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PREFACE

The Nordic Association for Computational Mechanics (NoACM) was founded in October 1988. Its
objective is to stimulate and promote research and applications within the area of computational
mechanics. The main activity of NoACM is the annual two day seminar which provides a forum for
personal contacts and for the exchange of ideas. These proceedings contain the presentations of the

12th Nordic Seminar on Computational Mechanics, held at Helsinki University of Technology,
Finland, 22-23 October 1999,

This year's seminar contained five invited lectures and 44 contributed presentations divided into ten
sessions. In the present volume, the contributed papers are placed first, in the order of appearance,
and all the invited lectures in the later part.

The organizers of the seminar would like to thank all the invited lecturers and the contributors for
their efforts in preparing the presentations and the texts for these proceedings. The editors are also
very grateful to Mrs Tuula Donskoi for her indispensable help in organising the seminar. The
financial support granted by the Academy of Finland and the hospitality provided by the City of
Espoo are gratefully acknowledged.

Espoo, October, 1999

Reijo Kouhia and Martti Mikkola
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SENSITIZING THE TRANSIENT TIMOSHENKO BEAM
FINITE ELEMENT SOLUTION

Jouni Freund® and Eero-Matti Salonen®
®pepartment of Physiology, Finnish Institute of Occupational Health
@ Laboratory of Theoretical Mechanics, Helsinki University of Technology

SUMMARY

Two extensions of the steady sensitized finite element formulation of the Timoshenko beam
problem to the transient case are discussed. Accuracies of the semidiscrete Galerkin, and
sensitized Galerkin formulations, obtained by calculating the relative error in the angular
frequencies, are compared. The results indicate that the beneficial effect of sensitizing found
in the steady case may improve the accuracy considerably also in the transient case.

INTRODUCTION
Least-squares type terms, based on the governing equation residuals, are used frequently to
improve the properties of the standard Galerkin method. For example, these terms are
necessary for stability reasons when one applies the finite element method to a convection
dominated flow problem. The same approach can be used also in connection with solid
mechanics problems. Then, however, the difficulties are often due to locking, and the
additional terms are needed to destabilize the formulation. As the terms may then act to
stabilize or destabilize a formulation we call them, following Courant, ‘sensitizing terms’ [1].
In this paper we discuss effect of sensitizing on the accuracy of the finite element
solution in the transient case. Instead of trying to invent the optimal sensitizing, we extend the
method for the steady case in a simple way. We consider the constant property Timoshenko
beam equations

R=kGAW"' =0")—miv=0

i ) .. (x,H)eQcR2, (1)
S=kGA(W —-8)+EIG"-J6 =0

(with obvious meaning of the notations) whose finite element solution by the standard
Galerkin method is known to suffer from locking when the beam becomes thin. Equations (1)
form a useful preparatory model for the more complicated Reissner-Mindlin equations for
plates [2].

Remark. If the material is isotropic, shear correction factor k =5/6, Poisson ratio v =1/3
and the cross-section rectangular, the coefficients are given by m=ptb, J= pt3b/ 12,
kGA =5/16- Ebt and EI = Ebt3 /12, where E is the Young’s modulus, p is the density, ¢ is
the height and b the width of the beam cross-section.

EXACT SOLUTION
The exact solution to the model problem is taken to be of the series form

w=2., Ajcos@;)sin(jrx/L), 6=3,. Bjcos(@;t)cos(jzx/L), )

which corresponds to a simply supported beam or to a periodic solution in space (with period
equal to the length of the domain L), if in the latter case the summation index is restricted to



take even values only. Substituting the typical mode j in (1) gives a homogeneous linear
system of equations for A and B (we omit the subscripts of Aj, Bj and @j). A solution
exists only if the determinant of the matrix of the system vanishes, which gives equation

(4@ -a)@* - gL a® -1)~a> =0 3)

for the angular frequency. The shorthand notations used are @2 =w?J [(kGA), a=jrx,
g = EI /(kGAI?) and AL =mI% /] .

SENSITIZED FORMULATION
The sensitized weak formulation corresponding to (1) can be written as: find (w,0) eU xV
such that

EI(86',6")q +kGA(SW — 86,w —B)q + 1 (88,6)q +m(Sw, W) +(76S,8)q =0 4)

V(06w,00) e U xV . Formulation (4), containing a least-squares term with sensitizing
parameter 7, is a straightforward extension of the practical formulation discussed in [2] for
the steady case. We do not specify function sets U and V of the continuous case, but proceed
directly to the discrete formulation.

Formulation (4) can be used for simultaneous discretization with respect to temporal
and spatial coordinates and also for the partial discretization with respect to the spatial
coordinate only. In the latter case, the approximations are chosen to be of the form

VTI:z:l:l Ni(x)wi(t): é =Z?=l Ni (x)0,-(t) 5)

in which N;(x) are the given shape functions, n is the number of nodes and w;(?), 6;(¢t) are
the nodal parameters depending on time. In what follows we assume that the mesh is uniform,
use representations (see equation (2))

wi=2j ﬁj cos(@ ) sin( jﬂ'i), 6; =2j E’j cos(a jt) cos( jﬂ'—:;), 6)

and consider only the typical j:th mode. When the approximation is linear, a stable and
accurate formulation is obtained with 7 =—h2 /(12EI + kGAhZ) (h is the element length) and
by using one point quadrature with respect to the spatial coordinate in the second and last
terms of (4).

The equation for @ of the numerical solution can be obtained in the same manner as in
the case of the exact solution (one needs some formulas concerning sin and cos such as
sin(aj + a) —sin(aj — a) = 2sin(a)cos(aj) in the manipulations). The following coefficients,
depending on the smoothness of a mode relative to the mesh a, =a/n= jz/n, tum out to be
important:

F 12sin(a, /2) F 3sin(@,) g 3cos?(a, /2)
1 =‘—_————-’ =-——————'—‘ 3 - &
a,%(2 +cosay,) 4 a,(2+cosay,) (2+cosa,)

M



It is noteworthy that the coefficients approach the value one when the number of nodes n is
large compared to ;.

Standard Galerkin formulation
The standard Galerkin method can be obtained by selecting 7 =0 and using exact quadratures
in (4). The set of ordinary differential equations giving the nodal parameters as functions of
time is

{r}g = kGAID*1{w} - kGAID'T" {8} +m[D°1(w} = (0},

. (®)
{s}g = EI[D?){8} ~kGAID'1{w}+kGA[D°1{8} + J[D°1{f} = {0},

where {8}, {w} denote the vectors of nodal parameters, and [D2],[D1,[D°] are matrices of
the well-known difference stencils corresponding to the linear approximation and second, first
and zero order spatial derivatives, respectively. The equation for the angular frequency is

(4@ - Fia®[@* - £, Fia® ~ 1]~ (Fa)? =0. ©)
It is easy to see that in the limit, when n — o with ni = L, equations (9) and (3) coincide.

Sensitized Galerkin formulation

When discretizing the equations only with respect to the spatial coordinate, one may use
spatial variations 8w, &6 defined by condition that the variations of the derivatives with
respect to time are zeros. Then &S =kGA(OW —60), S=kGA(GW -8)—J8 (linear

approximation in space) and the set of ordinary differential equations reads
{r}sg ={rlg +T(kGAY’ [D*1{w}-7(kGAY*[D'T" {6} ~ 7kGA JID'Y {6} = {0}, 10)
{s}sc = {5} — T(kGAY[D'1{w} +7(kGA)*[D°1{8} + TkGA J[D°]{d)} = {0}

making the overall mass-matrix unsymmetric. The equation for the angular frequency of this
formulation is given by

(4@ ~ Ra*>(1+ D@ ~ e, Fa® - Fy +T(@° D) F]- 1+ D)1 - T(@* - DI(Fya)? =0, (11)
where 7 =7kGA . Also now, when n — o with nh= L, equations (11) and (3) coincide.

Symmetric sensitized Galerkin formulation

Non-symmetric mass matrix can be avoided by using a spatio-temporal variation as then
S =kGA(SW - 86)-T 50 , S=kGAGW -6) ~J§ and the least squares terms gives a
symmetric contribution. The set of ordinary differential equations (8) is

{rlssg ={r}sc =10},

. 12
{s}ssg =1{s}sg —7J kGAID'1{w} +7J kGA[D°1{8}+77%[D°1{6} = {0}. (12)

It is noteworthy that the problem is of the fourth order now. The equation for the angular
frequency of this formulation is



[ @% - Ra* A+ D@2 - e Fa® - B ~T(@° - 12 B]-[1-7(@ - D (Fa)? =0.  (13)
Again, when n — e with nh = L, equations (13) and (3) coincide.

ERRORIN @

The error (@ - w)/ @ in the largest angular frequency with a fixed jwas taken as the measure
of accuracy. To study the effect of sensitizing, the error was calculated as function of the
element size & and relative thickness #/L of the beam. The other parameters were L =1,
b=1/10, v=1/3 and k=5/6. It turned out that the error could be represented
approximately by (&— @)/ =Ch? where C depends on the formulation and the relative
thickness of the beam. Table 1 shows that the coefficient of the standard Galerkin method is
roughly inversely proportional to ¢/ L whereas the coefficients of the sensitized formulations
are bounded in ¢t/ L.

Table 1. Coefficient C as function of the relative thickness ¢/L of the beam (Cg ~standard
Galerkin, Cgg ~ sensitized Galerkin, Cgg; ~ symmetric sensitized Galerkin).

/L Cg Csc CssG
1/1000 6000000 328 328
1/100 149794 321 314
1/10 1779 193 58
1/1 180 164 1
CONCLUDING REMARKS

The effect of sensitizing was discussed in connection with a transient Timoshenko beam
model problem and semi-discretized formulation. It turned out that sensitizing improves the
accuracy of the angular frequency of a typical mode in particular when the beam is thin. The
version leading to a symmetric mass-matrix was more accurate than the unsymmetric one. On
the other hand, the appearance of the fourth time derivative may be somewhat inconvenient in
practice.

REFERENCES

[1] J. Freund , E.-M. Salonen, Sensitizing according to Courant the Timoshenko beam finite
element solution, accepted for publication in International Journal for Numerical Methods in
Engineering.

[2] 1. Freund, E.-M. Salonen, Sensitizing the Timoshenko beam and the Reissner-Mindlin
plate finite element solution, Teknillisen Korkeakoulun mekaniikan laboratorion julkaisuja 50,
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An analysis of finite element locking in a
parameter dependent model problem

V. Havu J.Pitkaranta

September 30, 1999

Institute of Mathematics, Helsinki University of Technology,
+358-9-4513018, Ville.Havu@hut.fi

Locking, or parametric error amplification is a well-known phenomenon
that may arise when solving parametric elliptic problems with the finite
element method. Here we consider the bilinear finite element approxima-
tion of smooth solutions to a simple model problem, the problem of highly
anisotropic heat conduction. The standard bilinear form associated with
such a problem is

S . ouo
8¢’ B¢ on’én 7’

where ¢ and 7 are the principal directions of heat conduction and ¢ is a
positive parameter, usually small compared to unity. This model problem
displays the characteristics of a typical shell problem in that depending on
the boundary and load conditions the asymptotic solution when € — 0
can fall into two different states. These could be named as the cool
state and the hot state, respectively. In the cool state, the main heat
conduction occurs in the direction of high conductivity, whereas in the
hot state, the conduction in the direction of low conductivity dominates.

A(u,v) =

Under favorable circumstances that depend on both the finite element
mesh and on the type of boundary conditions, the effect of parametric



locking of the standard FEM can be reduced performing a simple vari-
ational crime. In this model problem we choose to commit the crime

inserting the orthogonal L2-projection onto elementwise constant func-

tions in front of the term 3—2‘ hoping to be able to reduce the locking

constraint 3_15‘ = 0 thus obtaining a bilinear form

_ ou _ Ov 5 _Ou Ov
.Ah(’u,,’v)—<Rha—€,RhaE > €t < 877,3"7 >
du Ov
2 —_ = el
+et< (I Rh)ag,a£ >,

where R), is the projection in question. The last term in this formulation
is added to keep the formulation at least e-stable. However, a word of
caution is in place here since switching to this reduced bilinear form
entails a consistency error component that must also be treated.

To show the relation of a mesh to the performance of the reduced scheme
we consider four different types of meshes, each with the cool and the
hot state separately:

1. General quadrilateral mesh.
2. Rectangular mesh.

3. Piecewise uniform rectangular mesh: €2 is divided into NV subrect-
angles €2;, and each ; is subdivided by a uniform rectangular mesh.

4. Uniform rectangular mesh: case 3 with N = 1.

The analysis of the reduced scheme is based on splitting the total relative
error

_ ke = wallln

{1}

in two components, the approximation error e4 and the consistency error
ec satisfying

2 _ 2 2
e =eyteq,



and treating these separately. Here u is the exact solution of the problem,
up is the FE approximation, and ||| - |||, ||| - |||» denote the (semi) norms
generated by A(-,-) and Ax(-, -) respectively. Then we can show that for
the approximation error defined as

= |[|w — Gnllln
- ]
[[ee] ]

the bound
€A S Ch
holds in the cool state and the bounds

C
€A S C
C{N)h on a piecewise uniform mesh

on a general mesh

h
E2
= on a rectangular mesh

are valid in the hot state. Here C is a constant independent of €. As for
the consistency error component e defined as

e = su 0 (_‘A__‘_AM.)-
= BP0 I Tl

where V) is the FE space, we have the bounds

€

C%  in the cool state
ec < .
Ch in the hot state

on a general quadrilateral mesh and the bounds

€

CY  in the cool state
ec < .
Ch? in the hot state
on 3 rectangular mesh and finally the bound
ec < CQh? 4+ C(N)QR¥? in the cool state

on a piecewise uniform mesh with C(1) = 0.

In addition to theoretical calculations we show also some numerical re-
sults displaying the capabilities and limitations of the modified scheme.



On Latin Hypercube Sampling for Stochastic Finite Element
Analysis

A. Olsson and G. Sandberg
Lund University, Division of Structural Mechanics
P.O. Box 118, SE-221 00 Lund, Sweden

e-mail: bmao@byggmek.lth.se

ABSTRACT

Summary An efficient sampling method for stochastic structural analysis is suggested. The Latin
hypercube sampling plan, with correlation control, is brought into line with finite element applications.
The procedure involves transformation of the correlated random input variables to a set of uncorrelated
random variables. The number of random variables can in many cases be reduced which significantly
improves the efficiency of the correlation controlled Latin hypercube sampling plan.

Introduction

Nowadays elaborated deterministic numerical methods and models, inctuding sophisticated
strategies for dealing with a variety of mechanical processes, have become widespread and are
employed in everyday engineering design practice. However, in most design cases the engineer
is left with uncertainties about how to actually model a structure. The uncertainties can be di-
rected towards the stiffness values of structural members or connections, geometrical or material
properties. Also production errors or damage, caused by accidents or inadequate management
are in many civil engineering structures uncertain parameters that should be considered in the
analysis.

Unavoidable uncertainties must be considered in a computational scheme to produce reliable
computational and engineering results. Traditionally, designers have used safety factors to pro-
vide increased confidence of the structural performance, but this approach does not take into
account the underlying, more sophisticated probability characteristics and does not provide the
designer with adequate information about the reliability of the entire system. This has lead
to rather extensive research aiming to combine efficient methods of structural analysis, with
stochastic analysis where the influence of random variables are evaluated.

The only method that has become widespread in engineering design practice is the Monte Carlo
simulation technique. Probabilistic design parameters are sampled and a number of deterministic
computations are performed to provide information about the distribution, or some statistics
of response parameters. This is an accurate and simple approach, but also very expensive in
terms of computer resources. Several methods that could be employed at a lower computational
cost have been proposed. These could be divided into three main categories. The methods of
the first concern the sampling itself of the Monte Carlo technique in order to reduce the sample
size required to provide reliable statistics of the response. To this category belong stratified
sampling, and Latin hypercube sampling. Most work in this area is carried out by mathematical
statisticians, and elaborated sampling techniques are rarely employed in the field of structural
analysis using finite elements. A major advantage of these methods is that the consequent
analysis, i.e. the runs determined by the sample, is identical to the deterministic analysis. Thus
full advantage could be taken of existing commercial code developed for deterministic analysis,
(Sandberg et al. 1997), and (Sandberg and Olsson 1999).

The methods of the second category also employs Monte Carlo simulations. However, the

8



strategy is to reduce the computational work by using efficient solutions techniques for the
equation system of each run by making use of the similarity between the different realizations.
The Neumann expansion method, and the preconditioned conjugate gradient method belong to
this category.

Methods of the third category do not compute the response statistics through Monte Carlo
simulations but through series expansions of the random variables. Naturally, this criteria
result in a category containing many different methodologies. The most well know are probably;
the Taylor series expansion method, in which a truncated Taylor series of the response variable
is established, and the Neumann expansion method, in which a truncated Neumann series is
employed for the equation system.

The present work makes a contribution to the first category of methods. The Latin hypercube
sampling method, with correlation control, is further developed to overcome the restriction that
the number of realizations must exceed the number of correlated random variables. The method
could, without obstacles, be combined with methods from the second category.

Latin hypercube sampling

Latin hypercube sampling for computational planning was first proposed by (McKay et al. 1979).
As for the standard Monte Carlo method the desired accuracy in the estimated distribution
function determines the required number of realizations. Let n denote the required number
of realizations and k£ the number of stochastic input variables, the sampling space is then k-
dimensional. An n x k matrix P is established in which each of the k columns is a random
permutation of (1,n). Then the sampling matrix U is determined as

P—R)

n

U=F"! ( (1)

where R is an n x k matrix of independent random numbers from the uniform (0,1) distribution,
and F~! represents the inverse of the distribution function of each of the k stochastic variables.
Each row in U now contains sample inputs for one deterministic computation. For two input
variables and five realizations, a possible sampling plan is shown in Figure 1. Note that the
sample is spread over the entire sampling space as the generation of the Latin hypercube sampling
plan requires one image from each row and each column. If n realizations from the entire
sampling space had been chosen completely at random, as in standard Monte Carlo sampling,
there is a risk that they form a cluster and some parts of the sample space would not be

investigated.
1 2 5 L
2 4 D4 *
2
33 g3 °
&
4 1 £ 216
_5 5_ | e
1 2 3 4 5
Parameter |

Figure 1: Latin cube, two variables and five realizations. The 5 x 2 matrix a) determines the
plan illustrated in b).

Correlation control in Latin hypercube sampling

Even though the marginal distribution of each variable is efficiently represented there is a risk
that some unwanted correlation appear, Figure 2 a). However, it has been shown (Iman and
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Conover 1982) that such unwanted correlation can be reduced by modifications in the permuta-
tion matrix P. The elements of P is divided by the number of realizations plus one, and mapped
on the (0,1) Gaussian distribution,

P
—_ &1
Y =7, <——n . 1) (@)

Then the covariance matrix of Y, C,, is estimated and Cholesky decomposed as
LLT = g, (3)

where L is lower triangular. A new matrix Y* with sample covariance equal to the identity is
computed as

Y =YL Y (4)

and the ranks of the elements of the columns of Y* become the elements in the columns of

the matrix P*. If P in Eq. 1 is replaced by this matrix the sampling matrix U will contain
a considerably lower amount of unwanted correlation. Figure 2 illustrates the effect of the
correlation reduction procedure in a two variable sampling plan, a) represents the sampling plan
before, and b) the sampling plan after the correlation reduction.

mmmn"

Correlation
reduction

ﬁ@—

e

a) b)

Figure 2: Unwanted correlation of sampling plan a) is reduced in plan b).

If the target correlation matrix is different from unity the target correlation can easily be applied
by multiplying, to the right, the right part of Eq. 4 by the upper triangular matrix from the
Cholesky decomposition of the target correlation matrix.

It is important to note that the correlation reduction procedure described above requires the
covariance matrix of Y, Cy, to be positive definite. This means that the inequality n > &k must
be fulfilled. Unfortunately this is a severe restriction in many applications. If, for example,
the random field is discretized to coincide with the finite element mesh the correlation control
requires the number of realizations to be higher than the number of finite elements. However, if
the random properties of adjacent elements are correlated the original set of random variables
can be represented by a lower number of uncorrelated random variables. This is taken advantage
of in the sampling procedure proposed below.

Correlation control in transformed variable space
The target correlation matrix C can be factorized as
D=2"cz 5)

where D is the eigenvalue matrix of C, and Z is the corresponding, orthogonal eigenvector
matrix. If the values at different locations of the discretized random field are significantly

10



correlated the sum of the r largest eigenvalues, where r is a small number compared to the total
number of eigenvalues, is approximately equal to the trace of D. This means that if the r largest
eigenvalues are stored in the diagonal » X r matrix D and the corresponding eigenvectors are
stored in the k X r matrix Z the target correlation matrix is approximately equal to C where

& = 2D7T (6)
The original set of k correlated random variables, with target correlation matrix C, can thus
be replaced by a set of r uncorrelated random variables with target correlation matrix D. This
representation is commonly employed in conjunction with standard Monte Carlo sampling to

decrease the computer effort of generating random numbers, and it is easy to transform the
uncorrelated random numbers back to the correlated space.

When, the random variable representation is employed in conjunction with Latin hypercube
sampling, with correlation reduction, it also contribute to relax the restriction; n > k. The new
restriction read, » > r, and in many situations, as stated above, r <« k. The Latin hypercube
sampling on the uncorrelated variables starts by generating an n x r matrix P in which each of
the 7 columns is a random permutation of (1,n). Then the procedure continues, equivalent to
Eq. 24, as

v =ag), (%) )
LLT = ¢y (8)
Y =v@ T 9)

where Cj is the estimated covariance matrix of Y. Now the ranks of the elements of the columns
of Y* become the elements in the columns of the new matrix P*, and the final sampling matrix,
in the original variable space, is established as

U=r"! (@ (@(0}1) <PH;R> \/BZT>) (10)

where R is an n X r matrix of independent random numbers from the uniform (0,1) distribution.

The sampling matrix U represents the random field efficiently with respect to the marginal dis-
tributions, as well as to the correlation structure. This will be confirmed during the presentation
by means of numerical examples. It will also be shown that the method, in conjunction with
the Neumann series expansion method, is a very efficient, and generally applicable approach
compared to alternative stochastic finite element approaches.
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Peter Raback
Center for Scientific Computing
P.0.Boz 405, FIN-02101 Espoo

E-mail: Peter.Raback@csc.fi

Introduction

There are many practical problems of interest where the physical shape changes with
time. These include processes in growth, etching and molding. In order to solve such
problems a tool which can track the free surface and solve the equations of change in
the continuous domains is needed.

In this paper we propose a novel version of the finite element method for solving the
free surface problems. The basic idea is to use a fixed mesh in which the elements are
divided at the zero level-set so that the shape of the free surfaces is accurately described.

Computational Method

In the level-set method the free surface which may be difficult to track is presented by
zero level-set of a time dependent function, ¢(7,¢) [1, 2]. In the conventional level-set
method the differential equation is written directly in terms of ¢. In the presented
method we use the standard finite element method to calculate the rate at which the
free surfaces move [3, 4]. This data is then used to determine the level-set function at
the free boundary. At other nodes the level-set function is obtained by

¢(7,t) = min (¢(7, 1) £ |7 = 7|) |per , (1)

where the sign is selected so that the free boundary moves in the negative direction.
The signed distance ensures that the level-set function is smooth and continuous. The
free boundary on the next time-step is obtained by finding a new zero level-set using
the original mesh.

The original elements are divided to smaller elements so that the boundary is accu-
rately described. The initial mesh consists of bilinear elements that a line may divide
in several ways, some of which are shown in Figure 1. If two lines are considered even
more cases are introduced.

If the line crosses the element very close to an original node, a new node at that
point would result to a poor aspect ratio for the new elements. Therefore a minimum



\ < N

2 squares 4 triangles 1 triangle + 1 square 2 triangles
Figure 1: Different ways of dividing a rectangular element by a line

deviation, €, in the value of the local coordinate is required before a new node is created.
This creates consistency problems since if the change in the coordinate is small the free
boundary may get stuck to the fixed nodes. Therefore we keep book of the introduced
errors so that even multiple tiny steps will eventually free the boundary from the node.

Numerical Example

We apply the method for a simple problem that might represent isotropic etching driven
by diffusion of a reactant. The stationary form of the diffusion equation yields

~Vic=0, Feq, )

where c is the concentration. At the surfaces the reactant is consumed at a rate propor-
tional to its amount,

dc

— = —kc, TeTly, 3

on r ! 3)
where k is a constant. The solid material is eaten by the reactant and thus the etch rate
is also proportional to the concentration. The change in the level-set function is thus

dp =Kcdt, FeTy, 4)

where di is the time-step and ¥’ a constant. The time-step may be chosen so that the
mean change in the level-set function (d¢) is the desired one. The process is driven by
an external fixed concentration,

c=cy, 7T, (5)

The test geometry consists of a rectangular block (size 1 x 2) that is being etched
from both sides, on the left ¢ = 1 and on the right ¢ = 2. Other parameters are & = 100
and (d¢) = 0.005. Figure 2 shows the computational boundaries at different steps.
The boundaries move smoothly and the changes in topology are handled without any
problems.

The computational mesh at step 104 is shown in Figure 3. The original mesh consists
of 3060 elements and 3189 nodes. The diffusion equation is only solved outside the solid
block which makes the number of unknowns vary with the step.

13
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Figure 3: The computational mesh and the concentration at step 104.

The solution of 150 steps with Compaq AlphaServer running with 525 MHz took
only 8.7 CPU-seconds. When the number of nodes was doubled the time increased to
32.1 seconds.

Conclusions

The method works as intended and can be used to resolve complicated free surface prob-
lems. The accuracy of the method is difficult to estimate. Small errors are introduced
when the approximation for the free surface is set. Due to the problem of locking the
grid convergence is not automatically obvious.

The simple example shows the power of the method. However, the physics is not
realistic and further work is required for practical applications. The modification is

14



quite straight-forward since it only affects the equations of change. The method could
be further developed for three dimensional problems as well. The number of ways that
an element may be divided would be larger but the principle is yet the same.
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Abstract

The layered composites consist of thin orthotropic plies, in which stiff fibres are embedded
in softer plastic matrix material. Thus, the properties of a lamina are highly directional
and anisotropic, and the properties of structures made of these laminae can be tailored to
fulfill specific needs by varying the orientations and thicknesses of the plies, for example.

As the composite material itself can be considered as a structure, see Fig. 1, the number
of possible design variables in designing of structures made of composites is larger than in
designing of structures made of isotropic materials. Lay-up parameters, i.e. the number
of layers and orientation and thickness of the plies, are usually applied directly as design
variables. Consequently, all kinds of thermomechanical properties can be considered in
the same problem: layer properties, such as values of failure criteria, as well as global
properties, such as stiffnesses of the laminate. The limitations of manufacturing can be
taken into account in tailoring, and after design the manufacture of the structure is more
or less straightforward. However, most thermomechanical properties depend on lay-up
parameters in a nonlinear way, and optimization with respect to lay-up parameters often
suffers on various local optima. Also, number of design variables may be rather high some

of them being continuous but some discrete in character.
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Fig. 1. Structure of a layered laminate.

The lamination parameters are moments of trigonometric functions through the thick-
ness of the laminate, with which the terms of sines and cosines appearing in rotation
formulas of an orthotropic material can be replaced (Tsai & Pagano, 1968). As the num-
ber of lamination parameters needed is sufficiently small, and as many thermomechanical
properties are linear in the lamination parameters, they are useful as design variables in
optimizing the global properties of laminates. Then the number of design variables is
independent of the number of layers and all variables have continuous character. The
most attractive benefit of using lamination parameters as design variables is that optim-
ization problems often become convex (Grenestedt & Gudmundson, 1993), and thus the
convergence to the local optima can be avoided. Drawbacks in using lamination para-
meters as design variables are that only the global properties of the laminate, such as
the natural frequencies, can be presented as functions of lamination parameters. Also,
after finding optimal lamination parameters, some procedure is needed to generate a real
lay-up corresponding to these optimal parameters.

Here the optimization of laminated structures is divided into two phases: first an
optimization task considering global properties with the lamination parameters as design
variables is solved and then another optimization search is formulated for creating real
lay-ups having lamination parameters as close as possible to the optimal ones. In the
first phase global properties of the laminate, i.e. stiffnesses, natural frequencies etc. are
minimized /maximized with respect to lamination parameters. Gradient-based algorithms
can be employed in optimization, because these problems are often convex. If laminates
considered are supposed to be symmetrically laminated, in-plane and bending behaviour
of the laminate can be usually handled in separated problems. In the second phase lay-
ups having lamination parameters as close as possible to the optimal ones are searched by
minimizing the difference between the lamination parameters in the current design set and

the target ones. As now the detailed lay-up of the current design point is known, also the
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layer-wise properties can be taken into account. In-plane and bending behaviour can now
be connected and laminates having both in-plane and bending lamination parameters as
close as possible to the optimal ones can be generated. Stochastic optimization algorithms
are beneficial in optimization with respect to lay-ups of laminates, because gradients with
respect to design variables may be difficult to define analytically and some design variables,
such as thicknesses, are often of a discrete character.

In this work genetic algorithms (GA) are applied for determining lay-ups having op-
timal or close to optimal lamination parameters. The GAs are well suited for that kind
of problems, because the computation of the values of the lamination parameters is fast,
and no time-consuming FEM solutions are needed during the iteration. Often the thick-
nesses and orientations of different layers can have only discrete values and the number
of available uni/multiaxial plies may be limited. This can be handled easily in the GA
searches, where all the design variables are discrete in character.

In examples coupled thermal-structural problems of laminated plates are considered.
The strain energy, or certain displacements of laminated plates due to given boundary
temperatures and displacement boundary conditions are optimized with respect to in-
plane lamination parameters, and corresponding lay-ups are searched by using the GA.
Also, buckling of the laminated plate due to given boundary temperatures is considered.
The buckling factors for thermal loading can be expressed as a function of four in-plane
and four bending lamination parameters, and the smallest buckling factor is maximized
with respect to these parameters. Lay-ups having the lamination parameters as close as

possible to these eight optimal ones are finally searched.
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On structural optimization problems using the
homogenization approach

A. Hillebrand * T. Karkkainen * and M. Miettinen T

1 Introduction

An abstract structural optimization problem of the material layout can be formulated
as follows:

inf / sup J(a,u) such that F(a,u) =0, (1)

a€4ad " a€Aqg

where a is the control variable (e.g., the conductivity or the elasticity tensor), u the
state variable (e.g., the temperature or the displacement vector), J the cost function
(e.g., the conductivity or the compliance of the structure), F the state equation (e.g.,
the heat or the elasticity equation), and A,y is the set of the admissible controls
(structures). Assume that we have k phases having different material properties
represented by a;, ¢ = 1,...,k. Then A4 is defined by

Ay = {a:a= Z Xi@; + possible constraints}
i

in which x; is the characteristic function of material 3.

The studied problem can be interpreted as follows: Having several different mate-
rials at our disposal find the structure, i.e. the distribution of the available materials
which minimizes/maximizes the given criteria. For example, the aim could be to find
the stiffest or the most compliant structure in elasticity or the structure having the
minimal or the maximal resistivity in conduction.

Usually such problems do not have a solution in a classical sense: one gets better
and better structures by mixing the given materials on finer and finer scales. There-
fore, we have to extend the basic class of structures A, into A,q, which includes
also the generalized structures, (e.g., laminated or fiber reinforced) composites. The
homogenization method allows us to determine the macroscopic properties of the
composites from their microgeometry, which, for laminates, is determined by the

*University of Jyviskyld, Department of Mathematical Information Technology, PO Box 35
(MaE), 40351 Jyviskyld, Finland

tUniversity of Jyviskyld, Department of Mathematics, PO Box 35 (MaD), 40351 Jyviskyls,
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width and orientation of the layers. Moreover, it can be shown that the relaxed
problem arising from (1), where 4,4 is replaced with A,4, has a solution.

The main difficulty in the homogenization approach is the determination of Agq,
the set of all possible mixtures of the initial phases. In the homogenization theory
this set is called the G-closure, and its explicit characterization in general cases is
unknown. However, in practical structural optimization problems (e.g., due to the
manufacturing constraints) one is usually allowed to use only a limited number of
basic structures. In this case the cost function J can be optimized in A,; for which
Agd g fiad g A,q. For example, Agq could contain the original phases 7 and all
possible single laminates arising from them. In general this approach is referred as the
partial relaxation of (1). Usually we can not guarantee the existence of the optimal
structure, but even the “suboptimal” structures in A4 can improve substantially the
value of the cost functional.

2 Model problems and their parametrization

Let us assume that we have two linearly conducting isotropic materials with the
conductivity tensors ol and I with a < 3. Then the set of admissible materials is
defined by:

Aw={a [ a=((1 - x(z))a+ x(z)B)I and /nx(ar:) dr =p|Q|}, (2)

where p is the volume fraction of the better conducting but presumably more expen-
sive material 3. As the state equation F'(a,u) = 0 we choose the linear conductivity
equation:

{—div(a(m) Vu)=F inQ, @)

boundary conditions on 99,
where 2 C R? and f is a given heat source or a sink term.

Example 1 A problem of mazimization/minimization of the torsion rigidity of an
elastic bar made of two materials with different shear moduli u, and p,. Assuming
that the bar is cylindrical and infinitely long with the cross-section Q, we can formulate
this problem as

inf / sup Lu(:c) dz, (4)

6€Acd " acAyy

where u solves (3) with f = 1 and u|zq = 0. Above the conductivity represents the
inverse of the shear modulus: o = 1/p;, and 8 = 1/p,. Hence, the minimization of
the temperature means the mazimization of the torsional rigidity and vice versa.

Example 2 A problem of minimal temperature. For Q = (0,11) X (0,12) with 8Q =
UL T and Ty = (0,0) x {0}, T2 = {Li} x(0,L2), T's = (0,41) x {Iz}, Ty = {0} x (0, 1y),
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the body Q is heated from the upper part T'3 and cooled from the lower part T'; while the
other boundaries are insulated. We want the average temperature in the subdomain
Qo C Q2 to be as low as possible, which yields the optimization problem

inf u(z) dz. (5)

a€ Aad Qo

Again, u solves (3) with f =0andu=0onT;,u=1o0nTs, andaVu-7 =0 on
Fuly.

Consider next the homogenization based relaxation of the set Ay in (2). We
approximate the G-closure 4,4 of A,y (in this case we obtain the full relaxation) us-
ing a rotated 2-laminated structure. The actual construction is illustrated in Figure 1.

Periodic cell on the finer scale Periodic cell on the coarser scale

1
n

Figure 1: 2-laminated structure and its parametrization.

2

Dp 1- pg

The parametrization of the laminated structure can be described using the three
volume fractions p3, pg, p}. The unknowns P}, pp correspond to the amount of better
material used on the two scales, and p. refers to the amount of the material o on
the coarser scale. Finally, the relaxation is completed with an extra unknown 6 to
describe the rotation R(f) of the laminate. This construction yields the full relaxation

Aad={a=R(0)Ta,0R(0) | OSP;%SL OSPESI, OSP}I, pi_f_péSl,

/n po(B7h,0L) <219 1, (6)
where
ps(Pg,P5,P:) = ph+p5(1—ph— b)), (7)
1
2 1 .1 a 0
ao = ao(Pp, Pps Pa) = (0" ag) (8)
with
A —3°pp(=1+p}) + ?piph + aB(1 + ph(—1 + p3) — pLp3)
‘ B+ opf — B} ’
2 = af(o(~1 + pj) — Bp3)

o?py(=1+p3) — B°pip + aB(—1+ph(1 — p3) + plp3)
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Here the symbol pg denotes the volume fraction of the material 3 and ag the effective,
homogenized conductivity tensor of the 2-laminated structure.

3 Numerical realization

The numerical realization of the structural optimization problems given in the previ-
ous chapter is based on the finite element method (FEM). The original domain € is
divided into subdomains €;, i.e. so-called material elements, where a piecewise con-
stant approximation is applied for the set of unknowns ((p3)i, (p})s, ()i, 6:) arising
from the periodic cells. The state variable u is approximated in the same mesh using
quadratic polynomials as basis functions.

The actual optimization is performed using an SQP-method (Sequential Quadratic
Programming) with a limited memory quasi-Newton based approximation for the
Hessian. To have an efficient numerical realization, we have performed the sensitivity
analysis of the discretized problem in order to find the gradient with respect to
the unknows via solving the so-called adjoint state equation. The adjoint variable
is discretized using the same basis as the state variable u, and a preconditioned
Conjugate Gradient method is applied for solving the linear systems arising from the
discretized state and adjoint equations.

To this end, Figure 2 contains a numerically computed optimal structure of the
maximal torsional rigidity problem in Example 1 with o =1, § = 2, and p = 0.5.
The white color represents more rigid material and the arrow the rotation of the
laminated structure.

1

oz

Figure 2: Computed optimal structure in Example 1.
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OPTIMIZATION OF CLAMPED PLASTIC SPHERICAL SHELLS

J. Lellep and E. Tungel
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1. INTRODUCTION

Due to the simplicity of their manufacturing the special significance have the designs
of piece wise constant thickness. Optimal designs for stepped plastic shallow shells have
been established by J. Lellep and H. Hein (1993, 1994) and for deep spherical caps by J.
Lellep and E. Tungel (1998).

In the present paper the stepped shells clamped at the edge and pierced with a
central hole are considered. The exact solutions are established under the assumption that
the material of the shells obeys the generalized square yield condition and the associated
flow law.

2. FORMULATION OF THE PROBLEM

Consider a spherical shell of radius A subjected to the uniform external pressure of
intensity P (Fig. 1). The external edge of the shell (the circle at ¢ = ) is clamped and
the inner edge (at ¢ = «) is absolutely free. Here the angles o and S are considered as
given angles.

We are looking for the design of the shell confining our attention to the case of the
stepped shell with one step in the thickness. Thus thickness of the shell is

_ ha, @€ (a7a1)
h—{hl, ‘Pe(alaﬂ) (1)

where ho, ki, o; are to be considered as unknown constant parameters. These parameters
have to be determined so that the load carrying capacity P of the cap attains the maximal
value over the set of shells of the same weight (or mass, or material volume).

3. BASIC EQUATIONS

The equilibrium equations can be presented as

(n1 sin @)’ — ng cos p = ssin ¢,
(n1 +ng+p)sing = —(ssin ), (2)
k [(m1sing) — mycos ] = ssin g,
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where

n1_2 = w =

w
A,

m = U_—(J—
1,27== —Aa

bk he_PA ®
=gy MER T PTN;

Material of the shell is assumed to be an isotropic, homogeneous rigid-plastic one
obeying the generalized square yield condition suggested by R. Sakaranarayanan (1964).
This yield condition has its own application area but it can be handled as an approxima-
tion to the Tresca yield condition as well.

The exact yield surface in the space of generalized stresses is approximated as a
generalized square yield condition.

It is resonable to assume that the stress state of the shell corresponds to the sides
of the squares on the planes of moments and membrane forces, respectively where

My = My, No = —No. (4)
where My and Np stand for the yield moment and yield force, respectively, e.g. M, =
0’0h2/4, No = 0'0h.

Evidently, at the section ¢ = ¢y moment m; attains its maximal admissible value,

e.g. the hinge circle appears at ¢ = . Assuming that hg < h; one has an intermediate
condition

ma(e) = =75 ' (5)
The boundary conditions for the considered case of geometry of the shell are fol-
lowing

mi(e) = ni(a) = s(e) =0, mi(B) = —+. ‘ (6)
Making use of the non-dimensional quantities (5) one can present the weight of the
shell as

v = (cosa — cos a1)(370 + 4k773) + (cos aq — cos B) (31 + 4k%4}). )
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4. SPHERICAL CAP OF PIECE WISE CONSTANT THICKNESS

Substituting (4) in (2) and integrating leads to the result

1 ;
s = 5(2’)’0 —p)p—a)+ g::z: sin(yp — a);
ni1 = Yocotipla—p)+ ;—Jcot (e — a+sinacosa) — gcos2 o;
11 . (8)
m = 7+ T [5(270 —p)(1 —pcot+ acotp) + I2~)sm2 o+
+ gsinacosacotgo] - :2: (73 + ’;C—0>
for ¢ € (e, 01).
Similarily one obtains
1
s = 5(2m —p)p— D1+ (D2 +m)coty;
m = 5(2m—p)(1—pcote)+Dicoty+ Dy (9)
111 D
mi = ¥+ = [5(2m —p)(1 —pcot ) + Dicotp 4+ Dy + | + ——,
k|2 sin

for ¢ € (o, B). In (9) D1, D3, D; stand for arbitrary constants of integration.
Satisfying the continuity requirements for m;, n; and s at ¢ = o7 whereas m;(aq) =
—v¢ by the use of (8), (9) one can get Dy, D3, D3 and p.

Numerical results are presented in Table 1,2 and Figure 2 for several values of angles
o and f.

Calculations carried out show that the load carrying capacity of the cap can be
considerably increased when using the design of the shell with one step in the thickness.
For instance, in the case £ = 0,02, « = 0,8 and # = 1,0 the limit load for the stepped
cap exceeds the carrying capacity of the reference shell of constant thickness more than
20% (Table 1).

In Fig. 2 upper lines correspond to the reference shell wheas lower ones correspond
to the stepped shell. It can be seen from Fig. 2 that the solutions obtained above are
statically admissible.

Table 1: Design of maximal load carrying capacity (k = 0,02)

a |B |o Yo Y |e p Po

0,4 0,6 [0,5221 [ 0,6471 [ 0,80 | 17,54 | 2,308 | 1,964
0,4 ]0,8]0,7384 | 0,8640 | 0,89 | 3,00 | 1,555 | 1,510
0,4 | 1,0 | 0,9542 | 0,9445 | 0,95 | 0,65 | 1,488 | 1,479
0,6 [ 1,0 0,9326 | 0,8510 | 0,88 | 3,18 | 1,387 | 1,344
0,8 |1,0]0,9277 | 0,6614 | 0,79 | 20,20 | 1,959 | 1,630
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Figure 2: Bending moment for a cap

Table 2: The design of minimum weight (k = 0,02)

a |8 |a N Y2 P e
0,4 (0,6 | 0,5209 | 0,7174 | 1,1208 | 2,785 | 10,55
0,4 | 0,8 |0,7258 | 0,9319 | 1,1143 | 1,754 | 2,65
0,4 | 1,0 | 0,9458 | 0,9852 | 1,0571 | 1,570 | 0,63
0,6 | 1,0 | 0,9194 | 0,9245 | 1,1251 | 1,578 | 2,91
0,8 | 1,0 | 0,9161 | 0,6838 | 1,1221 | 2,330 | 12,41
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On sensitivities of optimal shapes
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Introduction. In optimal design of structures and materials we base the optimization on an objective, on
constraints and on a number of model parameters. Furthermore, our calculations are based on a numerical
modelling. All these parameters have an influence on our resulting values for the response, like stresses and
eigenvalues. They normally do also have an influence on the resulting optimal design and this last aspect is in
focus for the present short note.

