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Abstract

A continuum approach is proposed for modelling multiaxial high-cycle fatigue
of solids which exhibit transversely isotropic fatigue properties. The approach is
an extension of the original isotropic model proposed by Ottosen, Stenström and
Ristinmaa in 2008, which model is based on the concept of a moving endurance
surface in the stress space and on an evolving damage variable. The theory is
formulated in a rate form within continuum mechanics framework without the
need to measure damage changes per loading cycles. Capability of the approach
is illustrated by several examples with different uni- and multiaxial loading
histories.

Keywords: high-cycle fatigue, transversely isotropic fatigue, out-of-phase
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1. Introduction

Design against fatigue constitutes an integral part of mechanical engineer-
ing analysis. Examples of mechanical components that experience fatigue dur-
ing their service life are axels in motors, railroad wheels, aircraft components,
crankshafts, propellor shafts, and turbine blends to mention a few. As expressed
by Bolotin (1999), in the narrow sense the term fatigue of materials and struc-
tural components means damage and fracture due to cyclic, repeatedly applied
stress. It has been recognized in practise that the fatigue stress conditions are
often multiaxial consisting of combined bending and twisting, and the condi-
tions can additionally be of out-of-phase and subjected to different frequencies.
Under those alternating complex loadings, material fails at stress levels substan-
tially lower than observed under monotonic loadings. To understand and model
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fatigue phenomena under different loading situations, knowledge from materials
science and mechanics of solids is mandatory, cf, e.g. Suresh (1998), Murakami
(2002).

High-cycle fatigue, which typically occurs when the loading consists more
than of 104 cycles and the macroscopic behaviour of the material is primarily
elastic, is influenced by several factors such as surface roughness, grain size
and distribution as well as cleanliness of material, cf. Morel (2001), Morel
et al. (2001), and Makkonen et al. (2014). Subjected to those metallurgical
variables, material undergoes fatigue damage which is associated to degradation
of material properties due to initiation, growth, and coalescence of microdefects.
If the defects in the material are assumed to be distributed in a statistically
homogeneous manner then it is advantageous to model the fatigue mechanisms
within continuum mechanics framework. The specific features with regard to
continuum damage mechanics and fatigue are discussed e.g. in Paas et al. (1993)
and Wang and Yao (2004). Moreover, the fundamental ingredients of dynamic
failures, high-cycle fatigue, ductile failure, and failure of brittle and quasi-brittle
materials are found e.g. from McDowell (1996), Lemaitre and Desmorat (2005),
Desmorat et al. (2007), and Murakami (2012).

Basically three stages can be identified in the process of fatigue failure, cf.
Lemaitre (1984), Suresh (1998), Morel et al. (2001): (i) nucleation and growth
of micro-cracks and voids due to local inhomogeneities and local micro-plastic
effects terminating in the creation of macro-cracks; (ii) stable crack propaga-
tion phase; (iii) unstable crack propagation phase leading to failure. In uniaxial
fatigue tests, the phase (ii) can further be divided into two stages: (a) crack
growth on a plane of maximum shear and (b) crack propagation normal to the
tensile stress. However, most of the fatigue life is spent in the stage (i). The
goal of the present work is to find a representative continuum-based model ca-
pable to predict macroscopic mechanical behaviour which mainly results from
micro-cracking during the first stage (i). In contrast to the last two stages
which are dominated by macro-cracks, the first stage is governed by statisti-
cally distributed micro-mechanisms. Due to this characteristic, linear fracture
mechanics cannot be applied in the first stage.

Different approaches for fatigue analysis exist, cf. Sines (1955), Findley
(1959), Dang Van et al. (1989), Dang Van (1993), Palin-Luc and Lasserre (1998),
Papadopoulos (2001), Socie and Marquis (2000), Zouain and Cruz (2002), Liu
and Zenner (2003), and Zhang et al. (2012). Since entire high-cycle fatigue pro-
cess relies on brittle damage mechanisms, strain controlled approaches suitable
for ductile damage behaviour cannot be directly applied, and stress-based ap-
proaches are preferred, cf. Ottosen et al. (2008). Majority of those approaches
represents fatigue-limit criteria, cumulative damage theories, and cycle-counting
methods. Among fatigue-limit criteria, critical plane approaches have gained a
large popularity meanwhile equivalent, invariant, and average stress approaches
represent other prominent examples in more early stage on the research.

According to critical plane approaches, fatigue life is controlled by combined
action of alternating shear stresses and the normal stress acting on a plane. This
plane, which is termed the critical plane, varies between models. Perhaps the
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pioneering model by Findley (1959) is one of the most used high-cycle fatigue
criterion. One more recent state-of-the-art example of critical plane approaches
is the multiaxial fatigue criteria model for metals given by Liu and Mahadevan
(2007). Other representative approaches are found e.g in Matake (1977), Dang
Van (1993), Carpinteri and Spagnoli (2001), and Papadopoulos (2001).

Two shortcomings of the critical plane approaches are the inability of the
defined critical plane to follow crack initiation realistically and the restriction
only to a certain set of material parameters. The latter feature is due to a critical
plane which only accounts for the stress state, but not material properties.

All the previously mentioned invariant based and critical plane fatigue-limit
criteria describe the fatigue limits under infinite number of identical cycles.
However, for finite life predictions those models are equipped with cumulative
damage theories, which describe the damage increase per cycle. Due to this
characteristic, the loading is required to consist of well-defined cycles. Probably
the best known model among the cumulative damage theories is the Palmgren-
Miner model.

To model fatigue under complex load histories, cycle-counting methods need
to be applied so as to define equivalent, representative cycles. However, defi-
nition of equivalent cycles from a complex load spectrum is a challenging task
which feature makes the cycle-counting approaches difficult to apply in practice.

A notable contribution for general computational high-cycle fatigue analysis
is given by Peerlings et al. (2000), who proposed a continuum damage model for
the prediction of crack initiation and propagation. They also showed that the
damage growth localizes in a vanishing volume which is due to the singularity
of the damage rate at the crack tip. To remove the damage rate singularity,
Peerlings et al. (2000) proposed a gradient-enhancement to their constitutive
model. More recent investigations of gradient effects on fatigue are found e.g.
in studies by Askes et al. (2012) and Luu et al. (2014).

