Problem 1

Determine the derivative as a function of the global x-coordinate for the following quadratic isoparametric line element. Nodal coordinates are $x_{1}=0, x_{2}=\alpha L, x_{3}=L(\alpha>0)$. What is the allowable range of the parameter α ? The function to be interpolated is $u(x)=u_{3}(x / L)^{2}=\alpha^{2} u_{3} N_{2}+u_{3} N_{3}$, where $N_{2}=1-\xi^{2}, N_{3}=\frac{1}{2} \xi(1+\xi)$. Draw the derivative $d u / d x$ with the following values of the α-parameter: $\alpha=1 / 4$ ja $\alpha=1 / 3$. What can you say about the accuracy?

Solution

The function to be interpolated is $u(x)=u_{3}(x / L)^{2}$, thus the quadratic finite element interpolation

$$
\tilde{u}=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3},
$$

can exactly represent the given function. The quadratic interpolation functions are

$$
N_{1}=\frac{1}{2} \xi(\xi-1), \quad N_{2}=1-\xi^{2}, \quad N_{3}=\frac{1}{2} \xi(\xi+1) .
$$

Since $u\left(x_{1}\right)=0$ and $u\left(x_{2}\right)=\alpha^{2} u_{3}$ the FE-interpolant is

$$
\tilde{u}=\left(\alpha_{2}^{2} N_{2}+N_{3}\right) u_{3} .
$$

Since the element is isoparametric, the geometry is also described with the same interpolation functions, i.e.

$$
x=N_{1} x_{1}+N_{2} x_{2}+N_{3} x_{3}=\left(\alpha N_{2}+N_{3}\right) L .
$$

The derivative

$$
\frac{d \tilde{u}}{d x}=\frac{1}{\frac{d x}{d \xi}} \frac{d \tilde{u}}{d \xi}=J^{-1} \frac{d \tilde{u}}{d \xi},
$$

where the Jacobian J is

$$
J=\frac{d x}{d \xi}=\left(\alpha N_{2, \xi}+N_{3, \xi}\right)=\left(-2 \alpha \xi+\frac{1}{2}+\xi\right) L=\left[\frac{1}{2}+(1-2 \alpha) \xi\right] L .
$$

The Jacobian has to be positive $J>0, \forall \xi \in(-1,1)$, thus $\frac{1}{4}<\alpha<\frac{3}{4}$.
The required derivative is now

$$
\frac{d \tilde{u}}{d x}=\frac{\frac{1}{2}+\left(1-2 \alpha^{2}\right) \xi}{\frac{1}{2}+(1-2 \alpha) \xi} \frac{u_{3}}{L}=\frac{1+2\left(1-2 \alpha^{2}\right) \xi}{1+2(1-2 \alpha) \xi} \frac{u_{3}}{L}
$$

and using values

$$
\begin{aligned}
& \alpha=\frac{1}{3} \quad \Rightarrow \quad \frac{d \tilde{u}}{d x}=\frac{1+\frac{14}{9} \xi}{1+\frac{2}{3} \xi} \frac{u_{3}}{L}, \quad \text { and } \quad \alpha=\frac{1}{4} \quad \Rightarrow \quad \frac{d \tilde{u}}{d x}=\frac{1+\frac{7}{4} \xi}{1+\xi} \frac{u_{3}}{L} . \\
&
\end{aligned}
$$

In the figure below the derivative of the isoparametric element with unevenly spaced central node is shown. Also the exact derivative

$$
\frac{d u}{d x}=2 \frac{x}{L} \frac{u_{3}}{L}
$$

is shown. To draw the derivatives of the isoparametric element, the local ξ-coordinate has to be solved as a function of the global x-coordinate

$$
x=\left[\alpha\left(1-\xi^{2}\right)+\frac{1}{2} \xi(1+\xi)\right] L
$$

For $\alpha=\frac{1}{3}$ we get

$$
x / L=\frac{1}{3}+\frac{1}{2} \xi+\frac{1}{6} \xi^{2},
$$

thus

$$
\xi=-\frac{3}{2}+\sqrt{\frac{1}{4}+6(x / L)} .
$$

For $\alpha=\frac{1}{4}$ we get

$$
x / L=\frac{1}{4}+\frac{1}{2} \xi+\frac{1}{4} \xi^{2},
$$

thus

$$
\xi=-1+2 \sqrt{x / L}
$$

Problem 2

The nodal temperatures of an isoparametric element shown below are: $u_{1}=u_{2}=u_{5}=$ $0, u_{3}=2 \bar{u}, u_{4}=\bar{u}, u_{6}=5 / 8 \bar{u}, u_{7}=35 / 16 \bar{u}, u_{8}=1 / 2 \bar{u}$. Assuming the material to be isotropic with thermal conductivity k, determine the heat flux vector $\vec{q}=-k \nabla u$ at node 4.