Problems of optimal design can be divided into three main categories: size, shape and topology. Like size prob-
lems, shape problems are described by continously varying parameters but the reference domain for the model
is changing (for 1D—problex the length, for 2D—problem the boundary curve, and for 3D—problem the
boundary surface). In the present note we discuss 2D —problems, as exemplified by the shape of a hole in a
plate (disc).

We shall discuss the influence on the optimal shape of

*  the chosen objective (minimum stress concentration, minimum compliance or constant energy density)
 finite size domain (interacting holes) ¢ boundary conditions (given displacements or given stresses)
e anisotropic material parameters * Poisson’s ratio for isotropic materials

* non-linear elastic material * numerical modelling

A classical problem and its analytic solution. The 2D —hole problem is illustrated in fig. 1 and shown with a
biaxial load case. Numerical results for this case are also contained in Kristensen and Madsen (1976) and these
are compared to what is mentioned as the “analytical” results. Analytical studies of the problem are reported
byBanichuk (1977) with reference to even earlier results by Cherepanov(1974). These analytical studies prove
that a constant tangential stress 0, = o, + 0, is obtained with an elliptical shape design where the ratio of
the two half axis @, b equals the ratio of the stresses, i.e. a/b = 0,/0,, assuming equal signs for ¢, and o, .

g, = Ee?
O Y “ =0
L] X2 g = %az -
X, 01
N
— a= %b —
€
l | I ] l ! 0 0.005 0.01 0.015 0.02

Fig. 1. Hole problem and applied materials for the discussions to follow.

A simple parametrization and an optimization method. This elliptical shape design will only be the solution
forahole inan infinite space (very small hole). Thus we need additional design parametrization and we choose
the most simple one shown in fig. 2, with the three non—dimensionat design parameters @, # and 7. The
specific optimization problem is then formulated by

Minimize. U = > U.= Y V. subjectto V=3 V.=V 1)

where U is the strain energy, U, the strain energyin element (domain) e, &, the mean strain energy density,
V. the volume of element e, V' the total volume (hatched in fig. 2) and ¥ is a given volume.

27



‘§

//fa////// 7 %/’

»B_/

//////!//f///////f/////f

ﬁ\\

et

Fig. 2: The simplified shape parametrization used in Pedersen (1999) for material design.

As shown in Pedersen (1999) the resulting necessary optimality criterion for a solution to (1) is

azus —ﬂz saﬂ P(ﬂ)z saﬂ (2)
restricted to summation over elements s at the shape boundary and with p(y) defined by
pln) = 2¥2/n) — ¥(1/n) - ¥(n + 1)/n) ®)

where W is the Psi—function. The Lagrangian muttiplier 4 is chosen to satisfy ¥ = V. Optimal designs are
located by an iterative method where the shape parameters a , 8, 1 are redefined with the goal of satisfying
the optimality criterion (2). The volume V' depends monotonically on the parameters a , f and # and rapid
convergence is experienced. The procedure is a traditional optimality criterion method and details will there-
fore not be given.

Influence of domain size. Only problems with symmetry relative to the x—axis as well as to the y—axis in fig.
2 will be dealt with and thus only results for the first quadrant of fig. 2 will be shown. With reference to fig. 2
we define the relative density p as the ratio of the area of the solid part (hatched) and the total area (4A4B).
The asymptotic case of p — 1 is a small hole for which classical analytical design results are available. The
other asymptotic case of p — 0 gives a frame structure and we shall concentrate on the intermediate cases
ofsay 02 <p < 08.

|
W :ﬂ?ﬂﬂﬁ

Fig. 3: Left the optimal shape parameter n as a function of relative volume density o and right the resulting “2D—bulk” modulus x
for three different values of Poisson’s ratio v .

[E] [ [ 9.8 p ?

The most simple case of design for maximum bulk modulus (here proportional to U) for a 2D—material is
with the parametrization in fig. 2 described by a single parameter #,with 4 = B and a = $ uniquely deter-
mined by p and 7 . The resulting optimal designs are shown in fig. 3 left with the curves in fig. 3 right giving
the resulting Hashin—Shtrikman bounds. For this case the obtained optimal designs are independent of Pois-
son’s ratio, but the resulting bulk moduli are highly dependent. Note in fig. 3 right that for negative Poisson’s
ratio an almost linear dependence of x as function of p , while for positive Poisson’s ratio a higher order
dependence is observed.

Influence of boundary conditions. The boundary conditions behind the solutions in fig. 3 was uniform forced
displacementsat x = 4, y = B corresponding to pure mean dilatation g = & .For p — 1 (small holes)
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this will also be the solution with forced uniform boundary stressesat x = A, y = B corresponding to mean
hydrostatic pressure @, = &, . For finite size domains the two solutions will be different as shown with the re-
sults in fig. 4.

Displacement loads Stress loads Mixed loads
Initial -
designs
n=2
Umax = 1.58 Umean = 0.799 Unax = 1.69 Umean = 0.817 Umax = 1.61 Upepn = 0.844
— T
Optimal
designs

Umax = 1.34 Upe,y = 0.800 Umax = 1.57 e = 0.816

Fig. 4: Starting designs in upper row with # = 2 and optimal solutions in lower row with column left: forced displacements with
n = 2.26, column middle: forced stresses with = 1.84, column right: mixed loads with # = 1.96 and a = 0.928 . Energy densities
along the boundaries in black and isolines for the larger principal stresses.

Influence of Poisson’s ratio. The results in fig. 4 was based on isotropic, zero Poisson’s ratio linear elasticity.
This was done to put the focus on the different boundary conditions. In earlier optimizations it was found that
the optimal shape depended strongly on the anisotropy, see Pedersen, Tobiesen and Jensen (1992), but weak

— 0.4, design b) e) v = 0.4,designb)

a) v = 0, classical design c) v

Unmean = 1.0 (r€f) wpye = 197 Upy = 0.685 upe = 1.03 Umean = 1098 Uy = 2.69
b) v = 0, optimal design d) v= —04,optimaldesign f) » = 0.4,optimal design

Umean = 1.001 Unx = 1.66 Umean = 1.100 Umax = 240

Isotropic material with Cjq11 = 1, square domain A = B, solid part p = 0.75 ,mean strains & = 1.2,

Fig. 5: Influence of Poisson’s ratio for an isotropic material, non—symmetric displaced & = 1.2 €, . Strain energy densities at boundaries
in black and isolines for the larger principal stresses.
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dependence on Poisson’s ratio and on the non—linearity was found. Also the design results in fig. 3 left are
independent of v . We will show the influence of Poisson’s ratio and focus on the influence on the optimal
shape design, rather than on the resulting stresses, strains and energies. It will be seen that for non—symmetric
problems (& = §,, &, = 7,) the influence cannot be neglected. In this short note we will only in fig. 5, show
the rather strong influence for an actual problem with only weak non—symmetry described by &; = 1.2, .

Influence of non—linear elasticity. For power law non—linear elasticity (1D: 0 = Ee€?) we have in Pedersen
and Taylor (1993) shown that in thickness design the optimal design does not depend on the non—linearity
q . This is not the case for shape design. Let us assume a constant stress, strain, energy density element and
that the strain state in element e is of magnitude e, that relates to the actual strain energy density u, by

w =y Bt “)

Then the element stiffness matrix [S,] and its derivative with respect to g can be written
- dis.) e
= -1 el o g—1 =
Isd=em1[S] . T = In(eder'[5.] = m(eis.] ©)

where [Sil is not dependent on g . Thus for elements of equal energy density (equal effective strains ¢,) we
get proportional change of the stiffness matrices and the optimal design is not changed. However, for shape
design the effective strain e, is only constant along the boundary and thus a redistribution of displacements,
strains and stresses will take place. As we see in the example in fig. 6, the optimal shape only changes slightly,
probably due to the fact that the change in e, is only in the direction orthogonal to the shape.

q =075

q =025

n = 1.987 n = 2.019 n = 2.086 n = 2219
Umas/Umean = 1.95 Umax/Umean = 2.11 Umax/Umean = 2.33 Umax/Umean = 2.78

Fig. 6: Change in optimal design for increasing non—linearity ¢ = 0.75, 0.50, 0.25. Energy densities at boundaries in black and iso-
lines for the larger principal stresses. Powerlaw o = E¢?, orthotropic Cy;y; = 1, Cpppp = 0.1, Cjjp = 0.3, Cyyy, = 0.3, rectangu-
lar 4 = 1258, non—uniform mean strain v, = 2v, at boundary, solid part p = 0.85.
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Constitutive Models for Stress Analysis of Solder Joints
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Introduction

Increased packaging density of electronic components on printed wiring boards (PWBs) has
raised mechanical reliability concerns. The thermomechanical problems are mainly induced
by the mismatch of the thermal expansion coefficients between the individual components and
the boards. Most of the current methodologies for predicting the solder joint reliability are
empirical. Since the empirical methods suffer from serious drawbacks computational modelling
is increasingly used to assess the response and reliability of electronic devices.

Computational modelling of solder materials is, however, exceedingly difficult. In general,
solder is a viscoplastic material in which the material parameters depend upon the microstruc-
ture. Processing influences the initial microstructure which then changes during the thermome-
chanical loading process induced by the electrical functioning of the product.

Constitutive Models

Quite a few viscoplastic material models have been developed for solder alloys. A rather popular
constitutive model in solder joint reliability computations has been developed by Anand and
Brown [1], [2]. This model can account for strain rate and temperature sensitivity and the
dynamic recovery processes. It uses single internal parameter which represents the averaged
isotropic resistance to macroscopic plastic flow offered by the underlying isotropic strengthtening
mechanisms such as solid solution strenghtening and grain size effects.

To make the grain-coarsening more explicit an internal state model taking into account
hardening, recovery and grain coarsening has been developed in refs. [3], [4]. In this model the
inelastic strain rate, d'™®, is given by

in _ _ -Q- Ao L mfl T
d" = %fyn = %f exp (ﬁ?) (—)\—> sinh (a) n (1)

where vy is the magnitude of the inelastic deformation rate, f,p, m and @) are material parameters,
R is the gas constant, § the absolute temperature, A, Ao are the current and initial grain sizes
(average diameters). The scalar & is the equivalent stress

5=1/3(s~3B): (s~ 3B),
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where s is the stress deviator and B is the back stress accounting for the kinematic hardening
and the normal n is defined as: n = (s — £B)/5.
In refs. [3], [4] the Hall-Petch type dependency of the flow stress on the grain size is used

oy =Y +k(Mo/NP, (2)

where the material parameters Y, k and 8 depend on temperature. The grain size growth rate A
depends on the current grain size and, according to Clark and Alden [5], is proportional to the
excess vacancy concentration ¢f. The evolution equations for the grain size and excess vacancy
concentration are:

0
s +cy
A

A=A ¢ =By —-C¢c,
where A, B and C are material parameters, and c{ is the equilibrium vacancy concentrations.

Rather complex hardening rules, adapted from the constitutive model of Miller {6], are used
in refs. [3], [4):

Y = Hyy — (Hay + Hs)(Y - Yp)?, B = K,d™ — (Kyv + K3) ( $B: B) B,
where Hy,...., H3, Kj, ..., K3 and Yy are material parameters.
Example

To show the grain coarsening effect in a cyclic loading test a simple computation has been
carried out. The loading is imposed by prescribing the horizontal displacements at the upper
boundary and it is varied by sinusoidal time amplitude relation u(z,h) = (h/100)sin(wt/tg).
The computed time interval has been 20ty with tg = 100 s. An uniform quadrilateral mesh with
200 bilinear elements is used, see fig. 1, where the material parameters are also tabulated. The
material data is taken from ref. [4], which represents mechanical properties of the binary near
eutectic Sn40Pb solder. However, the grain diameter dependency from the flow stress has been
neglected as well as the kinematic and isotropic hardening effects. Isothermal conditions are
assumed.

Fig. 2 shows the grain size distribution after the cyclic loading. Increase in the grain size is
distributed like the distribution of the accumulated equivalent inelastic strain.

Discussion

The model (1) can predict the grain coarsening effect. However, there is evidence that the solder
alloys can behave in a very ductile manner, even exhibiting superplastic behaviour. Shear-
band formation have been observed in experiments, see fig. 3. For superplastic behaviour to
occur recrystallisation has necessarily to happen. However, the model (1) cannot simulate
recrystallisation. In addition, the use of the Hall-Petch equation (2) is questionable; it is mainly
developed for steels and it predicts larger flow stresses when the grain size is decreased, which
is in contradiction to behaviour observed in superplastic materials.

The ongoing research will focus on the development of a microstructurally based constitutive
model which should be able to predict the grain growth as well as the recrystallisation processes.
In addition, damage evolutiong of solder materials should also be accounted for in order to obtain
realistic life-time predictions of electronic products.
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v=0 E = 33GPa Q = 12 keal/mol
- . v = 0.3 R = 21072 kcal/mol-K
u = (h/lOO) sm(7rt/t0) oo = 20MPs f = 105 g1
h m = 3.5 & = 10~

p = 2 A = 3.7410* (um)2s—!
A = 30um B = 411078 571

u=v=0 k = 0 C = 1.67’10_2 S_1

VOIS I IO III IS
2h = 2 mm

| Figure 1: Test example and material parameters.
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Figure 3: Deformation of 62Sn36Pb2Ag solder joint in shear test, from ref. [7] figure 5 page 215.
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ABSTRACT

Summary In this paper, a thermodynamically consistent model for mechanical
behaviour of expansive clays is presented. An implementation for numerical
simulations of stress field in a high level nuclear waste repository is shown.

In Finland, as in several other countries, it is planned to be dispose of the high level
nuclear waste in bedrock at a depth of several hundred meters. The composite copper
and steel canisters containing the spent fuel will be placed in the in boreholes drilled in
the floors of deposition tunnels. An engineered clay buffer is constructed between
bedrock and the canister. The clay which forms the buffer is bentonite, which is
expansive and considered practically impermeable when saturated with water. The
purpose of the buffer is to isolate the canister from ground water.

Because of the swelling pressure of bentonite and of the huge mass of the canisters,
mechanical stability of bentonite buffer systems is not trivial. It has to be ensured that
the canisters remain surrounded by bentonite for very long times. The analyses of
mechanical stability can be divided in two parts: elastic behaviour of the saturating
phase and long—time viscous behaviour of fully saturated system.

In this paper, a thermodynamically consistent numerical model for simulating
mechanical behaviour of unsaturated expansive clays is presented. It is based on solving
the momentum balance equation with the finite element method. The constitutive
equations are derived from Clausius—Duhem inequality for porous medium, which is
constructed from conservation laws and laws of thermodynamics. This inequality is an

multi—phase extension of the one for saturated porous media [1].

The model is essentially macroscopic. The microscopic phenomena are taken into
account in the choice of state variables. The swelling is introduced by swelling
pressure, and a modified concept of effective stress is adopted. Suction pressure and
degree of saturation are considered inapplicable quantities for media with strong
adsorption.

The material behaviour is non—linear {3], so the constitutive equations are given in
incremental forms. Transport of water is introduced as moisture diffusion.
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Since the model is intended to be used in systems with rigid boundaries, framework of
small displacements is used.

An implementation of this model to computer simulations of saturation of a bentonite
buffer system is presented. The numerical method uses segregation to deal with scale
differences. Non—linearity of the model is solved by calculating the parameter values
from previous time step. The non-—linearity also requires subsequent solving of
displacement field and deviatoric stress field at every time step. The canister is assumed
to be rigid, so it is modelled with rigid connections of boundary nodes.

The stress fields after full saturation can be used as starting points for long—time
analysis of the depository assessment performance.
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Summary. In this study proper material models for deep-drawing metal forming processes of relatively thin
metal sheet are searched using numerical simulation. Isotropic and orthotropic material models with various
hardening rules are studied. The Eulerian finite element method based on the space-time approach is discussed.
As a numerical example, necking of a ideal plastic strip in a tension is analyzed and the results are compared to
available experimental data.

1 INTRODUCTION

Deep drawing is a metal forming process used to manufacture for example auto-body
components, cans, cups, sinks, and other similar products by stamping rolled metal sheets into their
final geometric form. If the process parameters are not properly arranged, there is the potential for
various defects in the process. Possible defects are for example bottom tearing, flange wrinkling and
earing of the flange, which may occur for example due to anisotropy. The sheets are anisotropic as a
consequence of the rolling process.

Examples mentioned show that there is need for an accurate process simulation when designing a
new deep-drawing product. Using computational simulation, more accurate knowledge of material
flow, improved dimensional accuracy and optimization of metal forming processes can be attained.
For the lack of experimental results, non-linear material models for multiaxial states of stress are often
based on generalisations of uniaxial test results.

2 INCREMENTAL ELASTO-PLASTICITY

Due to the form of the stress-strain relation and large displacements, the use of an incremental
approach is necessary at some stage of the solution procedure. In the present study, the problem is
parameterised with the aid of pseudo-time 7 €[0,1] scaling, for example, the external forces or forced
displacements, and the equations are written in an Eulerian coordinate system. The basic unknowns
are the coordinates x; € Q of the material points and plasticity parameter L, which are functions of
coordinates X; of the reference domain Q and loading parameter ¢. Given the triple (Q,04,L)
corresponding to ¢ =7 , the goal is to find the new triple (£2,07,,L) corresponding to ¢ =7 + At . Then
the solution is searched in a step-by-step manner by increasing ¢ gradually.

If the external body forces such as gravity are assumed negligible, the governing equations of the
typical step are

0;;=01in Q. M

In principle, equations (1) should be satisfied in Q but one may use Q if the displacement is small.
The boundary conditions are taken to be of the Dirichlet or Neuman type i.e. either displacement or
traction is given.

Assuming that the increment At is small enough, the relative displacement is given by
Au (%) =x;(X,)—%;, and the small strain and rotation tensors are A& =(Au;; +Auy;)/2,
Awy, =(Au; ;. — Auy ;) 2+ 5y, , tespectively. The incremental form of the stress-strain relation of an
isotropic material is here

Oy = Ay Aw; Oy + A0; A8y +24(Agy; ~ ALby) @
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where sz, A are the material parameters, b, gives the correction ’direction’ to the yield surface and
AL is the increment of plasticity parameter. In the first term, the stress of the reference domain has
been transformed to the new domain.

The yield criterion, defining the value of the plasticity parameter, is written in the form

3)

AL=0 G<0,
G=0 otherwise,

where G =0 is the equation of the yield surface in the stress space. In the first case stress belongs to
the elastic region and expression (2) reduces to the usual one for linearly elastic isotropic material.

3 MATERIAL MODELS FOR PLANE STRESS ELASTO-PLASTICITY

Steel or other metals conform nicely to the theory that initial yielding will occur when the
distortional strain energy density at some point reaches a certain critical value. Generally, the
combination of the isotropic and kinematic hardening laws can be represented as follows!

G = Floy —oy(ef - x(&f) =0 @)

where F is a homogeneous function and & represents a hardening or softening parameter and is a
function of the plastic strain &f*. For most forming processes the term ¢ (back stress) can be
dropped out. For isotopic and pressure-independent material, and if the Bauschinger effect need not to
be taken into account (which is the case for most forming analysis), equation simplifies to the von
Mises criterion

G=J,—«(gl)=0. ®)

That means that the plastic flow occurs when the second invariant of the deviatoric stress tensor J,
(or the effective stress) reaches some critical value, which corresponds to the uniaxial yield limit. In
strain hardening the effective stress (or equivalent stress) is a scalar measure of the stress state. For the
von Mises yield criterion, a multiaxial and uniaxial state of stress are considered equivalent when
Jo (multiaxial) = J, (uniaxial ) which gives for the effective stress! o,z = /3, .

Nonlinear models for uniaxial loading

Hollomon’s equation states, that for many engineering alloys in the plastic regime o=k&"
where constant £ is the strength coefficient and n is work-hardening rate or work-hardening exponent.
For the rate-dependent case, the material law can be written for example in multiplicative form
o=ke"&" where m is the strain-rate sensitivity index, see for example Ghosh2. As a simple rule, in
the tensile test the work-hardening rate »n affects the stress-strain curve primarily up to the uniform
strain, and the strain-rate-sensitivity index m affects behavior primarily in the post-uniform or necking
region3. Other uniaxial material models are for example ideal plastic material, linear material,
Hollomon’s material law, Swift’s law, Ludwik’s material law, and Voce’s material law which has a
saluration hardening term of the exponential type*. Maximum load can be determined for example
using the Considere criterion which yields # = £ at uniform elongation3.

Some yield functions for anisotropic material

For the von Mises’ material the yield surface is stationary and it can be considered as multiaxial
generalization of the uniaxial ideal plastic material law and it is discussed earlier. Generally, the yield
surface will evolve with straining. Anisotropy arises for example in the rolling process due the
changes in microstructure.

Hill’s quadratic yield function® is, for its conciseness, the most widely used anisotropic yield
surface and it can be expressed as follows
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G(0) = A(0; - 03)? + B(0, — 03)* + C(0 — 0,)* 1, 6)

where 4, B, and C are constants, g; are the three principal stresses. The subscript 1 corresponds to the
rolling direction, 2 corresponds to the rectangular direction in the sheet plane, and 3 is the thickness
direction. This yield function is pressure-independent and it does not allow for a Bauschinger effect. In
the determination of the coefficients 4, B, and C, the plastic anisotropy parameter R, which
characterizes the true width strain and true thickness strain ratio, is used. However, many
disadvantages of this conventional theory have been pointed out®7. Other quadratic yield conditions
are presented for example by Parmar and Mellor3:%, Logan and Hosford!0, Bassanill, and Guptal2. A
fourth order yield function in plane stress state is presented by Gotoh6:7.

4 NUMERICAL METHOD

The numerical method based on the Eulerian scheme is discussed in more detailed way by Freund
and Reivinen!4!5, The weak form of the problem, giving the domain, stress field and the plasticity
parameter in a typical loading step, can be written as: find (x;,8,L) € U XV XW suchas

(Bu; ;,0y)g +(05y,5; = 0)g +(OL,(1- )G —ax AL)g =0 @)

L1
for all (dx;,dsy,0L)eU xV xW . Function & has the value one in the elastic part of the domain and
is otherwise zero, and the stress expression is given in equation (2). In practice, the increment of the
loading parameter Az is sought by trial-and-error and only steps with small enough relative changes in
all the unknowns are accepted.

The Dirichlet type of boundary conditions are satisfied in the weak sense to simplify treatment of
moving boundaries. Then the first term of (7) is replaced by

(By; ;,0)5 — (BDu, 1) + (Ot u; — g )y +(T0DU;, u; — 8, )F (3
where the traction vector is defined as ¢ =oyn, (n,is the unit outward normal vector to the

boundary), and the stability parameter is given by 7=Cu/h.

5 NUMERICAL EXAMPLE

For the material to be drawn, there is available a lot of experimental data obtained in an uniaxial
tension tests with isothermal conditions at different temperatures and at different loading rates13. A
typical test arrangement is depicted for example by Wagoner> et. al. or by Partinen!3. This data can be
used in determining the parameters of the chosen model. Then, simulation yields results on a more
complex geometry or loading conditions.

Figure 1 shows a tensile test simulation of metal specimen by using two-dimensional elasto-
plastic model based on plane-stress assumption. The yield function was G =F —x, where xis
constant and F is the von Mises stress measure. The problem was parameterized by multiplying the
g; of expression (8) by ¢.

6 CONCLUSIONS

For simplicity, the present models were constructed assuming isothermal conditions. However,
temperature changes can significantly affect material behaviour. Experiments suggest that, for metals
at least, the yield surfaces usually shrink in size for elevated temperatures and most material
parameters will significantly be affected by the temperature increase. In computational terms, this
means that the yield condition now needs to be extended to include dependence on temperature 7, and
the yield condition can be written as G(oy, &} ,x,T)=0.
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Figure 1. Simulated geometry of a test specimen subjected to forced displacement of the right end (only
the left half is shown) and level sets of the plasticity parameter (white ~ minimum value, black ~largest value).
Yielding starts from points where the boundary line is not smooth and moves then to the symmetry axis. The
values of the material parameters of the example case were £ =1Pa, v=0.2, x = E/10, and the lenght of
the specimen was 1.5m

REFERENCES

{11  E.Hinton (ed.), NAFEMS Introduction to Nonlinear Finite Element Analysis, (1992).

[2]  A.K. Ghosh, 4cta Metallurgica, Vol. 25, pp. 1413-1424, Pergamon Press, (1977).

[3] R.H. Wagoner, J-L. Chenot, Fundamentals of metal forming, Wiley, (1997).

[4] J.C. Simo, T.J.R Hughes, Computational inelasticity, Springer-Verlag, Berlin, (1998).

[5]1  R.Hill, The Mathematical Theory of Plasticity, Clarendon Press, (1950).

[6] M. Gotoh, Int. J. Mech. Sci., Vol. 19, pp. 505-512, (1977).

[71 M. Gotoh, Int. J. Mech. Sci., Vol. 19, pp. 513-520, (1977).

[8]  A.Parmar, P.B. Mellor, Int. J. Mech. Sci, Vol. 20, pp. 385-391, (1978).

[9]  A.Parmar and P.B. Mellor, Int. J. Mech. Sci, Vol. 20, pp. 707-720, (1978).

[10] R.W. Logan and W. F. Hosford, Int. J. Mech. Sci., Vol. 22, pp. 419-430, (1980).

[11]1 J.L. Bassani, Int. J. mech. Sci., Vol. 19, pp. 651-660, (1977).

[12] Y.M. Gupta, Acta Metallurgica, Vol. 25, pp. 1509-1513, Pergamon Press, (1977).

[13] S.Partinen, KES'97-PROJEKTI (in Finnish), (1996).

[14] J. Freund, Acta Polytechnica Scandinavica, Ma 79, (1996).

[15]1 M. Reivinen, J. Freund: On the Finite Element Analysis of Large Deformation Metal Forming Processes,
Espoo 1999, (in print).

40



ON COMPUTATIONAL PREDICTION OF OPTIMAL
ELASTIC-MODULUS TENSOR FIELDS

J.E. TAYLOR - janos@umich.edu
Aerospace Engineering
University of Michigan
Ann Arbor, Michigan 48109 - USA
Velux Guest-Professor, Mechanical Engineering
Aalborg University, Dk 9220 Aalborg East -

Introduction A number of problem situations are treated as examples of the

application of recently developed methods for the prediction of optimal structural design,
including especially those formulated for the prediction of optimal material properties
fields. The design of material properties alone is exemplified first with the treatment of
several cases in 2D where a homogeneous strain field is imposed. Results in some of these
cases, e.g simple dilatation, are counterintuitive, while in pure shear the uniquely shear -
stiff material is optimal. A different aspect of material design, one showing change in the
optimal material with evolving strain state, is demonstrated from a set of solutions where
elements of the imposed strain are prescribed in varying proportion. Finally, example
results of ‘single purpose designs’ and of ‘evolving material fields’ are presented for the
more general case of inhomogeneous loading or imposed strain. The portrayal of optimal
material properties being local in nature, results for inhomogeneous problems are sensitive
to relative coarseness of the discretization mesh and this feature is discussed, as is the
interpretation of material properties fields into the form of discrete topologies that may
correspond to practical composites design. The mechanics of what is described in this
paper corresponds in form to the usual modelling for linear elasticity of structures
composed of general anisotropic materials.

Out of the broad collection of reported developments where reference is made to
material property design in the context of structural optimization, most start with
designation of a particular form for local material properties (e.g. isotropic) as an
assumption [e.g. Cherkaev & Gibiansky (1992), Gibiansky & Cherkaev (1984), Milton
(1990)]. In this sort of approach, material properties are interpreted eventually as ‘effective

properties’ in the sense identified with an homogenization modelling interpretion of the
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design problem [ the subject is surveyed effectively in Bends¢e (1995); the forthcoming

book by Cherkaev (1999) provides a virtual compendium of related elements in applied
mathematics]. While results that derive from this conventional approach in structural
optimization have supported a wide range of practical applications in engineering design

[ see Olhoff et al (1993) as an example], because of the intial restriction to ‘assumed local
material properties’ and the related requirement for ‘relaxation in the model’to achieve a
mathematically viable form [see e.g. Lipton (1993)], these results are inherently limited.
Following an alternative approach to the continuum structures design problem, one where

the unrestricted modulus tensor jtself has the role of ‘design variable’ [ Bendsde, et al

(1994, 1995), Bendsde (1995)], optimal local material property fields may be predicted

directly out of the optimal design model. This provides for consideration of the role of
material constitution in general in the structural optimization setting, an aspect of design that
cannot be addressed using earlier interpretations for the design of continuum structures.
Local-scale aspects of the structural system, i.e. the actual material properties themselves,
comprise the fundamental elements of design and all other attributes such as material
distribution, layout or topology, and so forth are at least implicit within them. Thus to
support elastic continuum design in its broadest form, the latter alternative approach is
followed here in place of the conventional homogenization-based model.

Formulation for Optimal Continuum Structures The formulation

for structural optimization is stated in the form of an isoperimetric problem, where the
objective measures efficiency relative to structural purpose and the isoperimetric constraint
reflects a limit on ‘structural resource’or cost. To be sensible for the present purpose, i.e to
predict the best composition from among arbitrary elastic continua, the cost constraint must
be expressed in a form appropriate to reflect the contribution of individual components of
the material modulus tensor. An expression suitable for this purpose [Taylor &
Washabaugh (1995)] is based on an interpretation of unit strain energy in terms of
independent components, each component identified with independent material
contributions of energy. If the mechanics part of the formulation is interpreted in terms of
the same basis of strain energies, the entire structural optimization problem can be stated in
a compact and convenient form [Taylor (1998)]. In the problem statement given below, the
quantities symbolized by B,; B;; B, are unique to a given material and represent
constitutive design. At the same time, they comprise the basis for expression of generalized
cost, the argument of the isoperimetric constraint for the design (outer) part of the
problem. Note that this form for the inner problem corresponds to ‘minimum compliance’
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optimal design. The number (N+C) of components in the basis is consistent with the

number of independent elements of the modulus tensor. The 775. represent a fixed set of
N

reference strains - actual strain g; is given in terms of them by g;=2 ¢ 775 - and
1

coefficients e, (x) in the argument under the integral of ‘min’ ( the unit strain energy) are

quadratic in coefficients ¢, (x). The complete design problem is stated in minmax form as:

N N+C
max min {gJ:ZeyBY+ S e‘y(B-f/——B-)_/) :Idv
By.B}.By ol N+1 -
Co (x); g (x)

subject to N
B, <By<By y=1,..N subject to
0<B}<B} W - ;uwidV + Ju;dS» <0

TEBL (N 1) (N4 C) L4 {if ! }

0<B7<E; 1
5(“,‘_1' + uj.i) b zcan:-]z- =0
a

N N+C
I| X6y By+ 3 (b4 By +b7587) |dV-R<0
o\ 1 N+1

Here b, stand for unit cost, y; represents displacement field, and f;&1; symbolize

respectively the body forces and boundary forces.
On Computational Procedure The inner part of the maxmin formulation,

covering elastostatics for the continuum structure, is a quadratic program while the design
part is linear in the design variables. Among the various approaches readily available for
problems having this form, a method for iterative cycling between the max and min parts
proves to be effective. A commercial routine was used to solve the QP, and a conventional
form of optimality condition based redesign rule [see e.g. Prager(1974); Rozvany(1989)] is
used for the redesign part of the cycle. The model is tested on several basic examples in 2D
where the optimal design is predicted for a specified homogeneous strain state. In the case
of loading in pure shear, out of all possibilities for the unrestricted modulus tensor the
optimalvmaterial is composed of the single element E1212, as expected. For strain state
comprised of equal strains in orthogonal directions, say x1 and x2, the optimal material is
again composed of a single element of the tensor, this time E1122. A somewhat more
complex material is predicted as the stiffest one to resist varying ratios of orthogonal
normal strain. As the final example of this type, the optimal material is predicted for a
square specimen pinned on diagonally opposite corners and loaded diagonally at the
remaining corners. To demonstrate a different aspect of design, the topology for optimal
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reinforcement is shown (see Figure below) for a cantilevered beam made of a two-material
composite [Rodrigues, et al (1998); Guedes & Taylor (1997].

fAicknowledgement Most of the example results reported here were generated
through the efforts of Helder Rodrigues and Ciro Soto. The author is grateful for these
contributions and for many useful discussions of the basic modelling as well.
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Stress updating using ODE-methods
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The most widely spread tool for solving problems in solid mechanics is the finite element
method. When non-linear material behavior (elasto-plasticity, viscoplasticity) is considered
the inelastic response of the material is governed by constitutive equations of rate form. Al-
though it has been shown that assuming the strain rate to be constant within the increment
results in a closed-form solution for some special choices of material model, it is in general
necessary to adopt numerical methods in order to obtain the solution for the constitutive
equations.

The standard method today is to utilize the fully implicit generalized midpoint rule, which
for the von Mises yield surface is more known as the radial return method. The incitements
for adopting the radial return method are stability properties and the simplicity of the method
(for non-complex methods). However, since the material models has become more complex
the simplicity has been lost and, more important, the accuracy of the method for some rather
complex material models turns out to be unsatisfying.

An alternate method is to use some assumption of the strain rate and solve the constitutive
relations using some ODE-method. Collecting the plastic strains and the internal variables in
a column matrix ¥y and making use of the chosen strain rate assumption allow the constitutive
equations to be written as a system of ordinary differential equations ¢ = f(y,t), which
are integrated to yield the updated state. Available methods within the ODE-methods are
for example multi-step methods like Adams-Bashforth methods and single-step methods like
the Runge-Kutta methods. For the embedded Runge-Kutta methods, which are considered
here, an estimation of the error can be obtained, without any extra function evaluations, thus
allowing the accuracy of the solution to be controlled.

In order to solve the global equilibrium equations and avoiding so-called drift, global
equilibrium iterations are usually performed. The efficiency of a Newton-Raphson method
is highly dependent on the consistent tangent stiffness tensor or algorithmic stiffness tensor

(ATS). The algoritmic stiffness tensor, D1/, is defined from the relation

1 AT
d(ot) = DT d(e
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The derivation of the algorithmic stiffness tensor for the Runge-Kutta family turns out to
be extremly expensive. However, it turns out that an inexpensive approximation for the
algoritmic stiffness tensor can be obtained if the ATS-tensor is calculated using the trapezodial

rule, i.e.

1
Yyt -yt = §(flt=tc + Fli=tns)

Differentiation of y™+! with respect to ¢ yields the missing term in the ATS tensor. More-
over, a more accurate approximation for the algorithmic stiffness tensor is obtained if the
integration is performed in two steps.

To analyze the integration scheme and the ATS-tensor two different material models are
considered, an elasto-plastic mixed hardening/damage model based on the von Mises yield
surface and an isotropic hardening viscoplastic Drucker-Prager model. For the elasto-plastic
model the constant strain rate assumption is used whereas a linear strain rate assumption is
utilized in the viscoplastic model.

The accuracy of the proposed algorithm turns out to be very satisfying. Moreover, the
convergence properties of the approximate algorithmic stiffness tensor are almost as good as

for the true algoritmic stiffness tensor. Some typical results are shown below.
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Figure 1: Mixed isotropic/kinematic hardening von Mises plasticity coupled with damage. a)
Damage-displacement graph for the most damaged element. b) Load-displacement graph.
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1. Introduction

In this study the dynamics of a system of one or more sprockets connected through a
roller-chain is modeled using multibody dynamics. The dynamics of the roller chain drives is
characterized by a complex behavior with impacts between the chain links and sprockets and
by discontinuities in the system components velocities giving raise to transversal and
longitudinal vibrations on the spans of the chain. Several investigators have looked at the
problem using various approaches, for example [1-6]. In these studies it is pointed out that
several phenomena occurs in the roller-chain drives. As the individual links of the chain
engages and disengages at discrete times, between which the system exhibits continuos
behavior, a so-called polygonal effect occur. This effect in itself causes transverse vibrations
of the chain, and at the same time it creates instantaneous changes of lengths of the chain
spans between sprockets, causing axial vibrations. The consequence of this is that there is a
strong coupling between axial and transverse vibrations, and even though the driving sprocket
may rotate with constant angular velocity, the driven sprockets will rotate with time variant
angular speed.

Here, an integrated model describing the complex dynamics of the roller chain drive
including tensioners and sprockets is proposed. The roller chain drive model, based on a
multibody dynamics formulation, has one driving sprocket and one or more driven sprockets.
The complete chain is modeled by lumped masses connected by spring-damper uniaxial
elements. Special attention is paid to the capture and release of the rollers by the sprockets in
order to have an accurate model of the moving boundary conditions and impact phenomenon.

2. The model

The system of chain and sprockets is modeled as indicated in Fig. 1. Each chain link is
modeled as a mass particle, and the sprockets are modeled as polygons, in which each corner
corresponds to the seating between two teeth.

Bedded rollers

~__ ¢

\\2 \ Free rollers
Pitch palygon
\J) 2 \~._Pitch polygon

Fig. 1. Model of the roller-chain drive.
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For all the rollers that are not engaged in a sprocket, the equations of motion are

m, T Xy fxl - fx,,[
m, j;] f)’]_f}’nl_mrg
' JE : . (1)
m, 'Eﬂ.f f; Xy -/ Xny—~1
my, | _j’?ih \_f;’n[ _f)’nl—l —mrg'

where #; is thc numbcr of non-seated rollers, and the f-terms are the forces acling between the
rollers. These terms are given by

£, = T =k O +c 5"*‘ )
b in N 5}’[ 5}',‘

where the -terms are the elongation of the individual chain links. These terms can be written
in terms of the positions and velocities of the links. For example, as may be deduced from
Fig. 2, the spring forces may be written as

T )
o —yf)(l‘}’ ]“”"y"—"(l‘% ]

i+1 T

For a sprocket having a moment of inertia J; and an external applied force, f;, and
torque n,, the equations of motions are given in Eq. (4), in which @,is the angular

acceleration. The external forces are made up from the forces with which the chain affect the
sprocket and from optional directly applied forces.

my & fx,
s ¥ =15 @)
J, || @ Ay

~ roller ji+2

roller i-f I
Fig. 2. Forces due to the link flexibility acting on roller i.

The rollers that are seated on the sprockets are treated here as constrained bodies. Let
the sprocket s having ng teeth, represented in Fig. 3, have a body fixed coordinate system

(E); attached to its center of mass. Then the location and angular orientation of the sprocket
with respect to the inertial frame X,Y is described by vector q, = {xs . Vs HS}T.
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roller i-2

Fig. 3. Representation of a sprocket with bedded rollers.

For a bedded roller i fixed to the pitch circle of the sprocket, the constraint equations
may be written as
B0 ={x,~ —x,— R cos(@, + jo)=0 5
¥; —¥s— Ry sin(@, + jo) =0
Differentiating these equations twice with respect to time, and using the Lagrange
multiplier technique [7], the total set of equations may be setup as

my -1 - =1 i, | fe
mg N -1 ys fys
J S G - 8, G || 6 —ng
m, 1 X fa
m, 1 j;l fyl
1y 1 3 %n, =15, £ (6)
m, U5, | | fm,
-1 S 1 A (o)
-1 ¢ 1 o &
-1 S, 1 Atn, C:,
| -1 .G, 1 A2, .S:r
in which

S, =R, sin(6, + jor)
C; =R cos(6, + jo)
§'=-C,6,)

C' =5,6)

The A-terms are the reaction forces needed to constrain the bedded rollers to the sprockets.

49



3. Roller engagement and disengagement

We now assume a perfect chain, i.e. a chain that is not worn or elongated. In this case,
as can be seen from Fig. 3, a roller that engages will get bedded exactly in the bottom of the
teeth profile. Let roller k precede roller j, where roller j is the last bedded roller on sprocket s.
Then roller k will leave the span and seat on the sprocket when the vector 7, the vector from
roller k to roller j, is parallel with vector s, the vector defined along the side of the pitch
polygon of the sprocket. After some manipulation, this can be expressed as

(x;—x) cos[9s+(j+1/2)af] +(¥j = ) sin[05+(j+1/2)a]=0 )

For roller i to leave a sprocket s and become part of the “free” chain segment again, the
reaction force between the sprocket and the roller must change from a pushing force to a
pulling force. This may be expressed as

Ay cos(O+ia) + Ay; sin(@+ia) = \[Ay; + Ay; cos=

where the A-terms are the reaction force components from Eq. (6) for roller i.

®)

4. Discussion

With this model it is possible to perform a dynamic simulation of the roller-
chain/sprocket system, which includes the effects that appear when the individual chain links
engages and disengages with the sprockets, and the coupling between axial and transverse
vibrations. The model does, however, not include for example clearance between pin and
bushing, the rotational inertia of the link elements, tooth flexibility, and the actual shape of
the teeth. A model based on contact-impact forces instead of kinematical constraints, that will
handle some of these effects, is however also developed, but not implemented yet.
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Intoduction

The modern community has become very dependent on a well working infrastructure. People
as well as goods need to be transported in a fast and reliable way. During the century the
amount of transportation work has increased in an accelerating manner, and will with high
reliability do so even in the future. Therefore, governments have made, and will make, large
investments in new infrastructure as e.g. roads, railroads and airports. In Sweden as well as in
many countries all over Europe the government have made investments in a well working
railroad net for high-speed trains. Most of these commitments are working very well, but in a
few places a new kind of problems, related to the high-speed train have occurred, after the
railroads have opened for traffic.

Wave propagation in the surrounding media will always be present to some extension, when a
train passes on the railroad embankment. The level of vibrations is highly dependent on the
material properties of the ground the embankment is built on. In places where the conditions
of the ground material are bad, as for example in soft clays, the deformations seems to
increase in an extreme way when the speed of the train approaches shear wave velocity in the
subground material. This phenomenon is similar to the supersonic boom, occurring when an
aeroplane reaches the natural velocity in air. As a result of the large deformations, the trains
have been forced to limit their operational speed, or very expensive reinforcements of the
ground have been carried out.

An intensive research activity has been deducted to this problem in order to understand the
mechanisms beyond the phenomenon, and to demonstrate what factors are the most critical.
Different approaches have been made. In [1] and [2] V. Krylov presented an analytical
solution based on some assumptions ¢.g. that the load was quasi-static, for a train passing on a
Wrinkler beam lying on elastic media. A number of more or less advanced numerical
calculations based on finite differences or finite elements have also been carried out, see e.g.
[3] and [4].