Although a multitude of models for multiaxial fatigue damage have already
been proposed, many of them are not able to predict fatigue under complex
and out-of-phase loadings well. Many models in the early stage in the research
cannot satisfactorily represent the fatigue life for more than 106 either, or they
initially are conceived only for in-phase cyclic stresses, i.e. proportional cyclic
loadings are required. Reviews and comparisons of different high-cycle fatigue
models can be found in studies by Papadopoulos et al. (1997), Ding et al. (2007),
Kenmeugne et al. (2012), and Lorand (2012). Furthermore, research related to
anisotropic fatigue models has mainly been focused on uniaxially reinforced,
transversely isotropic composites for which the elasticity properties also are
transversely isotropic, cf. Robinson and Duffy (1990); Robinson et al. (1990);
Arnold and Kruch (1991); Kruch and Arnold (1997). Although mechanical
behaviour of many materials can be considered elastically isotropic, their fatigue
properties may differ in different directions. An example of such material is
forged steel whose fatigue properties are transversally isotropic. Majority of the
models discussed above cannot be applied to the modelling of anisotropic fatigue
behaviour or they are formulated using cycle-counting methodologies generally
unsuitable in demanding practical applications.
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An appealing model for high-cycle fatigue suitable for arbitrary multiaxial
loadings was proposed by Ottosen et al. (2008). In their approach, the concept
of a moving endurance surface in the stress space is postulated together with a
damage evolution equation. Movement of the endurance surface is modeled with
a reduced deviatoric stress measure which defines the center of the endurance
surface in a similar way than the back-stress tensor in plasticity, thus memorizing
the load history. Damage evolution is activated whenever the stress state is
outside the endurance surface, and the time rate of the endurance surface is
positive. In this model, uniaxial and multiaxial stress states are treated in
a unified manner for arbitrary loading histories, thus avoiding cycle-counting
techniques. Therefore, the approach by Ottosen et al. (2008) could be described
as an evolution equation based fatigue model. It has been also used in a recent
study by Brighenti et al. (2013). Similar features can also be observed in the
approaches proposed by Peerlings et al. (2000), Morel et al. (2001), and Zouain
et al. (2006).

In this paper, a transversely isotropic high-cycle fatigue model is presented.
Consistent with the Ottosen et al. (2008) approach, the proposed model is for-
mulated using evolution equations which feature makes the definition of damage
changes per cycle redundant, i.e. cycle-counting techniques do not need to be
applied. Compared to preceding approaches of similar concept, the model uses
only macroscopical quantities, which property makes the model simpler.

2. The model

2.1. Isotropic high-cycle fatigue (HCF) model

In this section, the model concept of the approach developed by Ottosen
et al. (2008) for isotropic solids is briefly summarized. The model uses only
macroscopical quantities, and the constitutive response is assumed to be purely
elastic, which is a relevant feature in macroscopic HCF-modelling. It is well
known that the endurance limits of a material change with load conditions and
that loading within these limits do not necessarily result in damage development.
Based on these features Ottosen et al. (2008) postulated an endurance surface
β in the stress space as

β =
1

S0
(σ̄ +AI1 − S0) = 0. (1)

Denoting the stress tensor as σ, the first stress invariant is given by I1 = trσ.
The invariant I1 reflects the effect of the mean stress, i.e. the hydrostatic tension
enhances the fatigue development while fatigue is suppressed under hydrostatic
compression. The parameter A is considered as positive and non-dimensional,
and can be associated in uniaxial cyclic loading as the slope of the Haigh-
diagram. The last parameter S0 is the endurance limit for zero mean stress.
The effective stress present in (1) is defined in terms of the second invariant of
the reduced deviatoric stress s −α as

σ̄ =
√

3J2(s −α) =
√

3
2 (s −α):(s −α) =:

√
3

2
‖s −α‖, (2)
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Figure 1: Endurance surface presented in a meridian plane as the backstress is (a) α = 0 and (b) α 6= 0 .
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Figure 2: Pulsating uniaxial stress state. The endurance surface moves periodically between the
states A and B. The initial and final state are highlighted by the dashed and solid line, respectively.
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Figure 1: Endurance surface presented in a meridian plane as the backstress is (a) α = 0 and
(b) α 6= 0 .

where s = σ − 1
3 tr (σ)I is the deviatoric stress tensor and I stands for the

identity tensor. The operator : denotes the double dot product between two
second order tensors, i.e. A : B := tr (ABT ).

Shape of the endurance surface in the deviatoric plane is circular and the
meridian lines are straight as with the case of the Drucker-Prager model in
plasticity, cf. Fig. 1. The center point in the deviatoric plane is defined by the
α-tensor, which memorizes the load history and results in the movement of the
endurance surface in the stress space.

For the evolution of the deviatoric back-stress tensor α, a hardening rule
similar to Ziegler’s kinematic hardening rule in plasticity theory is adopted, i.e.

α̇ = C(s −α)β̇, (3)

where C is a non-dimensional material parameter, and the dot denotes the time
rate.

Despite damage resulting principally from the initiation, nucleation, and
growth of voids and micro-cracks generate anisotropic behaviour, material dam-
age is formulated from a macroscopic viewpoint by using an isotropic measure
D ∈ [0, 1], for which the evolution is governed by the equation of the form

Ḋ = g(β,D)β̇, g(β ≥ 0, D) ≥ 0. (4)

The specific form of the function g will be discussed subsequently. Since
g ≥ 0 and damage never decreases, it then follows that for damage evolution
β̇ ≥ 0. A glance at (3) also reveals that the evolution of the back-stress takes
place only if the conditions

β ≥ 0 and β̇ > 0 (5)

are satisfied.
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Figure 2: Alternating stress state. The endurance surface will track the current stress state
and then it moves between the states A and B (generally not fixed). The initial and final
state are highlighted by the dashed and solid line, respectively.

