, editd#gmotopy Methods and Global Convergence
pages 145-154. Plenum, 1983.

M. Geradin, M. Hogge, and S. Idelsohn. Implicit finiteeglent methods. In T. Be-
lytchko and T.J.R. Hughes, editoSpmputational Methods for Transient Analysibap-
ter 7. North-Holland, 1983.

D. Goldfarb. A family of variable-metric methods dest by variational meansMathe-
matics of Computatiqr24:23-26, 1970.

G.H. Golub and C.F. van LoaMatrix ComputationsThe Johns Hopkins University Press,
1989.

M. Golubitsky and D.G. SchaeffeiSingularities and Groups in Bifurcation Theoryol-
ume 1. Springer-Verlag, 1985.

R.G. Grimes, J.G. Lewis, and H.D. Simon. A shifted bla@gnczos algorithm for solving
sparse symmetric eigenvalue proble®BAM Journal on Matrix Analysis and Applicatigns
15:228-272, 1994.

M.J. Grote and T. Huckle. Parallel preconditioningmsiparse approximate invers€&8AM
Journal on Scientific Computing8(3):838—-853, 1997.

R.T. Haftka, R.H. Mallet, and W. Nachbar. Adaptatiorkafiter's method to finite element
analysis of snap-through buckling behaviodnternational Journal of Solids and Struc-
tures 7:1427-1445, 1971.

A.R. Hall. Isaac Newton, Adventurer in Thougl@ambridge University Press, 1996.

C.B. Haselgrove. The solution of non-linear equatiansl of differential equations with
two point boundary condition€Computer Journal4:225-259, 1961.

C. den Heijer and W.C. Rheinboldt. On steplength athans for a class of continuation
methods.SIAM Journal on Numerical Analysi&8(5):925-948, 1981.

B.-Z. Huang and S.N. Atluri. A simple method to follow gtebuckling paths in finite
element analysisComputers and StructureS7(3):477-489, 1995.

T.J.R. Hughes. The Finite Element Method, Linear Static and Dynamic Fiiittement
Analysis Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

J. Huitfeldt. Nonlinear eigenvalue problems - preiictof bifurcation points and branch
switching. Technical Report 17, Department of Computee&as, Chalmers University
of technology, 1991.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



70

BIBLIOGRAPHY

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

J. Huitfeldt and A. Ruhe. A new algorithm for numericatp following applied to an
example from hydrodynamic flonSIAM Journal on Scientific and Statistical Computing
11:1181-1192, 1990.

J.W. Hutchinson.Plastic buckling volume 14 ofAdvances in Applied Mechanigsages
67-144. Academic Press, London, 1974.

B. Irons and A. Elsawaf. The conjugate Newton algorittamsolving finite element equa-
tions. In K.J. Bathe, T.J. Oden, and W. Wunderlich, editéosmulations and Computa-
tional Algorithms in Finite Element Analysipages 656—672. MIT Press, 1977.

A.D. Jepson and A. Spence. On a reduction process fdimeam equationsSIAM Journal
on Mathematical Analysj®0(1):39-56, 1989.

K.C. Johns. Simultaneous buckling in symmetric stk systemsEngineering Mechan-
ics Division, Proceedings of the American Society of Cinigjiaeers 98:835-848, 1972.

K.C. Johns and A.H. Chilver. Multiple path generatiancaincident branching points.
International Journal of Engineering Science3:899-910, 1971.

D. Karamanlidis, A. Honecker, and K. Knothe. Large deflen finite element analysis of
pre- and postcritical response of thin elastic frames. I€Mnderlich, E. Stein, and K.-J.
Bathe, editorsNonlinear Finite Element Analysis in Structural Mechanijgages 217-235,
Bochum, Germany, 1981. Ruhr Universitat, Springer Verlag

R.B. Kearfott. Some general bifurcation techniqu&AM Journal on Scientific and Sta-
tistical Computing 4:52—68, 1983.

J.P. Keener. Perturbed bifurcation theory at multipigenvalues. Archive for Rational
Mechanics and Analysi$6:348-366, 1974.

J.P. Keener and H.B. Keller. Perturbed bifurcatiorotlye Archive for Rational Mechanics
and Analysis50:159-175, 1973.

H.B. Keller. Numerical solution of bifurcation andmimear eigenvalue problems. In P.H.
Rabinowitz, editorApplications of Bifurcation Theorypages 359-384. Academic Press,
1977.