Our approach is to use the time-discontinuous Galerkin finite element method when attacking
the problem. This method has a rigorous theoretical base and convergence as well as error
estimations have been derived. In 8], Hughes and Hulbert introduced the time-discontinuous
Galerkin method for the second order hyperbolic wave equation. Additional least square terms
were added in order to prove convergence for the method. Further Johnson in [5] proved for
the case of linear interpolations, that there was no need for the additional least-square terms in
the formulation to achieve convergence.
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Generally, the dG method generates a system of coupled equations larger than a direct time
integration scheme e.g. the Newmark scheme. An efficient and accurate solution algorithm
[6], [7] is thus of great importance if the dG-method should be able to compete with the
traditional semi-discrete methods used in dynamics.

Theory

Consider the second-order hyperbolic equation describing the dynamic response of a linear
elastic continuum (1), with boundary and initial condition (2) (damping effects are omitted).

pv=V'DVu = f(x,1)

in Qx1 ¢))
u-v=_0
u=g on T, xI u(x,0)=u,
@
n-o=h on I xI v(ix,0)=v,

where # and v denotes the displacement- and velocity field, respectively, Q is the spatial
domain and / is the actual time interval.

Our aim is to define a finite element method such that the displacement- and velocity fields are
continuous in space and in time on each "time slab", see Figure 1, but where we allow the
fields to be discontinuous at the time level where adjacent time slabs meet. These
discontinuities, denoted [u"] and [v” ] , will later serve as error indicators and enable us to
control the time step size.

Figure 1. Schematic illustration of nodal notations and a space-time slab

In order to make a weak formulation of (1) we have to define appropriate spaces where to
chose trial- and test functions from. The proposed finite element method can easily be derived
from the weighting residual form (3) 33of the two-field partial differential equation on each
time slab, since the test functions are nonzero just in this time interval.

R = ”w: (9" =97 DVu - f(x,0))d2dr + ”w: (T DVt —v*))dar
Qxl, Qxl,
(dynamic equation) (definition of velocity)
3)
+ Iw: )-V DV’ ¢,)]dqd + Iw: ) ppra))da = o

i Q
(displacement continuity) (velocity continuity)
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After performing integration by parts, integration in space will just result in the ordinary mass-
and stiffness matrices M, K. If the integration in time is then done explicitly we end up with

the matrix equation (4). The invoked displacements and velocities at time t; have been moved
to the right hand side.

(1 1 1 1 SR .
— —K At K ——MK|[,* -
D 2 3 n 6 n u" Ku"
1 1 1 1 _
-—K —K --AMK --AtK||u, 0
2 ) 6 3 ad @
lAt,,K lAtnK Ly Ly v | |F+Mv;
3 6 p) 2
1 1 1 1 .
—At K —AtK -—M M || Ve F,
6 3 2 2 =

where u,,v, and u,,;,v,, denotes nodal displacement and velocities at time t} and t_,,,

respectively, see Figure 1, and

Fl
[ ]= ”m” f(x,1)dQdt + I wa hdTdt o)
FZ QxI,

Tpxly

By elementary matrix manipulations of the system matrix, the two last equations can be
decoupled from the two firsts and solved separately. The nodal deformations (u,’,’ s U, ) T, can

after (v:,' > Vil ) T are known easily be obtained from the first two equations.
Numerical Experiment

In this section results from adaptive finite element computation are presented. The model is a
simplified model of a ground section where a train bogie load is passing on the upper
boundary. The shear wave velocity for the ground material in the example is around 15.5 m/s.
Geometry of the section studied can be found in Figure 2. Some Rayleigh damping i.e. a linear
combination of the mass- and the stiffness matrices, C =aM + »K , where a =b=0.005 has
been added. The relative error for the solution7* =0.1%, for time and 7' =12% for space
are specified and satisfied during the computation. The computation is performed over the
time interval[0,9.0] s.

v=11m/s, 15 m/s, 20 m/s

[

k Youngs modulus E=1-10° N/m* B
HESTETTTTETT Mass density p=1600 kg/m’ prrrrrriiiiiit
Poisons ratio v=03

28

H
[
Gl -
<o

E

Figure 2. A railroad section charged by a moving train bogie load.

An obvious observation is that the deformations increase very rapidly when the speed of the
bogie load approaches the shear velocity. The maximum stress level will increase in a very
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similar manner. Notice also the effects when the boundary traction is moving with a
"supersonic speed".
|

v=11m/s

|
|
!
i

Figure 3. Deformations of the upper boundary with load velocity 11 m/s, 15 m/s and 20 m/s.
Vertical displacements are scaled by a factor 20.
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Abstract: In this paper a numerical analysis model and its implementation are represented for
coupled-mode buffeting and flutter analysis of long-span bridges. The model combines both
phenomenons to be analysed simultaneously by means of spectral analysis method of random
vibration theory. To model has capability to anatyse fully coupled equations of motions required
for classical flutter and detailed 3-dimensional structural models. Furthermore, the implementa-
tion of the model, the “BWIND" code, is made flexible to allow usage of full sets of wind-tunnel
data, variety turbulence models including those measured on-site and modal-analysis results
imported from virtually any Finite Element (FE) codes.

Introduction

In wind-resistant design of long-span bridges, the wind tunnel testing of two-dimensional
scale-models of deck section has been proven useful for choosing between aerodynamically
stable and unstable cross-section shapes. To this aim, dimensionless coefficients named as flutter
derivatives are typically extracted from amplitude records of damped free vibrations of spring
supported model. For small initiating amplitudes of potentially divergent oscillations of the scale-
model, the flutter derivatives are shown to be independent of the amplitude of the motion, but
depended on reduced frequency K = Bn/U, in which B = the deck width, n = the frequency of
vibration, and U = the flow velocity. What is typically encountered for unstable cross-section is,
that in a certain critical value of K the torsional motion of the model become divergent indicating
tendency to torsional flutter. Wether or not the cross-section shape candidate is acceptable for
design is depending on the mechanical characteristics, especially torsional stiffness, of the
bridge’s girder and the extreme wind velocities expected into the bridge site.

For buffeting analysis the steady aerodynamic coefficients of the deck section need to be
extracted. While the drag coefficient can be conservatively approximated from tabulated data
found in literature, the same is not true for the lift coefficient and its derivative respect to angle
of attack. Wind tunnel tests are in most cases required. They could be conducted by well-
established methods of fixing the scale model in rigid balance and by measuring the resultant
reactions. Due to fluid wake behind the non-streamlined body, the resulting steady aerodynamic
coefficients should be understood to describe the time-averaged values of the drag, lift and
moment. The formation of buffeting loads (which are time depended in nature) by means of
steady aerodynamic coefficients, calls for correction factors for eddies that are small in
comparison to dimensions of the cross-section. As far as frequency-domain methods are applied
the correction factors, termed as aerodynamic admittances, can be given as a function of K. The
response reduction effect of aerodynamic admittance is significant for most bridges. Overlooking
this fact in analysis can lead to overestimation of the response of some 2...3 times.

The characteristics on natural wind turbulence are generally described by statistical quantities
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among which spectral densities, coherence functions and turbulence intensities are most often
applied for engineering purposes. The spectral density and the coherence function are due to
definitions truly frequency-depended quantities. By summarising the phenomenons described
above, it is easy to emphasize the advantages the frequency domain methods, in comparison to
time-domain methods, imply to rigorous analysis of bridges for wind load.

Considering the most challenging modemn long-span bridge projects the final designs are tested
applying the full-bridge models in wind tunnels. In such tests the response is measurable directly,
and very simple or nonc post calculations are required. While these kinds of tests can be
preformed in some wind tunnels owning a very wide working-section (4...30 m, say), it is clear
that for most projects these are omitted and semi-empirical analysis models invoking section-
models are chosen instead. This is the case in which the numerical model represented in this
paper find its moment: Calculate, as accurately as possible, the response by means of
aerodynamic data extracted through section model tests.

Fundamental equations of the model

The model combines the buffeting and flutter analysis via the Fourier-transformed equations
of motion. For linearized vibration system subjected to buffeting loads they are expressed by
formula

(- ™M +inC + K)X(0) = [i0C (o) + K (@)]X(0) + F, ) , @

in which @ = the circular frequency (= 27n) , F, = the vector of nodal buffeting loads, X = the
vector of unrestrained nodal degrees of freedom, the symbol (*) denotes the Fourier-transform
and i = the imaginary unit. Here M, C and K are the mass, the damping and the stiffness
matrices, respectively, due to the mechanical properties of the vibration systems. C,(®) is the
aerodynamic damping matrix and K, (@) is the aeroelastic stiffness matrix to be defined in terms
of flutter derivatives. The stability condition Eq. (1) implies, is independent of the buffeting
loads. On the other hand, the buffeting response is dependent on aeroelastic forces, especially on
aerodynamic damping.

Considering the buffeting loads as a stationary ergodic random process the cross co-covariance
matrix can be constructed as

T2
R,(t) = limL [ F@F + var @)
=T m

where T = the time period, 7 = the time lag and the superscript (7) means the transpose. The
relation between the cross-spectral density matrices of the response S () and the buffeting loads
Sy(®) can be expressed as

8, (@) = H(®)S (o)H(e)" 3
H©) - [-0M + i0[C - C, (@) + K - K, @ |, g

in which the superscript (*) denotes complex conjugate, H(w) = the frequency-response matrix
of the vibration system and the spectral densities are defined as the Fourier transform of the
covariance functions. Although the solution is obtainable directly through equations above the
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mode superposition approximation for H(®) is favourable for two reasons. Namely, for larger
models the calculation of matrix H(w) through inversion of a large complex-valued matrix
become extensive, but what is more important for the present model, it allows seamless
integration to FE-codes via modal analysis result files. Here, because of the mass and the
stiffness matrices are not explicitly accessible in most FE-codes. After some matrix operations
the modal approximation to Eq. (3) can be shown to take the form

$,(@) = BH(®)S H(o)H(w)"®"
A = {- ol + i0®’Ch + & - ®7i0C @) + K, @) | @)
S @) = ®'S(@)®,

in which® = the reduced modal matrix including prescribed number of the first eigenvectors and
Q = the diagonal matrix of associated eigenvalues o2 For simplicity, the mode shapes are
assumed here to be normalized respect to modal masses. It can be notified that if @ is an
invertible square matrix (all mode shapes are included), then Eq. (4) is not more than a linear
transformation of the basic equations and the characteristics of the original equations remain
invariant.

The formulation of the problem at hand is straightforward and fruit-full to computer
implementation. The phase in which turbulence statistics enters the model is the formation of
matrix S,(®). The details of this, as well as the procedure of formation of matrices C,.(®) and
K, (®), is omitted here but described in reference [1]. In general S,(@) depends on steady
aerodynamic coefficients, aerodynamic admittance functions and spectral densities of along-wind
and vertical components of wind velocity vector.

Returning to the original problem of calculating the buffeting response and critical X and
associated flutter velocity, the variance of the response in fixed wind speed is obtained by
integrating the diagonal terms of response cross-spectral density matrix over the frequency range.
Close the flutter velocity the variance increases rapidly being theoretically infinite above it. If
the analysis algorithm is repeated for sequential wind speeds, the flutter velocity and frequency
are directly detectable from response spectral densities. The peak response occurring in a given
time interval, on the other hand, can be estimated by mathematical means provided that the
turbulence is modelled as a Gaussian-process.

Implementation of the model and discussion

The model is implemented to the computer code “BWIND" programmed by standard Fortran-
77 language. The body of the code consist on five separate program-units, Fig. (1), that are
executed in sequential order for a given wind velocity. Disk-space and memory requirements are
kept in a low level by considering only non-zero terms in matrix operations. While size of the
analysis model (the basic FE-model) is unlimited the memory limitations guides the maximum
number of mode-shapes and loaded nodes. A simple graphical postprocessing program is
prepared, that can display 3-dimensional frequency-velocity-spectral density charts of the output.

Up today the BWIND-code is applied in academic research on the Raippaluoto and the
Kirkinen bridges owning the longest cable-stayed spans in Finland. These bridges, despite that
they are relatively stiff (lowest natural frequencies are of order 0.4 - 0.5 Hz), have interest in
aerodynamical point-of-view, because they contain double-web stiffening girder, that was in
early investigations [2] of 60's found problematic. The application of the model to these two
bridges highlights several aspects on aerodynamics of bridges belonging to their class. Some of
them are described below:
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¢ Below the flutter velocity, the effect of Teodde shope
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dynamic damping of vertical bending v
mode. Provided that the flutter velocity is {'/
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S‘;(n) Jor each frequency in range
experienced way, assumed in most analysis @ and the variance integration
models found in literature. This follows v >
from the fact that the masses of the pylons BWINDS B WIND4 J
are comparable to mass of the girder and | Grpheal | \Packymeionr e o |
they interact with the pure mode shapes of
the girder. Fig 1. Flow-chart of the BWIND-2 - code.

Waiting for more numerical studies on very-long span bridges to come, the coupled-mode
flutter analysis capabilities of the BWIND-code could also be demonstrated. It’s shown after the
wind tunnel experiments of current world-record suspended-span bridge, the Akashi-Kaikyo
Bridge, that the coupled mode flutter (classical flutter) becomes dominant to very-long span
suspension-bridges of its kind [3]. There is no doubt wether bridge-engineers’ll plan new record
span-lengths keeping the coupled-mode flutter analysis models, like the present model, under
special interest in the future.

The author expresses his gratitude to Professor, Dr Tech. Aarne Jutila for supervising the work
in Laboratory of Bridge Engineering. The author wishes to thank Dr Tech. Reijo Kouhia from
Laboratory of Structural Mechanics for promoting the preparation of this paper.
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DROP ANALYSIS FOR TRANSPORT CASK OF SPENT FUEL RODS

Pentti Varpasuo, Fortum Engineering Ltd, Vantaa

1. INTRODUCTION

This task is part of the design of Lianyungang nuclear power plant in Peoples Rebublic
of China. The spent fuel cask is transported in and out of the reactor building through
the equipment air lock that is located at the height of 26 meters from the elevation of
grade. The aim of the analysis work is to show that the cask can withstand the
accidental drop from that height oh the sand cushion without losing its integrity and
leaktightness. The cask has been designed for the drop from 9 meters height to hard
ground. In the following the preliminary numerical analysis is carried out for the
perpendicular drop of the cask from the height of 26 m on the soil cushion consisting of
10 cm of asphalt, 40 cm of gravel and 4.5 m of soft sand.The results of drop to soil
cushion are the compared with results of cask drop from 9m height on hard concrete.

2. GEOMETRY OF THE CASK

The cask is steel cylinder with base diameter of 2060 mm and height of 5500 mm and
wall thickness of 350 mm. The total weight of the cask is 120 tons. The actual dropping
angle of the cask is about 30 degrees from the vertical. The scheme for the cask drop to
soft soil cushion has been depicted in the following Figure 1:

26m

Figure 1 Drop of the transport cask on soft soil cushion
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3. FINITE ELEMENT ANALYSIS OF THE DROP

The straight cask drop on soft soil cushion from the height of 26 m was modeled by
finite element method. The model was developed using the twenty node solid elements
available in MSC/NASTRAN [1]. The model consisted of the cask, gravel layer and
sand layer. The dimensions of the cask are already given in Figure 1. The diameter of
the soil cushion in the model was 7.2 m and thc thickness of gravel layer was 0.4 mcters
and the thickness of sand layer was 5 meters. The boundary conditions, and model
geometry and element mesh are shown in the following figure:

e

( /’—F_‘%‘— \J
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Figure 2 Geometry and boundary conditions of the finite element model and element
mesh of the calculation model

4. COMPLETED ANALYSES
4.1. Linear Analysis of drop on soft soil cushion

In order to gain insight to the problem linear transient analysis was carried out first. The
material properties in the linear analysis were taken as follows:
e Steel
e E=200000 MN/m’
e v =03
e Gravel
e E=10 000 MN/m’
o v=03
e Sand
e E=2500 MN/m’
e v=03
The drop height of the cask was 26 meters corresponding to 22.6 m/s initial velocity of
the cask. This velocity was given as the initial condition for all steel elements
representing the cask. The lowest natural frequency and the corresponding natural
period for the cask-soil system was estimated and the the value 0.05 seconds was
obtained for the natural period. The time step used in the transient response analysis was
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0.005 seconds and the length of the analyzed time window was 0.05 seconds
representing one whole period of the vibrating system. The following two figures depict
the vertical displacement time history for node 258 located in the lower edge of the cask
and the von Mises stress time history for element 27 also in the lower edge of cask:
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Figure 3 The vertical displacement history of node 258 of drop on soft soil cushion and
Von Mises stress history of element 270f drop on soft soil cushion

As can be seen from Figures 3 the maximum displacement in the lower edge of the cask
is about 6 centimeters and the maximum stress in the center of element 27 is about 200
MPa. These results are based on the linear analysis and in case of von Mises stresses
the location of the monitoring point is in center of the element and do not represent the
maximum that is in the edge of the element.

5. NONLINEAR ANALYSIS OF DROP ON SOFT SOIL CUSHION

The material properties in the nonlinear analysis were taken as follows:
e Steel: von Mises elastoplastic material model

E = 200 000 MN/m”

v =03

Strain hardening slope 0.001

Yield stress oy = 220 MN/m’

Damping ratio 2% from critical

e Gravel: Mohr-Coulomb elastoplastic material model

E=10 000 MN/m’

v=0.3

Strain hardening slope 0.001

Yield stress 10 MN/m’

Friction angle 38 degrees

Damping ratio 10% from critical

e Sand: Mohr-Coulomb elastoplastic material model
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E =2500 MN/m’

v=03

Strain hardening slope 0.001
Yield stress 2.5 MN/m*
Friction angle 30 degrees

The drop height of the cask was 26 meters corresponding to 22.6 m/s initial velocity of
the cask. This velocity was given as the initial condition for all steel elements
representing the cask. The lowest natural frequency and the corresponding natural
period for the cask-soil system were estimated and the the value 0.05 seconds was
obtained for the natural period. The time step used in the large displacement nonlinear
transient response analysis was 0.001 seconds and the length of the analyzed time
window was 0.1 seconds representing 100 time steps and approximately two and three
quarters of the period of the vibrating system. The following two figures depict the
vertical displacement time history for node 258 located in the lower edge of the cask
and the von Mises stress time history for element 27 also in the lower edge of cask:
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Figure 4 Displacement time history of node 258 calculated from nonlinear transient
response analysis of drop on soft soil cushion and Von Mises stress time history of the
edge node point of element 7 at lower edge of the cask calculated from the nonlinear
transient response method of drop on soft soil cushion

6. NONLINEAR ANALYSIS OF DROP ON HARD GROUND

The material properties in the nonlinear analysis of cask drop on hard groundwere taken
as follows:

e Steel: von Mises elastoplastic material model

e E=200000 MN/m’

v =03
Strain hardening slope 0.001
Yield stress oy = 220 MN/m®
Damping ratio 2% from critical
¢ Concrete: Mohr-Coulomb elastoplastic material model
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E=30 000 MN/m’
v=03
Strain hardening slope 0.001
Yield stress 30 MN/m?
Friction angle 38 degrees

e Damping ratio 5 % from critical
The drop height of the cask was 9 meters corresponding to 13.3 m/s initial velocity of
the cask. This velocity was given as the initial condition for all steel elements
representing the cask. The lowest natural frequency and the corresponding natural
period for the cask-soil system were estimated and the the value 0.01 seconds was
obtained for the natural period. The time step used in the large displacement nonlinear
transient response analysis was 0.001 seconds and the length of the analyzed time
window was 0.1 seconds representing 100 time steps and approximately two and three
quarters of the period of the vibrating system. The following two figures depict the
vertical displacement time history for node 258 located in the lower edge of the cask
and the von Mises stress time history for element 27 also in the lower edge of cask:
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Figure 5 Displacement time history of node 258 calculated from nonlinear transient
response of 9m drop on hard ground and von Mises stress time history of the edge node
point of element 7 at lower wdge of the cask calculated by nonlinear transient response
method from 9m drop on hard ground.
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Figure 6 Comparison of vertical displacement histories of node 258 in soft and hard
ground drops and comparison of von Mises stress time histories of the edge node point
of element 7 at lower edge of the cask drop on soft and hard grounds calculated by the
nonlinear transient response method

7. CONCLUSION

Based on the analyses performed above and on the results depicted in Figures 3, 4, 5
and 6 the following concluding remarks can be made. Displacements obtained for
vertical drop on soft soil cushion were the same order of magnitude for both linear and
nonlinear analysis. It can be expected that for skew drop on soft soil for instance in 30
degrees axis angle with the vertical produces displacements that are twice as large as for
straight drop and could be about 10 cm. As for the equivalent von Mises stress it can be
seen for from the Figure 4 that the stress at the edge point for vertical drop on soft soil
exceeds the yield stress for extremely short time less than one millisecond. In case of
skew drop on soft soil it could be expected that the yielding will last longer, say, the
length of the compression phase of the first period or about 10 milliseconds. Even in
this case the yield will be localised to the impacting edge zone and could be expected to
occur within a radius of few centimeters from the impacting tangent point. The highly
local nature of the yield will ensure that tightness of the cask is preserved for the case
under consideration. The above discussion is confirmed by the comparison on
displacement and von Mises stress time histories for drops from 26 m on soft soil
cushion and from 9 m on hard ground. The displacement in hard ground case in Figure
6 are only a fraction of displacements in soft soil case and the peak von Mises stress is
about 1.5 times as large as in soft soil case. So it can be concluded that the 9 m
validation drop on hard soil ensures also the integrity of the for 26 m drop on soft soil
cushion.
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Structural Topology Optimization with Design
Dependent Loads

Velaja B. Hammer and Niels Olhoff
Institute of Mechanical Engineering
Aalborg University, DK-9220 Aalborg @st, Denmark

Abstract

This paper presents a generalization of topology optimization of linearly elastic con-
tinuum structures to problems involving loadings that depend on the design. Minimum
compliance is chosen as the design objective, assuming the boundary conditions and the to-
tal volume within the admissible design domain to be given, and the topology optimization
is based on the usage of a SIMP material model.

The type of loading considered in this paper occurs if free structural surface domains
are subjected to e.g., static pressure or fluid flow loading, in which cases both the direction
and location of the loading change with the structural design.

The presentation of the material is mainly given in a 2D context, but extension to 3D is
straight-forward. An illustrative example is provided in the end of the paper.

1. Introduction

The field of structural topology optimization has developed extensively in the last two decades
and has succesfully addressed a variety of problems within a wide range of applications, see
e.g. Bendsge (1995), Olhoff and Rozvany (1995), or Gutkowski and Mréz (1997). However,
although being very common, the class of problems where applied surface loads on a continuum
structure depend on the design of the structure itself, has yet to be solved.

The structural topology will be optimized with respect to minimum compliance subject to a
constraint on the total structural volume using a SIMP material model, whose volume density
parameter in each finite element play the role of design variable. The analysis model for the
optimization problem is based on a fixed mesh, and the problem is solved by a numerical pro-
cedure of successive iterations.

For the problem under study, the principal extensions relative to the usual topology design
methodology comprise a much more involved design sensitivity analysis based on an enhanced
design model that encounters one or more parameterized, smooth surface domains associated
with a prescribed iso-volumetric density of material. These surface domains serve to define
the action of the design dependent loading on the structure, and are determined by the design
variables, i.e., the distribution of the volumetric densities of material in the finite elements of
the analysis model.

A more detailed account of the present problem is available in Hammer and Olhoff, (1999).
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2. Formulation of the optimization problem

The optimization problem consists in minimizing the compliance of the structure subject to a
constraint on the volume V

min W (u*)
p(x),x€Q

st V(p) = [pa@ < v M
Q

Here, x denotes the coordinates of any point belonging to the admissible design domain Q in 2D
or 3D, and W (u*) is the compliance given by the displacement field u* at equilibrium. W is then
the work done by the external forces, which equals twice the total elastic energy at equilibrium.
The design variables are the volume densities of material, 0 < p (x) < 1, which we consider to
be constant within each finite element, and to enhance black and white (1-0) solutions, a SIMP
material model (Simple Isotropic Material with Penalization), Bendsge (1989) is used

[E()] = p)"[E"] @

Here [E] is the elasticity matrix of the SIMP material and » is a penalization power, 1 < n < 4,
which is increased gradually during the optimization process. [E*] denotes the elasticity matrix
of the solid, isotropic material for the structure.

3. The design model with the surface representation

As is common, the finite element mesh of the analysis model of the structure is kept unchanged
throughout the optimization process. This however leads to jagged and edged designs and thus
a need for a design model describing where and how the pressure acts in the current iteration.
Such a smooth surface representation is primarily needed in the domains where the surface
loading acts. This is extracted from the density distribution in a way following to a large extent
the work of Maute & Ramm, (1994), (1995).

First the volume density of material is calculated in every comer-node as the average of the
densities of all the elements that share the corner node. Next a set of points of volume densities
equal to a preselected value for a surface of iso-volumetric density is found by interpolation
from the corner node values. A set of Bezier cubic splines are used to fit these points by
solving the least square problem of minimizing the distance between the data points and the
corresponding points on the splines. The number of Bezier curves used is gradually increased
from one until a predefined measure of the fit to the data points is obtained. Figure 1 illustrates
for a 2D problem the procedure described above to find a curve (surface in 3D) of a given
iso-volumetric density.

Figure 1: A: A 2D design with non-uniform density distribution. B: Points of equal density.
C: Fit with set of Bezier curves and their control points.
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The loading is applied to sub-domains of the surface of the structure. In order to keep track of
these domains during the optimization process, their end points (in 2D) or end curves (in 3D)
are defined 4 priori. In 2D either as fixed points (for instance associated with a nodal boundary
condition), or as points allowed to vary according to the density distribution but only along
some predefined curves. The pressure loading is then distributed to the surface or contour curve
located between these end points or curves.

The load is then related to the finite element analysis model as sketched in figure 2. All the

(x1,¥

Figure 2: To the left the design model for the pressure loading. The consistent nodal loads on
the finite element analysis model are shown to the right.

finite elements cut through by the curve for load application carry a part of the loading. The
curve is approximated by a straight line in each finite element determined by its two points on
the element boundary. In the analysis model, the load on an element is distributed to all the
nodes of the element in the vector of consistent nodal forces. This way of distributing the load
is advantageous in that the pressure is sort of spread over several nodes. Hereby the problem
that loads may jump past nodes is less severe than if the loads were applied to, e.g., a single row
of nodes.

4. The successive optimization scheme

The optimization process is performed by successive iterations making use of the finite element
analysis model with fixed mesh on the one hand, and the design model with the parameterized
iso-volumetric density surface (3D) or curve (2D) for the pressure loading on the other. The
optimization performance can be tuned by optimizing the structure for fixed loading a couple of
iterations before moving the pressure. As explained above the load curves in the design model
are controlled by the density distribution in the finite element model and in turn fully determine
the global load vector on the finite element model. Thus the sensitivity analysis is based on both
the analysis and the design model. In the sensitivity analysis also the sensitivities of the load
vector with respect to a design change must be evaluated. This is done by partial differentiation
determining in turn the effect of a density variation on the points of fixed density, on the control
points of the Bezier curves, and finally how this affects the nodal loads on the finite element
model. All parts of the sensitivity analysis are determined analytically under the provision that
the density variation is considered so small that the contour curve will stay within the same set
of finite elements.
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5. Numerical example

The method developed in this paper is illustrated by the optimization of the short cover-like
structure shown in figure 3. The finite element analysis model consists of 2440 elements with
one design variable per element. The structure is clamped in both lower endpoints and is sub-
jected to a constant pressure loading from below. The curve for load application is kept fixed
during the first few iterations whereupon the pressure is restricted to act on the curve of iso-
volumetric density, p = 0.6. As this curve varies from one iteration to another, so does the
loading. A simple fixed-point type of optimality criteria algorithm, Cheng and Olhoff (1982),
is used to determine the density distribution that yields minimum compliance, resulting in the
quite distinct black (p = 1) and white (p = 0) design shown in figure 3.

Figure 3: The design model with the initial pressure distribution from below and the optimized
topology. The black domain corresponds to p = 1. The white dots mark the curve for load
application.
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Topology Optimization of Backplates with prestress:
Application for Microphones

Niels L. Pedersen
Department of Solid Mechanics,
Technical University of Denmark, building 404, DK-2800 Lyngby, Denmark.

1. Introduction

Topology optimization is used to optimize the performance of a backplate used in a hearing aid.
For reference on topology optimization see Bendsge (1995) and references herein. The hearing
aid is a rather big MicroElectroMechanical Systems (MEMS); with size of 2 mm X 2 mm as
indicated in figure 1. The principle of the hearing aid is that a pressure wave will deflect the dia-
phragm, see figure 1, leading to a capacitive change between the backplate and the diaphragm.
To maximize this change in capacitance it is vital that there are holes in the backplate to let the
pressure through, on the other hand the backplate should be as stiff as possible. In order to in-
crease the stiffness of the backplate it is chosen to use prestressing.

. 2mm .
S—————

mﬂ BEEBEER Em:::: . 2 um backplate

L/

Figure 1. Schematic side view of hearing aid. The black part is the diaphragm while the crosshatch part is the back-
plate. There is air between the two parts.

diaphragm 1 gm:g::::

The design of a presently used backplate can be seen in figure 2(a) and the design domain can
be seen in figure 2(b). The center part of the backplate is dense with small holes but we may calcu-
late a set of material data using e.g. the Hashin—Shtrikman bounds and then treat the center part
as being solid with the new material data. The idea is now that we may use the same material to
connect the center to the bounderies. This leads to a standard topology optimization formulation
where material can be distributed in the white area of figure 2(b) while the center part is fixed.

i

%

()

Figure 2. (a) Conventional design of backplate, the black center part is dense with very small holes (no visible),
while the rest of the structure have bigger holes. (b) Design task: fill the white area with material in an
optimal way.
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2. Sensitivities

In the present paper it will be shown how the backplate can be optimized with respect to two ob-
jectives; minimization of compliance (minimum elastic energy) or maximization of the first ei-
genfrequency. Optimization of eigenfrequencies using topology optimization implies a number
of difficulties which will not be discussed here, see Pedersen (1999). In order to perform the opti-
mization we need the sensitivities. Because of the prestressing of the plate the derivation of the
sensitivities of the objectives will be given. The prestressing of the plates results in an initial stress
stiffness matrix [K,] that can be found in e.g. Cook (1989). Including this matrix, the force dis-
placement relation of the structure is given by

{F} = (K] + [K,]){D} 6]

where {F} isthe force, [K] is the stiffness matrix and {D} is the displacement. The compliance
U is here defined as two times the elastic energy

U = {D}(IK] + [KsD{D} @
Taking the derivative of (1) and (2) with respect to the design parameter & yields

W - 20y + KD ERL + 0y @KL 1 A ®)
A - @8 4 A8 oy + (k1 + 1xo) LD @

Expression (3) includes the derivative of the displacement. These are removed by substituting
(4) into (3)

d dlK, d F
W — pyrd8 p) - (pyrdle p) 4 opyrdl} )
The first term in (5) is the standard expression for the derivative of the comphance In topology
optimization the design parameters are defined on element level and the first term may therefore
be described on element level. The last term in (5) can be simplified by using that the force is
given by

{F} = {Fex} + {Fo} (©6)

The derivative of the external force {F,,} with respect to the design parameters is zero, and the
derivative of the force ‘coming from the prestress, {Fg} , can be given on element level. The sec-
ond term in (5) gives rise to greater computational cost because the derivative of the initial stress
stiffness matrix cannot be handled on element level. However in the examples in section 3 the
prestress level is so high that the sensitivity of the compliance is totally controlled by the last term
in (5). It is therefore chosen for the problem of compliance minimization to neglected the second
term and this lowers the computational cost.

In order to find the sensitivity of the eigenfrequency we first define the double of the specific
kinetic energy

T = {D}[M]{D} )
With this definition the eigenvalue problem is given by
U-w’T=0 ®)

Taking the derivative with respect to a design parameter yields

42 < 2DYK) + 1Ko] - 2 ADL 1 (D)KL, Al 2dM)y

Using (8), the first term is zero leading to the final expression for the sensitivity

a0 - 0y D) - w0y LA ) + (pyrdEel (p (10)
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The first two terms constitute the standard expression for the sensitivity of the eigenfrequency
and they may be evaluated on element level. The last term is the same term as was encountered
in (5) but in this case this term can not be neglected. The initial stress stiffness matrix is given
by
elements ~
K= > [kle [kole = [ [GI"(SIIGlaV an
e=1

The matrix [G] is made from derivatives of the shape functions which are independent of #
while the matrix [S] contains the initial stress of the element, see Cook (1989). Taking the deriva-
tive with respect to design parameter s gives

dikole dis] 12
7= J (G155 [GlaV 2

To find the derivative of matrix [S] we need the derivative of the initial stress in the element.
The stress is defined by

{0} = [E]({e} — {&o}) (13)

here [E] is the constitutive matrix, {e€} the strainand {eg} the initial strain. Taking the deriva-
tive of (13) gives

49} _ 2B (e} - feoh) + (1) (a4)

The first term may be evaluated directly from the definition of the constitutive matrix used in
topology optimization. To find the second term we need the finite element definition of the strain.

{e} = [BI{Do} %;—} - [B]% (15)

where [B] is the standard matrix in finite element that relates the displacement of the element
to the strain of the element, {Dy} is the displacement coming only from the prestress. Using the
force displacement equilibrium for the prestress

{Fo} = [K1{Dq} (16)
we may find the derivative of the displacement.

d{Dg} _ d{F,} dK]
K= ="an ~ dn

Although the stiffness matrix has already been inverted we need to solve (17) for each design
parameter.

{Dy} a7

3. Examples

The power law approach with filtering technics is used in the topology optimization. For further
details the reader is referred to the vast number of papers on topology optimization. Because of
symmetry only one quarter of the structure is used in the optimization and it is discretizised into
40 X 40 elements. The dimensions of the backplate is given in figure 1 and the design domain
is given in figure 2(b). The total allowed material is 25%. The material data and the prestress level
is
E = 180-10° N/m? v = 0.06 p = 2300 kg/m®
oy = 3.0 108 N/m? 05 = 3.0 108 N/m?

The first example is compliance optimization, the external force used is a force in the center. The
result of the optimization is shown in figure 3. With no prestress we get the design shown in figure
3(a) and with prestress we get the design shown in figure 3(b). The second example is the maxi-
mization of the first eigenfrequency of the backplate, the result is given in figure 4. In the opti-
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mized result shown in figure 4(b) only 20 X 20 elements were used.

Y
- o

Figure 3. Optimized designs when optimized for compliance, (a) without prestress, (b) with prestress.

) | #
i

Figure 4. Optimized designs when optimized for maximum first eigenfrequency, () without prestress, (b) with
prestress.

4. Conclusion

The examples shows that the prestressing of the plate has a big impact on the results of the opti-
mization, and it is therefore important to include this in the formulation.
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TOPOLOGY OPTIMIZATION OF RESONATING ACTUATORS

Dmitri Tcherniak

Department of Solid Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark

INTRODUCTION

Dynamic MicroElectroMechanical Systems (MEMS) are relatively new breed of mechanical devices
in which forces induced by electricity are intended to be a source of vibrations. These excitation
forces (or displacements) usually have electro-static or electro-thermal nature, and hence they are
relatively small even in the micro-world scales. To provoke large-magnitude stable periodic displace-
ments of MEMS parts, it is reasonable to utilize the resonance phenomenon.

The paper concerns the application of the topology optimization method to design of dynamic
MEMS. Since the introduction of the method [1], it has gained widespread popularity in academia and
is now being applied to many complex structural design problems. For example, topology optimiza-
tion is a powerful tool for designing of micro-structures, e.g. designing of compliant mechanisms [2],
non-linear mechanisms [3], thermo-electro actuators [4]. There have been attempts to apply the
method to dynamical problems, eg. [5,6], where so-called multi-objective optimization method has

been used. In the presented paper, another approach is considered.

PROBLEM FORMULATION AND ASSUMPTIONS

The problem of design of real resonant actuators is very complicated. Indeed, to design electro-
thermo actuator, one has to solve the problems of distribution of potentials, temperature and mechani-
cal deformations [4], which all vary in time. That is why in the initial stages of the investigation, the
problem was significantly simplified: the excitation was considered to be a given point-force which
varies harmonically in time.

The problem formulation is shown in Figure la. The design domain D is supported in the area I”
and subjected to the force P() = P, sin Qr with frequency €. Our goal is to maximize the magnitude
of the dynamic response of the given point R in the specified direction A.

Considering a linear dynamic problem, the dynamic response X(?) is defined by the solution to a
differential equation of motion, which can be written in matrix notation as:

MX +CX +KX =P(), H
where M, C, K are mass, damping and stiffness matrices of the considered system, respectivly. An-
other assumption, that the stiffness matrix does not depend on stresses (K, = 0), is already employed
in (1). Since the formulation is linear, let us consider the excitation by a unit force: [Pyl = 1.

The displacement of the input port, where the force is applied, is Ay, (f) = k Py’ X(#), k is dimen-
sion coefficient. Similarly, the displacement of the output port is A,,(f) = k AT X(1), Al = 1. The ratio

Ay = A5, [ A, ©)
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a) b)

P,sin Q¢

Figure 1. a) Problem formulation. b) The second load case

can be called the dynamic geometrical advantage of the resonator and can serve as a convenient char-
acteristic of its quality. The superscript A in Equation (2) denotes amplitude values of the corre-
sponding time-periodic functions.

In the presented paper, the objective is formulated as maximizing GA,,. To prevent A,’»: from

vanishing, one has to impose the constraint A2 2 A;¥, which has a simple physical meaning — the
value of the real force must be finite to cause the displacement A;:. The estimation of the A;® value
can be based on the actual design of the force generator.

Obviously, very compliant structures will demonstrate large dynamic deflections even for small
excitations. Thus one has to prevent the stiffness of the structure to vanish. The obvious way is to im-
pose the constraint 4; = Q° on the first natural frequency of the system. Another way, used in this pa-
per, is to bound static deflection of the structure: the second load case which is shown on Figure 1b is
considered. The structure is subjected to the unit static force A applied at the output port, the corre-
sponding deflection of the output port is: A,,» =k ATU,, where U, is defined by the solution of the

equilibrium equation K,U, = A. Then the constraint A,,,, <A, controls the static stiffness (and,

hence static behaviour) of the structure.

Summarizing the above-mentioned considerations, the optimization problem is written as

Maximize :  Dynamic geometrical advantage GA
Subject to :  Solution equation of motion (1)

and :  volume constraint V < V*

and : inputdisplacement A, > A

and : static stiffness: A, <A,

where V* is the allowed volume of the structure. Various other constraints may be imposed to adjust

the design to specific requirements.

SOLUTION FOR THE EQUATION OF MOTION (1)

The approximated solution to Equation (1) is sought by means of the mode acceleration method (eg.
Cook, 1989), where the exact solution is expressed as a quasistatic response U, KU = Py, plus some
dynamic correction which accounts for inertia and viscous effects. The correction is an expansion on
eigenmodes, and only the first m (m << N) eigenmodes are usually retained to get an approximate so-
lution. Assuming that the first mode resonance occurred, one has to set the excitation frequency

Q =A,, and only the first term of the expansion can be kept. Then the approximation of the response
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can be expressed in the following way:

_ o1 P,
QZ

o1 Py
Qo] Cy,

X(1) = [U ¢1Jsin(9t) - 6,cos(Q1), 3)

where ¢y, A are the first M-normalized eigenvector and eigenvalue for the generalized eigenproblem

K -AM) ¢;=0, { = 1..N, and damping is assumed to be small and proportional.

TOPOLOGY OPTIMIZATION PROCEDURES

Following the standard topology optimization scheme, the design domain is discretized by N bilinear
finite elements. For modelling material properties, the power-law approach method is used: the
Young’s modulus in the element e is E° = (p°)" E°, where p is the density of the element e, and 77 is a
penalization factor. Based on experience and theoretical predictions [7], 17 was chosen equal to 3.

A variety of standard and non-standard numerical methods were used in the procedure: The ei-
genvectors and eigenvalues for lowest modes were computed by subspace iterations. To prevent the
appearance of local modes, the scheme suggested in [8], was used. The sensitivities of the eigenvector
and eigenvalue were calculated by Nelson’s method; the sensitivity of static responses, which appears
in Equation (3) and in one of the constraints, was computed by the adjoint method. To prevent check-
erboard generation, a filtering technique [9] was used. Finally, the Method of Moving Asymptotes

served as the optimization algorithm.

EXAMPLES

The two examples shown on Figure 2, present resonant actuators optimized to maximize vertical (a)
and horizontal response (b) due to excitation in the vertical direction. Two additional constraints were
imposed: the first restricted the motion in the direction perpendicular to the desirable. The second
constraint, imposed as GA 4,,/GA . > O, controls the resonance magnification factor.

Both designs contain a lot of elements with intermediate density ("grey" elements). The author
can not list the obvious reasons explaining this. Apparently, the rough resolution (26x14 finite ele-
ments in the presented example) could be the reason. However, finer resolution does not always con-
verge to pure black-and-white design. Another possible reason is that stiffness penalization is not an

efficient mechanism for "grey" elements elimination in the considered case.
grey

CONCLUSION AND FURTHER RESEARCH
The paper is addressed to the application of the topology optimization method to the design problem
of resonating actuators. A formulation for an optimization problem is proposed, the ways of solution
are suggested.

Obviously, the problem is far from the final solution. Other problem formulations will probably
lead to better results. It seems that alternative modelling of material properties, especially modelling

of internal damping, can be very effective in the case of dynamic structures.
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Figure 2. Optimal resonator topologies (left column) and extreme positions of their resonant motion (middle and
right columns). a) Optimized for vertical response; b) for horizontal response.

Referring to the efficiency of the algorithm, it is important to notice that its bottleneck lies in the
computing of eigenvector sensitivities. Hence, using alternative ways of the response representation,
which is not based on eigenvectors (for example, Ritz vector superposition), the efficiency may be

significantly improved.
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AND UNBOUNDED DOMAINS

Jukka M. Aalto

Laboratory of Structural Mechanics
Helsinki University of Technology, P.O.Box 2100, 02015 HUT, FINLAND
e-mail: jukka.aalto@hut.fi

Introduction

The paper introduces a special technique of dealing patch recovery methods in connection with
unbounded domains. This technique is based on (2) infinite strips of mapped elements called in-
finite element strips” [1,2], which are used to connect the standard finite element grid to infinite
boundaries of the domain in standard finite element analysis, (b) special polar coordinates for
representing local polynomials, which are used in the mapped area of the grid in the patch recov-
ery process, and (c) special way of representing the final, C%-continuous, smoothed derivatives in
the mapped finite elements. The paper presents in detail, how this technique is applied to the so
called superconvergent patch recovery (SPR) method [3] and to a patch recovery method [4,5],
which uses local polynomials containing information from the field equations ”built-in”, (BUI).
An infinite plate with a hole under unidirectional tension is studied as a numerical example.
Experimental convergence studies and a comparison of the SPR- and BUI-methods is given.