In contrast to plasticity, the stress state can lie outside the endurance sur-
face. When the stress state is outside the endurance surface and moves away
from this surface, Ḋ ≥ 0 and α̇ 6= 0 according to (3), (4) and (5). Otherwise the
endurance surface does not move, i.e. Ḋ = 0 and α̇ = 0 . As an example, con-
sidering a specific, periodically alternating stress state. Initially, the endurance
surface moves in a different manner over each cycle. During loading, however,
the endurance surface rapidly tracks the stress state since the direction of the
movement always is s − α. Fig. 2 illustrates the situation when α̇ 6= 0 and an
alternating stress state is applied.

2.2. Integrity basis for transverse isotropy

A transversely isotropic solid is characterized by a unit vector b in the priv-
ileged direction and an isotropic plane perpendicular to it. The most general
form of an endurance surface can depend on the following five tensor invariants,
cf. Boehler (1987),

I1 = trσ, I2 = 1
2 trσ2, I3 = 1

3 trσ3, I4 = tr (σB), I5 = tr (σ2B), (6)

where B = b ⊗ b is the structural tensor for transverse isotropy. For further
convenience, the invariants in terms of the stress deviator s are defined as

J2 = 1
2 tr (s2), J4 = tr (sB), J5 = tr (s2B). (7)

In order to distinguish stresses from those that occur in the transverse
isotropy plane, the stress tensor σ is additively decomposed as

σ = σL + σT, (8)
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where σT and σL are termed the transverse and the longitudinal component,
respectively. The transverse component σT is obtained from the stress tensor
σ by use of the projector tensor P = I −B as

σT = PσP = σ − σB −Bσ + BσB . (9)

The longitudinal component σL simply follows from Eq. (8). It can be con-
cluded that the stress component σT is in the state of plane stress.

It is known that fatigue failure is also dependent on the maximum shear
stresses occurring in the longitudinal planes and in the transverse isotropy plane.
These quantities can be expressed in terms of the deviatoric invariants J2, J4,
and J5 as

τ2L = J5 − J2
4 , (10)

τ2T = J2 + 1
4J

2
4 − J5. (11)

Models presented in Refs. Robinson and Duffy (1990), Robinson et al.
(1990), Arnold and Kruch (1991), and Kruch and Arnold (1997) exploit these
invariants. Ramifications in model results due to those invariants are evidently
of interest to study. To keep the model simple, however, the maximum shear
stresses τL and τT have not been used in the proposed approach.

2.3. Transversely isotropic high-cycle fatigue model

Due to specific directional microstructural characteristics, many materials
exhibit fatigue properties which are transversely isotropic. However, the ap-
proach chosen is purely phenomenological and is not aimed at a particular ma-
terial with a specific microstructure. Thus, for such materials, an extension of
the endurance surface (1) can be defined as

β =
1

ST

{σ̄ +ALIL1 +ATIT1 − [(1− ζ)ST + ζSL ]} = 0, (12)

where the linear invariants of the longitudinal and transverse stress tensors are

IL1 = trσL = I4, (13)

IT1 = trσT = I1 − I4. (14)

The effective stress σ̄ is defined as in the isotropic case, see Eq. (2). In addition
to the invariants, the parameter ζ is used to reflect the average loading direction
defined in terms of the stress ratio

ζ =
(σL : σL

σ : σ

)n
=

(
2I5 − I24

2I2

)n

(15)

where n is a material parameter.
In the endurance surface there are four additional material parameters A

L
,

S
L
, A

T
, and S

T
which have similar meaning as parameters A and S0 in (1), i.e.
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Figure 3: Endurance surface in the π-plane as the fatigue strength ratio is SL/ST = 1 (dotted
black line), SL/ST = 1.5 (dashed blue line), and SL/ST = 2 (red solid line). The parameters
employed are AL = 0.225 and AT = 0.275, and the unit vector is b = (0, 0, 1)T .

A
L
, S

L
and A

T
, S

T
correspond to the parameters A and S0 if the cyclic stress

is applied in longitudinal and transverse directions, respectively. Shape of the
endurance surface in the π-plane is shown in Fig. 3. In contrast to isotropic
failure when the locus of the endurance surface is circle on the deviatoric plane,
the surface (12) will depart from convexity depending on the ratio S

L
/S

T
. How-

ever, it should be mentioned that the non-convexity is most pronounced on the
π-plane.

When uniaxial loading in a direction n is applied, the ζ-parameter takes the
following form

ζ = (2 cos2 ψ − cos4 ψ)n, (16)

where ψ is the angle between the loading and longitudinal directions n and b,
respectively (cosψ = n · b). The dependence of the parameter ζ on n is shown
in Fig. 4. Due to the lack of data in the intermediate directions, the value n = 1
has been used in this study since it fits rather well with the only available data
in the direction ψ = 45◦, see Fig. 4.

2.4. Damage evolution

What remains to be defined is an expression for the function g present in
the damage evolution law (4). Despite the directionality of damage phenomena,
the model is kept simple by describing damage by a scalar quantity D ranging
between the values 0 ≤ D ≤ 1, where 0 corresponds to undamaged state and
1 to fully damaged material state. It is well known for metallic materials that
the rate of damage increases with growing damage, and therefore the following
form

Ḋ = g(β,D)β̇ :=
K

(1−D)k
exp(Lβ)β̇ (17)
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Figure 4: Dependence of the parameter ζ on the exponent n and the angle ψ between the
loading and preferred longitudinal directions n and b, respectively. The experimental result
for the forged 34CrMo6 steel in the direction of 45◦ is also shown.

is chosen for the damage evolution law. In (17), k, K, and L are material
parameters. Based on the damage models in Lemaitre and Chaboche (1990)
and Lemaitre and Desmorat (2005) the value k = 1 has been used in the present
study.