H.B. Keller. The bordering algorithm and path follewgi near singular points of higher
nullity. SIAM Journal on Scientific and Statistical Computidgb73-582, 1983.

H.B. Keller. Lectures on Numerical Methods in Bifurcation Problen&pringer Verlag,
1987.

H.B. Keller and W.F. Langford. lIterations, pertuiibas and multiplicities for nonlinear
bifurcation problemsArch. Rational Mech. Angl48:83-108, 1972.

C.T. Kelley. Iterative Methods for Linear and Nonlinear EquatiorSIAM, 1995.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



BIBLIOGRAPHY 71

[105] W.T. Koiter. Over de stabiliteit van het elastisch evenwihtDutch). PhD thesis, Technis-
che Hogeschool, Delft, 1945. English tranlations: NASA TIOF833 (1967) and AFFDL,
TR-7025 (1970).

[106] L.Y. Kolotilina and A.Y. Yeremin. Factorized sparsgpaoximate inverse preconditionings
I. Theory. SIAM Journal on Matrix Analysis and Applicatiqris4:45-58, 1993.

[107] R.Kouhia, C.M. Menken, M. Mikkola, and G.-J. SchrepgpeComputing and understanding
interactive buckling. In R.A.E. Makinen and P. Neittaakn editors,Proceedings of the
5th Finnish Mechanics Daypages 53-61, 1994.

[108] R. Kouhia and M. Mikkola. Tracing the equilibrium paltieyond simple critical points.
International Journal for Numerical Methods in Engineegjr28(12):2933-2941, 1989.

[109] R. Kouhia and M. Mikkola. Tracing the equilibrium pdikyond compound critical points.
International Journal for Numerical Methods in Engineegj6:1049-1074, 1999.

[110] S. Krenk. An orthogonal residual procedure for naredr finite element equationbiter-
national Journal for Numerical Methods in Engineerjr88(5):823-839, 1995.

[111] S. Krenk and O. Hededal. A dual orthogonality procediar non-linear finite element
equations.Computer Methods in Applied Mechanics and Engineerd$:95-107, 1995.

[112] P. Kunkel. Quadratically convergent methods for theputation of unfolded singularities.
SIAM Journal on Numerical Analysi25(6):1392—-1408, 1988.

[113] A.D.Lanzo, G. Garcea, and R. Casciaro. Asymptotid-poskling analysis of rectangular
plates by HC finite element#nternational Journal for Numerical Methods in Engineegin
38:2325-2345, 1995.

[114] S.H.Lee. Rudimentary considerations for effectivasj-newton updates in nonlinear finite
element analysisComputers and Structure83:463—-476, 1989.

[115] S.H. Lee. Rudimentary considerations for effectivesj-Newton updates in nonlinear
finite element analysisComputers and Structure83(2):463-476, 1989.

[116] J.-Y. L'Excellent.Utilisation de péconditionneur€léement-parelement pour la&solution
de probEmes d’optimisation de grande taill®hD thesis, Institut National Polytechnique
de Toulouse, 1995.

[117] S. Lopez. Detection of bifurcation points along a @itsaced by a continuation method.
International Journal for Numerical Methods in Engineag;ir53:983-1004, 2002.

[118] S. Lopez. Post-critical analysis of structures withanlinear pre-buckling state in the
presence of imperfectionsComputer Methods in Applied Mechanics and Engineering
191:4421-4440, 2002.

[119] A. Magnusson and I. Svensson. Numerical treatmenbofpdete load-deflection curves.
International Journal for Numerical Methods in Engineegid1:955-971, 1998.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



72 BIBLIOGRAPHY

[120] R.H. Mallet and P.V. Marcal. Finite element analysision-linear structuresJournal of
Structural Division, ASCE94:2081-2105, 1968.

[121] O.A. Marques. BLZPACK: description and users guidechnical Report TR/PA/95/30,
CERFACS, 1995.

[122] H. Matthies and G. Strang. The solution of nonlineaitéirlement equationgnternational
Journal for Numerical Methods in Engineering4:1613-1626, 1979.

[123] J.A. Meijerink and H.A. van der Vorst. An iterative stibn method for linear systems
of which the coefficient matrix is a symmetric M-matriMathematics of Computation
31:148-162, 1977.

[124] C.M. Menken, W.J. Groot, and G.A.J. Stallenberg. ratéve buckling of beams in bend-
ing. Thin-Walled Structuresl2:415-434, 1991.