Infinite element strips
Geometrical mapping of an infinte element strip [1] is defined by

rm&=T%PM®+W% 1)

where p and o are ”strip coordinates”, ¥(c) and T(c) are position vectors of ”pole line” and
“interface line” (between mapped and standard finite elements), respectively, which are defined
using parametric line elements by

Ho) =) Ni(o)t, (o) =) Ni(o)r. 2)
Natural coordinates £ and 5 of an element in an infinite element strip and the strip coordinates

are assumed to be linearly related so [1], that for a quadrilateral element we have

1 (4 1 € (4
p= 5(p"i+p2)+§(pz—p1)§, o=, (3a)

where strip coordinates pf (¢ = 1,2) correspond to two opposite sides of the quadrilateral, and
for a triangular element we have

p=p3+ (Pl — P3)E+ (05 — P5)n, @ =05 + (0f — a5)E + (95 — af)n, (3h)
where strip coordinates pf and of (¢ = 1,3) correspond to corners of the triangle. Successive
equations (1) to (3) define the geometrical mapping of an element in an infinite element strip.
Special polar coordinates for patch polynomials

Special polar coordinates ¢ and 9 are defined in terms of standard polar coordinates r and 6
(pole at point P) by

R
where R is characteristic radius. In the original BUI-method (see Refs. [4,5]) patchwise represen-
tation of the basic unknown u, which contains information from the field equations, is expressed
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as a polynomial of z and y, ie. @(z, y). Here in patches, whose patch assembly point is connected
to mapped elements, it is expressed as a polynomial of g and 9 ie. @(g, ¥). In the original SPR-
and BUI-methods local representation of the derivative quantities -y is expressed as a polynomial
of z and y, ie. ¥(z,y). Here in patches, whose patch assembly point is connected to mapped
elements, it is expressed as _

where I'(p,9) is polynomial of o and 9.

Representing final, smoothed derivatives

In the original SPR- and BUI-methods the final smoothed approximation of the derivative
quantities -y is expressed as C°-continuous finite element approximation ie. v*(€,7). Here in
mapped elements it is expressed as

Y€ m) =1 — p(&,n)IT* (£, 7). (6)

where I'*(¢, ) is C~continuous finite element approximation.

On the interface line, where p = 0 (see equation (1)), equation (6) gives 4* = I'*. Thus the
elsewhere continuous finite element representation of the smoothed derivatives is also continuous
across the interface line.

Numerical example

Consider an infinite plate with a circular hole of radius a. The state of stress far (r — oc) from
the hole is assumed to be 0y = 0w, 0y = 0 and 7z, = 0. The displacements u and v will be
infinite on the infinite boundaries of the domain and the corresponding nodal values should be
infinite too. Thus u and v cannot be used as unknowns in the numerical analysis. We will take
the displacement differences u’ = u—ug and v’ = v—wp, where ug = Oot/E and vg = —vooy/E
are the displacements corresponding to uniform state of stress (6; = 0co, 0y = 0 and 7z = 0),
as new unknowns of the problem. They are finite and have the values 4’ = 0 and v’ = 0 on the
infinite boundaries.

Fig. 1 presents a typical grid (h/a = 0.25) of quadratic Serendip elements used in the analysis.
Here all the nodal points of the pole line and the pole of special polar coordinates (4) are located
at the center P of the hole. The interface line is broken line ABC. In order to show the whole
(infinite) grid in this figure modified geometrical mapping

r(p,0) = 1_—1(,_8;[—0.8pf(a) +5(o)], ()

which reduces the lenghts of the strips from infinite to finite, has been used instead of original
mapping (1) in the plotting program. Four uniformly refined grids with h/a = 0.5, 0.25, 0.125
and 0.0625 were constructed for experimental convergence study.

Table 1 shows percent error in energy of the original finite element solution (FE) and the
recovered solutions obtained using SPR- and BUI-methods. Approximate rates of convergence
based on two densest grids (h/a = 0.125 and 0.0625) are 1.95, 2.72 and 2.85 for FE, SPR and
BUI, respectively. Table 2 shows global effectivity index ¢ and standard deviation o of local
effectivity indices 6° [6] of the Zienkiewicz-Zhu a posteriori error estimate [7] obtained using
SPR- and BUI-methods, respectively.

Figs. 2 and 3 show distribution of local effectivity indices #° obtained using SPR- and BUI-
methods, respectively. Grid size is h/a = 0.25.

Only numerical results with quadratic Serendip quadrilaterals have been presented here. Similar
results with linear triangles, bilinear quadrilaterals, quadratic triangles and quadratic Lagrange
quadrilaterals have also been obtained. These numerical results show, that the presented tech-
nique works both in connection with SPR- and BUI-methods. They also indicate, that BUI-
method is slightly more accurate than SPR-method.
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Figure 3: Effectivity index 6°, BUI-method, h/a = 0.25
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Table 1: Percent error in energy ng

[L/a FE | SPR | BUI
0.5 11.71 | 15.62 | 11.35
0.25 3.520 | 2.564 | 1.497
0.125 | 0.959 | 0.370 | 0.195
0.0625 || 0.249 | 0.056 | 0.027

Table 2: Effectivity index # and standard deviation o

0 o
h/a SPR | BUI || SPR | BUI

0.5 1.213 | 1.113 || 0.386 | 0.766
0.25 0.921 | 0.973 | 0.457 | 0.122
0.125 | 0.966 | 0.991 || 0.121 | 0.022
0.0625 || 1.006 | 0.999 | 0.066 | 0.012

Conclusions

Experimental convergence studies show, that the technique works. Thus it seems to be one
possibility to enlarge the range of applicability of patch recovery methods to problems with
unbounded domaips.
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Quality Controlled Eigenvalues by Integrated Model
Improvement and Rational Krylov Algorithms

Patrik Hager and Nils-Erik Wiberg
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1. Introduction

Many problems in engineering, e.g. free undamped vibration and linear
buckling problems, can be formulated as differential eigenproblems. These problems
are often solved numerically using the finite element method, which requires the
solution of an algebraic eigenproblem
(K-AMU"=0,
for eigenvalues 2 and eigenvectors U} . The finite element method usually only

approximates the exact solution to the differential equation and an error analysis is
therefore required. If the error is too large a reanalysis must be made on a modified
finite element model.

This paper deals with efficient reanalysis by means of adaptive finite element
technique of the A-version combined with efficient solution of the algebraic
eigenproblem using Rational Krylov algorithms. The paper is intended as an outline
of ideas for future research and does not present any new results.

The matrices, K, M, are real, symmetric, positive definite and sparse but can
be very large. We require a small number of eigenpairs at the low end of the
spectrum.

2. Quality Controlled Eigenvalues

The basic idea is to improve the FE-model successively in an outer iteration
loop, to reach a required tolerance TOLA of the error of the eigenvalues. The error is
estimated by the Superconvergent Patch Recovery technique (SPRD), see Figure 1. In
an inner loop we will try to reduce the number of iterations to come below a required
error tolerance TOLRK , by improving the starting values for the current FE-model by
information from the previous cruder model.

3. Adaptive Model Improvement

Very important ingredients of the adaptive model improvement are the error
estimation and the error indicator, and the calculation of the improved eigenpair
(4,U"). Details and derivation of the technique can be found in [1] and [2]. We use
SPRD technique on the prime variables to solve these tasks. SPRD is a variant of the
Superconvergent Patch Recovery originally proposed by Zienkiewicz and Zhu, [3].
The main steps are found in Figure 2.

Caution is advised with TOLA as the error is underestimated, TOL A can be
adjusted by TOLA =6TOLA where @ is an estimation of the effectivity index. We

estimate the effectivity index by @ =1-ch?” where cis a constant and ¢ is the order
of superconvergence. However, it requires information from two discretisations to
compute the estimate of &, i.e. the start mesh and the first predicted mesh, so we
cannot adjust TOLA before j =2 in Figure 2.
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The bilinear form a(v,w) is a strain-energy-type scalar product, and
a(v,v)/21is the potential energy of v. In particular, we use a, (v, w)if we consider the
strain energy in an element of the mesh.

Initial model
Starting values (A°,U°)

y
Eigenproblem (1", U") |¢-—TOLRK | Improved model

Rational Krylov 4 New starting values (1, U"")
7'y
Y
Improved eigenproblem (1',U")
Error estimation SPRD 1or
Y. Not d
TOLA ot passe

Figure 1. Quality controlled eigenvalues — Adaptive model improvement integrated
with Rational Krylov iterations.

Improved eigenproblem Not Improved model:
SPRD: PTPa = PTux Passed SHOITHGS
. u‘=Pa B Ae=ae(uh’uh)—ae(u 3u‘)|
Improved eigenpair (1 ,U") W =NU"
If j>2 TOLA—>TOLAG Refine mesh

hj — 51/2(;:+1-m)hj_1
£=24TOLA/ NELA,

Figure 2. Improved eigenproblem and improved model based on SPRD.

4. Numerical Eigenproblem

We intend to study how the numerical eigenproblem can be solved effectively
by the RKS algorithm below. Speed up of the RKS is anticipated by using 1" asa
shift, and project #/™ to the new mesh by SPRD and use the projection as a start

vector. Another aspect is how the discretisation error should be related to the error
from the eigensolver. It is of no use to have sharp error bounds on the error of the
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eigensolver in the beginning of the process whereby less demand in the beginning
could speed up the overall process.
We also plan to investigate if it is effective to get higher order FE solutions for

error estimation instead of (U~, A" )by using (U", 1" )as start vector and shift in the
RKS algorithm. Clearly, it will increase the time spent in one adaptive iteration but it
may pay off, as a smaller number of adaptive iterations may be required due to
sharper error estimation. Moreover, since the order of superconvergence is known
then the effectivity index can be estimated already al j =1, and hence, TOL can be
adjusted one adaptive iteration earlier.

5. Rational Krylov

In order to find eigenvalues at the low end of the spectrum the eigenproblem is
inverted, and a shift can also be applied to speed up convergence. Hence, we consider
the shifted and inverted problem

(C-xDU"=0, C=K-uM)'M

The Rational Krylov is similar to Lanczo and Arnoldi, in that a shifted and inverted
problem is solved and in that an orthonormal basis ¥, is built up one column at a time
in an iteration scheme until convergence is achieved at the required error TOLRK .
The iterations start with a random vector v . In each step a shifted and inverted
matrix operator C, is applied and the resulting vector is orthogonalised to the already
computed part of the basis by means of Gram Schmidt. Rational Krylov differs from
shifted and inverted Arnoldi in that it may use different shifts x ;in different steps ;.

The reason for selecting the Rational Krylov rather than Lanczo is that in the future
we expect to deal with nonsymmetric eigenvalue problems. The Rational Krylov is
described in the RKS algorithm [4], [5], and shown in Figure 3.

Start vector: for initial model !
for improved model v, =u" <« SPRD

v

Choose shift x;
Set r=Vt,, operate r = C;r ~
Orthogonalise » =7 —V,k, where h, =V r |
Get new vector v, =r/ ”r”

v
Compute approximate solutions 4% and y!’

v

TOLRK. Not passed

Figure 3. Modified Rational Krylov algorithm.
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6. Numerical Example

We intend to study the natural eigenfrequencies of a Reissner Mindlin plate.
We plan to use six node triangular elements with the vertical displacement and the
rotations in the plane as degrees of freedom at each node. We prefer to use triangular
element in adaptive analysis because we use automatic mesh generation that gives
unstructured meshes, and the quality of quadrilateral elements can be very low. The
quality of the elements does not only affect the accuracy of the FE solution it also
affects the effectivity index, loosing the asymptotic exactness of the error estimator,
An interesting detail to study here, beside the efficiency of the RKS algorithm, is the
importance of capturing boundary layers for accurate eigenfrequencies. The
Zienkiewicz-Zhu (SPR) updating is known to detect the boundary layers for static
problems, and the author have by numerical experiments verified that also the SPRD
updating detects the boundary layers for static problems.

Another aspect, complicating the error analys using elements of this type, is
shear locking. Shear locking introduces large errors distributed over the domain, and
the error estimator poorly captures these errors. Due to the large errors over the entire
domain small elements are predicted everywhere, and due to that the error is not very
well estimated rather many adaptive iterations are necessary. However, we believe
that the choice of quadratic basis functions (or higher order basis functions) on the
triangles and by using selective reduced integration that the shear locking can be
avoided to such extent that the elements can be an efficient tool for adaptive analysis.
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Accuracy assessment of maximum displacement and
stress

Per Kettil and Nils-Erik Wiberg
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1. How accurate is the maximum stress?

Numerical results from computations are always approximate. Accuracy/quality
assessment, or in opposite words, error estimation, is fundamental in any reliable use
of computation. The Finite Element Method (FEM), today used in a wide variety of
engineering applications to analyze the behavior of physical systems, is by itself an
approximate method. The finite elements approximate a continuum model by a finite
number of unknowns that are efficiently calculated by a computer. Unfortunately, the
finite elements introduce a discretization error.

As a result of the research effort during the last decades (“error estimation and
adaptive FEM”, see for example [1]-[4]) many commercial FE-packages today
include routines to automatically ensure that the discretization error is kept within
tolerable limits. Unfortunately, the error is usually measured globally in an “energy
norm of the error percentage”, that for most engineers has no real meaning. For
example in structural engineering, the engineers are mainly concerned with point-
wise, typically the maximum, values of displacement and stress. This short paper
presents how to perform accuracy assessment in terms of stress and displacement, and
a few numerical examples.

2. Influence functions gives the error at any point

The influence of the error over the domain to the result at any point may be
determined by influence functions [1], [2]. The method is exactly the same as when
the bridge engineer uses influence lines to determine the effect of various load
positions.

Solving an appropriate dual problem generates the influence function: For example, if
we need the error in displacement at a certain point the dual problem is a unit point
load. To determine the error in stress we apply a unit strain, etc. The solution of the
dual problem, i.e. the influence function, may be considered as a filter, or weight, that
filters out the error over the domain to the local error in the original problem. We
deduce the underlying mathematics below:

Let us assume we have computed an approximation u" to the differential equation
Lu+f=0

for some boundary conditions, for example using the finite element method. Inserting
the approximate solution into the equation yields a residual load R (including the
jumps between elements and boundaries)

Lu"+f=R
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Hence, the error e =u—u" is the solution of the equation

Le+R=0

or in weak form
B(e,v) = (R,v)

We now introduce the dual problem. The dual problem has to be defined according to
the local quantity of interest. For the error in displacement at a certain location X the
dual problem is a unit point load, i.e. Dirac’s delta 5(x) ,with Green’s function G (the
“influence function”) as solution

LG = (%)

rinciple
(f*u) = (f.u*)

where u and f are the displacement and load of one problem, and u* and f* from
another problem, makes it possible to filter out the local error e(x)

(8(2),) = (R,G)

e(¥) = (R,G) = B(e,G) = (Galerkin orthogonality) = Ble,e,) = ZB(e, ),
e, =G-G" -

numel I 1
e(x) £ (Cauchy — Schwarz) < z B(e,e)3, Blep,ep)q,

k=1

. numel
o)< ek ol

by finite element computation at the modest additional cost of solving and performing
error estimation for the one extra load vector of the dual problem. Note that in the
case of 2D or 3D elasticity a point load is not well defined. This can be circumvented
by regularization, i.e. to consider a patch load ov 1l region (e.g. a finite

lement) and i re esti ivi the area of th ion

average error over the region [2].

3. The numerical results are not always precise but useful in
engineering terms

Figures 2 and 3 present two numerical examples showing the accuracy of the error
estimate in practice. The error estimation is performed using stress smoothing by REP
[3]. In these examples the ratio of estimated to true error (the “effectivity index”) is in
the range 1.0-3.0, which is not very precise but definutely useful in engineering
applications. The error in stress is always larger then the error in displacement, since
stresses are derivatives of the displacement.
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e
Simply supported beam, 2D elasticity

Data: Results:
Length1.0m  Height 0.1 m Displacement u, Stress o
Plane stress: E=1.0x10°Pa Maximum, exact solution 0.160 mm 75.0 Pa
v=03 Maximum, FE' solution  0.142 mm 69.8 Pa
Pressure 1.0 Pa Estimated error 0.018 mm 12.5Pa
Exact error 0.018 mm 5.2Pa
Effectivity index 1.0 24

(‘Using 2x20 bilinear tinite elements and 3x21 nodes)

2. Energy norm of the error distribution

1. FE mesh, bc’s, displacement uy and stress o,

ERED
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o
oo O -

s
N <

69.853 L 130E-03
3. “Influence function” | 4. Ervor summing up to the error in max u,
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.245E-NG
. 358E-06
A72E-06
.586E-0f
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Figure 1. Simply supported beam — accuracy assessment of maximum displacement
uyand stress ox. A uniform load in the y-direction over the four middle elements
defines the dual problem for the displacement. A unit strain in the x-direction over the
two lower middle elements defines the dual problem for the stress.

The natural next step in the development is to adapt the mesh according to error
distribution for the quantities of interest to reach a required degree of accuracy in the
most efficient manner. Reference [2] presents examples of this.
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“Infinite” plate with hole 1. FE mesh, boundary conditions and stress o,
i ol |

Data: 0756
Radius =1 m Width 20 m Height 20m 3906
Plane stress:  E=1.0x10°Pa v=03 2056

Pressure 1.0 Pa 021
.336
.651
. 966
.261
. 596
.911

Results:

Maximum stress, exact solution o, =3.00 Pa
Maximum stress, FE solution 6,=2.91Pa
Estimated error 0.27 Pa
Exact error

Effectivity index 3.0
("Using 96 bilinear finite elements and 119 nodes)

NN DN =

2. Zoom around hole, stress oy 3. Energy norm of the error distribution

.360E-04
. 780E-03
.001523
.002265
. 003007
.00375

.004492
.005234
i y . 005977
J911 = .006719

4. “Influence function” 5. Error summing up to the error in max stress o,

03055 |/ / .130E-05
2.919 [ /7= .006186
5.807 012372
8.695 018557
11.584 024742
14.472 .030927
17.36 037112
20.248 .043297
oAl .049482

s pitens ’ 26.025 =N .055667

AL

Nl

1
1
i
i,
2.
2
2

DRNREEEEC
EEEEENGD

Figure 2. Infinite plate with hole — accuracy assessment of maximum stress o,
A unit strain in the x-direction over the element just above the hole defines the dual
problem for the stress.
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Symbolic software application for modelling of wave
interaction process
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Abstract. The nonlinear interaction of longitudinal waves in a homogeneous elastic
material with nonlinear physical properties is investigated theoretically. The analyt-
ical solution of the one-dimensional problem of nonlinear interaction of a sine-waves,
excited simultaneously on two opposite surfaces of the material is derived, making use
of the symbolic software (Maple V). The detailed scheme of symbolic computation is
presented.

1 Introduction

In this paper we study the possibility to use a relatively simple method to determine
the physical properties of a nonlinear homogeneous elastic material on the basis of lon-
gitudinal waves nonlinear interaction data. Under consideration is the one-dimensional
equation of motion [1]
oU 1 8%U 82U

+hax| o=t g 2
where ¢ denotes the time, X is Lagrangian coordinate and U is displacement. The
constants k; and c depend on material properties. The Eq. (1) is solved on the basis of
the perturbation method [2,3] exploiting the software Maple V. The analytical solution
is obtained and the algorithm of solution derivation is illustrated by the scheme of
symbolic computation (Fig. 1).

2 The perturbation method

We make use of the perturbation method and seek an analytical solution of Eq. (1)
in series of a small parameter ¢ {2,3]:

U(X,t) = i e" U™ (X, 1), (2)

Following the perturbation procedure, the series (2) is substituted into the Eq. (1).
Equating to zero terms with equal power of €, one arrives at a system of differential
equations:
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O(e) :

U (X, t) =2 UP(X,2) =0, (3)
0(82) :

U (X, 1) — 2 UR (X1,1) = k1 UL (X, 1) U (X, 1), (4)
0(53) :

Uy (X, 1) =2 UR (X, 1) =
—ky [URQ (X, 1) Uy (X, 1) + Uy (X, 1) U (X, 1)]. (5)

This system of hyperbolic nonhomogeneous differential equations is solved under
the following initial and boundary conditions:

U(X,0) = Uy(X,0) =0, U,(0,t) = eaop(t)HE), UsL,1)= eapwt)HE). (6)

Here H (t) denotes Heaviside function, ag and ay, are constants. The functions ¢(t) and
1(t) determine the arbitrary and smooth initial wave profiles. They satisfy conditions
maz | ¢(t) |=1, maz | ¥(t) |= 1 and ensure that lim;_,o U4(0,t) = limy,q Us(L,t) =0
in consonance with the initial conditions. The scheme of symbolic computation is
presented in Fig. 1. The Eq. (3) has a well-known D’Alambert solution and it
can be solved using Laplace integral transform. After applying the Laplace integral
transform to the hyperbolic nonhomogeneous differential equations (4) and (5), they
transform to the second order nonhomogeneous differential equations, which can be
solved directly. By applying the inverse Laplace integral transform to these solutions
we get the solution to the n-th term in series (2).

To analyse the wave-material interaction, we define the initial wave profiles in (6)
as sine functions with radial frequency w:

@(t) = sinwt, () = sinwt. )

Substituting (7) into (6) and following the symbolic computational scheme presented
in Fig. 1., we arrive at the analytical solution. The symbolic computations to derive
the sine-wave solution were carried out with mathematical software Maple V version
5.1.

The analytical solution is too cumbersome to include, but it can be studied graph-
ically. It is convenient to study the solution in the form of deformation gradient since
it characterizes the tension distribution in the material. The second order nonlinear
effects are plotted in Fig. 2. The numerical data are taken for duralumin [2]. In the
interval t/7 > 1 the reflection amplitude at the boundaries X/L = 0 and X/L = 1 is
essentially greater than in the interval ¢/7 < 1.
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inverse I —
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Ist order 2nd order ... | nthorder
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Fig. 1. Scheme of symbolic computation.
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2UR(X,1)/le ao/e|

Fig. 2. Second order nonlinear effects that accompany the propagation of
deformation gradient in duralumin (L =0.1 m, ag = —ar, = —c m/s,
e=1x%10"%,7=L/c,w = 1.15539 % 106 rad / s).

3 Conclusions

The propagation, reflection and nonlinear interaction of two sine-waves is studied. The
basic peculiarities of the considered problem are clarified on the basis of numerical ex-
periment data. The utilization of symbolic software (Maple V) in solving complicated
analytical problems turned out to be very effective.
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STRAIN MEASUREMENT OF THE COMPOSITE
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Abstract

Fiber optic sensors embedded inside materials are used to
determine the strain and temperature fields inside the composite
structure. In this work, we consider the use of Fabry-Perot sensors
and method based on time-of-light (TOF) of laser pulse travelling
inside long optical fiber. The increasing interest in the optical fiber
sensors includes their use in development of fiber optic smart

structures?.

In order to measure the strains and temperature in composite
materials with embedded fiber optic sensors the relationships
between the strains and temperature in composite and the strain
and temperature in the sensor must be known.
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The goal of our research is to measure the strain and temperature
either on the surface or inside fiber reinforced composite material by
using the fiber optic sensors. A sensor embedded inside the material
disturbs the strain and temperature field. Our goal is to measure
those strains and temperature which would exist at the location of

the sensor in the absence of the sensor.

The relation between farfield and sensor strain fields depends on the
following aspects: properties of the sensors and the coating (if the
fiber is coated), the material surrounding the sensor, the orientation
of the sensors inside the material. The values of these parameters
are not often known exactly. These effects of uncerainties
considerably take effects to the accuracy of the results. This work
focus on these uncertainties and estimates their influences to the

results by using of error analysis.

For Fabry-Perot sensors two semi-transparent mirrors are spliced
into the optical fiber. In extrinsic Fabry-Perot sensors the substance
between mirrors is air. When strain and temperature field in
surrounding material change, the reflected light intensity of the
Fabry-Perot sensor changes. The values of these changes are then
deduced from these measured signal outputs. Procedures for
calculating the sensor strains in terms of material strains and
measured signal outputs have been taken from the book of Van
Steenkiste and Springer’.
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The analysis is based on the following considerations. The
temperature of the sensor and the material are assumed to be the
same so that changes in farfield temperature is equal with the
temperature changes inside the sensor. The deformations are
assumed to be small and materials to be linear elastics. The
bonding between sensor and surrounding material is assumed to be

perfect.

In conclusion, the fiber optic sensors have shown their capabilities in
the use of strain and temperature measurements in composite
structures. Reliability of the measurement needs to be more

carefully studied.

REFERENCES

1. Van Steenkiste, R.J. and Springer, G.S. Strain and Temperature
Measurement with Fiber optic Sensors, Technomic publishing
Company, Inc. 1997.

2. Udd, E. “Fiber sensors for smart structures™, in Optical Fiber
Sensors, Proc. 6" Int. Conf. OFS’89, Paris, Springer-Verlag,
pp392-399, 1989.

3. Kollar, L.P. and Van Steenkiste, R.J. “Calculation of the Stresses
and Strains in Embedded Fiber Optic Sensors”, Journal of
Composite Materials, Vol 32, pp. 1647-1679. 1998.

95



SIMULATION OF AN ACTIVE A SUSPENSION SYSTEM
FOR THE SEAT OF AN OFF-ROAD VEHICLES

Matti Kangaspuoskari

Department of Mechanical Engineering, University of Oulu,
PL 4200, 90401 Oulu, Finland
Tel: +358 8 553 2178, Telefax: +358 8 553 2026
E-mail: Matti Kangaspuoskari@Me.Oulu.fi

ABSTRACT

Off-road vehicles are subjected to strong vertical and horizontal vibrations. The
driver is liable to high vibration loads which can lead to reduced performance
and even damage to health. The most dangerous are high acceleration in
directions unusual to natural human body. The main vibration in the off-road
vehicle is the driver’s seat. The common method to eliminate vibrations is to use

passive elements in vertical direction.

This paper covers modelling and control of a fully active suspension system for
the driver’s seat. The fully active system involves the suspension mechanism
with a hydraulic actuator which is controlled by a high frequency closed loop
proportional valve [1]. The vehicle seat mechanism is modelled as a two degree
of freedom two-dimensional structure [2] and so system has capability to
mimmize driver discomfort by controlling the seat dynamic state in horizontal
as well as in vertical directions. The road inputs include horizontal, vertical and

the pitch degree of freedom.
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The driver’s seat system is modelled by using the MATLAB/SIMULINK
program. There are two different possibility to use defined model. In the first
case the inputs are based on measurements by joint sensors in the real system
and the model is used for computer control of the system. The second possibility
is to use the defined model in simulation. For this purposc thc cquations of
motion in Lagrange’s formulation have been written. By solving the differential
equation model numerically, the behaviour of the system can be determined. The
performance of classical controller [3] is analyzed and compared with the
performance of neural network controller [4]. Numerical examples are given

in the paper to show the validity of the model [5].
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ABSTRACT

This paper describes methods of visualising fracture and deformation of large fibre structures using VRML97
and OpenGL. Using a VRML visualisation tool for postprocessing creates a file that can be used to share
information on the internet. A test implementation of a real-time visualisation tool in C++ has been developed.

BACKGROUND

A fibre network is a material that has a structure consisting of fibres, such as fluff and fibre insulation
material. A computer program that simulates deformation and fracture in fibre networks is being
developed by Heyden [1]. When three-dimensional fibre networks are simulated the numerical results
are often difficult to interpret. To be able to analyse the time-dependent results different methods have
been used to visualise the data. A special post processing tool has been developed by Olsson [2]. The
tool is developed in MATLAB [4] and uses a special VRML toolbox [10]. Output from this tool is a
VRML file that can be viewed in Netscape and Microsoft Internet Explorer with a special VRML
plugin.

VRML97 IMPLEMENTATION

VRML97 [3] is a language specification. The basic datatype in the VRML97 specification is the node.
There is a number of different node types in the VRML97 specification that can be used to describe a
VRML model. Objects that are rendered is defined by the Shape node. This node contains a Geometry
node and an Appearance node. In the Geometry node special geometry primtives are used, for example
Box, Sphere and IndexedFaceSet. In the Appearance node the visual appearance of the object is given
by using a Material and Texture node. Shape nodes do not contain any position and rotation
information. To place a Shape in a VRML model it is placed in a Transform node. This node contains
properties for describing position, rotation and scale for its child shape nodes. The following VRML
sample code displays a red sphere.

#VRML V2.0 utfB
Transform {
translation 3 0 1
children [
Shape {
geometry Sphere { radius 2.3 |}
appearance Appearance {
material Material {
diffuseColor 1 0 0

Animation of objects in VRML is done using Coordinatelnterpolator and Colorinterpolator. These
nodes are then connected to Shape nodes using a special route instruction in the code. A route can be
described as an electrical wire that can convey information between objects in VRML. To initiate an
animation the interpolation nodes must be connected to a sensor node. A sensor node generates events
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depending on special conditions in the model. A TimeSensor node generates events as time passes.
This can be used to drive an interpolator node to visualise time dependant data.

The creation of a VRML file can be time consuming. To be able to easily create VRML files a special
MATLAB toolbox [10] is used. The toolbox defines a number of commands that makes it easy to
create VRML code from MATLAB data. The previous VRML example can be created by using the
following matlab commands:

fid = vrmlcreate('samplel.wrl');
vrmlsphere (fid, (3 0 1],(2.3],[1 O 0]1)»
vrmlclose (£id) ;

Most of the commands in this toolbox also take matrices as input, which makes it possible to create a
large number of objects with only one call. By using this toolbox it was possible to create a platform
independent visualisation tool for realtime visualisation of fibre networks, see Figure 1.

Figure 1 - VRML visualisation tool

The developed tool has been succesfully used with up to approximately 900 fibres (5 to 8 frames per
second on an SGI Onyx2). The created file can be viewed with a VRML plugin in real-time if three-
dimensional graphics hardware is installed. If the number of fibres increases the performance drops
considerable even if viewed on an SGI Onyx2 system. This is probably due to poor hardware
optimisation of the VRML plugin and browser overhead. Another way to visualise the VRML file is to
import it into the IRIS Performer [5] real-time visualisation system. DRaW Computing Associates [6]
provides a VRML reader for IRIS Performer which supports allmost all VRML97 nodes. By using
IRIS Performer multiple processors and SGI Onyx2 hardware can be used to achieve higher
performance. The disadvantage of using the IRIS Performer system is that it can only be used on high
performance SGI machines.

IVF+ IMPLEMENTATION

To be able to create platform independent visualisations a special class library Interactive
Visualisation Framework Ivf++ [11] has been developed. The class library is based on GLUT
(OpenGL Utility Toolkit) by Kilgard [7], which is a library for creating system independent OpenGL
applications. GLUT supports multiple windows, basic event processing and other routines needed to
create OpenGL applications. Because of this system independence a program written using GLUT can
be compiled on all platforms supporting OpenGL [8] or Mesa [9]. The Ivf++ class library is divided
into two parts, general OpenGL classes for visualisation and a GLUT part supporting windows and
callbacks. Using this library a simple test program was created to test how large fibre networks could
be visualised. The test program is able to generate randomly generated networks with a given number
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of fibres. Level of detail options can also be applied to reduce the complexity of the geometry
rendered, see Figure 2.

Figure 2 — Fibre visualisation test program

A study was done rendering six different structure sizes namely 80, 160, 320, 640, 1280 and 2560
fibres. Color depth was set to 16-bit and the rendering window had the same size on all platforms.
Frame rate is measured by spinning the network in the idle loop of the test program and calculating a
mean frame rate for 50 frames. The test was done on three PC:s and an SGI Onyx2 system. The PC:s
were a Pentium Pro 200 MHz, Pentium I Celeron 400 MHz and an SGI 320 Pentium IIl 500 MHz.
The tests showed that to visualise networks sizes larger than 500 fibres in real-time (~15 frames per
second) advanced hardware was needed. Using level of detail (LOD), which is a technique to reduce
the geometry complexity depending on the distance to the viewer and a modern PC with 3D graphics
adapters (SGI 320 and Pentium IT) fibre networks up to 640 fibres can be handled in the user interface
without any significant delays on PC hardware (5 frames per second). If larger fibre networks is going
to visualised with a highter frame rate a SGI Onyx2 or equivalent hardware is needed. Test results are
given in the following diagram.

Fibre network real-time performance
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Figure 3 - Fibre network real-time performance
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TEXTURE BASED METHODS

To handle very large networks containing more than 2500 fibres new techniques must be developed. A
technique that is considered is the use of textures to emulate the curvature of the fibres. This will
reduce the number of triangles needed to represent the fibre in the visualisation and makes it possible
to visualise more fibres in an accurate way. The following figure shows a fibre consisting of two
segments. In the left picture the fibre is implemented using a 8 sided section that is swept along a
spine. The right picture shows a fibre implemented using a gradient texture map and transparency, this
approach requires only 4 triangles per segment compared to 16.

Figure 4 - Using texture maps and transparency to reduce triangles
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Abstract Described in this short paper is an attempt to standardize the process for deriv-
ing finite elements based on commonly used formulations with Maple, mainly to obtain the
expressions of element stiffness matrix and internal forces. The process is put in a tentative
'standard’ way, with as many as possible factors considered. A preliminary version of new
Maple package was developed based on this idea.

1 Introduction

In the field of finite element methods, efforts in finding new efficient elements has never been
stopped and seems will last for a long time. As well known, symbolic operations involved in
deriving finite elements, mainly the expressions of element stiffness matrix and internal forces, is
a tedious and error-prone process, especially for higher order or nonlinear finite elements. After
obtaining these expressions, the coding work also needs a lot of carefulness. With computer alge-
bra applied, the situation can be largely improved [1], but very much work is still unnecessarily
repeated in developing a new finite element. An element is a composite product with many
ingredients involved: variational principle, strain definition, material definition, interpolation
functions, integration rule and so on. In a new element, maybe only one ingredient is altered or
replaced, while the rest remains unchanged, but the whole process has to be repeated by each
finite element researcher or engineer. The main reason for this is that the process of developing
finite elements is not standardized. Although the process is complex, it is possible to put it in a
standard way, at least for the commonly used formulations and techniques. The work reported
in this paper is an attempt on this way.

2 Main line in deriving finite elements

To standardize the process of developing finite elements, first thing, also the most important
one, is to make clear the key steps in developing finite elements. In structural mechanics, the
main steps in developing finite elements could be described with the flow chart in Fig. 1. The
process begins with strain energy density ¢(u(x), o(z)|e(z)) in an element, where o and €
are stress and strain vectors, which are functions of position vector . Symbol ’|’ means that
either stress or strain parameters are introduced. The energy density might have different ex-
pressions, depending on the adopted variational principle, strain and material definition. This
will be addressed in a following section. After fixing the expression of strain energy density,
nodal displacements and/or stress (or strain) parameters are introduced with the aid of inter-
polation functions. Meanwhile physical coordinates & can be converted to natural coordinates
€ if it is necessary. Then an integration is carried out to obtain the strain energy ®(u, &)
in the element. The element stiffness matrix and internal forces are obtained by differentiating
the strain energy with respect to element degrees of freedom. The introduced stress or strain
parameters can be eliminated by a procedure similar to static condensation.
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Figure 1: Main line in deriving finite elements

3 Variations in finite element formulas

In the above process, there are several points at which variations can be introduced. Different
finite element formulations can thus be implemented. In the developed Maple package, user
interfaces are built at these points so that users can creatively develop new finite elements.

3.1 Strain energy density

The first point, also the place which allows a lot of variations, is the expression of strain energy
density in an element. The expression of strain energy density is mainly decided by three factors:
the adopted variational principle, the strain and material definitions.

3.1.1 Variation principle

The adopted variational principle determines that the function of strain energy density could
have different expression and different kind of variable(s). If the principle of minimum potential
energy is used, the strain energy density is a function of displacements w

#(w) = 5(Lw)"D (Lu) (1)

where L is a differentiation operator determined by strain definition. D is the material property
matrix.

If an element is based on the Hellinger-Reissner principle, the strain energy density has the
form

d(u,o) = —%aTd o+ o7 (Lu) (2)

which is a function of displacements u and stresses o. d is the inverse of matrix D.
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A more general case is the Hu-Washizu principle. In this case, the strain energy density is
a function of displacements u, stresses o and strains €.

d(u,e,0) = %ETD e+ol(e — Lu) (3)

To improve computational efficiency, the stresses are eliminated by the orthogonal condition [2]
or stress-strain relations [3]. Other variational principles can be introduced by a user interface.

3.1.2 Strain definition

In equations (1), (2) and (3), the differentiation operator L is determined by strain definition.
A strain definition basically includes two aspects, describing how strains and displacements are
related. One aspect is whether the element is expected to deal with geometrical nonlinearities,
such as large rotation, large strain or both, without resorting other techniques such as a co-
rotational formulation. If so desired, Green-Lagrangian strain definition or its degenerated
forms, e. g. shallow arch or shallow shell, can be adopted. The other aspect is the so-called
kinematic assumptions, which describe how a section deforms and what strain components are
non-trivial. Kinematic assumptions are different from beams to plates, to shells, from Euler or
Kirchhoff type to Timoshenko or Reissner type, and so on. Users can specify a strain definition
or they can input their own strain definition.

3.1.3 Material definition

The matrix D or d contains material parameters. A library which stores commonly used material
models can be established and thus allows a user specify a material from it. Also a user interface
allows users to introduce their own material model. In the Maple package, isotropic and some
composite materials are included.

3.2 Interpolation function

This is another place which allows users to use their creativity. There are quite several things
to decide here: how many nodes the element has, how the nodes are distributed — how many
on element edges and how many inside. The selection of interpolation functions has significant
effects on element performance, especially for low-order ones [4] and thus needs more careful
consideration. Incompatible modes are easy to introduce at this step. It is also possible to
include other special finite element techniques such as MITC approach. For mixed field elements,
the selection of assumed stress or assumed strain modes are also very important to element
performance.

3.3 Integration rule

Users can specify an integration scheme from exact integration to various reduced integrations
and can implement their own integration rule by a user interface.

4 A new Maple package

In previous versions of Maple, it was difficult for a nested procedure to access the variables of an
outer procedure. Procedures could only share variables if the variables were global. New version
of Maple allows to create nested procedure definitions. Procedures can be defined within other
procedures, or return procedures as expected output. Lexical scoping allows a nested procedure
to access the variables which are located in surrounding procedures. With this new feature,
one can now program in Maple with better encapsulation. Lexical scoping actually provides a
mechanism to do object oriented programming. Basic operations could be defined as functions
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or procedures. A preliminary version of a new Maple package named ’fem.m’ was developed,
which can automatically convert the obtained element stiffness matrix and internal forces into
desired codes.

5 Concluding remarks

It must be pointed out that the work reported in this paper is only an initial exploration in the
mentioned direction. The configuration described in Fig. 1 is not necessarily the optimal one,
which needs more improvement and refinement to allow more special methods such as natural
modes [5] to be implemented in the package. The package also needs update with new methods
emerging.
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Computerized flow analysis can be used to verify or disprove already accepted hypotheses
pertaining to the physical behaviour of liquids and gases. In order to draw firm conclusions
from CFD results, it is a prerequisite that the mathematical model to be solved is based on
first principles and well-defined initial and boundary conditions. The governing equations
should also be solved on a sufficiently fine mesh so that any grid-dependencies can be ruled
out. Three examples are given in the presentation.

It is a generally accepted fact that the motion of a Newtonian fluid, i.e. liquid or gas, is
governed by the Navier-Stokes equations, irrespective of whether the flow is laminar,
transitional or turbulent. Thus, if the Navier-Stokes equatijons are integrated numericaily on a
sufficiently fine computational mesh, the resulting solution represents a true numerical
realization of real fluid motion, thereby enabling firm conclusions to be drawn and
hypotheses to be confirmed or rejected.

As a first example, we consider the shear-driven turbulent motion of an incompressible fluid
between to parallel plates in relative motion; i.e. the plane Couette flow. The remarkable low
level of turbulence energy measured in the core region of the flow led Schneider (1989) to
postulate a significant diffusion of energy away from the core, i.e. in the direction of higher
energy. We performed a direct numerical simulation (DNS) of a statistically steady plane
Couette flow by means of a second-order accurate finite-difference technique for the time-
dependent three-dimensional Navier-Stokes equations. The first- and second-order statistics
compared well with available experimental data. However, data for the triple-velocity
correlations were for the first time made available from the DNSs. These new data
convincingly disproved the hypothesized counter-gradient diffusion of turbulence energy.

The next example is concerned with turbulent shear flows subjected to system rotation. It is
well known that a shear flow is unstable with respect to the formation of counter-rotating
streamwise-oriented vortices or roll cells if the background vorticity associated with the
angular velocity of the rotating frame-of-reference is anti-parallel to the mean flow vorticity.
It has so far been the prevailing assumption that the destabilizing Coriolis force also
destabilizes the turbulence field; i.e. that the turbulent agitation is enhanced. To address this
yet unproved hypothesis, a series of DNSs of rotating plane Couette flow were performed,
simply by implementing Coriolis-force terms in the governing Navier-Stokes equations. The
same finite-difference scheme as mentioned above was used to integrate the governing PDEs
in time and space on a 256x70x256 mesh. A major observation was that the level of
turbulence energy was reduced as compared to the non-rotating case when counter-rotating
roll cells developed in the numerically generated flow field at moderate rotation rates.
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Equally interesting was the observed increase in the turbulence level at higher rotation rates,
at which the roll cells disappeared. We were thus able to conclude that the turbulence field is
damped when roll cells are formed due to the destabilizing action of the Coriolis force field,
i.e. contrary to the prevailing belief.