3. Calibration of the model

In what follows, a procedure to obtain the material parameters S
L
, S

T
, A

L
,

AT , C, K, and L from a uniaxial test data is described. Under uniaxial stress
states, the only nonzero stress component is σ := σ11, while the relation between
the backstress components is α := α11 = −2α22 = −2α33. Hence, the effective
stress (2) takes a simple form as

σ̄ = κ(σ − 3

2
α) (18)

where the parameter κ controls the sign, i.e. κ = 1 as (σ− 3
2α) > 0 and κ = −1

as (σ − 3
2α) < 0. Moreover, the endurance surface (12) in a meridian plane

reduces to a single line given as

β =
1

ST

{
κ(σ − 3

2
α) + Ãσ − S̃0

}
= 0 (19)
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Figure 5: Periodically alternating uniaxial stress state. The damage development and move-
ment of the endurance surface during cycling is indicated by a double curve.

where Ã and S̃0 have the following values in the loading direction ψ

Ã = AT + (AL −AT) cos2 ψ, (20)

S̃0 = (1− ζ)S
T

+ ζS
L
, (21)

and ζ is defined in (16).
Assuming a proportional loading where the stress varies linearly between

arbitrary stress states σ(A) and σ(B) located on the opposite sides of the
endurance surface, i.e. the stress path goes through the center of the endurance
surface, see Fig. 2. Under this particular condition, it can be shown that the
endurance surface (1) for isotropic fatigue will reduce to the fatigue criterion of
Sines, cf. Sines (1955, 1959), and see Ottosen et al. (2008, Eqs. 8-11) for the
derivation of this equivalence. One can also show that the proposed endurance
surface (12) reduces to a form similar to the Sines fatigue criterion, i.e. the
equation

1

2

[
3

2
(sA − sB):(sA − sB)

]1/2
+

+A
L
Ī
LI

+A
T
Ī
TI
−
[
(1− ζ̄)S

T
+ ζ̄S

L

]
= 0 (22)

corresponds to Eq. (11) in Ottosen et al. (2008), where ĪT1 = [IT1(σA) +
IT1(σB)]/2, Ī

L1
= [IL1(σA) + IL1(σB)]/2, and ζ̄ = [ζ(σA) + ζ(σB)]/2. Fur-

thermore, in uniaxial cyclic loadings, (19) takes the following form

σa + ÃĨ1 − S̃0 = 0 (23)

where σa is the stress amplitude and Ĩ1 := 1
2 (I1(σA)+I1(σB)) is the mean value

of the traces.
Fig. 5 shows damage development and movement of the endurance surface

in a uniaxial loading case as the stress ranges periodically between σ(A) =
σm + σa and σ(B) = σm − σa. In such a situation, Ĩ1 = σm in (23) which result

10



exp.
n = 2
n = 1

n = 0.5

ψ

ζ

π/23π/8π/4π/80

1

0.8

0.6

0.4

0.2

0

time
∽

1

2

3

4

5σ1

σ2

σ3

σ4

α1 -
- α2 = α3

- α4 = α5

σa

σm

SL ST

AL

AT

Figure 1: Haigh-diagram and illustration of the parameters SL, ST, AL, and AT. The curved lines
illustrate the real σm − σa curve.

2

Figure 6: The endurance surface (23) in uniaxial loading is represented by the straight lines
in the Haigh-diagram. Illustration of the parameters SL , ST , AL , and AT .

indicates that the variation between the fatigue stress amplitude and mean stress
is linear, see Fig. 6. It is previously acknowledged that the relation (23) is in
good agreement with experimental observations for many metals, cf. Forrest
(1962) and Ottosen et al. (2008). However, some metals show a non-linear
mean stress-amplitude relation. The difference between a linear and nonlinear
relation becomes typically evident as the mean stress is greater than the stress
amplitude, and the fatigue life is relatively short (< 105cycles, cf. Ottosen et al.
(2008), Fig. 11). An extension of the present linear model (23) for such metals
is rather straightforward, only a non-linear relation between the effective stress
and the linear invariants IL1 and IT1 should be developed. Naturally, such a
model requires some more material parameters to be defined.

The material parameters S
L
, S

T
, A

L
, A

T
, C, K, and L are determined using

the concept analogous to that given in Ottosen et al. (2008). According to this
concept, the evolution equations for the backstress and damage are integrated,
and the resulting expressions are used in the calibration. The integration is split
into the two parts consisting of loadings from state 1 to 2 and from state 3 to
4. During loading from state 1 to 2, damage evolves, i.e. β > 0 and β̇ > 0.
Figure 5 then gives that κ = 1 in (18) and (19). The region between the states
2 and 3 is defined in such a manner that the stress decreases while damage and
the backstress do not evolve, i.e. β > 0, β̇ < 0, Ḋ = 0, and α̇ = 0 until the
stress path crosses the current endurance surface at state 3. It then follows that
α3 = α2. From state 3 to 4, damage again evolves. In accordance with the
stress path between the states 2 and 3, the damage development is inhibited
until state 5 is reached, i.e. α5 = α4.

Based on the assumption of well defined and equal loading cycles, the en-
durance surface attains its periodic movement rapidly after few cycles. Due
to this characteristic, α1 = α4. Taking advantage of (19), integration of the
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equation (3) for the backstress from the state 1 to 2 yields

3

2
α2 − (Ã+ 1)σ2 + S̃0 −

S
T

CÃ
(Ã+ 1) ln

( 1− CÃ

S
T

(σ2 − 3
2α2)

1− CÃ

S
T
(Ã+1)

(S̃0 − 3
2 Ãα4)

)
= 0, (24)

see Ottosen et al. (2008) for more detailed account. Similarly, the loading from
the state 3 to 4 results in

− 3

2
α4− (Ã− 1)σ4 + S̃0−

S
T

CÃ
(Ã− 1) ln

( 1− CÃ

S
T

(σ4 − 3
2α4)

1− CÃ

S
T
(Ã−1)

(S̃0 − 3
2 Ãα2)

)
= 0. (25)

When a periodic stress state is processed, σ2 and σ4 are predetermined, and
(24) and (25) then provide the equations for the positions α2 and α4 of the
endurance surface.