$$
L / 4 \quad L / 4 \quad L / 4 \quad L / 4
$$

Solution

Geometry interpolation:

$$
\begin{aligned}
& x=N_{2} \frac{1}{2} L+N_{3} L+N_{5} \frac{1}{4} L+n_{6} \frac{3}{4} L+N_{7} \frac{1}{2} L \\
& y=N_{3} L+N_{4} L+n_{6} \frac{1}{2} L+N_{7} \frac{5}{4} L+N_{8} \frac{1}{2} L
\end{aligned}
$$

Temperature in a similar way

$$
u=\sum_{i=1}^{8} N_{i} u_{i}=N_{3} 2 \bar{u}+4 \bar{u}+N_{6} \frac{5}{8} \bar{u}+N_{7} \frac{35}{16} \bar{u}+N_{8} \frac{1}{2} \bar{u} .
$$

The interpolation functions are

$$
\begin{aligned}
N_{2} & =\frac{1}{4}(1+\xi)(1-\eta)(\xi-\eta-1) \\
N_{3} & =\frac{1}{4}(1+\xi)(1+\eta)(\xi+\eta-1) \\
N_{4} & =\frac{1}{4}(1-\xi)(1+\eta)(-\xi+\eta-1) \\
N_{5} & =\frac{1}{2}\left(1-\xi^{2}\right)(1-\eta) \\
N_{6} & =\frac{1}{2}\left(1-\eta^{2}\right)(1+\xi) \\
N_{7} & =\frac{1}{2}\left(1-\xi^{2}\right)(1+\eta) \\
N_{8} & =\frac{1}{2}\left(1-\eta^{2}\right)(1-\xi)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& x=\frac{1}{8} L(1+\xi)(\eta+3), \\
& y=\frac{1}{8} L(1+\eta)\left(5-\xi^{2}\right), \\
& u=\frac{1}{32} \bar{u}(1+\eta)\left(29+2 \xi+6 \eta(1+\xi)-11 \xi^{2}\right),
\end{aligned}
$$

and the derivatives

$$
\begin{aligned}
x_{, \xi} & =\frac{1}{8} L(\eta+3), \\
x_{, \eta} & =\frac{1}{8} L(1+\xi), \\
y_{, \xi} & =\frac{1}{4} \xi(1+\eta), \\
y_{, \eta} & =\frac{1}{8}\left(5-\xi^{2}\right), \\
u_{, \xi} & =\frac{1}{32} \bar{u}(1+\eta)(2+6 \xi-22 \xi), \\
u_{, \xi} & =\frac{1}{32} \bar{u}\left(35+8 \xi+12 \eta+12 \xi \eta-11 \xi^{2}\right) .
\end{aligned}
$$

The heat flux \vec{q} is

$$
\vec{q}=-k\left(\frac{\partial u}{\partial x} \vec{i}+\frac{\partial u}{\partial y} \vec{j}\right)
$$

To obtain the global derivatives we need the Jacobian

$$
\left\{\begin{array}{l}
u_{, x} \\
u_{, y}
\end{array}\right\}=\boldsymbol{J}^{-T}\left\{\begin{array}{l}
u_{, \xi} \\
u_{, \eta}
\end{array}\right\}, \quad \text { where } \quad \boldsymbol{J}^{T}=\left[\begin{array}{ll}
x_{, \xi} & y_{, \xi} \\
x_{, \eta} & y_{, \eta}
\end{array}\right]
$$

At node $4, \xi=-1$ and $\eta=1$, then

$$
\boldsymbol{J}^{T}=\frac{L}{2}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \Rightarrow \quad \boldsymbol{J}^{-T}=\frac{2}{L}\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right] .
$$

Also

$$
u_{, \xi}(-1,1)=\frac{15}{8} \bar{u}, \quad \text { and } \quad u_{, \eta}(-1,1)=\frac{1}{2} \bar{u} .
$$

Thus at node 4

$$
\begin{aligned}
& u_{, x}=\frac{2}{L}\left(u_{, \xi}-u_{, \eta}\right)=\frac{11}{4} \frac{\bar{u}}{L} \\
& u_{, y}=\frac{2}{L} u_{, \eta}=\bar{u} / L
\end{aligned}
$$

and finally

$$
\vec{q}=-\left(2 \frac{3}{4} \vec{i}+\vec{j}\right) \frac{k \bar{u}}{L} .
$$