A final example is the laminar flow in a stenosed artery. In a computational study Johnston &
Kilpatrick (1991) found that the flow resistance was reduced in the presence of surface
irregularities as compared to the flow in a smooth stenosis. We recently reconsidered the
same case adopting the irregular stenosis geometry obtained from an atherosclerotic main
coronary artery casting of a man. The laminar flow was governed by the axisymmetric
Navier-Stokes equations, which were solved numerically by a Galerkin finite-clement
method using the commercially available Polyflow package using up to 17945 grid elements.
The results showed that the excess pressure drop predicted by Johnston & Kilpatrick (1991)
across the smooth stenosis is not caused by its smoothness but is rather an effect of its higher
degree of symmetry. We were moreover able to conclude that the flow resistance across the
stenosed artery is practically unaffected by surface irregularities at low Reynolds numbers,
whereas an excess pressure drop up to 10 per cent above that for a smooth stenosis is found
for higher Reynolds numbers. The refined FEM analysis thus disproved the conclusion
arrived at in the earlier investigation.

The computations were performed by Dr K.H. Bech (turbulent flows) and Ms R. Halden
(laminar flows).
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1. Introduction

Free surface flow governed by the Navier-Stokes equations is modelled by the finite clement method. The
Lagrangian (LA) and the Arbitrary Lagrange-Eulerian (ALE) approaches are used for problem formulation.
The unsteady laminar newtonian and isothermal flow of viscous incompressible liquid is considered. The
velocity correction method [1] is applied for the velocity pressure segregation in the Navier-Stokes equations.
The numerical experiments simulate free oscillations in a tank. The influence of discretisation parameters on
the accuracy of a numerical solution is investigated as well as the influence of an initial amplitude of
oscillations and kinematics viscosity coefficient on the wave pattern. The detailed comparison of the numerical
results obtained by the surface height method [2] based on ALE approach and prediction-correction method [3]
based on LA approach is performed.

2. Physical model of the flow

The unsteady, laminar, newtonian and isothermal flow of viscous, incompressible liquid is investigated. The
flow is described by the Navier-Stokes equations in LA or ALE reference frame
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where (p, #) is the vector of unknown primitive variables. It contains pressure p and velocity #, which consists
of two components u;, i=1, 2. p is the density, # is dynamic viscosity coefficient, F=(0, -g) is gravity force,
where g is the acceleration of gravity. The equation (1) of momentum conservation is written using purely LA
approach, while equations (2) of momentum conservation is written considering ALE approach. The continuity
equation (3) reefers to mass conservation.

In some investigated problems viscous stresses at the free surface are negligible compared to the inertial
forces and can be neglected. This gives rise to a Dirichlet boundary condition for pressure and Newmann
boundary condition for velocity on the free surface. Thus, the simplified boundary conditions on the free surface
are

o,

"j§j=0,p=pm, @)
where n is the unit normal vector, p,, is the atmospheric pressure. Free surface height # could be computed
from the free surface kinematic equation, which represents the fact that the interface is a material surface
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Slip boundary conditions are prescribed on rigid walls. Zero initial conditions for both the velocity and pressure
are used.

3. Segregated approach for the Navier-Stokes equations

In the present work we apply the velocity correction method, where velocity pressure segregation is done at the
differential equation stage. The main advantages of this method are symmetric matrixes of finite element
coefficients and equal order interpolation of velocity and pressure. Using ALE approach the velocity prediction
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stage is stabilised by two steps Taylor-Galerkin procedure. The Lagrangian description of the flow does not
include convective terms and velocity prediction is performed by the single step. It could be obtained from the
second step dropping convective terms. Therefore, we only present segregated procedure for Navier-Stokes
equations in ALE reference frame. The solution ™' at a given time step r+dr is obtained in four steps
described below.

The first step is a part of the Taylor-Galerkin stabilisation procedure. Intermediate velocities # are found
using only the convective terms:

6 =u’ —%t—(u;‘ —w;')aaz:_‘ i 6)

4

The second step is the end of velocity prediction stage. Improved values of the predicted velocity u” is
obtained by substituting # in the convective terms of the first order Taylor-Galerkin equation:

= P =l W} S i, + . ™
J

It does not include the pressure term.
In the pressure calculation step the continuity equation for the velocity is replaced by a Poison equation for

the pressure by using the predicted velocity #* in the source term

n+l P au;
= —— 8
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Gresho and Sani [4] have shown that the new pressure contributions make the velocity field divergence-free.
The normal gradient of the pressure should satisfy consistent boundary conditions [4].

In the final step values of corrected velocity »™" are calculated by updating predicted velocities u* with
the contribution from the new pressure field

n+l

3
oo —dt P 9
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4. Finite element formulation

The solution domain S is discretised by quadrilateral finite elements. Equal order bilinear shape functions are
used for both the pressure and velocity components. These shape functions are used as weighting functions for
all steps of the velocity correction method. The weak formulation of equations (6-9) could be found in the
reference [5]. The Green-Gauss theorem is applied to both sides of equation (8) of pressure calculation step. In
this particular case the pressure satisfies the consistent boundary conditions and solution should be more exact
near the boundaries of a solution domain. The weak point of the applied segregated approach is strict
limitations to the time step. This is due to semi-explicit formulation of the velocity prediction step.

Using LA approach the material time derivative can be approximately determined by the functions known
at both deformed and undeformed positions during a short time increment. The function at the deformed
position can not be obtained before computation. Thus, iterative computation is necessary. The procedure
introduced by Ramaswamy et al. [3] is employed in this investigation. At the initial step of iterations and at the

m-th step of iterations the location of a nodal point x™™ at the time ¢+dt is computed as
MO =l dtul I = x4 (dt/ D +ur Dy (10)
where dt is a time increment, x is the location of a nodal point at the time f, »] is the velocity of a nodal

point at the time . The superscripts in brackets mean the number of iteration. The three steps of the velocity
correction method are performed at each iteration and velocity »*'“"™ is updated in (10) formula.
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Figure 2. Free oscillations in the tank. The time histories of the amplitude. The displacements of two free
surface boundary points and the center point are plotted in (a) and (b). The curves of maximal
amplitude for different methods, viscosity coefficients and time steps are plotted in (c) and (d):

a) Lagrangian approach, 4=0.01 m, x=10 m?%/s, finite element mesh 20x10, time step dr=0.005 s,
b) Lagrangian approach, 4=0.05 m, z=1 m?/s, finite element mesh 60x30, time step df=0.001 s,
¢) A4=0.01m,d) 4=0.05m
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Figure 3. The time histories of the amplitude of oscillations, 4=0.1 m, Arbitrary Lagrange-Eulerian approach:
a) u=10 m?s, finite element mesh 40x20, time step d=0.0025 s,
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b) u=1 m?s, finite element mesh 60x30, time step dr=0.001 s




Using ALE approach two steps Taylor-Galerkin procedure is applied for the stabilisation of the convective
terms in the velocity prediction stage. The position of the free surface is obtained solving equation (5) at each
time step. The linear shape functions V are used for surface height interpolation in equation (5). The convective
terms are stabilised by Petrov-Galerkin method. The stream line diffusion terms are added to finite element
formulation using particular weighting functions #. The equation (5) is discretised in time using Cranc-
Nicolson scheme (6=0.5). The ALE approach needs the algorithm of mesh movement. The surface height
method and structured finite element meshes allow using very simple algorithm. Mesh does not move in x,
direction. The locations of nodal points that are equally distributed in x, direction could be computed as

n
X

= xl + (W™ - h") X

an

5. Numerical results and discussions

Numerical experiments simulate free oscillations in a rectangular tank. All numerical tests are performed using
C++ library DIFFPACK [6]. The initial free surface is described by the sinusoidal curve
h(x,t=0)=0.5+A4-sin(x x,). The density of a liquid p=1000 kg/m>. The influence of the different initial
amplitudes (4=0.01, 0.05, 0.1 m) to the flow pattern is investigated as well as the influence of different
kinematic viscosity (=100, 10, 1, 0.1 m%s). The wave pattern (fig. 1) is regular for small initial amplitudes
and large viscosity (small Reynolds numbers). Both investigated methods produce results that are in good
qualitative agreement with the numerical results obtained in [3]. Fig. 2 shows displacements of nodal points
allocated on the centre line of the tank. The solution becomes highly non-linear and non-regular for waves with
large amplitudes (4=0.05, 0.1 m) and small viscosity. The predictor-corrector method based on LA approach is
not applicable to flows with large displacements. Therefore, investigated flows with 4=0.1 m are simulated
using only surface height method based on ALE approach. Fig. 3 shows the maximal displacements of selected
nodal points. The efficiency and accuracy of the predictorcorrector and surface height methods are compared
for different initial amplitudes, viscosity coefficients and numerical parameters. It is very difficult to solve free
surface kinematic equation (5) accurately for large surface deformations. An accurate solution requires very
dens finite element mesh and small time steps.

5. Conclusions

Free surface flow governed by the Navier-Stokes equations is investigated. Free oscillations in a tank are
modelled by finite element method. The predictor~corrector method based on Lagrangian approach and the
surface height method based on Arbitrary Lagrange-Eulerian approach are investigated. The comparison of
accuracy, efficiency and applicability of the methods is presented. The predictor-corrector method is more
accurate and allows using coarser finite element meshes and larger time steps. The range of applicability of this
method is very limited by large deformations of the mesh. The surface height method is more universal. The
accurate solution of the oscillations with large amplitudes requires a big amount of computational resources.
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1 Introduction

Lighthill (1952) introduced the acoustic analogy to obtain estimates of jet noise. This type
of noise originates in hydro/aero-dynamic forces and flow motions, rather than by externally
applied forces such as in structural acoustics. Lighthill’s basic idea was to reorder Navier-Stokes
equations into a wave-equation with an acoustic source term on the right-hand side,

(6%/30t* = V*) p = 8°T;j/8i0z;. )

Here p is the density of the fluid, ¢ is the time, ¢g is the speed of sound, z; (j = 1,2, 3) are the
spatial coordinates and Tj; is the stress tensor,

Ty; = pvivj + (p — c§p) i, (2)

where v; is the velocity field, p is the pressure and &;; is the Kronecker delta. The double suffix
summation convention is applied. Practical calculations are obtained by using for T;; an esti-
mate based on the equations of motion for an incompressible fluid. Acoustic back-reaction is
thus ignored. It can be mentioned that T;; corresponds to an acoustic quadropole.

In two recent papers, estimates of the acoustic pressure due to rotating elements were ob-
tained by making use of the discrete vortez method to obtain estimates of the velocity field (as
input to the acoustic analogy). Jeon and Lee (1999) calculated the acoustic pressure from a
centrifugal pump impeller rotating nearby a wedge (but otherwise in free space). Yin, Ahmed
and Dobrzynski (1999) studied the aeroacoustics of a non-uniformly rotating propeller. In the
present work, the same basic idea is used to calculate the noise generation in a volute-type
centrifugal pump. The differences between our analysis and that of Jeon and Lee are mainly
the following: (4) in our problem the impeller rotates inside a spiral casing and the reflection
and scattering of sound from it is included in the analysis (Jeon and Lee ignored the acoustic
influence of the wedge), and (i) the casing is compliant and full fluid-structure interaction is
included.

The present extended abstract describes the mathematical formulation of the problem.

2 The discrete vortex method

A series of excellent experiments on the flow structure within the volute of a centrifugal pump
has been conducted by Chu, Dong and Katz. In their paper from 1995 the pressure inside the

"Extended abstract, NSCM-12, October 22-23, 1999
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volute is calculated from measured velocities! by using the Reynolds equation

P | P 2 ). Q

dz; —r ot o
Viscous stresses are ignored due to a high value of Reynolds number. The velocities v; are
phase-averaged. Turbulence is represented by the velocoties v; which are deviations of the in-
stantaneous velocities, at a certain impeller orientation, from the phase-averaged values. The
experiments are carried out using a pump with a ‘two-dimensional’ volute and two-dimensional
calculations (¢, = 1,2) compare well with measured data. It is found that turbulence (repre-
sented by the third term on the right-hand side of (3)) can be ignored but the vorticity

vy /Oz1 — Oy [ Dz

gives a major contribution to the total pressure variation. The main conclusion is thus that a
potential flow model cannot provide an acceptable description of the flow.

The discrete vortex method (DVM) was introduced by Rosenhead in 1931. It is an insta-
tionary, Lagrangian, grid-free method which is very useful to simulate flows with strong vortical
structure. It was originally formulated for inviscid flows but has recently been formulated for
viscous flows also. In the original, inviscid formulation the flow is modelled by a collection
of discrete singularities, such as sinks, sources and vortices derived from potential flow theory.
Each singularity induces a flow around it. In the centrifugal pump the blades of the impeller
are covered with vortex elements with discrete, bound vortices. The inlet is modelled by a point
source and the casing is covered with source panels. In an inviscid fluid, vorticity can only be
generated at boundaries. In the DVM this is introduced by wake vortices shed from the trailing
edges of the impeller blades and convected downstream with the local induced velocity. The
local velocities determine the strength of a shed particle. Kelvin’s theorem states that the total
vortex strength must remain constant for any closed curve enclosing the same fluid particles.
For the case of a centrifugal impeller this can be accounted for by demanding that the sum of all
bound vortices on, and all shed vortices from, each individual blade must be zero at any time.
Another condition to determine the strengths of the singularities is that the normal components
of the induced velocities must match the normal velocities of the bounding solid surfaces and of
the rotating impeller blades. This sums up, then, to an equation system of the form

Jr=v (4)

where J is a matrix which represents the singularity type and the geometry, T' is the sought
vector of vortex/source strengths and v is a vector of normal velocities (and zeroes for the Kelvin
conditions).

3 Computation of acoustic pressure fluctuations

The apprach taken here to estimate the acoustic effects of the rotating impeller is to idealize it as
a collection of discrete, time-dependent forces f,(t), n = 1,2,..., NF, acting on the surrounding
fluid inside the volute. These forces are calculated by obtaining the velocity field from the DVM
and then evaluating the pressures at the control points on the impeller blades by using the
instationary Bernoulli equation.

Isolated forces are acoustically equivalent to dipoles. Instead of (1) the starting point is thus
taken in the equation

(6%/3o* — V?) ¢ = —Q(x, 1), (5)

!Obtained by Particle Displacement Velocimetry.
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with
NE ot NF
Qw1 =3 (32) sx—ya) = 3. Vy - £:blx—2) (6)
n=1 8‘!}': n n=1
as the acoustic source term. Here p’ = p — pg is the density perturbation of the fluid (pg is the
density of the undisturbed fluid), y, = yn(t) are the time-dependent coordinates for the NF
moving forces and d is the Dirac delta function.
With a compliant casing, the pressure boundary condition is

TS 0

where n is the normal vector and dg is the surface displacement. If the casing is stiff, the
left-hand side is set equal to zero.
In order to solve (5) we must solve the corresponding equation

(62/c30t* = V?) G = —8(x - y)d(t - 7), ®)

for the Green’s function G(x,y,t, 7). The solution in unbounded space is given by

t—7—|x— y|/co).

t =
G(x7y7 ,T) 4ﬂc’63|x_y|

9)
Now we multiply (5)by G and (8) by o', and after that subtract these two equations. This gives

3G %'
! _ N _ 2( o2 _ 2 1
po(x —y)i(t - 1) =GQ I:p-——atQ Gom|+eb (#v2G -GV p). (10)
It can be shown that the square-bracket is equal to zero. Integrations over the whole space y
and over all times 7, and use of Green’s theorem, then gives the perturbation pressure as

NF 5
/ _ Vy'fn(ant“|x_Yn|/CO) 2/ "o d4dg 2
p'(x,t) = ngl P S— + ¢ ; pn-VG+ pyGn 32 d’y (11)

after the pressure boundary condition (7) has been inserted and it has been used that p’ = cZp'.
S represents the casing surface. It should be noticed that the square bracket also must be eval-
uated to the retarded time ¢, =t — [x — y|/co.

Numerical evaluation of the acoustic pressure

The surface integral in (11) is evaluated numerically by making use of boundary elements. The
casing surface is divided into N'E elements. Within each element (symbolized by a subscript ¢),
casing displacements are divided into normal and tangential components and expanded as

dp(Xe) =n- dS(xe) = Wg;a'nea dr(xe) =t-dg (xe) . Wra-re) (12)

and perturbation pressure as
P'(xe) = wybe. (13)

Here w,, and w, are shape functions for the normal and the tangential components, respectively,
and t is the tangential vector. From a variational formulation we obtain, by using (11, 12, 13),
the linear equation system

(D-F)b=q+ Ga,, (14)
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where an ‘overdot’ denotes differentiation w.r.t. time ¢. The matrices are given by

NE NE
D=3 [ w.wlds, F=dy [ wn{/ wf(n-va)dse}se,
e=1"5e e=1"3e Se

NE NF vy‘fk 2NE' =
_ Wl kgs G = poo /wn{/ GwndSe}Se. 15
4 2,62/ dnx—y|° "002 s " Us, (15)

Fluid-structure interaction
The dynamics of the casing is, in finite element formulation, described by

AT A R A
0 My a, 0 Ca ar Ko Koo a,
f, H;; 0 b

e e{s) e

where M;; are mass matrices, C;; are damping matrices, K;; are stiffness matrices, {f,, f.,.}T is
an external forcing vector, and Hy; is the fluid-structure coupling matrix. The pressure vector
b can be isolated from (14) and inserted in (16) to give an equation system in a = {ap,a,}7
and its time derivatives. Once &, is known the pressure fluctuations can be determined from
(13) and (14). The DMV equation (4) must be solved together with (14) and (16) at every time
step. As (4) depends non-linearly on the casing geometry, the system of (4), (14) and (16) must
be updated iteratively.

4 Concluding remarks

Our aim is to use the present method as a tool in Multidisciplinary Design Optimization. Future
work on the present problem will include shape optimization of the tongue geometry, to minimize
the flow noise level. It is clear that the noise level can be easily decreased if the hydrodynamic
efficiency also is allowed to decrease. The optimization problem must then necessarily include a
constraint on the efficiency.
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On the Equilibrium of Self-Aligning Hybrid Bearings
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1. Introduction. In hybrid antifriction bearings, the distribution of the oil pressure is
usually modelled by the Reynolds equation [1,2]. From the pressure one can then derive
velocities, net-flows and other related functions, which describe the mechanical behaviour
of the system. In self-aligning hybrid bearings, the Reynolds equation has to be coupled
with appropriate equilibrium equations. In this paper we will discuss the modelling of
such bearings. We first derive the equilibrium equations for a simple model bearing, and
then solve them numerically by the finite element method. The modelling principles can
be extended to cover also other self-aligning bearing configurations.

2. Preliminaries. Let us consider the hybrid bearing described in Figure 1. The lower
surface of the bearing is assumed to consist of the lubrication surface {2 and relatively deep
oil pockets €;, 7 = 1,2,..., N. The position of the self-aligning pedestal is described by
the transverse displacement A and rotation oo << 1 about the support pin. The thickness
of the lubrication film is then given by h = h + A + o=, where h = h(z,y) is the film
thickness in the reference configuration with A = a = 0.
The distribution of the oil pressure p = p(z, y) on the lubrication surface € is modelled
by the Reynolds equation
—VT(ICVp) = f7 (1)

where V = (5%, (%)T. The equation is subjected to the following boundary conditions:
p=00ondQ and p=PFondQ, i=1,2,...,N, (2)

where P, is the oil pressure in the pocket ;. Here k¥ = h3/u is the "stiffness” of the
lubrication film and f = —6U %, where U is the speed of the upper surface in the z-
direction. u = p(z,y) is the dynamic viscosity of the oil.
The velocity u = u(zx, y, 2) = (uz(2, y, 2), uy(z, y, 2))T of the oil is obtained from
z(z — h) z
= —7Vp+-U 3
u o VPt EU (3)
where U = (U,,U,)T is the constant velocity of the upper surface with U, = U and
U, = 0. In the transverse direction there is no flow, i.e., u, = 0.
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Figure 1. The self-aligning hybrid bearing. The oil pockets ; are connected to the
pressure source by thin capillary tubes, with capillary coefficients ;.

3. Equilibrium. Let us consider the equilibrium of the system. Since the work pressure
of the bearing is P, the support pin of the pedestal is subject to the reaction force
Fimt — PA, (4)
where A is the area of the cross section of the piston. The moment about the pin vanishes:
M™ = Q. (5)
The oil pockets €; are connected to the pressure source by thin capillary tubes, with
capillary coefficients &;. Hence, the net-flows into the pockets are obtained from
P—Fy
kip
The problem is now to determine the displacement A, the rotation «, and the oil
pressures P;, i =1,2,..., N, such that the pedestal is in equilibrium. In order to do this,

we first note that the pin is subject to the resultant F*t = F¢**(A, o, Py, P, ..., Py) of
the pressure on the lower surface of the bearing:

int __
P =

, i=1,2...,N. (6)

N
Feot =% Area() P + /Q p dzdy. (7)

i=1

The moment M¢* = M**(A,a, Py, P,,..., Py) about the pin is calculated from

N
Mt =" Area(Q;) Pz; + /QP-'I? dzdy + HS, ®)

1=l
where z; is the z-co-ordinate of the midpoint of §2;, H is the average distance in the
z-direction from the lubrication surface to the pin, and S = S(A,a, Py, P, ..., Py) is the
total shear force on the lubrication surface and pockets:

N
S=3 Area(Q)7; +/Q7' dzdy. (9)

i=1
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Here 7; = 0 and 7 = p%’ﬂz:h are the shear stresses on ; and (2, respectively.
The net flow ¢&* = ¢f*'(A, a, Py, P, . .., Py) out of the pocket {; is obtained from

h 1 1
st _ Twdzds=-= [ k(mVp)ds+ [ Hu'U)d 10
4 /an.-/onu zas 12 Jag; (n"Vp) S+2 an,-h(n Jadz: (10)

where n — (n,,n,)7 is the unit outward normal to the boundary.
Setting F"t = Fest Mint = Me® and ¢™ = ¢, i = 1,2,...,N, we get N + 2
equilibrium equations from which the N + 2 parameters A, ¢, and Py, P,, ..., Py may be

determined. The equations can be written more concisely as
f(x) =0, (11)

where x = (A,q, Py, P,,...,Py)T is the vector of unknowns, and f is a vector valued
function of ”equilibrium errors.” The equation is non-linear.

4. Numerical solution. The Reynolds equation (1) may be solved efficiently by the
finite element method. Writing

PRy i (12)
=1

where ¢; = ¢i(z,y), ¢ = 1,2,...,n, are the shape functions for the pressure, the finite
element discretization of (1) leads to the following matrix equation:

KP =F, (13)

where K = [k;;] is the stiffness matrix, P = (p1,ps,...,pn)” is the unknown dof-vector
and F = (f1, fo, ..., fn)T is the force vector:

@:LW%V@M@ miﬁ=4MMM%iJ=LL”W (14)

The non-homogenous boundary conditions along the edges may be taken into account by
standard means.
The equilibrium equation (11) may be solved e.g. by standard pattern search methods.

5. Numerical results. In this section we will give numerical results for the self-aligning
hybrid bearing of Figure 2. In the same figure is shown the adaptive finite element mesh
of linear triangular elements used in the calculations. The velocity and pressure are
allowed to vary in the ranges 0 < U < 30 2 and 10 bar < P < 100 bar, respectively.
The dynamic viscosity of the oil is 4 = 0.05%. The capillary coefficients of the oil
pockets are k; = 1013 4 =1,2,3,4. The main dimensions of the lubrication surface are
20 em x 20 cm.

Figure 3 shows the pressure on the lubrication surface and in the oil pockets when
U =202 and P = 60 bar. Figures 4 and 5 give the average film thickness and rotation
about the pin with respect to the velocity of the upper surface and work pressure. The
solution time was a couple of hours on a standard personal computer.
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Figure 2. Geometry and finite element Figure 3. Pressure on the lubrication
mesh of the lubrication surface. surface and oil pockets.
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Figure 4. Average film thickness. Figure 5. Rotation about the pin.
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Abstract: The overall behaviour of the human heart is reasonably well understood, while
the hemodynamics involved in filling and emptying the heart chambers remain to be
described satisfactorily. In this paper, the commercial CFD-code CFX4.2 has been used to
model the blood flow in the left ventricle of the heart over an entire cardiac cycle. The
elasticity of the heart wall is considered using a spring model to mimic the muscles of the
myocardium (heart wall), which during the active state deform due to the contraction of the
muscles, and during the passive state deform due to the pressure inside the ventricle. Due to
lack of information on the elastic properties of the myocardium, these are identified so that
the numerical model complies with the measured variation in ventricular volume in a least-

squares sense.

Keywords: CFD, blood flow, heart mechanics, system identification

Introduction

Circulatory disorders account for about three out of
four human deaths (Liepsch and Moravec, 1984),
which underlines the importance of understanding
the behaviour of the human heart. Moreover, in
order to set the correct diagnostic treatment, it is
important to understand the mechanisms involved
in different disorders. For example, the initiation
and immediate consequences of coronary
thrombosis and occlusion must be understood, if the
result of treatment is to be predicted. However, due
to the complex physiology of the heart, involving
metabolical, electrophysiological, and mechanical
processes, cardiologists base their diagnosis on a
comparison of clinical examinations with a large
body of accumulated experience.

A reliable mathematical model of the physical
behaviour of the heart would be of invaluable
assistance in the understanding of pathophysiologic
changes. The mathematical model should include
the possibility of simulating pathological
conditions, e.g. changing the local elastic properties
of the heart wall to simulate suspected changes after
e.g. myocardial infarction. Moreover, a numerical
model may replace some of the clinical testing with
new medical or surgical treatments, which may be
both time consuming and ethically questionable. A
further advantage is that one can simulate different
treatments under identical conditions, which is not
clinically feasible, because of the unpredictability
of the results, as no two hearts have identical
properties.

Related work on modelling cardiac mechanics, both
fluid and solid, has been carried out by Peskin
(1996). Extensive studies on heart wall
deformations, under normal and pathological
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conditions, have been attempted by amongst others
Nash (1998) and Rijcken (1998).

The heart is a muscular organ that pumps blood
through the cardiovascular system, see Figure 1. It
consists of two parts; a right part that maintains the
pulmonary circulation required for oxidation of the
blood, and a left part that maintains the systemic
circulation, i.e. the remaining circulatory system.
Each part consists of two chambers: an atrium (RA,
LA) collecting blood returning from circulation and
a ventricle (RV, LV) delivering the actual pumping
action by cyclic muscle contractions activated by
electric impulses.

Figure 1: The heart, RA, LA, RV, and LV are the
right and left atrium, and the right and left ventricle
respectively (Folkow, 1971).

The left atrium (LA) is connected to the left
ventricle (LV) by the mitral valve. The blood leaves
the left ventricle and flows into the aortic artery via
the aortic valve. Correspondingly, for the right side
of the heart, the blood enters the ventricle through
the tricuspid valve and exits through the pulmonary
valve.



The present work aims at modelling the fluid
mechanics of a cardiac cycle, taking into
consideration the elastic behaviour of the heart
wall. The study is limited to the left ventricle, since
this is the more critical part, in the sense that it
raises pressure by about four times as much as its
right counterpart does.

Consider the left part of the heart (right hand of
Figure 1). At the beginning the cardiac cycle, the
ventricular volume is at its maximum, and both the
mitral and aortic valves are closed. The ventricular
muscle fibres then contract, leading to a pressure
rise in the ventricle (iso-volumetric contraction). At
some point, the ventricular pressure exceeds the
aortic pressure, which causes the aortic valve to
open. Under continued contraction of the muscles,
the blood is ejected from the ventricle (ventricular
ejection). When the pressure in the aorta exceeds
the ventricular pressure again, the aortic valve
closes. The ventricular muscles relax, enlarging the
ventricular volume so that the pressure drops below
that of the atrium, thereby opening the mitral valve
(isovolumetric relaxation). Blood enters the left
ventricle due to the pressure difference over the
valve, and the so-called early ventricular filling
starts. To obtain a larger volume of blood in the left
ventricle, the atria muscles finally contract, which
squeezes an extra portion into the ventricle (atrial
systole).

In this paper, it is the relaxed part (diastole) of the
cardiac cycle, which is of main interest, as this part
of the heartbeat is not as well understood as the
active part (systole). With reference to the above
description, diastole is made up of the periods of
isovolumetric relaxation, early ventricular filling,
and atrial systole.

Mathematical Model

Boundary Conditions

The left ventricle is modelled as a two-dimensional
ellipsoid, as this is a simple geometry but still in
reasonable agreement with the actual geometry
(Streeter, 1979). For instance, it corresponds well
with the assumptions made in the clinical practice
of cardiology when measuring ventricular volumes.
During the active period of the cardiac cycle, the
heart wall is moved to give the prescribed left
ventricle volume. During the passive part of the
cycle, the ventricular wall is moved due to the
pressure inside the ventricle and the material
properties of the myocardium. The flow into the left
ventricle from the left atrium through the mitral
valve is defined to vary in time as the real flow
through the mitral valve. The flow out of the
ventricle is defined and in addition, the pressure is
defined to model the resistance the enlargement of
the aorta creates. The remaining surfaces of the left

ventricle are modelled as rigid walls all having the
no-slip condition (Figure 2).

Outlet Aortic valve Inlet Mitral valve

Moving walls

Figure 2: The position of the left ventricle (LV)
boundaries.

Constitutive Relations for Blood

Blood is an incompressible, inhomogeneous, and
non-Newtonian fluid, whose behaviour depends on
both its history and composition. In this paper,
blood is treated as homogeneous, as the size of the
blood cells is very small compared to the
ventricular volume. To model the non-Newtonian
behaviour of blood, the constitutive relation is
described by the weak Casson formulation, as it has
been verified against experimental measurements
on blood (Fung, 1993).

The Heart Wall

The heart wall is built up of layers of muscle fibres,
where the direction of the fibres are distributed
differently throughout the heart wall, as illustrated
in Figure 3. The fibres are helically wound in layers
paralle] to the heart wall. Furthermore, anatomical
dissections indicate that the fibre directions change
from the inner to the outer wall surface (Rijcken,
1998).
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Figure 3: The orientation of the muscle fibres in the
heart wall (Folkow, 1971)



To model the behaviour of the muscle fibres during
diastole, a simplified assembly of two-dimensional
springs is used. Each spring element has stiffness in
both longitudinal and normal direction. The springs
are positioned along the periphery of the left
ventricle, as illustrated in Figure 4. In addition, to
compensate for the three-dimensional effects in the
plane model, a number of diagonal spring elements
are added to simulate the influence of the real helix-
like fibre distribution, see Figure 3.
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Figure 4: Heart wall modelled by spring elements.

A “finite element”-like method is used to determine
the displacement of the node-points. Each spring is
a simple element only connecting two node-points.
By choice of a wall discretization coinciding with
the surface meshing of the CFD-model, the
endpoint of springs correpond to cell vertices, and
the calculated displacement of the heart wall can be
transferred directly to the displacement of the CFD-
mesh.

The local stiffness matrix for each spring is
transformed to the global coordinate system, so that
displacements in this frame are computed.
Similarily, the pressure loads are decomposed into
its corresponding Cartesian components. Summing
up the contribution from each spring, yields a
global stiffness matrix, which is used to set up the
set of linear equations for the displacement of the
node-points. As boundary conditions for the system
of springs, the two end-points are fixed, i.e. they
have zero displacements.

The elastic properties of the heart wall are of course
important, when attempting to simulate the
behaviour of the real heart. However, due to a lack
of measured data pertaining to these properties, it is
chosen to determine them by system identification
in order to match a measured volume curve, using
response surface regression techniques (Madsen,
1998). System identification by means of response
surface regression seeks to adjust parameters of a
numerical model, such that this yields results that
correspond well with measured values. In this case,
the object is to be able to compute the correct
(measured) volume of the left ventricle at each time
step.
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Supplied with sufficiently many calculated volume
curves, both longitudinal and normal stiffnesses for
each individual spring could be decided. However,
this has not been attempted, because it would be
rather costly. Moreover, the variation in wall
elasticity is only small for a healthy heart, so that it
seems reasonable to divide the springs into only
two groups, the peripheral and the diagonal ones,
with all stiffnesses within each group being equal.
It is assumed that the elastic properties of a heart
vary less with position in the same subject than
between different individuals. The ratio between
the tangential and the normal stiffness is set equal
for all of the springs.

The volume variation is not a sufficient measure, as
there is obviously no unique set of spring
stiffnesses associated with a volume variation
curve. Thus, it is necessary to incorporate further
criteria, such as a measure of the shape of the
distended ventricle. For example, the ratio between
the long and the short axis in the half ellipsoid
representing the ventricular volume. At the end of
diastole, the ratio should be approximately 0.5.

Considering the shape of the left ventricle, the
replacement of blood inside the left ventricle is to
be taken into account, as blood is not allowed to
reside in the ventricle for several cardiac cycles, as
this would cause clotting. A way of visualising the
replacement of blood cells, would be to trace
particles having the same density as these
throughout a few heart cycles to make sure that all
of the particles leave the ventricle.

After identifying the material properties of the heart
wall, the properties of the heart wall can locally be
changed in order to predict the effect of for instance
a coronary thrombonesis
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ABSTRACT

Titanium is being considered as an alternative to steel for risers and flowlines, particularly for
deep-water applications. However, capacity formulas for local buckling and collapse of
titanium pipes subjected to bending and high external pressure are inadequate. If formulas
developed for steel are applied directly, the model uncertainty is unknown. Ideally, extensive
large- or small-scale model testing of titanium pipes is required. This paper discusses
utilisation of a supplementary numerical approach based on Finite Element Analysis. The
relationship between material model parameters being input to the analysis and the
collapse/buckling capacity is investigated by performing a series of nonlinear FEM analyses.

Statistical models for the input material model parameters are established based on tests on
small specimens cut from titanium pipes. These models are subsequently combined with
results from the FEM analyses by application of response surface methods. As output from
the analysis, the probability distribution of collapse capacity is obtained.

FROM GLOBAL TO LOCAL MODEL

A deep-water catenary (J-shape) titanium riser connected to a Tension leg Platform (TLP) at a
water depth equal to 1000 m is employed as an example, see Figure la. The sag-bend area is
of major concern when it comes to collapse of the riser cross-section (the sag-bend area is
close to the seabed, also called the touch-down region, see circle in Figure 1a). The riser is in
this particular area exposed to excessive bending and high external pressure.

Static and dynamic global response analyses are initially performed with the finite element
program RIFLEX (1995). The internal diameter and the wall thickness are 20 in (508 mm)
and 20.3 mm, respectively. The riser is modelled by constant axial, bending and torsion
stiffness throughout the length. A ball joint connector is located at the top of the riser at the
surface vessel (TLP). A load-duration of five wave periods is employed in a regular wave
analysis to achieve stationary response. Analyses are performed in the time domain. The
internal pressure is set equal to zero since that is the most severe condition. No internal
pressure may occur in the installation phase and during production shut-down for
maintenance or other purposes.

The present global riser analysis program is based on beam elements and is not suitable for
ultimate capacity calculations of the riser pipe itself. The computer program does not account
for any non-linear behaviour of the material nor local phenomena such as e.g. initial
imperfections, local wall thickness variations, or increasing cross-sectional ovalisation. A
local model in ABAQUS consisting of shell elements by use of the finite element method is
employed as a numerical model to predict ovalisation, possible local buckling and collapse of
the riser cross-section.

A local shell model replaces the global model where the greatest bending moments in the sag-
bend area of the riser occur. Figure 1b shows the bending moment diagram for the whole
riser. Figure 2 shows a ‘close upg of the bending moment diagram for cross-sections in the

' Currently employed at MARINTEK, N-7450 Trondheim. E-mail: arve.bjorset@marintek.sintef.no
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sag-bend at which the bending moment are greatest, also indicating the length for which the
local model shall represent the global model.

Figure 3 gives an illustration of the local model. The maximum bending moment is symmetric
for the actual length of the local model (see Figure 2). Hence, the point at which the
maximum bending moment occurs is taken as a symmetric cross-section. Accordingly, only
half of the length of the relevant pipe segment needs to be modelled. It is then possible to
simplify the local analysis by establishing a local model as indicated in Figure 3 (‘Symm’ is
the symmetric cross-section). Furthermore, the loads and the response are symmetric in the
bending plane in Figure 3. Half of the cross-section is then modelled in ABAQUS.

In the present study the load sequence is determined as follows: Maximum bending moment
capacity is reached when the static vessel offset is increased. Hence, the external pressure
remains constant, while the bending moment, the true axial force and the shear force will
change. The sequence of these events implies that the so-called p—>x-path has to be used for
the present shell analyses, i.e. reaching the maximum bending moment capacity by increasing
the curvature, not the pressure.

MATERIAL MODEL

The stress-strain relationship for the relevant titanium alloy is established from uniaxial
tension tests. The test specimens are taken from various locations and in various directions
relative to the pipe axis in order to reveal possible anisotropic properties. The parameters of
the material model are subsequently estimated for each of the experimental curves. Fitting of
material constitutive equations is performed according to the equation, Voce (1948):

G = Op + Rl(l —exp(-C1 EP )) + R2(1 —exp(-Cz Sp)) (1)

where o is the elastic limit stress, &p is the true plastic stress, and Ry, R, , C; , C; are the
parameters which are adjusted to fit each particular material curve. The strain hardening is
modelled as isotropic. The value of the strain hardening parameter is furthermore set equal to
a deterministic value. This is due to the negligible scatter in the values obtained from the
tests. The von-Mises yield criterion is applied due to the isotropic properties observed from
the tests.

RESPONSE SURFACE BASED ON COLLAPSE FEM-ANALYSES

The objective of employing response surface techniques is to establish an analytical
approximation to the functional relationship between the structural response and the input
variables. The response surface function will replace discrete estimates from the nonlinear
finite element model by a smooth analytical function, representing an approximation to the
true underlaying surface through all possible discrete values from the analysis.

The present study focuses on the maximum bending moment capacity, Mp,, as the primary
‘response quantity . As the interaction effects between the material parameters are found to be
negligible, the response function for My, may be established as a product of functions of
each parameter. The variation in the strain hardening is as explained very small (a C.o.V.
below 0.01), and is accordingly given a fixed value.

The response functions are established for the variation of the relevant random variables
separately by keeping the other parameter at their base case (reference value). Designating
variable number i by X;, the corresponding interpolation polynomial of order k can be
expressed as;

max

My = A X+ 4, X+ 4, @)
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where the constants Aj, Aj.1i to Ag; are calculated from the response functions obtained from
variation of each separate variable. The following parameters are varied in the probabilistic
analysis, and are identified as the main input parameters to estimating the maximum bending
moment capacity: (i) Yield stress (oy), (ii) Young s modulus (E), (iif) Uniform wall thickness
(1), (iv) Initial ovality (fy), (v) Cross-sectional orientation (o), (vi) Piercer eccentricity.

It is observed that the response function is quite linear for the pipe initial ovality. For the
modulus of elasticity, a second order polynomial is employed. For the wall thickness and the
orientation factor third order curves are required. For the yield stress, a linear relation is
observed. The response surface is subsequently given as the normalised product of the
function fitted along each of the variable axes:

M(X), Xy, Xg) = (Mf)fl[M_:x]ﬂﬁM @)

X, X Xe
Mﬂ.‘f Mft_;'% % M“f

i=l

where M . is a base case reference value for the bending moment.

PROBABILISTIC CAPACITY ANALYSIS

A summary of the statistical models which are employed for the basic random variables are
reported in Table 1.

Table 1. A summary of statistical models for material parameters.

Variable Distribution Mean value C.0.V.
Yield strength Normal 831.3 MPa 0.04
Young s modulus Normal 116 937 MPa | 0.055
Initial ovality Lognormal 1.5% 0.50
Wall thickness Truncated normal 1,0 ** 0.04
Orientation Uniform 90 Deg. 0.58
Piercer eccentricity | Lognormal 0.5 0.10

** Normalized by nominal wall thickness (20.3 mm)

Figure 4 gives the probability density for the estimated maximum bending moment capacity
based on the statistical parameters given in Table 1. By plotting the data in a probability
paper, the distribution appears to be lognormal. The lognormal distribution can be given a
certain plausibility in accordance to the Central Limit Theorem, which says that the product
of a large number of independent variables becomes lognormally distributed, see e.g.
Dougherty (1990).

CONCLUSIONS

The purpose of the present paper has been to illustrate how numerical simulations based on
finite element modelling can be applied to gain insight into local collapse mechanisms for
titanium pipes subjected to high external pressure in combination with bending moments.
Combined with a probabilistic modelling of key input parameters, the resulting uncertainty
and statistical properties of the bending moment capacity variation can be investigated. The
relative importance of the various input statistical quantities can also be assessed.

The results from such a procedure can readily be utilised in combination with a more

comprehensive reliability assessment, where also statistical models for load effects are
introduced. Additional sources of uncertainty could be included. Calibration of both FE-
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models and probabilistic models based on more extensive testing (large scale as well as small-
scale) will contribute to obtain the best possible design basis for the maximum bending
moment capacity.

It is believed that the results obtained by the present procedure provide useful insight in
relation to full scale testing and for development of design formulas. The numerical scheme
can also be employed to develop “deterministic” capacity formulas for titanium pipes to
replace those adapted directly from steel pipes.
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Introduction

CMC is a long —term research programme on computational mechanics issues in civil
engineering, especially related to integrated analysis [1]. That is, analysis where two
or more interacting effects or phenomena are analysed either staggered or
simultaneously. CMC contains five main projects where frequently encountered
problems in civil engineering will be treated by an integrated approach. One of the
projects focuses on the analysis of solid concrete structures exposed to fires. In such
an analysis there are two interacting effects. First, there is a coupling between a fire
analysis and a heat transfer analysis of the solid structure. Secondly, there is a
coupling between the heat transfer analysis and a stress analysis of the structure.

Structural/
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In the CMC-programme one of the main objectives is to apply state-of-the-art
software to solve interdisciplinary and integrated civil engineering problems. In this
project the simulations of the fire on solid structures are performed with the
Computational Fluid Dynamics (CFD) code Kameleon FireEx [2]. The heat transfer
and stress analyses are performed with the Finite Element (FE) code Diana [3]. By
employing different software packages an interface program is necessary between the
two programs.
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Fire analysis

Kameleon FireEx is a general-purpose computer code for simulation of fluid flow,
heat — and mass transfer in connection with combustion processes. The coupled set of
partial differential equations related to continuity, conservation of momentum and
energy is solved by means of the Finite Volume Technique. The code accounts for fire
effects such as the interaction between turbulence and chemistry in flames, as well as
soot formation and soot combustion. Kameleon FireEx is capable of simulating open
and enclosed pool fires and jet fires. The most important results of a fire simulation,
with respect to structural response, are the temperatures and radiant fluxes to
obstacles, or structural components in the model grid.

Interface between fire analysis and heat analysis

FiHTSS-Fire and Heat Transfer Simulations of Solids is an interface between the
Computational Fluid Dynamics (CFD) code Kameleon FireEx and the Finite Element
(FE) code Diana.