To include the damage evolution to the model, the evolution equation (17)
is integrated in similar manner as above, i.e. the integration from the state 1 to
2 yields

(D2 −D1)(1− 1

2
(D2 +D1)) =

K

L
(exp(Lβ2)− exp(Lβ1)), (26)

and from the state 3 to 4 the integration gives

(D4 −D3)(1− 1

2
(D4 +D3)) =

K

L
(exp(Lβ4)− exp(Lβ3)). (27)

Since both the state 1 and 3 are located on the endurance surface, β1 = β3 = 0,
and the damage development during the entire cycle becomes

∆D := (D2 −D1) + (D4 −D3) =
K

L

[
(exp(Lβ2)− 1)

(1− 1
2 (D2 +D1))

+
(exp(Lβ4)− 1)

(1− 1
2 (D4 +D3))

]
.

(28)
The damage values D1, ..., D4 are obtained comparing the left and right hand
sides in (26) and (27), i.e. their expressions become

D1 = D3 = 1−
√

1− 2
K

L
, (29)

D2 = 1−
√

1− 2
K

L
exp(Lβ2), (30)

and

D4 = 1−
√

1− 2
K

L
exp(Lβ4). (31)

Based on the assumption of complete failure, i.e. D = 1 after N cycles, it
then follows from (28) that

N =
L

K

(
exp(Lβ2)− 1

1− 1
2 (D2 +D1)

+
exp(Lβ4)− 1

1− 1
2 (D4 +D1)

)−1

. (32)
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Substituting (19), (29), (30), and (31) into (32), taking the pairs (κ = 1,
β2) and (κ = −1, β4) into consideration, and solving the backstresses α2 and
α4 from (24) and (25), respectively, the number of cycles which leads to fatigue
failure is obtained from (32). To calibrate the material parameters, the least
squares error of number of cycles N which leads to fatigue failure is chosen as
the object function. i.e.

f :=

n∑
i=1

(w(i))2

(
1− ln(N (i))

ln(N
(i)
em)

)2

(33)

where n is the number of experimental points, w(i) are the weights, and N (i)

and N
(i)
em denote the number of cycles predicted by the model and recorded in

the experiments, respectively.
Based on the object function (33) and the positive parameters the minimiza-

tion problem is solved by using the least squares fitting. Since under uniaxial
loading with zero mean stress, the parameters S

L
and S

T
are nothing but the

fatigue strengths in longitudinal and transverse loading direction, respectively,
their values can be extracted from test data without optimization. A glance
at (23) also reveals that the parameters AL and AT represent the slope in the
Haigh-diagram as sketched in Fig. 6.

4. Experiments

Uniaxial and constant amplitude fatigue experiments for forged 34CrMo6
steel have been carried out in the directions of ψ = 0◦, 45◦, and 90◦ in re-
lationship to the preferred longitudinal direction. The closest equivalent AISI
standard for that steel is AISI-SAE 4140, cf. Oberg et al. (1996, pp. 406-412).
A standard servo-hydraulic testing machine has been used operating at 10 Hz
frequency. The standard deviations of the fatigue strength data for the align-
ments 0◦, 90◦, and 45◦ are 3 %, 10 %, and 8 %, respectively, which values
are taken into account when estimating the material parameters within such an
accuracy.

The test results are shown in Fig. 8a. The material is seen to have strong
directional fatigue properties: the longitudinal fatigue strength is almost 30%
greater than the transverse fatigue strength. The test data is in line with pre-
ceding investigations conducted e.g. by McDiarmid (1985) and Roiko et al.
(2012).

Based on data for the forged steel employed, the parameter S
T

= 360 MPa is
first determined. The value A

L
= 0.225 is extracted from previously conducted

experiments for varying mean stress, cf. McDiarmid (1989) and Liu and Zenner
(2003). The influence of remaining parameters and weights on the objective
function is shown in Fig. 7. All data points shown in Fig. 8 are used in the
calibration, i.e. n = 8 in (33). The weights are arranged in the accordance with
the loading direction and the decreasing order of the fatigue strength, i.e. the
weights w1 −w3, w4 −w7, and w8 correspond to the data points in the loading
direction of 0◦, 90◦, and 45◦, respectively.
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Table 1: Estimated material parameters for forged 34CrMo6 and isotropic AISI-SAE 4340
steels.

material SL [MPa] ST [MPa] AL AT C K L

34CrMo6 447 360 0.225 0.300 33.6 12.8·10−5 4.0
AISI-SAE 4340 490 490 0.225 0.225 0.11 1.46·10−5 8.7

σa

σm

SL ST

AL

AT

Figure 6: Haigh-diagram and illustration of the parameters SL, ST, AL, and AT. The curved lines
illustrate the real σm − σa curve.
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Figure 7: The influence of the weights and parameters on the solution when the values (SL = 447
MPa, AT = 0.300, w1 = 2.0, w2 = 1.5, w4 = 2.0, w5 = 1.5, w6 = 1.2), (SL = 447 MPa,
AT = 0.300, w1 = 3.0, w2 = 2.5, w4 = 3.0, w5 = 2.5, w6 = 1.4), (SL = 447 MPa, AT = 0.320,
w1 = 3.0, w2 = 2.5, w4 = 3.0, w5 = 2.5, w6 = 1.4), and (SL = 440 MPa, AT = 0.285, w1 = 2.0,
w2 = 1.5, w4 = 2.0, w5 = 1.5, w6 = 1.2) are used. The results are highlighted by the markers 2,
◦, •, and △ respectively.