[125] A. Morgan.Solving Polynomial Systems Using Continuation for Engingeand Scientific
Problems Prentice-Hall, 1987.

[126] E. O n ate and W.T. Matias. A critical displacement aggh for predicting structural
instability. Computer Methods in Applied Mechanics and Engineerli3g:135-161, 1996.

[127] J. NocedalTheory of algorithms for unconstrained optimizatienlume 1 ofActa Numer-
ica, pages 199-242. Cambridge University Press, 1992.

[128] B. Nour-Omid and B.N. Parlett. Element preconditianusing splitting techniqueSIAM
Journal on Scientific and Statistical Computjgg§3):761—770, 1985.

[129] J.T. Oden. Numerical formulation of non-linear eleisg problems. Journal of Structural
Division, ASCE93:235-255, 1967.

[130] J.M. Ortega and W.C. Rheinbolditerative Solution of Nonlinear Equations in Several
Variables Academic Press, 1970.

[131] C.C. Paige and M.A. Saunders. Solution of sparse intlefsystems of linear equations.
SIAM Journal on Numerical Analysi$2:617-629, 1975.

[132] S. Pajunen. Sauvarakenteiden epalineaarinen soiaty (Nonlinear analysis of bar struc-
tures), 1997. Licentiates thesis, (in Finnish) Tamperevéhsity of Technology, Department
of Civil Engineering.

[133] M. Papadrakakis. Post-buckling analysis of spatiaicsures by vector iteration methods.
Computers and Structure$4(5-6):393—-402, 1981.

[134] M. Papadrakakis. A truncated Newton-Lanczos metlood¥ercoming limit and bifurca-
tion points. International Journal for Numerical Methods in Engineeg;r29:1065-1077,
1990.

[135] M. Papadrakakis and C.J. Gantes. Truncated Newtohadstfor nonlinear finite element
analysis.Computers and Structure80:705-715, 1988.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



BIBLIOGRAPHY 73

[136] M. Papadrakakis and C.J. Gantes. Preconditionedigatg- and secant-Newton methods
for non-linear problems.International Journal for Numerical Methods in Engineegin
28:1299-1316, 1989.

[137] B.N. Parlett. The Symmetric Eigenvalue Problemrentice-Hall, Englewood Cliffs, New
Jersey, 1980.

[138] B.N. Parlett. Symmetric matrix pencildournal Computational and Applied Mathematics
38:373-385, 1991.

[139] R. Peek and M. Kheyrkhahan. Postbuckling behaviodrieaperfection sensitivity of elas-
tic structures by the Lyapunov-Schmidt-Koiter approa€omputer Methods in Applied
Mechanics and Engineering08:261-279, 1993.

[140] G.Peters and J.H. Wilkinsorlz = ABx and the generalized eigenproble&BiAM Journal
on Numerical Analysis/(4):479-492, 1970.

[141] M. Pignataro, A. Luongo, and N. Rizzi. On the effectlué {ocal-overall interaction on the
post-buckling of uniformly compressed channelBhin-Walled Structures3:1470-1486,
1986.

[142] M. Potier-Ferry. Buckling and Post-Bucklingvolume 288 ofLecture Notes in Physics
pages 205-223. Springer-Verlag, 1987.

[143] M.J.D. Powell. Hybrid method for nonlinear equatioria P. Rabinowitz, editorNumer-
ical Methods for Nonlinear Algebraic Equationshapter 6. Gordon and Breach Science
Publishers, 1970.

[144] Y. Quian and G. Dhatt. An accelerated subspace methiodeneralized eigenproblems.
Computers and Structure54(6):1127-1134, 1995.

[145] E. Ramm. Strategies for tracing the nonlinear respamear limit points. In W. Wun-
derlich, E. Stein, and K.-J. Bathe, editolgnlinear Finite Element Analysis in Structural
Mechanics pages 63—-89, Bochum, Germany, 1981. Ruhr Universitain&gr Verlag.

[146] W.C. Rheinboldt. Numerical continuation methods fimite element applications. In
K.J. Bathe et al., editoFormulations and and Computational Algorithms in FE anays
pages 599-6xx, 1977.

[147] W.C. Rheinboldt. Numerical methods for a class of @rmiimensional bifurcation problems.
SIAM Journal on Numerical Analysi$5:1-11, 1978.

[148] W.C. RheinboldtNumerical Analysis of Parametrized Nonlinear Equatiovéley, 1986.