Kameleon — FHTSS — Diana

=S S
_0 1 2 3 4 5
o . Temperature
Fire simulation Interface distribution

FiHTSS is implemented as a module in Diana. Based on results from Kameleon, the
heat fluxes from both radiation and convection are calculated and put on surfaces
exposed to the fire. Hence, it is a staggered analysis where the fire simulation is not
influenced by the response in the finite element model.

Each finite element in the heat transfer model is treated individually by the Kameleon-
Diana interface. Based on the element mid co-ordinates, the surface normal, the current
surface temperature and the thermal properties of the surface, the interface module
calculates the resulting heat flux. The finite element has to be located inside the
calculation domain of the fire simulation. The computational domain grid, gas
velocities, temperatures and the gas absorption coefficients are read from files written
by the fire simulation program. These files form a transient development of the fire.

The incoming radiation is based on "The Discrete Transfer Method for Radiation" by

Shah and Lockwood [4]. A number of rays are sent from the surface of the element and
are followed until they hit the opposite boundary of the calculation domain. It is given
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the radiation intensity defined by the temperature and the absorption coefficient of the
wall point and followed back to the element surface. The radiation intensity is increased
or decreased based on the conditions in the control volumes the ray passes through on
its way back to the element.

Heat transfer and stress analysis

Diana is a general purpose Finite Element code, based on the displacement
formulation, for simulation of structural response. In particular, the code contains
state-of-the-art models for reinforced concrete structures, which is necessary
regarding the objectives of the current work The code also offers a potential flow
module applicable for simulation of transient heat flow through solid materials. Both
simultaneous analysis, where there is a mutual interaction between heat flow and
mechanical response, and staggered analysis, where merely the heat flow influence
the response and not vice versa, can be performed.

In solid concrete structures exposed to a fire, cracking and spalling dominate the
structural response. Cracking due to temperature gradients can be described using
existing constitutive models. However, the structural deterioration due to spalling is
difficult to formulate in a consistent manner [5]. To assess the risk of spalling in a
particular concrete structure, the analysis has to include transport of fluids and
vapours. Also the thermal and mechanical properties of concrete under exposure of
high temperatures have to be determined. In this project a more direct model based
on experimental results will be implemented to take into account spalling,
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Abstract

In the process of manufacturing papermachine rolls made from carbonfiber and
epoxi one of the problems that occurred during the grinding process was

deformation of the casing.

The aim of this study was to find out reasons for deformations of the casing due
to the grinding process, to develop a FEM model for simulating the structure and
to give suggestions how to solve these problems. The effect of ring stiffeness

(placed inside the casing) on deformations was also considered.

The FEM modeling was made by using I-DEAS and ABAQUS programs. I-
DEAS was used in preprocessing and also for postprocessing of results obtained

by ABAQUS.

The deformation was revealed to depend on how unevenly material was removed
during the grinding process. Part of the residual stresses relaxed in top layers

causing the deformation. Things that cause the roll to be deformed before
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grinding are e.g. deflection caused by the gravity forces, moment caused by
fastening to the grinding machine and variation of the shell thickness caused by
the filament winding. In figure 1 is shown an example of the grinding pattern
used to simulate deflection caused by the gravity. Different colours simulate the

amount of material being removed.

Fig. 1. The grinding pattern caused by the gravity forces.

The calculations were carried out in several steps. First the residual stresses in
the casing was obtained by changing the temperature from the curing
temperature to the room temperature. Then the elements of stiffness rings were
activated (when taking rings into account) and finally the grinding pattern was
simulated by changing material stiffness properties of the remuved plies close to

ZEr1o.

The deformations were noticed to be above the limits even though only a small
amount of material was removed. In figure 2 is shown the maximum
deformation of the casing due to grinding in two different cases of grinding

pattern using the same laminate. Case one is the same as in the example above.

133



2
case 1 shrinkage
g 15+ 1.415
E case 1 swell
-E 1 .
._.2 | 0.713
E 05 case 2 shrinkage"
o
B 0V ; 7 : -0611
":-3, : ’ e GASE 2 SWEI
-0.5 =+
g -0.69
E 4 4 allowed swell
%
E 45t -1.39
allowed
2 shrinkage
maximum of grinding mm

Fig. 2. The maximum deformation of the casing due to grinding in two different

cases of grinding pattern using the same laminate

Making the shell thicker, changing unsymmetric laminate to a symmetric one
and placing a special grinding layer on top of the shell was found to decrease the
deformation to given limits. Stiffness rings were also found necessary because of

their stiffening effect and as balancing mass fastening aids.
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1. Introduction

The expense for the maintenance is a considerable part of the total cost of keeping the
road network an acceptable state. With the increasing number of roads and the following
increase in expenses, a wish have sprung for a tool by which the road administrator
and/or a contractor could predict deterioration and a more optimal road structure can be
built and by which the need for maintenance can be planned ahead. The development of
such an instrument includes solving the coupled and complex MHT-problem
(Mechanical, Hydrological and Thermal-problem) to predict the overall physical behavior
of the road. One component in such a tool could consist of a FE-module which in its
ultimately form should be able to calculate the mechanical impact of environment and
loads on the pavement structure.

2. The deterioration of roads

The most common road type is the so-called flexible pavement, which is a multilayer
construction with materials that exhibits vastly different behavior [1,2,4]. The surface
layer is often made of asphalt concrete and the layers beneath consist of gravel and
finally the natural foundation. Deterioration of the pavement can be divided into two
major components; wear caused by mechanical impact from e.g. studded tyres and the
second component is the irrecoverable inelastic deformations of the materials in each
layer. There actually exists some relatively good methods/models that describes the wear
mode of the deterioration these are often based on statistic databases and empiricism.
The methods/models for predicting the second part of the deterioration i.e. the material
deformation process is not as refined as the one for wear. They are often based on the
assumption that the materials behaves linear elastic which in combination with some
multi-layer model e.g. Burmister [6] gives the strains in certain pre-designated part of the
pavement construction. lhese are then compared to some maximum vales of strain,
which often are based on empirical knowledge. This approach is common in the design
codes that are used in several countries among these is the Swedish code Road 94 [2].
The strength of a method like that are the rather simple and fast calculations. The elastic
theory also limits the need for input data to modules of elasticity (E) and Poisson’s ration
(v). This is however an indirect method that due to the choice of constitutive
representation can not be used to directly predict the permanent deformation that occurs,
such a tool have include material models which includes both elastic and plastic behavior.
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3. Problem description

The materials in a flexible pavement can be divided in to two main groups bounded
materials such as asphalt-concrete and unbounded i.e. the gravel layers, Figure 1.

Asphalt-concrete consists of crushed rock gravel, bitumen and some additives. This
mixture is very sensitive to temperature and aging. The physical behavior changes from
a nearly viscous fluid at high temperature to a brittle material at low temperature. In
Sweden the surface temperature can be in the interval -30 — + 60°C. Brittle behavior
results in cracks in the surface, while if the asphalt is ductile either densification
(compaction) and/or lateral material movements can occur. Rutting that occurs in the
asphalt-concrete as a result of ductile response has characteristic humps at the sides.
There are also a few studies performed that indicates that the response to the applied load
may depend on the rate of the application of fast loads that occurs at high velocities
which means that the load bearing part of the top layer actually is the bitumen. At low
loading rate the gravel acts like a skeleton structure which distributes the load.

Apshall-concrele
| Road-base (stabilizad) }\
Road-bage (unk ]
Sub-base \

Figure 1 A cut through a flexible pavement

The Granular layers in the road exhibits rather varying response to loads due to the fact
that there often is a variation of the quality and size distribution of the material through
the pavement construction. The top layers often consists of material of higher quality and
coarser size (up to 50 mm in diameter) of the particles and this in combination with the
circumstance that these layers are relatively thin compared with the largest particles
creates difficulties in the constitutive modelling [2]. The lower layers have a size
distribution that also includes fine grade materials. The parameter that determines the
behavior that these materials are foremost size distribution, temperature, moisture/water.
Another important factor especially for the top layers is the enforced compaction during
construction of these layers. The compaction introduces extra stresses so that the in-situ
stress not only depends on the self-weight. This implies that the strain/stress history of
the material is of great importance for the quality of the results.

The loads that are used in standard design codes are very often static surface load that is
supposed to simulate the impact from a standard axis from a standard truck, [1]. The real
load is a dynamic load that actually moves on the surface inducing another form of load
characteristic. The Road administrators have allowed an increase in maximum allowed
truckloads causing the axis loads in the reality to be larger then the standard axis in the
design codes. There is also an ongoing development of the tyres in the direction of using
so-called super single tyres, which means that there are only two tyres at an axis instead
of four.
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4. The FE-modelling

Creating the simulation tool is to create a tool that in its final form solves a complex
MHT-problem. The first and important step will be to identify the parameters that have
the grates impact on the quality of the solution. This means that in the long term
development the overall model have to be parallel and in symbiosis, figure 2,with the
development of the other tools e.g. the program that simulates thc tcmperature
distribution through the pavement body so that the output is given in such a form that it
can be used directly as input to the overall deterioration model. The first step in the
development of a possible FE-based simulation tool for simulation of the rutting which
takes place in the surface layer have been to seek a representative material model which
can be altered if necessary. This first attempt only considers the elastic-plastic mode of
the deformations in the asphalt concrete layer. The initial assumption have been to use a
material model based on a flow law according to suggestion by Perzyna. The inelastic
deformation is triggered by a yield surface of Drucker-Prager type, described by e.g. O.
C. Zienkiewicz in [5], see equation (I). Both the flow/creep law and shape of the yield
surface have to be dependent of the temperature due to that this parameters has great
influence response of the asphalt-concrete, see [3].

FU,J)=al, +\JJ, ~k )

However this combination only covers the ductile behavior and must be combined by
some constitutive model for the brittle behavior in the future.

verall Model

MHT: coupled Mechanical- Hydrological- Thermal analysis

Meodels for mechanical
behavior for
different materials

¢ Overall Model
| MHT-FEM

Models for
temperature
changes

Models for
moisture,

|
/ Involvement in all other ) water flow and thaw

models are needed

Load models for vehicle
road interaction

Figure 2 The MHT-FEM model and its involvement in other models.

Most finite element simulations have up to now been reduced to 2D-cases. Because of the
complex behavior due to boundary condition and the moving load a complete 3D-
analysis has to be performed to be able to understand the mechanics of the road in a
wider sense.
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5. Numerical example

As an initial attempt to simulate the impact from a standard load (equivalent to an axis of
a lorry) a full 3D-model, see figure 3, has been made with the commercial FE-program
ABAQUS. The dimensions of the simulated road section were LxWxH=15x17x3 m and
it consisted of over 10000 nodes. The input data was based on material parameters given
in the Swedish design code for pavement design [2]. These are however based on the
assumption that all the materials in the road construction are linear elastic. The aim with
this simulation was mainly to compare the results from FE-calculations with other
commercial or semi- commercial computer program developed for pavement design.

Figure 3 The FE-triangulation of the pavement model (left) and vertical strains and
deformation (right).
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Summary

Stolmasundet Bridge with its 301 meter long main span is a world record long bridge among
segmentally cast concrete cantilever bridges. Its long and slender superstructure and the
timedependent behavior of concrete enhanced the importance of the deformation problem.
Detailed finite element analysis was carried out in order to predict deformations, which would
occur during construction and after long time. Effects of the segmental construction method
and timedependent behavior of both concrete and prestressing steel were considered.
Deformations of the main span were measured throughout the construction. The main
objective of this paper is to show the numerical simulation of this pioneering bridge regarding
the deformation problem and discuss comparison between calculated and measured
deformations.

1 Introduction

The 301 meter long main span of Stolmasundet Bridge is the longest free concrete span ever
built. Without any previous practical experience with such a long and slender concrete span,
the bridge challenged both design engineers and the contractor. Deformation problem in
particular was a serious concern during the design process and the construction. Expected
deflections of the cantilevers were considerable due to the large slendemness of the
superstructure and varied in time due to the viscoelastic behavior of the concrete. To predict
deflections with reasonable precision was necessary in order to ensure the smooth joint of the
two cantilevers during the construction process and also to avoid undesirable deflections
throughout the entire lifetime of the bridge. An independent analysis was initiated by design
engineers on the deformation problem with the objective to gain verification to their results.
The analysis was carried out at the research organization SINTEF in Norway in cooperation
with the Norwegian University of Science and Technology.

2 Description of Stolmasundet Bridge

Stolmasundet Bridge is a segmentally cast concrete cantilever bridge at the Norwegian west
coast, not far from the city of Bergen. Construction of the bridge was completed in 1998.
Total length of the bridge is 467 meter (94m+301m+72m). Box girder cross-section with
variable depth was used. Cross-section depth is 15.0 meter over the columns and 3.5 meter at

139



the middle of the main span. The entire main span consists of 61 segments. The middle
section of the main span was constructed from LC60 lightweight aggregate concrete, while
the remaining part was constructed from C65 normal density concrete. Modulus of elasticity
was measured in Iaboratory at the age of 28 days; it is 22100 MPa for the lightweight concrete
and 29500 MPa for the normal density concrete.

3 Finite element analysis

General purpose finite element program system DIANA was used in the analysis. Several
powerful tools are available in DIANA for numerical simulations: nonlinear timedependent
analysis, phased structural analysis, viscoelastic model for aging materials, predefined
concrete creep models according to some widely used design codes, embedded conventional
reinforcement and prestressing tendons and preprocessing of effective prestressing force.

3.1 Geometrical model

The superstructure was modeled with curved, 3 node, two dimensional beam elements. Each
element represented one segment with a length of 4-5 meter. Due to the symmetry in
geometry, the box girder cross-section was simplified by an equivalent I-section. Columns
were modeled with box shape cross-section. Contribution from the conventional
reinforcement in the top and bottom flanges was taken into account. Prestressing tendons were
approximated by a series of straight segments between beam element boundaries.

3.2 Material model

One of the key points of the analysis was to define the material model that is able to describe
properly the viscoelastic material behavior of concrete. DIANA has the option to define the
aging viscoelastic Kelvin chain model via a concrete creep model, which makes specification
of the material model very convenient. In this analysis concrete creep model given in CEB-
FIP Model Code 1990 [2] was chosen. Shrinkage was also considered according to the CEB-
FIP Model Code 1990. Values of the modulus of elasticity were determined in laboratory.

3.3 Phased structural analysis

Segmental construction method with such a long span requires special care regarding to the
deformation problem. To achieve the desired curvature of the superstructure, erection of the
cantilevers should be carried out according to a predefined theoretical curve, which shows the
necessary over-height for each individual segment and can be determined from the calculated
long time deflections. When the travelling formwork is moved forward to its subsequent
position, it is adjusted to that prescribed elevation.

Phased structural analysis is an ideal tool to determine the theoretical over-height. In our
numerical simulation phased structural analysis was coupled with timedependent nonlinear
analysis. The analysis was divided into 39 phases where each phase represented the
construction of an additional segment (or a pair of segments respectively to the two
cantilevers). The output from each phase was transferred automatically into the subsequent
phase as input. Such way the entire construction history with a consistent time-scale was built
up from individual phases. The last phase covered a 70 year long period of time modeling the
behavior of the bridge from its completion. According to the CEB-FIP Model Code 1990,
deformations take approximately this period of time to reach their ultimate value, however, 90
percent of those take place in the first 10 years.
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4 Calculated deflections

Figure I shows the calculated deflections for the main span in three characteristic points of
time: before the two cantilevers are coupled together, right after the entire span is completed
and after 70 years. The latter curve is the one, which is particularly interesting from the point
of view of the construction process. Its counterpart with opposite sign represents the
theoretical over-height. The largest calculated long-time deflection is about 800 mm with an
approximate contribution of 1300 mm from selfweight and 500 mm from prestressing.
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Figure I Calculated deflections of the main span

5 Comparison between calculated and measured deflections

The calculated theoretical over-height was not followed strictly, which caused deviations up

to 130 mm from the proposed curvature. This deviation, however, did not cause any practical
problem since the actual curvature is smooth and the deviation is not significant on the scale

of the bridge. Figure 2 shows comparison between the calculated and measured height of the
main span over the designed curvature right after the superstructure was completed.
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Figure 2 Calculated and measured height over the designed curvature right after the bridge
was completed
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On the other hand, it is difficult to evaluate the accuracy of the finite element analysis from
Figure 2 since major portion of the deviation results as I mentioned above. Therefore - from
this point of view -, it is more appropriate to compare the relative displacement of the bridge
deck. Figure 3 shows such comparison for segment nr. 24 (124 meter from abutment) of the
left cantilever. The figure shows the displacement of the segment after it was cast and the
instantaneous deformation from selfweight and prestressing took place. Since this figure
covers the following 28 days of the construction period, displacements shown in the figure
mainly consist of the instantaneous part of the deformations due to the selfweight of the
subsequent segments and prestressing.

The finite element analysis predicted somewhat larger deformations than the measured values
shown in Figure 3. The difference may come partly from the higher actual effective
prestressing force and the simplification that tendons were considered to be unbonded in the
construction phases. The latter one resulted in slightly smaller element stiffness.
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Figure 3 Development of displacement at section nr. 24 (left cantilever)

6 Plans for further work

Stolmasundet Bridge was completed at the end of 1998. At the time when this paper was
prepared, the available measured data were limited to the construction period. Development of
deformations during construction was mainty influenced by the instantaneous deformation

due to the selfweight of the additional segments and prestressing, and creep contributed only
with a minor portion. Development of long-time deformations, however, could be rather
interesting for comparison with calculated results. It is our intention to follow up the
development of deformations in the following years with the objective to make further
evaluation of the accuracy of our numerical simulation.
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EXTENDED ABSTRACT
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STATIC EQUATION OF AN ANALYTIC ELEMENT (second part)
(A unified theory of the stiffness, mixed and flexibility methods)

The element considered in this paper is presented in Figure 1.
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Figure 1. A structural element with displacements (w;, ¥ ) and forces
(Q;, M) at nodes 1 and 2 shown as positive.

It is expected that analytic solution of the governing differential equations
is known. Expressions for quantities of Figure 1 can thus be written
using four integration constants ¢ = {c| ¢, ¢; ¢4 }and particular solution
terms. Two state vectors a and b have both four different quantities of
Figure 1 as components. For these vectors it can be written Equations

a=Ac+ap 1)
and
b=Bc+b, (2)

where A and B are coefficient matrices of integration constants ¢ and
vectors ap and b, contain a particular solution. Vectors a and b are said
to be each others complement vectors. Similarly A and B are
complement matrices. Equation 1 gives the expression

c=A"a-A'a (3)
Substitution of it into Equation 2 produces Equation

b=BA'a+b,BA'a, (4)
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It gives the dependence of state vectors a and b on each others. Matrix
BA™' can be called an interaction matrix and vector b, - BA™a, a loding
vector. Equation 4 is valid if matrix A is regular that is its inverse exists.
This condition and the use of Equation 4 were handled in the first part of
this study [1].

When calculating vector e(s) = {w v Q M} inside the element Equation
e(s) = E(s)c + ep(s) ®)

is available. Here E(s) is the coefficient matrix of integration constants
and e, the particular solution vector at a point 81 < s <'s,. By substituting
¢ from 3 Equation

e(s) =E(s) A (a-ap) + ey(s)
= E(s)A'a + ep- E(s)A"a, (6)

is obtained. When used with transfer matrix method it is equal with
Equation 4, when the length of the element is s-s,.

A numerical example:

The structure under considereration is same with the one of the first
part of this study [1], an isotropic ring plate with data presented in
Table 1. Its inner boundary is now fixed and the outer one is free. The
loading is a uniform load p = 1 kN/m?. Calculations are made using
transfer matrix and stiffness methods.

Table 1. Some notations and data of a ring plate

quantity notation numerical
value
inner radius S1 1.0m
outer radius a=s 20m
thickness h 0.10m
Young's modulus E 10000 kN/m?
Poisson’s ratio v ~1./3
bending stiffness B 0.9375 kNm
radial coordinate p=s/a 0.5-1.0

Displacements w and y and forces Q and M can be presented as sum
of particular and homogenous solutions. The latter one is further a sum
of products of integration constants and certain functions. For a ring
plate both are given in Table 2 [2, pp.253-254].
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Table 2. Coefficients of integration constants and particular solution
terms (uniform load p) of a ring plate. Term fis f= 3++(1 +1)2inp*.
Other notations are from Figure 1 and Table 1.

quantity | integration constants and their coefficients | particular
solution
C1 C2 C3 C4q
w i P pinp Inp pa‘p*/B/64
v 0| -2p/a -p(1+2Inp)/a 1//a pa’p°/B/16
Q 0 0 4B/p/a’ 0 3pap/8
M 0 | 2(1+v)B/a? fB/a” * -(1-v)B/p/a’ 3pa’p?/16

When using transfer matrix method matrices A and B contain
coefficients of Table 2 with argument values p; = 0.5 and p, = 1.
Similarly complement vectors a,and b, are calculated as
corredponding values of the particular solution terms, Equation 4 gets
now a numerical form

wy=0

Ws i1 -0.962098 0.124196 0.430322 +0.03411169

Vs =10 1 -0.339357 -0.8 | wy=0] =]-0.1303215
Q=0 0 0 0.5 0 Q; +0.75

M»=0 0 -0.3125 0.587098 0.75 M, +0‘3627009_ .

According to boundary conditions (given above) two last lines can be
used to solve unknown Q;and M; at the inner boundary. Vectors
a={0 0 1.5 -0.690595} and a, are both known and Equation 6 can
be used by calculating matrix E(s) and vector e,(s) (Table 2) at desired
points. Results are given in Table 3.

Table 3. Displacements (w, ) and radial forces (Q, M) of the ring plate
considered above.

radius w v Q M
S

1.0 |+0.5204 10 0.0 1.50 0.690595
1.2 [-0.119979 -10" +0.107989 | 1.066667 | 0.379707
14 1-0.394777-10" |[0.159695 0.728571 | 0.186358
16 |-0.736904-10" [0.178370 0.45 0.070912
1.8 | -0.109654 0.179341 0.211111 | 0.012751
2.0 |-0.144995 0.173762 0 0

When the stiffness method is used vector a contains displacements
a={ws ys w2 yo} and b forces b= {Q; M; Q, M,}. Equation 4 is

now

Q: 17.1396 -7.27054 -17.1396 -9.21941| |wy=0 -0.61682722

M; |=|-7.27054 4.33414 7.27054 2.66084(,| ;=0 = |+0.09875391
Q,=0| |8.56978 -3.63527 -8.56978 -4.60970| | w. +0.44158639
M;=0] | 460970 -1.33042 4.60970 -3.41707| | y» +0.07462827|
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To solve unknown displacement w, and y» two last equations are
available. They give for nodal displacements

a={0 0 -0.144995 0.173762}

After that Equation 6 can again be used Matrix E(s) is quite the same
as used with the transfer matrix method. All the other results coincide
with the ones given in Table 3. Only the deflection value

ws = 0.5551 x 107

has a minimal difference with that given in Table 3, both values due to
round-off error.

It is worth to note that Equation 4 has also an alternative form
b=[BA"'|I'a+b,-[BA'T"a, (4a)

where I is the unit matrix. The result can be commented as follows: an
interaction matrix [BA™'] has a complement. It is the unit matrix I. When
this is substituted into Equation 3 we have Equation

c=I"a-T'a,=a-a, (3a)

for integration constants ¢ and we can say: Generation of a finite
element can be regarded as a process, where mathematical integration
constants ¢ are replaced with physical ones. Equation 3a determines
these constants.
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The use of fibre composites has shown a tremendous growth in many
branches during the last decades. Now the applications of composite ma-
terials span from trivial, industrial products such as boxes and covers, that
are produced in enormous numbers each day, to pipelines and large, crucial,
load bearing parts of constructions. Composites are also extensively used
in aerospace and marine industry. Important reasons for this popularity
are the high strength (and stiffness) to weight ratio and the possibility for
making products of almost any geometry.

Due to the comprehensive use the need for joining composite parts to
construction details made of composites or other materials is obvious. Such
joints can be constructed in numbers of ways, i.e. as bolted or other me-
chanically fastened joints or as bonded joints. Adhesively bonded joints
have the advantages over traditional mechanically fastened joints in avoid-
ing drilled holes (broken fibres), reducing stress concentrations, etc. Joints
can be symmetric (e.g. double lap joints) or non-symmetric (e.g. single lap
joints).

In the following we will analyse single lap joints where two laminated
plates are bonded together by a thin layer of adhesive. Similar joints have
been investigated by, e.g., Hildebrand (3] and Kairouz and Matthews [4].
They study ultimate strength of single lap joints and claim that geometric
nonlinear effects are important. However, they do not investigate for what
values of applied loads or prescribed end displacements nonlinear effects
become significant. In the present study we will focus on that aspect by
comparing finite element results from geometric nonlinear models with lin-
ear simulations. We assume that the joint is wide compared to its thickness
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and the length of the overlap region. Furthermore, each lamirated plate
consists of eight plies with fibre directions 0 and 90 degrees. Thus, out of
plane bending is avoided, and the joint can be investigated as a 2-D plane
strain problem. The well-known software package ANSYS [1] is applied in
the analysis. Additionally, the relatively complicated expressions defining
relations between stresses and strains (including modifications related to the
geometric nonlinear model from Zienkiewicz and Taylor [5]) for laminated
composites are derived and implemented in a general elasticity module us-
ing the commercial C++ class library Diffpack [2]. This way of combining
the use of a relatively robust method in ANSYS with a self-implemented
module in Diffpack, in which all programming details are known, has been
very fruitful and provided valuable insight into important modelling aspects
(for example, it is observed that certain 2-D anisotropic problems are in-
correctly treated by ANSYS). The agreement between the numerical results
obtained by ANSYS and Diffpack is excellent for the problems in the present
investigation.

The numerical, 2-D domain is shown in figure 1, which also defines the
boundary conditions applied. The laminated plates consist of eight plies
of thickness 0.125 mm, and the thickness of the adhesive layer is 0.1 mm.
Two different stacking sequences are investigated: [0/90]z, and [90/0]2s.
The mesh consists mainly of four-noded bilinear elements. There are three
elements through the thickness of each ply and six to eight through the
adhesive layer. In addition to the bilinear elements there are some three-
noded triangular elements in the spew fillet. The total number of elements is
approximately 10000. The material properties, which are listed in the tables
1 and 2, are picked from Kairouz and Matthews [4], where the adherends
are made of X AS/914C carbon fibre/epoxy resin and the adhesive used is
Ciba-Geigy Redux 308A4.

30 1

il

«
=
e

30

Figure 1: 2-D domain for the numerical simulations.

Firstly, we investigate the behaviour of the single lap joint with the [0/90]2,
lay-up in the adherends. A typical distribution of the von Mises equivalent
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stress, resulting from the geometric nonlinear method, is depicted in figure
2 for a crucial region of the (deformed) geometry. Here, the prescribed
displacement, ug, of the right hand side boundary is 0.1 mm, which leads
to stresses and strains far below critical ply crack limits. The maximum
value for the equivalent stress (as well as for o, and o) is observed near the
fillet tip, while the maximum shear stress occurs in the adhesive layer near
2 = 30. Similar behaviour and values are obtained around the spew fillet at
z = 20.

Figure 2: Distribution of von Mises equivalent stress near the fillet tip for ug = 0.1
and [0/90]2, stacking sequence for the adherends.

The figure 3(a) shows vertical displacement at the fillet tip as a function
of up, while the equivalent stress is depicted as a function of the external
load (per unit width) in figure 3(b). The nonlinear results are compared
with solutions obtained by a linear model. Ply cracks begin to develop
when up = 0.2, and it is seen that nonlinear effects are significant for end
displacements (or corresponding external loads) above approximately fifty
percent of that value. Especially the vertical displacement shows consider-
able nonlinearities. However, also the equivalent stress is clearly modified
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Figure 3: Comparison of geometric nonlinear (o) and linear (solid line) results.
Figure (a): Vertical displacement at the fillet tip as a function of joint end dis-
placement. Figure (b): von Mises equivalent stress at the fillet tip as a function of
external load.
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by nonlinear effects. A more careful investigation of each stress compo-
nent proves that the normal stresses {o; and o) are significantly modified
by nonlinear effects while the shear stress behaves nearly linear. Similar
behaviour is observed for the joint with the [90/0],, stacking sequence.

In the present study we have seen that considerable departure from lin-
ear behaviour is observed for a large regime of prescribed displacements or
external loads. Geometric nonlinear effects begin to develop for loads far
below ultimate strength limits. Thus, geometric nonlinear methods should
always be applied when single lap (or non-symmetric) composite joints are

analysed.
Longitudinal elastic modulus, E; (GPa) | 138
Transverse elastic modulus, E; (GPa) 9.4
In-plane shear modulus, G2 (GPa) 6.7
Major Poisson’s ratio, v;2 0.32
Table 1: Mechanical properties of X AS/914C composite.
Elastic modulus, E (MPa) | 3000
Shear modulus, G (MPa) | 1145
Poisson’s ratio, v 0.31
Table 2: Mechanical properties of Redux 308A adhesive.
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Introduction

Previous papers by the authors have described generalised path-following methods for non-
linear quasi-static discretised structural instability problems, [1, 2]. These include methods
for the tracing of equilibrium paths, i. e. load-displacement relations, as a special case. The
methods, however, also allow the calculation of more general paths, e. g. the direct evaluation
of parameter dependence in different aspects of structural response, for instance criticalities.
These methods have been used to great advantage in detailed shell instability analyses, [3].

Generally speaking, instability problems can be studied in several ways. However, catastrophe
theoretical concepts, [4], emphasise the need for treatment of parameterised models. From
the application viewpoint, the parameterised formulation means that a specific studied load-
carrying structure is just one instance of a class of similar structures.

Methods for evaluation of higher dimensional solution spaces have been mathematically de-
scribed in e. g. [5]. The presentation gives some aspect on the possibilities in treating two-
dimensional equilibrium manifolds, in the analysis of non-linear structural response.

Formulation and setting

The general problem setting is that of a discrete or discretised model of a quasi-static elastic
structural problem. It is assumed that the internal forces in the structure can be uniquely
defined from the current displacement state. When the structural model uses N degrees of
freedom, the equations can be written in the generic residual form

g(z)

with F' N equilibrium equations, and g a set of » auxiliary equations, specifying the required
subset of equilibrium states. The solution is a set of combinations z = [dT, AT|T of N
displacement variables d and p control variables A fulfilling both sets of equations.

G(z) = ( F(z) ) —0 F(2) = f(d, A) - p(A) )

In addition to a main load factor, extra control variables are used to specify the structural
geometry, or auxiliary loads. The auxiliary equations can be used to specify the values for
certain response quantities, or to demand criticality of the structure, cf. [2]. Primary interest
is focussed on three cases: basic load case on parameterised structure, two independent load
cases, and critical parametric combinations.

As a contrast to the treatment in [2], it is here assumed that the number of variables is
two higher than the number of equations. This means that the solution manifold to Eq. (1)
consists of a set of surface segments in the (N + p)-dimensional space. Parts of this solution
space is evaluated with the present algorithm.
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Figure 1: Solution manifold, showing the parameter dependence around a basic load case.

In the present implementation, it is possible to define problems with p > 2 control parameters,
and with 7 > 0 auxiliary equations. Only p = r + 2 parameters are varied in the analysis, but
further parameters can be included; these are then kept fixed at their initial values throughout
the calculation.

In the present formulation, only a limited part of the total manifold is of interest, where the
total problem is seen as variations, described by the additional parameters, around a basic
case, i.e. a common load-displacement problem; the situation is described by Fig. 1. The
basic case is defined by all additional variables vanishing.

The stated problems can be solved by path-following techniques based on the implicit function
theorem. Here, the differential matrix

+Fd FA
Gz= g x 2
2 [ 94 Q.A} (2)

plays an important role in many parts. The (IV + r) x (N + p) matrix, which contains the
structural tangential stiffness matrix as its top left part, is used in the iterative procedure
when bringing the residual function G(z) to zero, but also as an important description of
structural properties.

Surface-evaluating algorithm

An algorithm has been developed for the evaluation of a specified sub-manifold of the total
equilibrium solution space. With respect to the assumed context, the algorithm develops
a surface around the main case, indicated by the solid line in Fig. 1. As a first step, a
triangularisation is developed around this basic solution, according to Fig. 2a. The surface
is described by two parameters (s,t), used to measure the placement of solution points.
The parameters are incrementally defined from previous states. The mapping of the local
variables is such that s always points in the direction of the basic solutions, i.e. solutions
with no increment in additional parameters. This is obtained by evaluating and rotating the
tangent space T of the differential Gz, at each solution point, cf. Fig. 2b.

The evaluation of the two-dimensional tangent space, corresponding to the differential matrix
in Eq. (2), is extensively discussed in [2]. The basic idea is a separation of this space in
components in and orthogonal to the critical space of the tangent stiffness matrix F' 4. The
method starts from the null space of only the equilibrium equations, and then studies how
this null space is reduced by the auxiliary equations.
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a) b)

Figure 2: a) Normalised mesh coordinates. b) Tangent directions for measuring. ¢) Post-
processing of basic solution mesh.

A step along the basic case consists of the evaluation of three new solution states, from which
four triangles are added to the surface description. The iteration procedure for each state
is essentially the same as in a common continuation algorithm. Thus, based on the form in
Eqgs. (1),(2) and adding position measuring equations, different versions of Newton-Raphson
(‘N-R’) iterations are used.

The basic results from the algorithm is thus a small submanifold, essentially being three
connected, parallel rows of solution states, cf. Fig. 2a. Based on these solutions, two types
of further evaluations can be utilised. One of these is an extension of the obtained triangu-
larisation, where one layer of new solution points, and a group of new triangles are obtained,
cf. Fig. 2c. This step needs consideration of the geometry of the boundary of the starting
mesh, and a choice of the outwards distance from the previous points. The step can be
repeated a number of cycles.

The other additional step is similar to the ‘bracketing’ algorithm for isolation of special
solution states on a path, cf. [2]. This refinement of the mesh is used to give a better
description of surface segments where the properties of the equilibrium states change in some
way. The considered properties are the degree of instability, i. e. the numbers of negative
eigenvalues of the structural tangential stiffness matrix, and the signs of all control variables.
Each triangle, based on three solution states, is checked for the values of these quantities. A
systematic refinement of the triangle to a desired level can then be performed. In order to
avoid unnecessary eigensolution extractions, the same simplified method is used as in [6].

Numerical examples

A number of examples have been analysed with the present algorithm, and will be discussed in
the presentation. Some comparisons will here be made between the demonstrated numerical
procedures and the generalised one-dimensional methods of [2], concerning obtained results
as well as reliability and efficiency aspects.

A clamped toggle frame, previously studied analytically by Williams, [7], and numerically
by several authors, can show all the discussed possibilities. The case is shown in Fig. 3,
with L =12.943, H = 0.7, E = 1.03 - 107, and a beam section of height 0.243, width 0.753.
The structure was modelled with eight elements of the type ‘ST, cf. [8], not utilising the
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symmetry. The model shows a snap-through behaviour under a vertical downwards point
load —P;, but also gives a bifurcating path. The result shows the dependence of the result
on an arbitrary applied apex moment P». The figure clearly shows the bifurcation state, with
its exchange of stability, prior to the first limit load.

iareapax moman

06 o8

[
lon
Ll ikt doteetion

Figure 3: Clamped toggle frame, according to Williams, [7]. Load is scaled by a factor 100.
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1. INTRODUCTION

The winding devices of the modemn paper industry exclusively include a nip. Despite restricting air
entrainment into the roll, a nip provides two additional external loads — normal and tangential — to control the
wound roll structure. A winding nip typically generates a very high stress concentration in the nip area and,
hence, a possibility for web and roll defects. It is also well known that in the nip area layer-to-layer slippage
may occur in the wound roll. This sets demands for the winder control system to keep the nip loads in a range so
that the required roll structure is achieved and, on the other hand, that roll defects due to nip induced stresses are
avoided. Currently, the appropriate range of the winding parameters is sought mainly by trial and error tests.

Despite that there exists a vast amount of literature on rolling contact of two parallel cylinders, a rigorous
theory applicable to the winding nip is still lacking. Bentall & Johnson [1] have studied the rolling contact of
two cylinders with an elastic strip going through the nip. They restricted their treatment to isotropic materials,
identical cylinders and essentially to free rolling conditions. Also, a half-space approximation for the cylinders
was used and, hence, the theory is not suitable for a drum with a thin elastic cover. Tervonen [2] has extended
the treatment to linear, viscoelastic cylinders and tractive rolling. His model includes covered cylinders but is
also restricted to isotropic materials. In neither of these papers the winding application is considered. Soong &
Li [3,4] have considered the rolling contact of two cylinders with linear, elastic and isotropic layers bonded to a
hard core and driving an elastic thin sheet with extensional stiffness. All previously mentioned studies lack the
proper nip exit condition for the web wound onto the roll.

In this paper a contact mechanical model for the winding nip is presented. The model consists of the
wound roll, winding drum and the sheet in the nip. The wound roll and winding drum are modeled as linear,
orthotropic, homogeneous cylinders with a rigid core. The elastic solutions are derived analytically in a series
form. The sheet is also modeled as a linear and orthotropic material. An approximate elastic solution for the
sheet is obtained by assuming an internal stress distribution compatible with the boundary conditions and by
integrating the orthotropic constitutive equations (thin sheet approximation). The appropriate form of the nip
exit condition of the web is considered.

2. FUNDAMENTAL ELASTIC SOLUTIONS

Let us consider a linear, orthotropic cylinder of radius R (see Fig. 1) with a rigid core of radius R, and
loaded by the radial and tangential surface load distributions p and g, respectively. The boundary conditions in
the polar coordinate system attached to the center of the core are

v (Ry,8)=0 , 0o,(R,E)=-p(6)

¢))
Va(Ry. ) =0 , 7,4(R,6)= ¢6),

where v, and v, denote the radial and tangential displacements, and o, and 7, the radial normal and tangential
shearing stresses, respectively. The linear constitutive equations of the orthotropic cylinder can be written as

ov, 1 a\’{; aV, 1 ov,
o, =4 a—;'l’A,.g’;(Vr +~53J > Og =AFEF+A€€:(V +—€J 5

rr

@
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Fig. 1. Winding configuration

where the coefficients A,,, 4,4, 44y and G, are the orthotropic elastic constants of the material. Substituting
the above equations into the equations of equilibrium

90; 1% %% ¢ 8%0,12% 570 B
or r a¢ r or r 00 r

a coupled system of partial differential equations solvable by Fourier series techniques is obtained.

Let us consider next the elastic sheet in the nip. An analytical solution for the sheet can be obtained by
using the method of homogeneous solutions and biorthogonality properties of the 2D elasticity problem
formulated in terms of the stress function and generalized biharmonic equation [5], by using the method of
separation of variables leading to a general series representation [6,7], or by using a sixth degree polynomial for
the stress function accounting for linearly changing boundary loads [7]. These solutions would be valid for any
sheet thickness. However, due to the thinnes of the sheet an approximate solution can be derived. Consider the
sheet of Fig. 2 loaded by the normal stresses o (x) and o™ (x) and the shear stresses 7" (x) and 7™ (x) at the top

and bottom surfaces, respectively.

—

T,
Tr,1 0 y
Op,1

ot 1
T. T+
! — To x

e o
=
c

0-r,2
1 T2

Fig. 2. Notation of the stresses within the contact area.
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The web tension at the left cross-section of the sheet is T;. Within the thin sheet approximation one can assume
that o*(x) = 0™ (x) = o* (x). The stress distribution inside the sheet, compatible with the boundary conditions,
takes the form

T, = ﬁ{T B I KGR r‘(@]d:} ,
o, =o' (x)+ %[r“(x) + r"(x)}(h - y)+ﬁ[r*'(x) - r"(x)}(h2 ) )

Ty = -;-[r" x)+7 (x)]+%[r*(x)— - (x)] ,

where 24 is the thickness of the sheet. The horizontal and vertical displacements may be integrated from the
constitutive equations

Ou
—_— =00, +C,0 — =0, + CyyO
11%x 12 ’ 12%x 22 El

o y 3 y
du v ©)]
—+ = (7,

66 L]

oy ox i

where ¢, ¢5, ¢5, and ¢4, are the compliance coefficients of the sheet.

3. FORMULATION OF THE CONTACT PROBLEM

The radial displacements of the upper and lower cylinder (roll and drum) surfaces v, and v,, and the
vertical displacements of the top and bottom surfaces of the sheet v* and v~, respectively, must satisfy the
indentation equation

v+ — (VT =vT) =6, —ﬁ(x2 ~26,%) (6)

within the contact area. In equation (6) the coordinate x is measured along the centerline of the deformed sheet,
dy is the vertical approach of the cylinder centers, &, the horizontal displacement of the center of the nip, and
1/R=1/ R, +1/ R, the relative curvature of the cylinders.

In the zones of stick the velocities of the contacting surfaces must be equal. Using small displacement
approximation the necessary stick condition between the paper roll and the sheet, and between the winding drum
and the sheet can be written as

& -5+£=0, £ -5+4=0, ™

respectively. Here &' = du(x,h)/8x and & = Ou(x,—h)/dx are the horizontal strains of the top and bottom
surfaces of the sheet, and £ and &, the circumferential surface strains of the roll and drum, respectively, Note
that in the thin sheet approximation the condition &* = &~ is valid. The constants ¢, and &, are the creep ratios,
i.e., fractional differences between the speeds of the contacting bodies far away from the contact area. Within
the slip areas we assume Amonton’s law of friction, i.e.,

sgn(V" ~V) 7t =—pot, sen(VT -V =-uo, ®

where ¥* and ¥~ are the local speeds of the upper and lower sheet surfaces, W and V; the local speeds of

surfaces of the upper and lower cylinders, and x, and w_ the friction coefficients in the upper and lower
contacts, respectively.
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We can still utilize the total equilibrium conditions of the subsystems. It is easy to see from Fig. 2 that the
horizontal equilibrium condition for the sheet and the torque balance conditions for the roll and drum lead to the
equations

a a a

Jr+(x)dx—'[r‘(x)dx+7{)=1}, jr*(x)dxm():ﬁ,

~a -a -a Rl
MM g ©)
R R

In a real winding situation two of the quantities M, M, and T; - let’s say M, and T; - are given. The vertical
equilibrium conditions for the roll and drum give

ja’*(x)dx: j-a'(x)dx=—P. (10)

-a

If the compressive force P is given, equations (10) can be used as part of the solution procedure providing also a
value for the nip contact width 2a. If, on the other hand, the nip width is given the corresponding compressive
force can be calculated by equations (10). The latter alternative is preferable since it leads to a simpler set of
equations to be solved.