3

Figure 7: The influence of the weights and the parameters SL , AT , and p := {C, K̂, L} on the

objective within the limits of numerical tolerances employed in the optimization (K̂ = 105K).
Four presentative sets consisting of the fixed values {SL = 447 MPa, AT = 0.300, w1 = 2.0,
w2 = 1.5, w4 = 2.0, w5 = 1.5, w6 = 1.2}, {SL = 447 MPa, AT = 0.300, w1 = 3.0, w2 = 2.5,
w4 = 3.0, w5 = 2.5, w6 = 1.4}, {SL = 447 MPa, AT = 0.320, w1 = 3.0, w2 = 2.5, w4 = 3.0,
w5 = 2.5, w6 = 1.4}, and {SL = 440 MPa, AT = 0.285, w1 = 2.0, w2 = 1.5, w4 = 2.0,
w5 = 1.5, w6 = 1.2}, respectively, are chosen for the illustration. The results are highlighted
by the markers �, ◦, •, and 4, respectively. The rest of the weights are equal with unity.

A small deviation in the objective function can be reached using a relative-
large parameter set ranging from 1.55 to 2.10 of its logarithmic norm. Despite
that the greater weights are employed, the objective function shows consider-
ably lower values when both SL and AT are increased from their initial values
SL = 440 MPa and AT = 0.285, respectively. The numerical investigations
also indicated that low values of the remaining parameters result in more stable
solution and allow longer time steps to be used in the calculations. Motivated
by these observations, the values shown in Table 1 represent the best optimum
solution. Table 1 shows also the optimized parameter values for an isotropic
AISI-SAE 4340 steel, which material is used in Ottosen et al. (2008). However,
notice that the parameters C,K and L differ from the values used in Ottosen
et al. (2008) due to the difference in the adopted damage evolution equation
(17). These two sets of parameters have been used in the subsequent test cases.
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Figure 8: (Left) Fatigue strengths (σm = 0) for the forged steel employed. The solid and dashed
lines implicate the model results as the loading directions in relation to preferred longitudinal
direction are 0◦ and 90◦. The data point (107,428 MPa) represents the loading direction of 45◦.
The deviations for the alignments 0◦, 90◦, and 45◦ are 3 %, 10 % , and 8 %, respectively. (Right)
Examples of damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).

st
re
ss

[M
P
a]

0 2 4 6 8 10

−400

−200

0

200

400

0 2 4 6 8 10

−400

−200

0

200

400

cyclescycles

st
re
ss

[M
P
a]

Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
direction is parallel with (left) and perpendicular to (right) the preferred longitudinal direction.
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Figure 9: Development of periodic movement of the endurance surface during identically varying
first few stress cycles (solid line). The endurance limit is indicated by dashed line. The loading
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Figure 8: (a) Fatigue strengths (σm = 0) for the forged 34CrMo6 steel employed. The markers
4 denote the data points. The solid and dashed lines implicate the model results as the loading
directions in relationship to preferred longitudinal direction are 0◦ and 90◦, respectively. The
data point (107,428 MPa) for the loading direction of 45◦ is also presented. (b) Examples of
damage evolution as the loading directions are 0◦ (solid) and 90◦ (dashed).

5. Evaluation of the model

5.1. Uniaxial test cases

With the calibrated parameters given in Table 1, the predicted S−N curves
are shown in Fig. 8a. The load history results in the damage development
represented in Fig. 8b, as the stress amplitudes σa are 494 MPa and 384 MPa
in the preferred direction (0◦) and in the transverse plane (90◦), respectively.
Due to the divisor employed in the evolution equation (17), the damage growth
increases rapidly prior to failure, which behaviour is in line with experimental
observations, cf. Lemaitre and Chaboche (1990) and Lemaitre and Desmorat
(2005).

The development of the movement of the endurance surface under identical
stress cycles is shown in Fig. 9. The damage evolution initiates right once as
the loading is applied and the endurance surface reaches a periodic state almost
immediately. This periodic state corresponds to the movement of endurance
surface highlighted by the solid circles in Fig. 2. During cycling, damage always
develops as the stress state is outside the endurance domain and moves away
from it. This situation was already demonstrated in Fig. 5. Since the model has
been calibrated to data for this alternating stress, the endurance limit strictly
follows the maximal and minimal cyclic stress.

5.1.1. Effect of mean stress

In addition to stress amplitude, fatigue failure also depends on mean stress.
McDiarmid (1989) investigated the influence of mean stress on fatigue life and
presented test data for 34CrNiMo6 steel (British Standard EN24T). According
to this test, the transverse fatigue strength in relationship to longitudinal fatigue
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Figure 9: Development of periodic movement of the endurance surface during identically
varying first few stress cycles (solid line). The endurance limit is indicated by dashed line.
The loading direction is (a) parallel with and (b) perpendicular to the preferred longitudinal
direction.

strength was about 80 % which result is parallel with the present experimen-
tal observations for the 34CrMo6 steel. To further evaluate the model, some
Haigh-diagrams for varying mean stresses are depicted in Fig. 10. Despite the
model calibration for zero mean stress, the model is able to predict the observed
characteristics of fatigue strength well.

An experimentally established fact is that the fatigue limit in cyclic torsion
is independent on superimposed mean torsion as the number of cycles is high
(106 or more), and the maximum shear stress does not exceed the static yield
stress, cf. e.g. Sines (1959) and Papadopoulos et al. (1997). Fig. 11a shows the
predicted curves for the shear stress amplitude τxya as the mean shear stress
τxym ranges from zero to 2τxya. All other stress components are zero. As the
number of cycles is 106, no effect due to the mean shear stress can be observed
on the fatigue life, i.e the curve tends to become horizontal. Capability of the
model to predict this independence under the traceless stress state follows from
the relation (23) between the fatigue stress amplitude and mean stress. However,
the lower fatigue life indicates a negative slope in the τxym − τxya interaction.
Even if the interaction is weak, this characteristic corresponds to experimental
observations, cf. Papadopoulos et al. (1997), Fig. 8. The model is able to predict
that characteristic since the importance of mean shear stress in relationship to
fatigue stress amplitude significantly increases at low fatigue lives. This effect
clearly appears in the damage development shown in Fig. 11b. Compared to the
damage curves of low mean shear stresses which virtually are indistinguishable,
damage evolves rapidly under the shear mean stress τxym = 2τxya and reaches
about 40 % of its limit before the periodic stress state is achieved.