[149] W.C. Rheinboldt. On the computation of multi-dimemsl solution manifolds of
parametrized equationdlumerische Mathematik3:165-181, 1988.

[150] E. Riks. On the numerical solution of snapping prolde@mthe theory of elastic stability.
Technical report, Stanford University, Department of Aeratics and Astronautics, 1970.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



74 BIBLIOGRAPHY

[151] E. Riks. The incremental solution of some basic protden elastic stability. Technical
Report NLR TR 74005 U, National Aerospace Laboratory, ThehBidands, 1974.

[152] E. Riks. An incremental approach to the solution ofpgiag and buckling problems.
International Journal of Solids and Structurels:529-551, 1979.

[153] E. Riks. Some computational aspects of the stabitiglysis of nonlinear structure§€om-
puter Methods in Applied Mechanics and Engineeriigi219-259, 1984.

[154] K. Runesson, A. Samuelsson, and L. Bernspang. Nuealetéchnique in plasticity in-
cluding solution advancement controlnternational Journal for Numerical Methods in
Engineering 22:769-788, 1986.

[155] Y. Saad.lterative Methods for Sparse Linear SystemR8VS Publishing, 1996.

[156] Y. Saad and M.H. Schultz. GMRES: a generalized minirealdual algorithm for solv-
ing nonsymmetric linear system&IAM Journal on Scientific and Statistical Computing
7:856-869, 1986.

[157] A.B. Sabir and A.C. Lock. The application of finite elents to the large-deflection geo-
metrically non-linear behaviour of cylindrical shells. Rroceedings of the International
Conference on Variational Methods in Engineetipgges 67-76, 1972.

[158] P. Saint-Georges, G. Warzee, R. Beauwens, and Y. Nbligih-performance PCG solvers
for FEM structural analysisinternational Journal for Numerical Methods in Engineegin
39:1313-1340, 1996.

[159] P. Saint-Georges, G. Warzee, Y. Notay, and R. BeauwEnst iterative solvers for finite
element analysis in general and shell analysis in particiieB.H.V. Topping, editorAd-
vances in Finite Element Technologyages 273-282, Edinburgh, 1996. Civil-Comp Press.

[160] G. Salerno and R. Casciaro. Mode jumping and attragiaths in multimode elastic buck-
ling. International Journal for Numerical Methods in Engineegi®0(5):833—-861, 1997.

[161] W.F. Schmidt. Adaptive step size selection for uséntlie continuation methodnterna-
tional Journal for Numerical Methods in EngineerintR:677—694, 1978.

[162] K.H. Schweizerhof and P. Wriggers. Consistent liresdion for path following methods in
nonlinear FE analysisComputer Methods in Applied Mechanics and Engineem®261—
279, 1986.

[163] H. Schwetlick. On the choice of steplength in pathdaling methods. Zeitschrift fir
Angewandte Mathematik und Mechartid(9):391-396, 1984.

[164] M.J. Sewell. On the connection between stability dredghape of the equilibrium surface.
Journal of Mechanics and Physics of So)idg:203-230, 1966.

[165] M.J. Sewell. A general theory of equilibrium pathsaigh critical points.Proceedings of
the Royal Society -,/806:201-238, 1968.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



BIBLIOGRAPHY 75

[166] M.J. Sewell. On the branching of equilibrium patisoceedings of the Royal Society - A
315:499-518, 1970.

[167] R. Seydel. Numerical computation of branch points amlmear equationsNumerische
Mathematik 33:339-352, 1979.

[168] R. Seydel. On detecting stationary bifurcatiohsternational Journal on Bifurcation and
Chaos 1:335-337, 1991.

[169] R. SeydelPractical Bifurcation and Stability AnalysisSpringer-Verlag, 1994.

[170] D.F. Shanno. Conditioning of quasi-newton methodsfdoction minimization. Mathe-
matics of Computatiqr24.647—-656, 1970.

[171] P. Sharifi and E.P. Popov. Nonlinear buckling analg$isandwich archesJournal of the
Engineering Mechanics Divisio®7:1397-1411, 1971.

[172] J. Shi and M.A. Crisfield. A simple indicator and brarshitching technique for hidden
unstable equilibrium pathgsinite Elements in Analysis and Desijgi?:303—-312, 1992.

[173] J. Shiand M.A. Crisfield. A semi-direct approach foe ttomputation of singular points.
Computers and Structure§1:107-15, 1994.