If the sheet goes through the nip with an externally set tension behind the nip, the tension 7, is known.
However, if the sheet is wound on the roll, the tension 7 is not known a priori so that the number of unknowns
is increased by one. The wound-on-condition, on the other hand, yields one more equation. Since the sheet
behind the nip, after being stuck onto the roll surface, becomes part of the roll, one can readily conclude that the
wound-on-condition takes the form

& =g0-c,To/2h, 1)

where &, is the circumferential surface strain of the roll at the nip exit. The equations at disposal are the
indentation equation (6) and the stick/slip equations (7)-(8) written at discrete points within the contact area, the
equilibrium equations (9)-(10) and the wound-on-condition (11). The appropriate solution process is an
extension of the Panagiotopoulos Process [8].

4. CONCLUSIONS

Starting from first principles we have presented the equations for the contact mechanical approach for the
winding nip consisting of the wound roll, winding drum and the sheet obeying the orthotropical material law. At
present we are implementing the model into a computer for nip simulations. The aim of these calculations is to
find out the state of the sheet in the nip as well as the wound-on-tension needed to evaluate the stresses in the
roll. The sheet model used can be progressively improved, starting from the approximate model presented in this
paper and proceeding towards the more complete models of the sixth degree polynomial stress function and a
general series representation.

REFERENCES

1. Betall, R.H. and Johnson, K.L., Int J Mech Sci 10, 1968, 637-663.

2. Tervonen, M., Doctoral Thesis, Acta Univ. Oul. C 100, Finland, 1997, 123 p.

3. Soong, T.-C. and Li, C., Int J Mech Sci 23, 1981, 263-273.

4. Soong, T.-C. and Li, C., J Appl Mech 48, 1981, 889-894.

5. Lurie, S.A. and Vasiliev, V.V., The Biharmonic Problem in the Theory of Elasticity, Gordon and Breach

Publishers, Luxembourg, 1995.

Pickett, G., J Appl Mech 66, 1944, A-176 - A-182.

Hertzen, R. von and Jorkama, M., ‘On the Solution of the Generalized Biharmonic Equation’, Unpublished
manuscript, 1999, 29 p.

8. Panagiotopoulos, P.D., Ing-Arch 44, 1975, 421-432.

e

158
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Extended abstract

The principle of stationary complementary work for geometrically linear structures

has presented in the 1880 decade by Franceso Crotti (1839-1896) and Friedrich
Engesser (1848-193.1). Much later, in 1960°s Charles Libove [1] and Cenap Oran

[2] presented the correspondent principle for structures, where the geometric
nonlinearity was also allowed. For a long time it has been accepted tat a theor-
etical analysis of a geometrically nonlinear elastic continuum is not possible as a
function of stresses only. Not until in 1970 L.M.Zubov [3] published the prin-
ciple of stationary complementary work for a nonlinear continuum. In 1973

W.T.Koiter published [4] a somewhat different derivation of the correspondent
principle. Author has presented for geometrically nonlinear structures [5] and [6]
the principle of stationary complementary work, where the complementary work is
in two parts: 1) the stress energy caused by the elements rigid body rotations and
named pseudo-stress energy and 2) the stress energy caused by the material
deformations only. Both types of energies are functions of large elements rotations,
expressed as a function of element forces.

In the beginning the authors presentation of complementary work is repeated using
two simple examples. Later the connection with the pseudo-stress energy and the

change of the geometric flexibility is presented with examples. '

A single bar. Consider the bar as shown in Fig. 1a. It can be the member of truss
for example.

Sy *

Fig. 1b.

The bar turns and stretches from the initial position into the final position on some
path p (Fig 1a). When the bar is elastic, the work of force S can be calculated on
the path K;Ks. On the arc K,Kthe bar turns as a rigid body and force S is equal
to zero and on the line Ks the force increases to its final value S. It is assumed
that the bar elongation ¢ increases monotonically as a fuction of S. The work of S
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is equal to the bar deformation energy U, as well known. It is shown in the
dlagram of Fig. 1b. The complementary work of S, W =AW +U" (Fig. 1b), where

AW" = SA is the pseudo-stress energy, which is caused by the bars rigid body rota-
tion because A4 is caused by the bars r1g1d body rotation only. (Fig. 1a). It can be

written AW =SA=S-AK = HAu+V Av using the notation as in Fig. 1a. When the
rigid body rotations are small as with geometrically linear structures, the AW* =0
The stress energy {J = [e(S)dS as with Engessers work on principle. But in the
analysis of geometrically nonlinear structures it is more complicated.

A structure. Consider the geometrically nonlinear structure shown in Fig. 2a.

V2 I_F;x

Fig. 2a Fig. 2b

The work W and complementary work W’ of loads F,F, and their displacements

u,,v, can not be written directly without solving the structure. It is-well known,
that W/ =U deformation energy for elastic linear or nonlinear structures. But what
is for the elastic structures the stress energy corresponding to the complementary
work [/° of loads? For a single bar as before it was obvious, that W* =AW" +U" as
derived before. But how it is in structures?

The base system (the unknown forces) must be chosen so, that the internal stress
state can be expressed as a function of loads and redundants. So the deformations
in material can be expressed as a function of forces. Instead of S, in a geometri-
cally nonlinear structure, where the direction of § is changeable, its components
X,,X in fixed directions must be chosen unknowns. Using the notatoin of Fig. 2a

= ~J; " wdX, ~ [} v,dY, + 21,, udF, + sz'*vdF M
By the partial mtegratlon and takmg mto account, that W=U it is obtainable
W™ =-Xu - Yv,+2Fu+2 wi-U  (Fo=F,=0i=14) (2)

The force system X,,Y,, l.,‘,1‘7,.}, must be in equilibrium and the compatibility of
displacements must be true in the base system (Fig. 2a). Thus
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u, = —Au, — Au, — Au;

V) = —d4v; - 4v, - 4v;

RIIG
)
EERS

=H -F, (3) U, = —du, - Aus (4)
V,=V,-F, vy = =dv, = dv;
H;=H,-F, Uz = —Au;
Ve=V,-F;, vy = -4y,
Substituting (3) and (4) into (2) it can be obtained after manipulations
W= _i(HiAu,H/;Av,)—U (5)
But -
U = $(80,-U0) = S(Sutu+5,8,)-U" = S(Hi 4Viey)-U' ©)
Substituting U from (6) (the last form) into (5) it results
W* = S(H, 2 +V,50) + U’ )
where -
i(HiEi +V avi) = AW (8)

the pseudo-stress energy caused by the elements rigid body rotations only. Thus in

the geometrically linear structures (elements rigid body rotations are small)
W*=U" 9)

A connection between the pseudo-stress energy and the geometric flexibility.

Consider a structure as shown in Figs. 3a and 3b which are kept geometrically

nonlinear. It is assumed here, that the displacement v(F) is single-valued, convex

or concave and monotonically increasing. The flexibility ¢ and geometric flexibility

Ce

c=v’(F)=ﬁ c =c-—c& - (10),(11)

a’ E
Further it is assumed that for the sake of simplicity the stuctures are physically
linear. So the numerica values {/=U"

F
v
Fig. 3b

For the structure as shown in Fig. 3a the F-v diagram is shown in Fig. 3a also,

W'sW-U=U"&W =AW +U" = aW" >0 (12)
The geometric flexibility decreases which can be seen from diagram in Fig. 3a.
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For the structure as shown in Fig. 3b, the F-v diagram is shown in Fig. 3b also,

W' <W=U=U W =AW +U" = AW <0 (13)
The geometric flexibility increases, which can be seen from diagram in Fig. 3b.

If the structure is loaded by many forces F,... (and includes many elements) and if
the forces increase in the same way, the increase of loading can be presented by a
single parameter t: P(t)=tF. Furthermore, if the structure is physically linear,
only the change in geometry changes the flexibility.

o) = ah (14)

Conclusion. When in the physically linear structure the geometric flexibility
decreases with t-increasing loading <> pseudo-stress energy AW >0. When
geometric flexibility increases <> AW <0.

Examples. In Figs 4a and 4b the bar tension flexibility ¢=0.6487826 m/kN.

7 45° 5
4 - 4
50,7847 I
P=1 kN
yi
Fig. 4a Fig. 4b
X = -1732186 kN X =0.816024 kN
AW = -0.481973 kNm AW = 0.046474 kNm
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FULLY NONLINEAR ANALYSIS OF PLANE FRAMES USING KINEMATICALLY
EXACT BEAM ELEMENTS
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Introduction

In this paper we consider the so called kinematically exact finite elements in geometrically
and materially non-linear structural analysis. The solution procedure used in the non-linear
equilibrium path detection is based on Fried’s orthogonal trajectory arc-length method [4] with
the full Newton-Raphson iteration. For detailed description of the path-following computations
and related items, see e.g. [5]. The considered isoparametric plane beam element based on
Reissner’s stress resultant theory [6] is capable of handling finite displacements, finite rotations
and finite strains. Non-linearity of the material model is taken in account using a yield criterion
based on the stress resultants with linearly isotropic hardening. The considered element and
algorithms are numerically verified in the analysis of a cantilever beam example.

Element Description
Reissner [6] has developed a kinematically exact stress resultant theory for curved beams
and arches in which the finite strains are written as

e=("+u)cos@+('+v)sinp-1
Y=0'+V)cosp—(x'+u)sing ¢))]
K=¢'-¢,

in which () =d()/ds denotes the differentiation with respect to the element axial co-ordinate
s. In (1) u and v are the displacements in x- and y-directions, respectively and ¢ measures the
angle between the beam cross section and the y-axis (in the undeformed state ¢=¢yp). In the
isoparametric case, the finite element interpolations for geometry and displacements are the
same:

x=N'x, y=N"y, u=N"u, v=N"v, 6=¢-¢, =N"0 )
in which the vectors X, y, u, v and 0 contain the values of X, y, u, v, and @ at the element nodes

and N contains the associated shape functions. Inserting the finite element interpolations for u,
v and @ into the virtual strain formulas results in

d¢ du cosgN' singN' W
8y =Bydv: with B=|-singN' cosgN' —(g+1)N (3a,b)
dx 30 0 0 N'

In (3) the shape function derivatives are computed from
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N _aN (&) (@Y
N_ds—Jdé with J = [dij] +[d§) (4a,b)

in which £ is the natural co-ordinate of the element. The linear and geometrical stiffness
matrices K; and K can then be computed from

K, = [B'DBJ and K, =b | AB'SJdE (5a,b)
L L

in which AB can be derived from (3b) and, in Reissner’s stress resultant theory, D transforms
the strain vector e=[¢, 7, «]" into stress resultant vector S=[N, Q, Mm*

1 0 0
D=Ebhl 0O 1/2(1+v) O (6)
0 0 K /12

in which E is the elastic modulus, v is the Poisson’s ratio and b and 4 are the width and height
of the element, respectively.

Elasto-Plastic Material Model
For the stress resultant yield condition we take the well-known axial force - bending moment
interaction curve [1, page 509]

M

M,

2
F(N,M, K)=(Ni) +

P

-1 &  F(N,Mx)=N* +f‘%|M| -N: (7a,b)

in which K is a hardening parameter, Mp=0,bh*/4, Np=0,bh and o,=0y(¥) is the yield stress
taken from a uniaxial stress - strain curve that is now assumed to be bi-linear with tangential
modulus E, in the plastic range. Moreover, we assume that the material is isotropically
hardening obeying the associative flow rule for which the elasto-plastic incremental stress
resultant - strain relationship reads in

dS =D de (8)
in which the elasto-plastic material matrix is [9, page 463]

D[JF / 38]'[9F / S]D

D, =D-c 9
& -0F / 9xS"[JF / O8]' +[JF / SS]D[F / 8] &
For the particular yield condition (7b) the derivatives of the function F are
aF/aS=[2N, 0, sign(M)4N"] and awa:«:i'”i'%—zzv,,% (10a,b)
h h odx ox

Assume that the uniaxial stress resultant - strain curve is known and the hardening parameter K
is taken to be represented by the amount of plastic work as in [9], hence, dk=Npdep resulting in
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M
2M,

AM[dN, 1, dN 1

oF/ ok =
h de, N, " de, N,

=2E,bh(=2L 1) (11)

in which the plastic modulus Ep=EE/(E-E,) [2, page 4]. Using (10,11) it is now possible to
compute the elasto-plastic material matrix (9) in which the default value of the parameter ¢ is
1, but in the unloading phase a=0.

In the computations the stress resultant increment due to the elasto-plastic strain increment
Is computed by dividing the strain increment into small steps so that the yield stress o is
updated after every step by forcing the stress resultant vector to remain on the boundary of the
yield surface. Hence, following from (7b) the updated value of the yield stress o is

o MK +Mb R +b*h°N" / 4
=

b*h* /2 12)

Numerical Example

As a numerical example we consider a cantilever beam discretized by 10 three-noded
elements and loaded by a transverse force as depicted in Fig. 1. Using the shown material data,
the computed solution is in very good agreement with the results presented in [3]. Slight
difference between the computed and reference equilibrium paths follows from the fact that in
the stress resultant theory partial plastification of a beam section can not be taken in account.
However, this is only a minor drawback compared to the computational efficiency of the stress
resultant approach. The computing times for the elastic and elasto-plastic cases with the same
number of steps and same convergence tolerance were 0.55 and 0.77 seconds, respectively.

g L T AR
7t A0
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6_ J
| A
= 5 =
.§ E=12E+6 0=1.0
Lar E=12E+4
8 v=0.3
T g o
ol e I — ‘ L=10
————— Eberleinetal.[3] 5=1.0
% 1 2 3 4 5
Vertical Displacement at A

Figure 1. Cantilever beam and associated equilibrium paths.

Conclusions

The use of stress resultant based elements in fully non-linear structural analysis offers some
advantages compared to the ‘conventional’ finite elements. In elastic range the element gives
accurate results even if the tangential stiffness matrix and the internal force vector were
computed using the total-Lagrangian (TL) formulation. Hence, one do not have to worry
about the reference configuration updating algorithms and the handling of rigid body motions
during the analysis. If the element material is considered as elasto-plastic, one has to use an
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incremental formulation for the stress resultants but still the kinematic matrix B in (3) can be
computed straight from the initial configuration. Moreover, the yield criterion is now expressed
in terms of the stress resultants and this makes the analysis more efficient because the
numerical integration over the height of the beam is not needed. Unfortunately, for the same
reason, the element is not suitable for accurate analysis of e.g. concrete beams for which the
elasto-plastic stress-strain relations in compression and tension are completely different.

In further studies the shear force will be included into the yield condition as proposed in [1]
and the research will be augmented to axisymmetric elasto-plastic shells for which a similar
stress resultant theory also exists [7]. Moreover, instead the used stress-updating algorithm,
more sophisticated methods that quarantee the convergence rate to remain quadratic, see €.g.
[8], will be tested in the computations.
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1. Introduction

Nowadays finite element (FE) simulation becomes essential tool to obtain information
for practical engineering decision-making. In particular, much attention of researchers is
devoted to the development of automatic adaptive FE strategies, which enables us to
obtain FE solutions within a prescribed accuracy without any user intervention. The
most important ingredient in those strategies is the reliable error estimation. The
assessment of the discretization errors can be performed by two ways: a priori and
posteriori error estimation. A priori error estimates provide only qualitative assessment
of the solution and finite element mesh such as the smoothness of the solution, the
regularity of the mesh, asymptotic rate of convergence, which is essential for theoretical
investigation. A posteriori error estimates can be utilized to give more specific
assessment of errors in different measures [1].

In this paper we focus our attention on the application of the Superconvergent Patch
Recovery technique for displacements (SPRD) to the elliptic problems. The SPRD
technique is based on a higher order displacement field fitted to superconvergent values
in nodal points in a least squares sense over local element patches [2, 3].

For vibration problems the enhancements of the solution are provided by the
local/global error control approaches. Within a framework of the local updating, the
SPRD is applied to free vibration problems for improving eigenmodes and
eigenfrequencies. This method shows excellent results for the lower eigenfrequencies,
but for the higher eigenfrequencies the improvement of the eigenpairs is still not enough
to provide reliable error estimation. Due to a too crude underlying mesh in order to
improve the higher frequencies, we employ a preconditioned conjugate gradient scheme
to optimize successive deflated Rayleigh quotients. The idea of global updating is to
improve the FE solution of order p by the SPRD method and then use it as the starting
trial eigenvector in the preconditioned conjugate gradient scheme to obtain a solution
similar to the FE solution of order p+I [4]. When we have obtained the global updated
solution of order p+1, we apply again the SPRD technique to get an improved solution
of order p+2; thus we have a global-local approach. Numerical examples show the nice
properties of local/global updated solution as a basis for an error estimator and an error
indicator in an adaptive finite element strategies.

In case of acoustical problems, we construct an adaptive remeshing strategy combining
our error estimation technique with available commercial packages. For finite element
analysis we use the commercial code SYSNOISE. The commercial package I-DEAS is
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implemented to generate the initial mesh and to perform adaptive remeshing procedures
[5]. The numerical methods used in the technique are outlined and example is cited to
show the range of this method’s applicability.

2. A Postprocessed Error Estimation

The problems discussed in this paper can be described in the form of
Lu+ f=0 inQ M

together with appropriate boundary conditions. Here L is a differential operalor acting
on the unknown function u; f denotes some function, which is known inside the domain
Q.

In order to investigate the accuracy of the solution, we need to discuss the dicretization
error. The point-wise discretization error is simply the difference between exact solution
and the finite element solution:

e =u-u )

where u is the exact solution and #” is the corresponding FE-approximation.
The essence of the postprocessed error estimator is to replace the exact solution with
a postprocessed solution of higher quality:

e, ~e, =u -u” G)

where 2, is the point-wise estimated error. Using the improved solution we have the

estimation
o i . 2
||e||= Jeu Le, dQ “4)
Q
The quality of any error estimator is dictated by an effectivity index:
” h
fol_l -
f=1r="r (5)
M ]

It has been known that if the postprocessed solution exhibits superconvergence
property, meaning that the rate of convergence of the postprocessed solution is at least
one order higher than finite element solution, it can be shown that the postprocessed
type of the error estimator is asymptotically exact. Assuming that the true error

converges as “u ~u” H =C,h®? and the error of the postprocessed solution
L3 . . .
“u -u “ =C. h?*% for some superconvergent solution with & > 1, we can obtain

I-Ch®*<0<1+Ch® (6)

Showing that the effectivity index approaches unity as #— 0. In the above, a = ]
indicates whether the recovered solution has a higher rate of convergence than the finite
element solution.
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3. Element Patch Recovery Technique

The idea of SPRD is to define a new displacement field of p+1 order over a patch of
elements. This new field is required to be a least square fit to the original finite element
solution at some points where the accuracy of finite element solution is higher. It has
been known that the nodal points of the finite element approximation are found to be the
exceptional points at which the prime variables (displacements) have higher order
accuracy with respect to the global accuracy.

The new displacement field over an element 7 7}, of the corresponding eigenmode u:
we construct using ordinary local basis functions of the order p+1/

u (x)=3" N/ (x)(u, ); + 3 Ny(x)(u; ); )

where 7 is used to denote original finite element 7 nodes and s denotes additional nodes

of the element of the recovered displacement field, N : (x) and N : (x) are local basis

functions of the order p+1 associated with the original element nodes and the additional
ones, respectively.
The nodal values of the original finite element displacements are assumed to be the

same as of the original finite element solution ( u: Jhi=( uﬁ' ); and recovered

displacement values (us*)i at the additional nodes are obtained by solving the

following least squares problem in the element patch (2, :

Find u,-* €P,,; such that

Jo ()= min  Jo (u'), ®
u )iEPp+l
where
I ns ST
JQ,(“ )i=ziju (xj)Ru(xj) )
J=I

where the residual R, (x;) is calculated at the locations where the original finite
element solution is superconvergent or at least highly accurate. The residual is defined
by expression as

R, =(u"); - (u]); (10)

and (u’") ; belongs to polynomial expansion of order p+1

(u”");=0(x)b (11)

where @(x) is a row matrix containing monomial term of physical coordinates of p+1
order, and the vector b is a set of unknown parameters to be determined.
The patch equations are set up for patches of elements surrounding the master element.

For each element 77, we denote be E(7) the set of its edges. So for each element

the patch £2, which consists of the part of elements surrounded the master element is
denoted by
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2= U (12)
TEE‘(T')

For the triangular elements set E*(7') coincides with E(7), for quadrilateral elements
set E” (') consists of the adjacent edges connected to one of the nodes of the element

E*(r')c E(t) as shown in Fig 1.

We use a reduced element patch which has an extension of the size 2k (where & is a
characteristic element size in the local patch) in order to maintain locality of the least
squares fit. This enables us to reduce the cost of computation and at the same time to
increase the accuracy of recovered displacement field. Only boundary patches, which
have not enough number of elements for reduced patch, are constructed in the usual
way.

Reduced clement paiches Traditional element patches

7

i

a) Element patchs for linear quadrilaterals

b) Element patchs for quadratic triangles
% element defining the patch

@ sampling point in the element patch

Figure 1: Possible element patches for linear quadrilateral and quadratic triangular elements

The described approach is a local updating method, so no global system of the
equations has to be solved. ‘I'he number of equations to be solved is small and the cost
of the recovery procedure is proportional to the number degrees of freedom n of the
mesh.

As a demonstration of the procedure we consider the Poisson equation over a unit
domain and use the boundary condition and the ‘load’ function f that corresponds to an
exact solution of the form

u(x, y)=x(1-x)y(1- y)(1+2x+7y) (13)
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The regular meshes are used in the computational experiments. Numerical results are
presented for both quadrilateral and triangular linear elements in order to test whether
the proposed SPRD procedure is adequate to estimate the error of the finite element
solution.

The following labels are used in figures and text: FE for the original finite element
solution, SPR for the Zienkiewicz and Zhu [6] superconvergent patch recovery
technique, SPRD for the superconvergent patch recovery technique for displacements
presented here [2, 3] and DI for the displacement interpolation recovery technique
developed in [7].

The error in energy of recovered solutions obtained using different recovery procedures
is compared with that of finite element solution in Fig 2. The improved derivatives
obtained by SPRD technique exhibits O(%’*’) superior rate of convergence as expected
and shows higher accuracy than SPR and DI approaches. So the proposed SPRD
technique provides asymptotically exact error estimate.

: 0
05 ! e osl ] [
I - Jt=sspa] 17 5 "”"uSPR"
) T e b o
?'f . Y d )
] 15 e il 15} 7 b
2 :rf*.-' ’ 2
o - ! 2.5¢
-2.5 ) . . ) . - I I
15 <13 -1 -09 -07 05 -03 -0l B5 3 11 09 07 05 03 0.1
log logh

a) triangular element b) quadrilateral element

Figure 2: Convergence of the energy norm of error
In Fig 3, the point-wise error distribution of the derivative component o, is shown

obtained using the finite element method and recovery approaches SPR and SPRD using
linear quadrilateral elements.

¢) o, -SPRD

a) o, -FE

b) o, -SPR

Figure 3: Distribution of absolute error in flux component o, using quadrilateral elements
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4. Free Vibration Problems

In FE context, we obtain the following equation
(K-Mu" =0, 2 =(0")? (15)

where K is the stiffness matrix and M is the consistent mass matrix of the structure.
Equation (5) is of the form of a linear generalized eigenvalue problem for the finite
dimensional discrete problem, with eigenvalues Af‘ being equal to the squares of the

eigenfrequencies @ Lh

In order to assess the discretization errors, we may assume the improved
eigenfrequencies (of higher accuracy order) can be constructed using Rayleigh quotient

> [(Vu; )T DVu; dx
* K 0
(w‘ )2= - ~ * ~ *
Y Vu) )T oV dx
K 2,

(16)

where K is the total number of elements and u: is a displacement field of the
eigenmode i over the elements which has a higher order of accuracy. The recovered
displacement field of the eigenmode u; will be determined by a postprocessed

updating technique.
The quality of any error estimator is measured by effectivity index giving the ratio
of the estimated errors to the actual ones as follows

_ 4@

Aa),-h

g.

i (17)
where the exact error in eigenfrequencies and the estimated error of the finite element
solution can be written as

h

Aot =0l -w,, 40" =0! -0 (18a, b)

A new improved finite element solution can be constructed by the local and global
updating techniques. Within a framework of the local updating the Superconvergent
Patch Recovery technique for displacements (SPRD) is applied to free vibration
problems for improving eigenmodes and eigenfrequencies. From the higher order
accuracy displacement field an improved kinetic energy and strain energy can be
calculated and thus an improved eigenfrequency can be obtained using Rayleigh
quotient. This approach is a local updating method, so no global system of equations
has to be constructed and solved. Details are available in [2], [3]. This method does not
show sufficient improvement for the higher eigenfrequencies to provide reliable error
estimation. We need improvement of the higher eigenfrequencies, for it is impossible to
obtain good results based on the information obtained by performing analysis using a
very coarse preliminary mesh.

In order to improve the higher frequencies, we are interested in improving the
eigenfrequencies from an initial mesh using base functions of order p to obtain the
solution of base functions of order p+I. The scheme of deflation accelerated conjugate
gradients, DACG, can be employed to optimize successive deflated Rayleigh quotients
based on a preconditioned conjugate gradient technique is developed as global updating.
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This technique has been developed in [8]. The idea of global updating is to improve the
FE solution of order p by the SPRD method and then use it as the starting trial
eigenvector in the preconditioned conjugate gradient scheme to obtain a solution similar
to the FE solution of order p+/. The SPRD improved solution used as initial trial
eigenvector for the modified conjugate gradient scheme put us on the asymptotic phase
of the convergence profile. We do not seek to determine a fully converged eigenpairs so
we restrict the number of the iterations to in advance prescribed quantity. When we
have obtained the global updated solution of order p+/ we apply again the SPRD
technique to get an improved solution of order p+2, thus we have a global-local
approach. The details of this global/local updating technique are available in [4].

We consider a square thin membrane, shown in Fig 4, for the case of transverse
vibrations.

r u=0

ke 10 J
K A

Figure 4: A finite element model of a square membrane

For simplicity, the wave propagation velocity ¢ = % is assumed to be 1.0 where T
§

is the uniform tension in the membrane. The study of the convergence rate of the
proposed local and global updating procedures has been performed for the different
eigenfrequencies as shown in Fig 5.

0'0_
=1.0+1
log ldwl
20 — FEMp
—— SPRD p+l
=304 4 o Glob fer
y 4 —— Glob4 iter.
! =i G}uh 5 iter. —— Glob § iter
6.0 — 7 g — ,
-10 08 -0s —04 02z 00 21 s Doe ay am
log 4 Jog
a) 1-st eigenfrequency b) 10-th eigenfrequency

Figure 5: Convergence rates in iterations of local and global updating procedure using
quadrilateral elements

One can observe that the sufficient accuracy is achieved after a few global updating
iterations. In order to keep computational efficiency, the number of the iterations is
therefore set to be 3 for all numerical experiments.
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The convergences of the effectivity indices are plotted in Fig 6.
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Figure 6: Effectivity indices by quadrilateral elements

We observe that the effectivity indices converge to one when the finite element mesh is
refined. The superiority of the global updating coupled with SPRD technique
(GI+SPRD) over the local updating (SPRD) is clearly demonstrated. The global
updating is a more time-consuming procedure than SPRD.

5. Acoustic Problems

With fintte element approximation the governing equations for the frequency domain
will be of the form

K+ jpoC -0’ M g =- jpoF (19)
( !

where K is derived using kinetic energy expression, C is derived from energy dissipated
on boundary walls and M is derived from fluid potential energy, w is the angular
frequency of excitation, F is the generalized excitation term and g is the vector, which
contains nodal pressure values.

With the finite element solution of the problem, pressure and velocity approximations

1 . .
" and v =-—=——Vg", respectively, are obtained. To calculate steady-state pressure
q = q P p

and velocities the commercial SYSNOISE code is employed.
In the postprocessed procedures the errors are estimated by computing the difference
between an improved solution and the original finite element solution as follows

el = j(v"T V)@ - ¥,)dQ (20)
Q

The improved velocity solution v’ is determined from new pressure field q* of the
higher order of accuracy, which is obtained using SPRD technique.

We construct an adaptive remeshing strategy combining our error estimation technique
with available commercial packages. For finite element analysis we use the commercial
code SYSNOISE. The commercial package I-DEAS is implemented to generate the
initial mesh and to perform adaptive remeshing procedures.

The flowchart of a generic adaptive strategy is shown in Fig 7.
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Figure 7: Flow chart of the adaptive acoustic analysis

The two dimensional model of the car

NO

enclosure is presented in Fig 8. Normal
boundary velocity is set to be 0 at all sides except for the vibrating panel with velocity
v¢=3.0x10 * nvs at the left hand side.
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Elements=989

Figure 8: Geometry, boundary conditions and initial mesh of the car enclosure
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The first five acoustic eigenfrequencies obtained by initial mesh are as follows 74.38Hz,
122.33Hz, 131.14Hz, 175.88Hz and 230.39Hz. Two different frequencies of excitation
50Hz and 350Hz are studied. The initial mesh of 989 elements used in the adaptive
scheme gives the relative errors of the finite element solution as 7.41% at 50 Hz and
13.27% at 350 Hz . For both cases the final meshes are presented in Figs 9 and 10.

397, error=3.65% Elements=8292, error=4.45%

Elements=

Figure 9: Final mesh of the car enclosure at  Figure 10: Final mesh of the car enclosure at
50 Hz 350 Hz

It is apparent that at the higher frequency the final mesh consists of a larger number of
elements but some regions of utmost refinement coincide. The comparison of the
velocity in x direction simulated by initial and optimal meshes at different frequencies is
presented in Figs 11 through 14.

Figure 11: Velocity in car enclosure (x Figure 12: Velocity in car enclosure (x
direction/amplitude) at S0Hz by initial mesh  direction/amplitude) at 50Hz by final mesh

Figure 13: Velocity in car enclosure (x Figure 14: Velocity in car enclosure ( x
direction/amplitude) at 350Hz by initial mesh  direction/amplitude) at 350Hz by final mesh

It is evident that in the case of low frequencies of excitation, simulation by the initial

mesh does not detect the singularities if the solution. In case of higher frequencies
simulation by the final mesh produces the peaks of the velocity in more local regions.
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6. Conclusions

A method for obtaining postprocessed solution of the higher order accuracy has been
presented. The proposed SPRD technique is essentially a least square fit of the prime
variables (displacements) at superconvergent points. This approach provides

superconvergent displacement field u; over local reduced element patches. Since the

SPRD technique recovers superconvergent displacement field that is at least one order
higher than finite element solution, the method can successfully be implemented in error
estimation of the finite element solution.

The local and global updating techniques have been presented to improve solution of
the generalized eigenvalue problem encountered in the finite element analysis of
structural dynamics problems. The SPRD improved solution gives a good initial trial
eigenvector for the modified conjugate gradient scheme, which immediately put us on
the asymptotic phase of the convergence profile. The numerical study of the
performance of the error estimator demonstrates the asymptotic exactness that shows
the reliability of the proposed procedure.

The paper presents also an adaptive finite element strategy for acoustic problems. This
strategy uses adaptive finite element meshing and remeshing that is performed by the
commercial package I-DEAS, finite element analysis using the software SYSNOISE
and error estimation is done by an additional postprocessing unit. The designed final
meshes provide not only solutions of the prescribed accuracy but also detect all
singularities in the solution.
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Stochastic Extreme Load Predictions for Marine Structures
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Abstract. Development of rational design criteria for marine structures requires
reliable estimates for the maximum wave-induced loads the structure may encounter
during its operational lifetime. The paper discusses various methods for extreme
value predictions taking into account the non-linearity of the waves and the response.
As example the wave-induced bending moment in the ship hull girder is considered.

1. INTRODUCTION

The present paper deals with extreme value predictions for global wave loads on
ships. For ships longer than about 100 m the most important load parameter is the
vertical bending moment. It consists of two terms: the hydrostatic part due to the
sectional difference between buoyancy and gravity forces and the hydrodynamic part
due to the action of waves on the hull. The first part is easily calculated from loading
conditions for the ship, whereas determination of the second part requires a solution
of an extremely complicated non-linear hydrodynamic problem. A review of the
current state-of-the-art can be found in Beck et al. (1996). The importance of the non-
linearity is clearly illustrated by Figure 1, showing measured wave bending stresses in
a frigate class covering approximately 20 years of operation. In a linear theory these
tensile (hog) and compressive (sag) stresses in the deck plating would be equal.
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{MN/m?) .
L]
L ]
L ]
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Figure 1. Gumbel plot long-term stress measurements in a frigate class. A

probability of exceedance equal to 2*] 07 corresponds to a 20 years return period.
Clarke (1986).
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A consistent extreme value analysis requires both a correct physical (hydrodynamic)
model of the behaviour of the ship in severe sea states taking due account of the
various non-linear and three-dimensional effects and a proper stochastic
charactenisation of the ocean waves.

Depending on the complexity of the hydrodynamic load analysis applied the
calculations can only be performed in selected regular waves, conditional wave
episodes or short sequences of random seaway. From these results reliable predictions
for the variance of the required responses can be obtained, but it is much more
difficult to extrapolate the results to predict the extreme wave loads the ship may
encounter during its operational lifetime.

The linear case is well understood and described in many textbooks, c.f. Price and
Bishop (1974), Ochi (1990). The procedure makes use of an exact expression for the
probability distribution of the individual peaks in combination with order statistics or
Poisson upcrossings to arrive at a prediction for the extreme peak value within a given
time period.

However, when the non-linearity in the hydrodynamic response and the non-linearity
in the large ocean waves themselves are taken into account, no analytical expressions
for the probability distribution of the individual peaks (the so-called initial probability
distribution) can in general be determined.

To overcome this problem various semi-emperical transformations can be applied as
discussed in Section 2. If applicable then the extreme values can be obtained as in the
linear case from order statistics or Poisson upcrossings.

As the interest is on very rare events a correct modelling of the tail in the initial
probability distribution is of utmost importance. Hence, if this distribution is not
known with great accuracy it is better to work directly with the extreme value
distribution of the response. In general any probability distribution can be applied if it
fits to the data points available. However, as one often needs to extrapolate outside
this range, the class of Generalised Extreme Value (GEV) distributions, Fisher and
Tippett (1928), Gumbel (1958) is very useful as every parent distribution will tend
towards one of these distributions for sufficient large exceedance level. A direct
application of these distributions is to divide the available observations (data points)
into equidistant time epochs, say minutes or hours, and then use only the maximum
observation in each epoch to estimate the parameters in the GEV. Hereby, of course,
large observations in one epoch might not be induced in the analysis. This may have
serious consequences for the accuracy of the GEV, especially when used to
extrapolate outside the range of observations. Methods based on exceedance provide a
better use of the available data, as all values larger than a user-defined level are
included. The analysis is named Peak-Over-Threshold and makes use of the
Generalised Pareto (GP) distribution and a theorem relating this distribution to the
GEV, Pickards (1975). The GEV and GP procedures will be discussed in Section 3.

The parameters in the GEV or GP must be determined by fitting the distributions to
known data points. Various procedures available are outlined in Section 4. The data
points to be applied may follow from a time-domain analysis of the response of the
ship in random waves. For the most complex hydrodynamic formulations such results
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cannot directly be obtained due to the excessive demand for computer power.
However, with the use of rather short critical wave episodes, Torhaug, Winterstein,
Braathen (1998), such time series can be constructed using only the non-linear
formulation around the largest response peaks. Section 5 will address critical wave
episodes.

The slamming forces in severe sea might introduce hydroelastic response
components, whipping, to be superimposed on the rigid body response. Also
continuously excited springing vibrations can occur. Methods to account for these
effects in an extreme value analysis are discussed in Section 6.

With extreme values derived in stationary stochastic conditions, the final step is to
weight these results over the operational lifetime of the ship. Here account must be
taken of the operational profile including speed and course changes in heavy sea as
well as the variability in the sea states encountered.

2. INITIAL PROBABILITY DISTRIBUTIONS

For Gaussian processes Cartwright and Longuet-Higgins (1956) derived the initial
distribution for the individual peaks. Most linear wave load responses are sufficiently
narrow-banded that this distribution can be approximated by a Rayleigh distribution.

For slightly non-linear stochastic processes a formal second-order expansion of the
response around its mean value can be applied, Longuet-Higgins (1963). The
response X and its time derivative is written

2n 2n
X=YoY,+ 3 oYY,

i=1 ij=l

. 2n 2n (1)
X=3pY+ 5 fYY,
i= ij=

where ¥; are statistically independent standard Gaussian processes.

From this expression the joint probability density f; of the response X and its time

derivative X can be derived. The result is given as an infinite series expansion,
denoted Gram-Charlier, Edgeworth or Longuet-Higgins, Ochi (1990), and by
integration an analytical expression for the upcrossing rate

VLX) =[5 £ (%) d @)

1s obtained. Finally, upon the assumption of a narrow-banded response the cumulative
distribution function of the individual peak can be approximated by

_ g Vy(x)
Fo(x)=1 ~—-Vx(ﬂx) 3

where 4, is the value of x maximising v. For non-narrow band responses the
corresponding result is derived by Longuet-Higgins (1964).
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The only disadvantage in this formulation relates to the convergence of the series
expansion for f, ., when truncated after a finite number of terms. It is well known c.f.

Winterstein (1985, 1988), Ochi (1990) that negative probability densities can occur.
The range of applicability of the series expansion depends both on the degree of non-
linearity and the crossing level. In an example Jensen and Pedersen (1979), dealing
with a container ship sailing in a sea state with H; = 6 m, convergence was only
achieved up to a level of exceedance equal to 0.01 for the individual peak bending
moment responses, as shown in Figure 2. This is clearly insufficient for extreme value
predictions. Furthermore, inclusion of additional number of terms in the expansion
above the dominating terms does not yield better results, Jensen and Pedersen (1978),
Winterstein (1988).

1 1 T

Containership Fn = 0.245 Freq y sol,, Charlier series
H.=6mT =85 sec = == —— Frequency sol., Hermite series
£ L} > m
m = =—— Linear
6L On= 451 MNm -6

of I 1 I 0

0 0.9 0.99 0.999 0.9998
P((M-Mpean)/ A< m) ——=

Figure 2. Probability distribution function for peak values of the non-

dimensional wave bending moment amidships m = (M-E[M])/G,,, where o, is the
standard deviation of the linear contribution, Jensen and Pedersen (1979),
measurements by Hackmann (1979).

An alternative solution procedure for the second order problem is the Kac-Siegert
method, see eg. Naess (1985). It is straightforward to recast the general second-order
problem into the diagonal form

X= f?_': (y,Y,. +£,Y,.2) )

i=1
for the response X as function of statistically independent standard Gaussian

processes Y, e.g. Jensen and Dogliani (1996). Accurate numerical results are given
by Naess (1995) using the steepest decent method, Figure 3.
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Although a second order process is an approximation to reality for wave loads on
ships, it might capture the main asymmetry in the vertical bending moment as
indicated by the results in Figure 1 and 2. Therefore, as second order expansions
model the skewness correctly and partly also the kurtosis, Vinje and Haver (1994),
they can play an important role in transformations based on these parameters.

An approximate initial probability distribution for a non-linear variable X can often be
constructed from a closed-form monotonic transformation g(Y) of a variable ¥ with
known distribution,

X=g(@) o)

This can be done in an infinite number of ways. One of the most versatile procedures
is based on a Hermite series transformation, Winterstein (1985). The response process
X(t) is written as a cubic polynomial in a stochastic process Y(?). In the present
context, where wave loads are considered, an obvious choice is to take Y(1) as
standard Gaussain distributed. The coefficients in the transformation are selected such
that the transformed process has the same lowest order statistical moments as the
probability distribution of X. Usually, the four lowest statistical moments are applied
and certain bounds, Winterstein (1988), Jensen and Dogliani (1996), have to be
enforced on the transformation coefficients to ensure a monotonic behaviour.

In the transformation methods the initial probability distribution for the individual
peaks should in principle be determined from Eqs (2) — (3), but because of lack of
knowledge of the joint probability density f., one of following approximations may

be used, Winterstein (1988),

F,(x) =l—M
Sfe(uy)

(6)
F,(x)= 1—exp[—1/z{g'1 (x)}z]

The first approximation assumes that X and X are statistically independent, whereas
the last directly apply the transformation (5) to the Rayleigh distributed peaks of Y(2)
Clearly, the two approximations yield different results if X(2) is not linearly dependent
on Y(1). The last approximation is applied in Figure 2.

Generally, the Hermite transformation yields results in close agreement with those
from more accurate methods, Winterstein (1988). This is also illustrated in Figure 2
and Figure 3 for the wave bending moment in a container ship with a large bow flare
and, in Figure 3, sailing in a very severe sea state.
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Figure 3. Logarithmic plot of the probability density function of the wave
bending moment amidships, based on a second order hydrodynamic model. Hi=15m,
T:=12sec. Left: Accurate numerical results, Naess (1995). Right: Results obtained by
the Hermite transformation model with four coefficients.

However, even if accurate results can be obtained for the tail of the distribution, the
fundamental assumption of a second order process is an approximation for wave loads
on ships. Most important, it cannot model load effects due to extreme events as water
on deck and bow emergence. This might be the reason for the abrupt change in the
measured probability distribution in Figure 1. The same behaviour is found in
calculated time domain responses of the wave bending moments in stochastic seaways
as for instance shown in Figure 4. Here the rare event of waves running over the deck
introduces an increased probability of exceedance of the hogging bending moment,
but only in the tail of the distribution. This is clearly so, because the event only can
take place is the relative motion of the ship exceeds the freeboard.

0.06

e
8

mp/(0.5pgHBL?)

P(Mp<mp)

Figure 4. Cumulative probability density function for the sagging (positive) and
hogging (negative) bending moment M, amidships for a container ship sailing in head
sea in a stationary sea state with H;=8.3 m, T.=10.2sec. Green water load Sow. Wang

etal (1988).
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Another general parametric expression for the initial probability distribution is, Ochi
(1990)

Fp(x)=1—e_"(x) @)

where g(x) can either simply be a linear function of x, Ochi and Ahn (1994), or any
smooth function satisfying, Ochi (1990),

|q’(x)/q'(x)| <«<|qg'x)| ; forlargex

If this bound holds the expected maximum value in n observations can directly be
evaluated from the initial probability distribution as the value exceeded with a
probability of 1/n.

With the initial probability distribution given order statistics or Poisson upcrossings
yields the most probable largest response over a given period. The two procedures are
based on different assumptions, but yield asymptotically the same result for low
probabilities of exceedance. Clustering effects may be accounted for by various
procedures. However, for the bandwidths and levels of exceedance of interest here,
these corrections are usually insignificant, Jensen and Dogliani (1996).