5.2. Multiaxial stress state

Multiaxial stress states typically occur at the most stressed locations prior to
failure. The stress components may mutually vary at different frequencies and
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Figure 10: Effect of mean stress on fatigue life of 106 cycles under (a) longitudinal and (b)
transverse uniaxial cyclic tension. The x-coordinate direction is parallel with the preferred
longitudinal direction. Available experimental data for 34CrNiMo6 (BS EN24T) steel depicted
by the markers 4 is taken from McDiarmid (1989).
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Figure 11: (a): Effect of mean shear stress on the fatigue strength as the number of cycles
is N = 106 (solid line) and N = 5 · 104 (solid line with dots). (b): Damage evolution during
5 · 104 cycles as τxym = 0 (solid line), τxym = τxya (dotted line), and τxym = 2τxya (dashed
line).

magnitudes. In order to use the model in multiaxial loadings, the analytical
formulas (24), (25), and (32) cannot be applied, and therefore a numerical
approach has to be developed so as to integrate the evolution equations (3)
and (17) for the backstress and damage, respectively. Taking advantage of (3),
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Figure 12: (Upper) Alternating normal stress combinations for one cycle. The phase differ-
ences are φxy = π/2 and φx = φy = 0. (Below) Corresponding principal stresses.

(8), and (9), the time rate of the endurance surface (12) can be expressed as a
function of the stress rate as

β̇ =
1

S
T

+ Cσ̄

[ 3
2 (s −α)

σ̄
+ (A

L
−A

T
)B +A

T
I

− (S
L
− S

T
)

2I22

(
I2(4σ − 2I4I )B − (2I5 − I24 )σ

) ]
:σ̇ (34)

When the conditions (5) are fulfilled, numerical time integration is used to
solve the backstress (3), damage (17), and the endurance surface (34), which
equations govern the high-cycle fatigue process.

5.2.1. Stress states of identically alternating principal stresses

It is well known that classical failure criteria which rely on purely stress
invariants cannot differentiate multiaxial stress histories having equivalent prin-
cipal stresses. Fig. 12 illustrates two such loadings. While classical multiaxial
approaches result in the same equivalent stress for both cases, experiments show
considerably different endurance limits. Due to the backstress involved in the
equivalent stress (12), the fatigue strength ratios σxa(φy = 0◦)/σxa(φxy = 90◦)
for the two steels presented in Table 1 become 1.9 and 1.7, respectively, i.e. the
fatigue limits differ significantly between the loading situations. Similar effect
is also observed in smooth specimens made of a steel considered as isotropic, cf.
e.g. Liu and Zenner (2003).
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Figure 1: The mean stress (left) and maximun shear stress (right) history of a 3D-random
load history. The corresponding fatigue damage development of the forged 4CrMo6 steel and
AISI-SAE 4340 steel is highlighted by the solid and dash-and-dot line, respectively (below).

1

Figure 13: (a) The mean stress and (b) maximun shear stress history of a 3D-random loading.
(c) The initial and (d) total fatigue damage development of the forged 34CrMo6 steel and
AISI-SAE 4340 steel are highlighted by the solid and dash-and-dot line, respectively.

5.2.2. Complex loading

It also is interesting to investigate three dimensional complex cyclic loads in
order to take advantage of the incremental formulation of the proposed model.
The time history for all six stress components is randomly generated assuming
the stresses vary between the limits −340 MPa and 580 MPa. During the
whole stress history, the von Mises stress is well below the yield stress (over
700 MPa) for both steels applied, which can also be concluded from the clip
of the maximum shear stress history shown in Fig. 13b. From a mesoscopic
point of view, the final fatigue damage at the supposed, emerging crack tips is
acknowledged to be a consequence of plastic deformation zones, see Lemaitre
(1984), Suresh (1998), and Morel et al. (2001). At this phase, however, majority
of the material remains elastic as it is assumed in the HCF-analysis.

The model was implemented in a Fortran program by using the backward
Euler integration scheme. Computations were conducted by a Intel Haswell
processor running at 2.6 GHz. To capture accurately the damage evolution
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under the given complex load spectrum, small time steps of 0.03 second were
used. Due to this small time step employed, the Newton’s iteration needed
in average only one corrector iteration per a time step to converge within the
absolute tolerance of 10−8 for the Euclidean norm of the residual vector. The
computation up to the final failure (D = 1) took 40-50 seconds of CPU time.

The damage development for both the calibrated steels, 34CrMo6 and AISI-
SAE 4340, see Table 1, is shown in Fig. 13c-d. A significant interest is that the
proposed evolution equations based fatigue model readily predicts the damage
development under the multiaxial complex loading without the need of cycle
counting techniques frequently applied in fatigue analyses. Rate of the damage
evolution accelerates towards the end of the lifetime which is the case for most
of the metallic materials, see Lemaitre and Chaboche (1990) and Lemaitre and
Desmorat (2005).

The model was also implemented in a finite element program for the inves-
tigations of the fatigue damage behavior under two and three dimensional load
histories, see Holopainen et al. (2015). Computations under those conditions
well confirm the expected fatigue damage development and verify the model’s
capability under multiaxial loading conditions.

5.2.3. Effect of phase difference

For further assessing the performance of the model under multiaxial stress
states, the effect of a phase shift between an alternating shear and normal
stresses is investigated. In all cases, the stress waveform is sinusoidal. Consid-
ering first biaxial alternating normal stresses given by

σx = σxm + σxa sin(ωt),

σy = σxm + σxa sin(ωt− φy).
(35)

The mean stress σxm = 1.105σxa is defined by the ratio R = 0.05 between
the smallest and largest normal stresses. Considering first the isotropic model
predictions for AISI-SAE 4340 steel, cf. Table 1. Once the phase difference
φy = 30◦ is passed, the model predicts an increase of the fatigue strength
followed by a strong decrease of about 30 %, which corresponds well with the
experimental data of Liu and Zenner (2003), cf. Fig. 14a.