[174] J.C. Simo, P. Wriggers, K.Schweizerhof, and R.L. dayFinite deformation postbuckling
analysis involving inelasticity and contact constraintgernational Journal for Numerical
Methods in Engineering23:779-800, 1986.

[175] G. Skeie and C.A. Felippa. Detecting and traversirigrbation points in nonlinear struc-
tural analysis.International Journal of Space Structure2):77-98, 1991.

[176] G.L.G. Sleijpen and H.A. van der Vorst. An overview @ipgoaches for the stable compu-
tation of hybrid Bi-CG methods. Technical Report 908, Umvteit Utrecht, Department
of Mathematics, March 1995.

[177] G.L.G. Sleijpen, H.A. van der Vorst, and M. van GijzeQuadratic eigenproblems are no
problem.SIAM News29(7):8-9, 1996.

[178] P. Sonneveld. CGS, a fast Lanczos-type solver for yrangetric linear systemsSIAM
Journal on Scientific and Statistical Computirid:36-52, 1989.

[179] I. Stakgold. Branching of solutions of nonlinear etjoras. SIAM Review13(3):289-332,
1971.

[180] D. Szyld. Criteria for combining inverse and Raylemimtient iteration SIAM Journal on
Numerical Analysis25(6):1369-1375, 1988.

[181] J.M.T. Thompson and G.W. HunA General Theory of Elastic Stabilitywiley, London,
1973.

[182] J.M.T. Thompson and G.W. Hurtlastic Instability PhenomenaNiley, Chichester, 1984.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



76 BIBLIOGRAPHY

[183] G.A. Thurston. Continuation of newton’s method thghubifurcation points.Journal of
Applied Mechanics9:425-430, 1969.

[184] F.Tisseur and K. Meerbergen. The quadratic eigeevatablem SIAM Review43(2):235—
286, 2001.

[185] N. Triantafyllidis and R. Peek. On stability and the ratoimperfection shape in solids
with nearly simultaneous eigenmodesnternational Journal of Solids and Structures
29(18):2281-2299, 1992.

[186] M.J. Turner, E.H. Dill, H.C. Martin, and R.J. Meloshalge deflection of structures subject
to heating and external loadournal of the Aerospace Scienc@3:97-106, 1960.

[187] P.Vanék, J. Mandel, and M. Brezina. Algebraic muitigon unconstrained meshesom-
puting 56:179-196, 1996.

[188] H.A. van der Vorst. Bi-CGSTAB: a fast and smoothly cergent variant of Bi-CG for
the solution of nonsymmetric linear systemSIAM Journal on Scientific and Statistical
Computing 13(2):631-644, 1992.

[189] H.A. van der Vorst and G.H. Golub. 150 years old and aliVe: eigenproblems. In I.S.
Duff and G.A. Watson, editorghe State of the Art in Numerical Analysimages 93—-119.
Clarendon Press, 1997.

[190] H. Voss. lterative methods for linear systems of eigmat University of Jyvaskyla, De-
partment of Mathematics, lecture notes 27, 1993.

[191] W. Wagner. A path-following algorithm with quadragcedictor. Computers and Struc-
tures 39:339-348, 1991.

[192] W. Wagner and P. Wriggers. A simple method for the dalion of postcritical branches.
Engineering Computatiqrb:103—-109, 1988.

[193] H.F. Walker. An adaptation of Krylov subspace methtdgath following problemsSIAM
Journal on Scientific Computing1:1191-1198, 1999.

[194] Z. Waszczyszyn. Numerical problems of nonlinear iitgkanalysis of elastic structures.
Computers and Structure$7:13—-24, 1983.

[195] G.A. Wempner. Discrete approximations related tortbelinear theories of soliddnter-
national Journal of Solids and Structure&1581-1599, 1971.

[196] B.Werner and A. Spence. The computation of symmetegaking bifurcation pointsSIAM
Journal on Numerical Analysi21:388—-399, 1984.

[197] P. Wriggers and J.C. Simo. A general procedure for tinectd computation of turning
and bifurcation problemsinternational Journal for Numerical Methods in Engineagin
30:155-176, 1990.

[198] T.J. Ypma. Historical development of the Newton-Rsgih method. SIAM Review
37(4):531-551, 1995.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



BIBLIOGRAPHY 77

[199] S.-L.Zhang. GPBI-CG: generalized product-type rodi#hbased on Bi-CG for solving non-
symmetric linear system&IAM Journal on Scientific Computin$8(2):537-551, 1997.

R. Kouhia: Computational techniques for the non-lineagrdraft, May 2009