3. ASYMPTOTIC EXTREME VALUE DISTRIBUTIONS

If an initial probability distribution cannot be obtained as outlined above, then it might
be better to work directly on the extreme values.

From the data points obtained from time simulation in random seaway any fit, either
non-parametric or parametric of the extreme value distribution can be applied.
However, as extrapolation outside the range of data points normally is requested for
design purposes, non-parametric methods are generally useless.

Parametric expressions can be selected to obtain a good fit over all the data points
available. Ochi and Whalen (1980) have suggested a rather general form,

F(x)=1-exp[-q(x)]

. @®)

q(x)=ax" exp(—px*)
where the four parameters a, m, p and k are determined by a non-linear optimisation
procedure.

Alternatively, only the largest values of the data points are considered. In that case a
family of probability distributions H(x) known as the asymptotic extreme value
distributions is very useful. The distributions H(x) are the only non-degenerated
functions satisfying

lim F"(a, +b,x)=H(x) 9)

n—oo
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for any initial probability distribution F(x). For maxima only three different functions
H(x) exist, Fisher and Tippett (1928), Gumbel (1958), Castillo, (1988). In standard
form they are

0 . x<0

Frechet: H(x) = ;¢>0 (10a)
exp(=x~) i x>0

Weibull : H(x) = expl-(0] 5 x<0 Lc<0 (10b)
1 7 x20

Gumbel : H(x) = exp(—exp(—x)) ; —co<x<oo (10c)

Any initial probability distribution F(x) will thus belong to the domain of attraction
for maxima of one of these three distributions H(x). Which of them depends on the
value of ¢ obtained from the limit, Castillo (1988),

=iy =y
jim F(1=8)=F'(1-2¢) _ .

= 11
e=0 F~(1-2e)-F~(1-4¢) ab

Equivalent formulas to Eqs. (10)-(11) exist for extremnes of minima and the domain of
attractions for various common initial probability distributions are shown in Table 1.

Table 1. Domains of attraction for maxima and minima for some common
distributions, Castillo (1988).

DISTRIBUTION MAXIMA MINIMA
Normal Gumbel Gumbe]
Exponential Gumbel Weibull
Lognormal Gumbel Gumbel
Gamma Gumbel Weibull
Gumbel, Gumbel Gumbel
Gumbely, Gumbel Gumbel
Rayleigh Gumbel Weibull
Uniform Weibull Weibull
Weibull, Weibull Gumbel
Weibull, Gumbel Weibull
Cauchy Frechet Frechet
Pareto Frechet Weibull
Frechet, Frechet Gumbel
Frechet,, Gumbel Frechet
First kind beta Weibull Weibull
Second kind beta Frechet Weibull

.For maxima. yFor minima

Although all extreme value distributions tends towards one of the asymptotic extreme
value distributions for sufficient large exceedance levels, the convergence might be
slow. In such cases, a transformation Z = h(X) of the original variable X can improve
the convergence rate significantly if A(x) is appropriately selected, Naess, Stoli and
Storm (1996).
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The three distributions (10) can be combined to a single distribution,

x—a

b

17k
H(x)=exp[—(1—k J :|,'x>a+b/k (k<0), x<a+b/k (k>0)

(12)

for the extremes of maxima. This distribution is called the Von Mises-Jenkinson limit
distribution or the Generalized Extreme Value (GEV) distribution, Castillo (1988),
Lindgren (1999). In the next section, different estimation techniques for the
coefficients in (12) are discussed.

The main disadvantage with the use of the Generalized Extreme Value distribution is
that the data points have to be divided into either equidistant time epochs or storm
events and that for each epoch or event only one data point, the largest, is used,
resulting often in a large loss of information. An alternative is to assume that all data
above a certain moderate threshold value u are important for the tail distributions.
Thus an estimation of the cumulative distributive function F,(v) for the excess V=X- u
is needed. An appropriate model for Fy,(v) is the Generalized Pareto (GP) distribution

17k
1—(1—1«1] cv>0(k<0); 0<v<b/k (k<O0)
d
Gv)=

l—exl{—l] ;v>0
d

because, Pickands (1975), there exist a value %, independent of v, and a value of 4,
dependent on v, such that Fy(v) is closely approximated by G(v), whenever v is
sufficiently close to the upper end point.

(13)

It can be shown, see e.g. Lindgren (1999), that the probability distribution of the
maximum of a random number of Generalised Pareto distributed variables becomes
the Generalized Extreme Value distribution of the exceedance, provided the number
of peaks exceeding the threshold is Poisson distributed. The relation between the
parameters in the two distributions, (5.12), (5.13) are, Lindgren (1999),

b=d/u*; a=u-(b-d)/k ;k#0 (14)
b=d ; a=u+blnpy k=0
where u is the expected number of exceedance per time scale (month, year). Hence,
fitting the excesses to the Generalised Pareto distribution yields the corresponding
Generalised Extreme Value distribution for extremes of the response. The most
probable largest value over N times the time scale is finally obtained as the value with
a probability of exceedance equal to I/N.

Basically the GP and the GEV analysis described above hold only for stationary

processes. For non-stationary processes the analysis can be carried out in each
stationary state and combined as described in Section.6.
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4. ESTIMATION METHODS

Normally the initial probability distributions and the extreme value distributions
contain free parameters to be determined such that the data available are represented
as close as possible. A good overview over the most common methods can be found
in Castillo (1988). The initial value distribution based on the Hermite series expansion
uses the four lowest statistical moments to determine the coefficients and this
estimation method is often applied due to its simplicity. However, from a statistical
point-of-view the maximum likelihood method is better and straight-forward to apply
to both the GEV and GP distributions, c.f. Smith (1985), although some remedies
have to be applied if k > 0.5 in the GP distribution. Good alternatives are the method
of probability-weighted moments, Hosking and Wallis (1987), and Bayesian
inference, c.f. Smith and Naylor (1987). The least square method can also be applied
but due to the dimensions of the response and non-dimensional probabilities, care has
to be taken in the selection of weights. Finally, graphical methods using probability
papers (Gumbel, Weibull etc.) are easy to apply, but lack a consistent evaluation of
error bounds and confidence intervals.

Regarding the GP distribution, the threshold value should also be determined. Here
the important property of the GP distribution is that the mean excess over a threshold
u depends linearly on u, cf. Smith (1993), Lindgren (1999),

d—ku
1+k

EV=X-ulX>u= (15)

becomes an easy way to check if a set of data points comes from a GP distribution.
Estimators for & and d are given by de Haan (1994) and discussed for wind speed
applications by Naess and Clausen (1999).

5. CRITICAL WAVE EPISODES

For the most advanced hydrodynamic formulations, the computational effort is so
huge that only short time periods can be analysed. Hence, it is very important to
identify the random incident wave sequences that yield extreme responses of the ship.
A priori such sequences are not known and cannot be determined from the wave
environment itself, as they also depend on the response type and main particulars,
loading condition, heading and forward speed of the vessel.

The most straight-forward procedure is to perform a very long time domain analysis
in each relevant stationary condition using linear transfer functions for the response in
question (bending moment, shear force etc). The wave sequences yielding the largest
linear responses are thereafter applied in the non-linear analysis and these non-linear
results then replace the corresponding linear results in the extreme value analysis. The
necessary number of critical wave episodes to be used in the non-linear analysis in
order to obtain an accurate statistical estimate of the non-linear response has been
investigated by Torhaug, Winterstein and Braathen (1998). Based on an analysis of a
specific monohull vessel in head sea they find that for the vertical midship bending
moment about 10-15 critical wave episodes are needed to get the hourly maximum
bending moment with 5 per cent accuracy. Each wave episode should contain 2-3
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wave cycles to account for memory effects and transients should be minimised using
initial conditions based on the linear motions of the vessel determined from time
domain simulation.

To reduce the number of the time sequences needed in the non-linear calculations, a
Most Likely Response method has been proposed, Adegeest, Braathen and Vada
(1998). Here the most probable extreme response is first determined by a standard
linear frequency domain analysis. Then a random time domain realisation of this
response using the linear response spectrum is generated and conditioned such that it
has the most probable extreme response value at a prescribed time instant. This is
done using the theory for Gaussian processes near a maxima, Lindgren (1970),
Tromans, Anaturk and Hagemeijer (1991), Taylor, Jonathan and Harland (1995), Friis
Hansen and Nielsen (1995). The mean response X(t) around the maxima xp af (= §p

%(t) = EX@)|X(,) = x,,X(,) = 0] 16)

simply becomes proportional to the autocorrelation function of the response. By use
of the linear transfer function for the response, the corresponding deterministic wave
elevation is generated and used in the non-linear hydrodynamic calculations (SWAN).
Very close agreement between the results from 1) model tests, 2) a full non-linear
hydrodynamic simulation in random sea, 3) extreme values based on the Hermite
transformation (see Section 2), 4) a non-linear analysis of only a few critical wave
episodes and, 5) the Most Likely Response method is found for the example vessel
(the container ship “Snowdrift”). The non-linearity as measured by a sag-to-hog ratio
for the bending moment amidships is nearly two implying that linear theory alone is
useless. The use of a regular design wave gave results that deviated significantly from
the other predictions.

Although the Most Likely Response method outlined above reduces the analysis to a
single wave episode, it should be recognised that this wave episode only represents
the mean response around given maxima. Hence, memory effects might not be
sufficiently accounted for. In a study of the deck displacement of a simplified jack-up
platform, the extreme response was found to depend significantly on the random wave
realisation around the maxima, Taylor, Jonathan and Harland (1995). This behaviour
was mainly attributed to the low damping of the system, much lower than in the
present ship motion problems. However, it will be important to verify whether the
random variation of the linear response around the most probable largest maxima is
important for the corresponding non-linear analysis.

The described non-linear analyses only consider as input linear waves and wave
kinematics. For offshore structure, non-linear conditional waves have been applied,
using either a non-linear transformation, Taylor (1992), or Stokes second order waves,
Jensen (1996). This non-linear effect also deserves some consideration, as the extreme
response usually is associated with rather extreme waves. Figure 5 illustrates the
difference between a linear and a second order deep water conditional lond-crested
wave.
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Figure 5. Conditional mean wave profile, Jensen (1996). The linear profile is the
one given by Tromans et al. (1991).

Finally, the assumed correspondence between the occurrence of the maxima of the
linear and the non-linear response may be questioned as the linear analysis, i.e. the
transfer functions, does not account for special load effects like slamming and water
on deck.

6. STOCHASTIC LOAD COMBINATIONS

In the extreme value prediction several correlated load components must often be
combined. It can be load components with roughly the same frequency content, as for
the vertical and horizontal wave bending moment, but it can also be loads with
significant different temporal variations as the still water, the wave-induced and the
vibratory response of the hull girder.

In the first case, the combination is most conveniently done directly in the time
simulation, taking due account of the phase lags between the different components,
and then apply the extreme value analysis to the combined response. This is not
appropriate in the second case due to the large difference in time-scale and stochastic
load combination procedures are therefore needed.

A large number of load combination procedures are available, e.g. Wen (1977),
Madsen, Krenk and Lind (1986). Most of them are empirical or only strictly
applicable to linear combinations of statistically independent processes. In a study,
Wang, Jiao and Moan (1996), different procedures are used to combine the still water
and wave-induced bending moment for an oil production vessel. Their findings are
that the Ferry-Borges method, Ferry-Borges and Castenheta (1971), are very accurate
and computationally effective and hence recommended. Turkstra’s rule, Turkstra
(1970), is also very useful even if it underestimates the extreme values slightly. This
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is also illustrated in Mansour (1995), where a simple linear addition of two extreme
values, f7, f>:

J12= 11+ K an

is proposed. The constant K is derived under the assumption that the two underlying
processes are Gaussian and depends on the correlation between the two components
as well as the ratios between the standard deviations and upcrossing rates. The
analysis is later generalised to slightly non-Gaussian processes, Mansour and Jensen
(1995). Related work have been done by Naess and Rgyset (1999).

A somewhat similar approach is suggested in Naess (1993) for combination of a
linear (Gaussian) and a second-order sum-frequency response. The main problem in
both procedures is the estimation of the correlation for the extreme events. In the
former procedure the correlation is given at the standard deviation level whereas the
latter procedure applies the correlation determined at the 10” probability level of the
combined response. The two procedures have been applied, Jensen and Dogliani
(1996), in the estimation of the effect of continuous wave excitation of hull girder
vibrations (springing) on the extreme vertical wave bending moment, Figure 6. This
excitation is partly due to linear resonance and partly to second-order wave excitation.
Due to the large separation in frequency content the correlation at the standard
deviation level is zero, whereas by the second procedure it becomes 0.31 and -0.23
for the sagging and hogging bending moments, respectively. The latter results imply
that for the example container vessel, the extreme sagging bending moment may
increase by 10 per cent due to springing. This indicates that some concern should be
paid to springing responses for certain type of ships.
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Figure 6. Long term probability of exceedance for the wave-induced bending

moment amidships for a container ship, Jensen and Dogliani (1996).
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However, the most severe hydroelastic huil girder response is usually due to transient
vibrations following a slamming impact. For prediction of the magnitude and duration
of these forces reference can be made to Zhao and Faltinsen (1993). The associated
hull girder response can be determined by a Timoshenko beam modelling of the hull
girder. Clearly, a strong correlation between the times of occurrence of a slamming
impact and the wave-induced sagging bending moment must be expected. This
correlation is taken into account in the procedure developed by Friis Hansen (1994).
Furthermore, the joint probability distribution of wave amplitude and frequency at the
instant of maximum slamming response within a cluster of slamming impacts are
derived. One of the fundamental assumptions in the method is that the response
spectrum for the relative motion is narrow-band. Thereby, memory effects might not
be correctly accounted for in all cases of practical interest and deserves further
studies.

7. CONCLUSIONS

Various estimation techniques for extreme wave load predictions for ships have been
outlined. The usefulness of the Hermite transformation with coefficients derived from
second-order hydrodynamic models have been illustrated, but also its shortcomings
with regard to loads related to rare events like deck wetness.

Asymptotic extreme value distributions and the associated generalized Pareto
distributions provide important prediction methods when the initial distribution is
unknown. The use of proper transformations may extent their range of applicability.

Due to extensive computer resources needed to perform very detailed non-linear,
three-dimensional hydrodynamic analyses, only very short time series can be covered.
Hence, it becomes important to define reasonable critical wave episodes taking due
consideration of both the sea state parameters and the main dimensions of the vessel.
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Introduction

Many scientists and practitioners have experienced that software development and maintanence tools
represent a more limiting factor for rapid progress of computational mechanics than more effective
numerical methods and hardware, which traditionally have been the topics of greatest interest in
research. Metal processing is an example where the models involve large systems of partial differential
equations (PDEs), describing flow, deformation, heat transfer, and phase changes of a multi-component
mixture, coupled through numerous constitutive relations. The whole model might also be embedded in
a framework for optimal design of the process (see [9] and [10]). Building software for models of this
complexity is a very complicated and time-consuming process. Traditionally, computational mechanics
software has been tailored to a specific application domain. From a mathematical and numerical point of
view, however, widely different physical applications may lead to the same set of program statements.
Hence, code reuse is strongly motivated by the mathematics, at least conceptually. The mentioned
example from metal processing illustrates the point: The models for fluid flow, solid deformation, and
heat transfer appear in many other contexts, and duplicates of the numerics for the involved equations
are scattered all over numerous CFD and structural analysis codes. Ideally, the implementation of the
metal processing simulator should be a high-level plug-and-play operation with existing modules for
flow, deformation, and heat transfer, and a new module containing the constitutive relations specific to
the current physical problem. In practice, code resuse is not that easily accomplished. We lack
widespread use of software constructs and programming standards that encourage the necessary
modularity for code reuse. Also, many practitioners in computational mechanics are not aware of the
extensive development of new programming styles and software tools during the last decade. The
purpose of this article is to highlight what can be achieved by adopting new programming languages and
software development techniques. In particular, we shall report experiences with the development
framework Diffpack, provided by Numerical Objects (www.nobjects.com), which has been used to
build, among other things, a complicated metal processing simulator in the advantageous way we
outlined above [7,9,10].

Flexibility is another key factor for successful application of numerical simulations; different models
and solution methods need to be compared to increase the reliability of the computations. This means
that computational mechanics software should ideally offer a wide range of numerical approaches and
enable the user to customize the model by adding or removing terms and equations at run time. Such
flexible combination of software modules requires a high degree of modularity and sophisticated
selection mechanisms; direct implementation of this functionality in plain Fortran 77 might end up as an
impossible task for a human.

The request for flexibility, modularity, and code reuse are major issues in non-numerical computing as
well. There, new programming methodolgies and supporting languages have been central in
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accomplishing the mentioned demands. PC software relies today heavily on object-oriented
programming and is implemented mostly in C++ and Java. The use of these languages and new
programming paradigms, such as object-oriented programming and template (generic) programming,
has attracted an increasing interest in scientific computing during the nineties. Migration of techniques
from computer science to scientific computing must be done with great care, as the software constructs
and tools from computer science might not be compatible with the strong computational efficiency
requirements in scientific computing. ‘‘Efficiency’” has, however, many aspects. Optimal combination
of human efficiency and number crunching efficiency is probably one of the aims of computational
mechanics software.

Numerous packages for numerical simulation, employing new implementation technologies, have
appeared during the last decade, and programming with objects in C++, Java, and Fortran 90 has
received quite some attention at conferences. The references [1,5,7,8] provide a glimpse of various
activities. Without doubt, programming with objects have proved to be productivity enhancing and is
now successfully established also in the scientific computing community. Along with this development,
many universities apply Java as the introductory programming language, a fact that will make
widespread future demand for object-oriented software in science and engineering.

Diffpack

Diffpack [4,6] was started as a research project in the beginning of the nineties, focusing on applying
object-oriented programming and the C++ language to develop flexible, modular, and resuable software
components for solving PDEs. Through the years, Diffpack has evolved into a flexible programming
environment for PDE solvers and has been applied worldwide in diverse application areas, ranging from
fluid and solid mechanics to finance and medicine.

The underlying idea of the design of Diffpack is that different applications share a common
mathematical and numerical structure. This common structure can be implemented in a software kernel,
with “‘slots’” for problem-dependent information. To create an application code, the programmer
implements only the problem-dependent information and relies on the kernel for the numerics that can
be shared among applications. The result of such an approach is two-fold: the development time of
application codes is significantly reduced, and the reliability is increased by utilizing general
components that are well tested in many other applications. The disadvantage is that leaving as much
numerics to general libraries as possible might reduce the flexibility of the implementation and, e.g., the
ability to utilize special structures of the problem for code optimization. Our answer is to provide a
layered design, where the bottom layer of the package contains pure C (or Fortran) array manipulations
to ensure high computational efficiency, the next layers add abstractions and convenient programming
interfaces, and the very top layer merely combines PDE solvers and constitutive models into new
systems of PDEs. Rapid prototyping utilizes the most abstract layers, while fine-tuning of the code is
enabled by operating directly at the desired lower-layer objects. More specific information about the
design of Diffpack can be found in [2,3,6].

Programming with objects

Objects contain data and functions operating on the data. A matrix is a simple example. A matrix object
typically contains a memory segment holding the matrix entries, integers for the number of rows and
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columns, and various functions for extracting entries, multiplying matrices with vector objects and other
matrix operations from linear algebra. The implementation of an object is in C++ and Java made in
terms of a class, while in Fortran 90 the equivalent concept is module.

In the PDE world, many matrix formats exists and must be available to the user of a simulation package,
preferably in a transparent way. Each matrix format can be represented as a class. All matrix classes
should hide their internal representation of the matrix data and only show a common set of operations on
matrix objects for public use. One can then collect the matrix classes in a class hierarchy, with an
“‘abstract” generic matrix class as parent for all the format-specific classes. This generic parent class,
often called base class or super class, contains no data; it just specifies a common interface to all matrix
objects. The point of object-oriented programming is to program only in terms of the base class. This
hides all the intricate details of sparse matrix storage schemes and the bunch of arrays that frequently
pollute Fortran 77 codes when calling, e.g., linear system solver routines. Instead, the matrix appears as
a single base class object. The magic of object-oriented programming is that the compiler generates
information such that the computer keeps track, at run time, of which type of matrix format that is
hidden under the name of a base class; the programmer never needs to know whether the base class
matrix actually is a banded or a diagonal matrix. In case it is a diagonal matrix, launching a
matrix-vector product will automatically lead to a transparent call to the tailored matrix-vector product
implementation in the diagonal matrix class. Optimal efficiency is hence not disturbed by programming
with base classes.

A similar approach can be used to make class hierarchies for different vector formats, linear system
solvers, preconditioners, solvers for nonlinear algebraic systems, and so on. Throughout the code that
applies solvers and preconditioners, one can only see track of the base class, not storage structures or
algorithmic details of the individual numerical strategies. Adding a new preconditioner does not affect
any linear solver and vica versa. With just a recompilation, the code calling linear solvers with
immediately work with the new methods. Such mechanisms contribute to modularity and extensibility,
as well as flexibility in combining different numerical approaches.

Grids constitute another example on the usefulness of object-oriented programming. The Diffpack finite
element engine was implemented using a plain grid class. Some years later, different types of adaptive
grid classes, enabling local mesh refinements, were added to the libraries. With a couple of new
functions in the interface of the original grid class, this class could act as a base class for the adaptive
grid classes. In practice, it meant that all the existing library code and applications (after a
recompilation) immediately worked with any of the new adaptive grid classes.

The application code is also programmed as a class, which merely collects objects for grids, fields over
grids, linear systems and solvers together with problem-dependent information about the PDEs being
solved. In a finite element application, the programmer’s work is limited to implementing input for
physical parameters in the problem, a function for setting essential boundary conditions, and a function
for sampling the integrands in the variational formulation. If the programmer wants more control, e.g.,
avoiding numerical integration and providing a problem-dependent preconditioner, this is
straightforward. PDE solver classes can be combined to solve systems of PDEs or embedded in
algorithms for optimization of design or process features. The bottom line is that objects let you build
with bricks and walls instead of gluing matches.

When all parts of a package is built on object-oriented concepts, one obtains a high degree of flexibility
with respect to adding new functionality and combining numerical approaches and mathematical
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models. Put in another way, the functionality of the package grows exponentially as new modules are
incorporated.

Support for parallel computing, domain decomposition, generic muitigrid modules, and mixed finite
elements have been successfully incorporated as add-on modules to the Diffpack libraries (though
sometimes with small adjustments in minor parts of the libraries). It sounds reasonable that such
fundamental numerical approaches would require careful consideration in the design phase of a generic
package like Diffpack. Nevertheless, our experience shows that a clean design in terms of classes and
class hierarchies provides the necessary modularity for allowing easy integration of new modules in an
existing library. More importantly, existing applications can with the order of 10 lines of code utilize
adaptivity, or multigrid, or parallel computing, or a combination of all.

We remark that the way we use object-oriented programming in Diffpack is currently supported by C++
and Java, but unfortunately not by Fortran 90/95.

What Diffpack has been used for

The basic idea of Diffpack, namely that one can provide a generic library and create small-size
application codes to solve a wide range of PDE problems, is by now clearly demonstrated. Some
examples on existing Diffpack simulators cover

the equations of applied mathematics (Poisson, heat, and wave equations),
transient thermo-elasticity,

several types of Navier-Stokes solvers,

large-strain elasto-plasticity for metal forming,
optimization and design of metal forming processes,
multi-phase porous media flow,

stochastic groundwater flow,

fluid-structure interactions,

flow processes with melting and solidification,
thermal injection molding processes with free surfaces,
fully 3D nonlinear potential theory for water waves,
Boussinesq models for tsunami propagation,

option price modeling,

the electrical activity in the heart.

Many of the mentioned simulators employ adaptivity, parallel computing, multigrid, and
problem-dependent optimizations. As one can see from the list, the application of Diffpack to
computational mechanics is extensive and will probably increase significantly when support for
advanced numerical methods migrate from the research level to the commercial Diffpack distribution.

The real advances in computational mechanics software must also incorporate full problem solving
environments, with advanced easy-to-use graphical interfaces to grid generation, problem definition,
simulation, visualization, and report generation. Diffpack’s focus is on being a flexible, high-quality
numerical engine in such problem solving environments. Grid generation and visualization are therefore
not part of Diffpack, although the package comes with simple tools for this purpose to get started
smoothly. The Diffpack distribution provides an extensive set of interfaces to preprocessors and
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visualization software for professional use. Diffpack has various types of user interfaces: a
command-line mode, a file mode, and a GUIL. The Windows version has a full-fledge graphical working
environment that integrates visualization by Vtk. These environments are tailored to programmers and
researchers, not end-users of industrial applications. The main source for learning Diffpack and its view
on numerics and applications is the book [6], see www.nobjects.com/Book. Associated with the book is
a CD-ROM containing a test version of Diffpack along with all the sample applications from the book.
The examples cover heat transfer, wave phenomena, thermo-elasticity, elasto-viscoplasticity, and
viscous fluid flow, whereas the numerics concentrates on finite element methods, finite difference

schemes, and iterative methods for linear systems, exposed in a form that maps conveniently over to
Diffpack code.

Computational efficiency is a major issue when prototype solvers from research are to be migrated to
industrial codes, and the use of C++ could in this regard be of concern. C++ certainly gives lots of tools
for creating very inefficient numerical code, but it also gives you some tools to beat Fortran 77
efficiency [7, ch. 2]. Our experience is that a careful use of C++, with as much number crunching as
possible in lower layers, using only ‘do-loops’” and plain arrays, combined with object-orientation for
administering the program flow in higher layers, results in code that comes close to Fortran 77 on
benchmarks. While Diffpack codes have a high degree of built-in flexibility, e.g., finite element codes
works with all kinds of elements in 1D, 2D, or 3D, benchmarking often involves tailored Fortran codes
with lots of hand optimizations. The structure of the general Diffpack codes enable a programmer to add
optimized code in an afternoon that limits the flexibility and takes advantage of special structures in the
problem and special choice of elements. Again, object-oriented programming is a key technology for
going from a general to a specialized/optimized application code in a clean and fast way and for letting
the two versions of the code exist side by side, sharing everything that is in common.
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Abstract

Predictive modelling of microelectromechanical (MEMS) devices and their manufacture
is an important and growing area for methods developed under the domains of computational
mechanics, fluid dynamics and microscopic approaches such as molecular dynamics, Monte
Carlo models and quantum physics. This talk addresses some of the challenges in this area
from the viewpoint of multiscale modelling, which spans several length and time scales.

1 Multiscale modelling of materials processes and structures

Modelling and computational simulation of materials and their processing is a rapidly advanc-
ing activity [1]. One can distinguish four levels of simulation: electronic structure, atomistic,
mesoscale (microstructure), and continuum. These levels are individually suited to probe and
investigate the properties and behavior of materials on certain length and time scales, ranging
from nanometers to meters and from femtoseconds to days. Each level of simulation has a com-
munity of practitioners developing the models and computational techniques and investigating
their application s.

There are two considerations which have begun to weld together the traditionally separate
communities. One is based on the importance of advanced computational methods shared by all
materials modellers. For example, large-scale materials simulation often focuses on the repeated
manipulation of huge sparse matrices or the efficient solution of equations describing dynamical
behavior.

The second consideration stems from the important couplings of the different length and
time scales. As the ultimate goal is to predictively understand macroscopic materials from their
microscopic constituents, these couplings have to be established as seamlessly as possible.

At the electronic-structure level, methods based on quantum-mechanical density-functional
theory have reached a high level of accuracy and applicability. However, such methods are
computationally very intensive and presently practical for systems containing at most a few
hundred atoms.

The connection to the next, atomistic level is nowadays quite well established, and techniques
such as molecular-dynamics or Monte Carlo simulations can benefit of increasingly accurate
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interatomic potentials. With simplified force laws, molecular-dynamics simulations can now be
performed for systems containing tens of millions of atoms.

The coupling of the atomistic description to the mesoscale models is absolutely essential to the
successful realization of multiscale modelling. This area is subject to intensive current research
activity {2]. One obvious possibility is to obtain such coarse-graining of molecular-dynamics
trajectories that can be turned into a finite-element or finite-difference type formulations. Other
suggested approaches are based on lattice-gas or cellular-automaton-type discretisations, where
the local rules are obtained from coarse-grained atomistic simulations.

The general application area of micrometer-scale, three-dimensional devices based on versa-
tile, adjustable materials properties exemplifies the emerging need for multiscale modelling and
simulation. These are devices where one utilizes not only the materials’ electronic and mag-
netic properties (derived from electronic structure) but also the mechanical properties (such as
elasticity or flow).

2 The MEMS concept

The acronym MEMS (MicroElectroMechanical Systems) stands for systems which are small in
size and have both electromagnetic and mechanical functions. The main application categories
of MEMS are sensors which observe the chemical and physical environment and actuators which
modify the environment.

The basic substrate for MEMS devices is silicon, although other semiconductor (III-V com-
pounds, SiC, diamond) and insulator (perovskites, fluorides) materials are used as well. Mag-
netically controlled actuator devices such as those based on so-called magnetic shape-memory
alloys are also increasing in importance.

3 Simulation of device processing

The processing of MEMS devices introduces some new computational challenges. Some of the
manufacturing technologies, such as various types of litography and chemical vapor deposition
(CVD), are similar to those widely used in integrated-circuit (IC) manufacturing. Specific for
MEMS is the need for bulk micromachining techniques. The usual technique is some variant of
chemical etching: isotropic, anisotropic and reactive ion etching.

In etching one needs to be able to simulate how the shape transforms, or at least be able to
predict the final shape. A number of different computational techniques have been used to do
this: cellular automata, level-set methods, front tracking etc. The difficulty is that the changes in
shape cannot usually be described by continuous transformations. Also the topology of devices
may change.

4 Simulation of device responses

MEMS devices are inherently coupled. In addition to mechanical and electrical response, also
thermal, optical, magnetic and chemical phenomena may occur. Fluid flows within the devices
may also be present. Therefore the simulation of MEMS devices usually leads to a multiphysics
problem [3].

The multiphysics characteristics may be manifest in several ways. The different phenomena
can have vastly different time and size scales which require special simulation strategies. For
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example, the different equations need to be solved in different computational domains, with the
results mapped between them.

The mapping requires often special iteration schemes. If the different phenomena are loosely
coupled, a segregated scheme where the individual equations are solved alternatingly may be
used. Such schemes have the advantage that it is possible to verify various physical phenomena
separately. Tightly coupled systems may, however, require also concurrent approaches where all
the unknown equations are solved at the same time. This increases the complexity but may
pay off in faster convergence. Generally, it is not possible to prove that a coupled system has a
unique solution. Therefore special care must be used to evaluate the the physical meaningfulness
of the solution.

The small size introduces new physical phenomena while some features important at larger
length scales may become irrelevant. As the device size shrinks, surface effects become increas-
ingly important. For example, the capillary force due to surface tension becomes quite important
in the modelling of microfiuids. Likewise, electric double layers may be formed at the interfaces,
with important consequences for the flow properties. The double layers are due to the electric
forces between dipoles or ions at the surface. In fluid flows diffusion (friction) often dominates
convection.

The devices are usually modelled by means of differential equations that assume continuity.
At small sizes this assumption may become questionable. For example, at small pressures the
mean free path of gas particles may be significant compared to the size of the device. Then the
traditionally used Navier-Stokes equations do no longer describe the behavior accurately.

There are also some highly nonlinear phenomena. For example, in acceleration sensors it
may be possible that for a split second the moving part may be at contact with the body. The
capturing and modeling of this moment is a challenge.

5 Packaging and integration

MEMS devices often constitute only single components in complex, integrated circuits. The
system designers cannot therefore afford to consume too much time for the modeling of the
MEMS devices. Thus they need macromodels which describe the device functions in terms
of "equivalent circuits". These macromodels may then be used in circuit design and analysis
programs. Often the macromodels are derived from simplified representations of the components.
Yet macromodels have to have the right physical dependencies. A macromodel can be made more
accurate by using the simulations of the true (full) device to derive the characteristic parameters
of the equivalent circuit.

6 Software for multiphysical modelling in MEMS

Numerical simulation of multiphysics problems such as encountered in MEMS is a very challeng-
ing task. Typically, commercial or in-house software packages are dedicated to specific problems,
i.e., fluid dynamics, structural mechanics or electromagnetism. The trend towards multiphysical
features is obvious in the future, and some steps to this direction have already been taken.
ANSYS and FIDAP are examples of commercial softwares offering multi-physical tools. AN-
SYS, which is a popular software suite in structural mechanics, contains ANSYS/Flotran and
ANSYS/Emag modules for simulating fluid flows and electromagnetics. FIDAP covers, not only
phenomena in fluid dynamics, but also interactions between fluid flows and structures.
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In-house software can benefit from increased flexibility and the utilization of modern scien-
tific computing tools. Multiphysics problems are often so complicated that self-tailoring is a
necessity. Since source codes are available, phenomena in electromagnetism, fluid flow, mechan-
ics and heat transfer can be coupled and solved efficiently. Typically, modern in-house software
are based on new programming languages (F90/95, C++), state-of-the-art numerical methods
(such as stabilization in finite element methods), parallelization, and advanced mathematical and
visualization libraries (LAPACK, Tcl/Tk). Solving of multi-physics problems requires a large
amount of computer resources, and parallelized software offers a way to speed-up the research
and development cycle.

One example of in-house and multi-physical tool is ELMER software [4], which has been de-
veloped within the Finnish national computational fluid dynamics technology programme. The
development has been carried out in close collaboration between research institutes (Center for
Scientific Computing, Helsinki University of Technology, Technical Research Centre of Finland
and University of Jyviskyld) and industry (Okmetic Ltd., Valmet Ltd.). The role of indus-
trial companies has been considerable in order to direct the development towards multiphysical
applications.

ELMER consists of a preprocessor, a solver and a postprocessor. It solves multiphysical appli-
cations such as compressible and incompressible flows, laminar and turbulent flows, heat transfer
by conduction, convection and radiation, stresses and displacements in elastic bodies, problems
in magnetohydrodynamics and vibration, many of which are present in MEMS applications.

Each phase of ELMER can be used independently. It supports various computer architec-
tures, from PCs to parallel supercomputers. Universities, research institutes and industry can
utilize ELMER software in their research and development. It is a national resource which can
be tailored towards multiphysical application including those relevant for MEMS technology.

7 Concluding remarks

The manufacture and application of MEMS devices is replete with phenomena which challenge
computational scientists. Micromachining, crack propagation in processed structures, fluid flow
in micron-scale channels, coupled electromagnetic and mechanical response over large frequency
intervals, and integration of MEMS devices to complex circuitry are examples of phenomena
where there is growing need for accurate modelling and simulation. From the basic science point
of view, a major intellectual challenge is multi-scale modelling and simulation capable of seamless
description over many decades of length and time, from microscopic to macroscopic.
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Background

There are 25,000 people in Sweden who suffer from such cases of deformed and ruined
joints that their chances of leading normal lives have been severely limited. Rheumatic
complaints not only affect the elderly, but a substantial part of the patients suffering
from rheumatoid arthritis are young people between 10 and 30 years of age; this is known
as juvenile rheumatism. These people are in dire need of artificial joints to be able to
perform simple, every-day chores. Rheumatoid arthritis is an inflammatory condition
in bones and ligaments, which in its final stages for all practical purposes has rendered
the joint immovable. The lower left-hand picture shows a hand deformed by rheumatoid
arthritis, albeit not fully developed. In many cases the hand is entirely closed. In the
upper right-hand part of the picture the twisted joints are shown, and in the lower part
they have been corrected by substituting artificial joints for them.

Figure 1: Hand with a deformity caused by theumatoid arthritis (left). "Before” and “after”
surgically inserting artificial joints in the metacarpophalangeal or knuckle joint (right).
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Previous Artificial Finger Joints

In the last 40 years, several different artificial finger joints have been developed, see Ref.
[1]. However, they have all shown various deficiencies. The pictures below show a number
of the attempts made in this area.

Figure 2: This picture shows some first and second generation artificial finger joints.
Design according to (top row) Brannon and Klein, Flatt, Griffith-Nicole, Schetrumpf,
(middle row) Schultz, Steffee, St. Geogre-Buchholtz, KY Alumina Ceramic, (bottom row)
Minami Alumina Ceramic, Swanson, Neibauer, Helal Flap.(from Ref. [1])

These artificial finger joints have all, to a varying degree, had the ambition of producing
as natural a locomotive pattern as possible. However, several of the early designs entailed
substantially simplified finger movements. The early artificial finger joints were essentially
simple hinge constructions, marred by a number of mechanical problems.

The artificial joints containing polymeric substances are based on silicone rubber. The
Swanson joint, see Figure 2 bottom row, second from the left, for example, is made entirely
of silicone rubber. In fact this is one of the most frequently used joint replacements today,
particularly in the United States, despite documented insufficiencies as regards both the
stability of the fixing and the mechanical functioning (Ref. [1]). This joint has no steady
fixing. The artificial joint is inserted directly into the shaft of the bone. There are also
artificial joints imitating real joints, including ball and socket. Such prostheses exist, but
they are best suited for patients with healthy ligaments.

One of the more successful attempts was made by Professor P-I Branemark. This artificial
joint, see Figure 3, is made of silicon rubber with titanium pins fixed in titanium casings
in the hand and in the finger respectively. The titanium casings are fixed in the shafts of
the bone through "osseointegration”, in accordance with the P-I Branemark method.

The problem with silicone is its insufficient fatigue strength, which leads to a rather limited
durability; as a result of material breakdown, approximately 10% of all patients in Sweden
after as short a time as two years suffer from such substantial damages and deformities
that a substitution of the joints has to be made. The insufficiencies of this artificial joint
can be entirely attributed to the flexible elastomeric part of the joint, nowadays being
made of a silicone rubber substance, see Ref. [3].

205



- 'J'

Figure 3: The artificial finger joint according to the PI Branemark system consists of
titanium casings fized in the shafts of the bone. The rubber construction constituting the
flezible part of the joint is shown separately in two views.

Mechanical Prerequisites

Ligaments give the healthy hand its stability and progressive stiffening at an increased
bending from a state of rest, which applies to a clean bending as well as a lateral movement.
In rheumatic patients, the ligaments are also damaged. This means that a functioning
artificial finger joint must give the corresponding progressive stabilisation at an increased
bending from a state of rest. Hence, great demands are made on materials, combination
of materials and geometric design.

Figure 4 below shows the different typical handgrips that constitute the design prereq-
uisites as regards a functioning joint. The table shows the frequency with which the
different grips are used.

Table 1: Percentage use of the eight most common handgrips in activities of daily living
(from Sollerman 1995)

Pinch (hand) % | Grips (hand) % |
Pulp pinch 20 | Diagonal volar pinch | 15
Lateral pinch 20 | Transverse volar grip | 14
Tripod pinch 10 | Spherical volar grip | 4
Five-finger pinch | 15 | Extension grip 2

Two reference cases of loading have been used in the current study to evaluate existing
designs as well as to provide a basis for a new design of the joint. The cases of loading
studied are a bending of the joint without external loading, and grip loading. An impor-
tant observation is the fact that almost only compressive loads are found in the natural
joint. This is especially true of the grip case, when the pressure forces in the joint can
become considerable. A free body diagram of a finger in connection with a grip loading,
as shown in the figure, indicates that the force N in the joint must be a pressure force.

The force S from tendons on the inside of the hand produces the grip force F. The
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Figure 4: Definition of different occurring finger and hand grips (from Sollerman 1995).

moment equilibrium for the uncovered finger then demands that the force of the joint N
is a pressure force, which could be several times greater than the grip force. These forces
are used in the simulation of the artificial joints.

Figure 5: To achieve a simple description of loading prerequisites, two basic load cases
have been studied: Flezion without external loading and the grip case. finger joint has
been studied.

Material Prerequisites

The use of foreign materials in the human body is surrounded by rigorous regulations
regarding biocompatibility. The introduction of new materials included in artificial joints
must therefore be preceded by considerable investigations to find out whether the potential
materials pose a risk as regards toxicity. The use of rubber materials is of a considerable
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advantage because the design can be made in such a way that the progressive stiffening
found in the healthy joint also can be built into the artificial joint.

Silicone rubber is a commonly used material for implantation. Several studies have in-
dicated that this substance is biocompatible and it is used for different applications, for
example as artificial joints, but also in other functions such as artificial blood vessels.
Components outside the body, i.e. in connection with dialysis, also belong here.

The insufficient fatigue strength of silicone rubber is a major problem. Figure 6, below
shows the fatigue limits for some rubber materials. It is obvious that silicone rubber
actually is the poorest choice from a strictly mechanical viewpoint. The reasons for
not changing to other substances are uncertainties concerning their biocompatibility. In
several cases the elastomer has been classified as biocompatible in scientific tests. Its
failure to make an impact in biomechanics and similar areas is probably caused by fear
of legal complications.

Comparative Tenslle Fatigue Results
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Figure 6: Diagram of fatigue strength in some rubber substances
. Silicone has the lowest fatigue limits. From Reference [5]

Analysis of Existing Joint

An existing design, discussed earlier and shown in Figure 3, has been analysed as regards
bending without external load and grip loading. Figure 7 shows the finite element mesh
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of the crucial part of the artificial joint and the deformed joint in the case of grip loading.
The loading case has been achieved by simulating tension loading in a tendon on the
lower side of the component. The fixing of the tendon is not symmetric in relation to the
component, resulting in an asymmetrical deformation as is seen in the figure.
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Figure 7: Top figure show the finite element mesh for the old design. The bottom figure
shows the result from one simulation of the old design. The arrow indicate the position
for high tensile stress. Indeed the current design tends to break at that specific point.

Below are some disadvantages as regards the existing design.

® The component is a "beam model”, causing an increased pressure loading to increase
the tension strain on the top side of the component, and hence also increasing the
risk of crack formations.

e As the plates with the pin are moulded instead of vulcanised, there is a risk of wear
on the rubber substance from the inside. This risk increases through the sharp-edge
design of the plates.

e The symmetrical design, in combination with the design of the plates, result in
a heavy loading of the component at great compressive loads as the edge of the
left plate causes a concentrated loading in its contact with the right part of the
component.

New Design

The ambition of the current study is to produce a design that works better as a natu-

ral joint by absorbing heavier compressive loads without becoming stiffer when bended
unloaded.

The aims can be summarised as follows:
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e Lessen the traction strains, which could cause fatigue cracks.

e Achieve a function resembling a natural joint in being easy to bend while at the
same time having the capacity to absorb pressure forces.

e Prevent wear and crack formations at the titanium plates/pins.
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