McDiarmid (1989) conducted tests on thin wall tubular specimens made of
34CrNiMo6 (BS EN24T) steel which shows strong directional fatigue properties.
Compared to the zero shift, the fatigue strength under the phase difference of
180◦ was shown to be about 25 % lower, which result is virtually equal with the
model result using the estimated 34CrMo6 steel properties. The test results in
McDiarmid (1989) also indicated that the influence of the fatigue strength on
this reduction is low.

Fig. 14b shows also the effect of a phase difference between a fully reversed
shear stress and normal stress which pulsates in the preferred longitudinal di-
rection as already depicted in Fig. 12 (left), i.e.

σx = σxa sin(ωt)

τxy = 1
2σxa sin(ωt− φxy).

(36)
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Figure 12: (Upper) Alternating coordinate stress combinations for one cycle. (Below) Correspond-
ing principal stresses. The x-coordinate direction is parallel with the preferred longitudinal direc-
tion.
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6

Figure 14: (a) Influence of phase shift on the fatigue strength under two cyclic normal stresses.
(b) Influence of phase shift between a cyclic normal and a shear stress. The solid and dashed
line denote the transversely isotropic and isotropic model predictions, respectively. The pre-
ferred longitudinal direction coincides with the x-axis. Data points 4 for 42CrMo4 steel are
taken from Liu and Zenner (2003).

Due to the symmetry, only the phase shifts up to φxy = 90◦ are presented.
The phase difference results in a relative-strong increase in the fatigue strength
within the range from 60◦ to 90◦. Comparison to data for isotropic metallic
solids reveals that similar albeit lower effect can also be observed from the phase
shift φxy = 30◦, cf. Liu and Zenner (2003). Since the x-coordinate direction is
now parallel with the preferred longitudinal direction, the parameter ζ in (12)
is unity and the invariant IT1 vanishes, thus the transverse isotropic endurance
surface reduces to the isotropic one, cf. equation (1). Due to this reason, the
model prediction is also in good agreement with preceding data for isotropic
steels, cf. Liu and Zenner (2003). According to their experiments, however, this
effect is not uniform, i.e. different fatigue strength values are observed in the
phase shifts from 60◦.

5.2.4. Effect of frequency difference

Due to uniaxial loadings employed in the experiments, the influence of stress
frequency on the fatigue strength is considered small and is typically neglected.
In multiaxial loading situations, however, the effect of frequency difference be-
tween the stress components can be significant and needs an attention.

A stress state consisting of the following two alternating nonzero stress com-
ponents is considered first:

σx = σxa sin(ωxt)

τxy = 1
2σxa sin(ωxyt).

(37)
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Figure 15: (a) Influence of frequency difference on the fatigue strength as the stress state con-
sists of cyclic normal and shear stresses. The dashed line refers to the isotropic model results
for the AISI-SAE 4340 steel. (b) Influence of frequency difference between two cyclic normal
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taken from Mielke (1980) and McDiarmid (1989), respectively. The x-coordinate direction
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isotropic model response.

Fig. 15a illustrates the fatigue strength diagrams for both materials given
in Table 1. For a comparison, the experimental results for 25CrMo4 steel taken
from Mielke (1980) are also presented (also given in Liu and Zenner (2003)).
Meanwhile the response of the transversely isotropic fatigue model fits well
to data, the isotropic model response shows much higher values for the fa-
tigue strength. This could suggest that the steel used in those tests have had
anisotropic fatigue properties.

Finally, the model response for the two alternating normal stresses given by

σx = σxa sin(ωxt)

σy = σxa sin(ωyt)
(38)

is considered. Steel material which is used for a comparison is 34CrNiMo6 (BS
EN24T) steel showing also transverse isotropic fatigue properties, cf. McDi-
armid (1989). The comparison between the model response and data is shown
in Fig. 15b. Despite a slight difference between steels, the model predicts the
effect of stress frequency relatively well.

6. Conclusions

An extension of the Ottosen et al. (2008) model which is suitable for the
modelling of high-cycle fatigue of materials having transversely isotropic fa-
tigue properties is proposed. The model is suitable for arbitrary multiaxial load
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histories. Alike to the original model, the evolution equations are formulated in
the rate form without the need to measure damage changes per cycle. Moreover,
the model does not require any specific strategy, such as cycle-counting, when
modelling fatigue under multiaxial stress states. In contrast to the original ap-
proach, the damage evolution is increasingly cumulative prior to failure, which
characteristic is in line with experimental observations.

Evolution of high cycle fatigue is governed by an endurance function suitable
in multiaxial stress states for transverse isotropic fatigue. The key issue in
the development of the endurance function is the definition of the privileged
direction and its perpendicular isotropic plane. Based on a structural tensor for
transverse isotropy, the stress is split into the two components corresponding the
stress in a transversal isotropy plane and the remaining part characterized by the
longitudinal material direction, respectively. The two stress components allow
to define relevant invariants needed to obtain the endurance function suitable
for transverse isotropic fatigue. This conceptual approach, which is applied to
the proposed model, is believed to be the simplest possible one for modelling
transversely isotropic high-cycle fatigue.

The model has been calibrated to data for uniaxial fully reversed cyclic
stresses acting at the three directions 0◦, 90◦, and 45◦ in relationship to the
preferred longitudinal direction. Despite the calibration to uniaxial test data
for zero mean stress, a comparison to data and preceding studies indicated that
the proposed model predicts the fatigue behaviour under nonzero mean stress
well. It was also shown that the model is able to cover multiaxial out-of-phase
and asynchronous load conditions observed by test data of steels having both
isotropic and transversely isotropic fatigue properties. In addition, the model
captures also the effect from rotation of the principal stresses to the fatigue
strength as well as the subtle effect of mean shear stress on the fatigue strength
in cyclic torsion.

An important aspect of this work is the applicability of the proposed model
for applications in practise. From this point of view, the model has been kept as
simple as possible. However, since cracking inevitably leads to anisotropic elastic
behaviour, an anisotropic damage model should be developed. More data which
account for directional high-cycle fatigue is also needed. Temperature effects on
the fatigue strength as well as a model extension to low-cycle fatigue regime are
also important supplements to be involved in future research.
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