MEI-55200 Numerical methods for field problems

7. Exercise: time integration methods

1. Perform the numerical solution of the Maxwell-type creep problem

$$
\begin{equation*}
\sigma=E\left(\epsilon-\epsilon_{\mathrm{c}}\right) . \tag{1}
\end{equation*}
$$

The creep strain rate $\dot{\epsilon}_{\mathrm{c}}$ is obtained from

$$
\dot{\epsilon}_{c}=\tau_{\mathrm{pr}}^{-1}\left(\frac{\sigma}{\sigma_{\mathrm{r}}}\right),
$$

where $\tau_{\text {pr }}$ is the "pseudo"relaxation time (constant) and σ_{r} is a reference stress (constant). The relaxation time is $\tau=\tau_{\mathrm{pr}} \epsilon_{\mathrm{r}}$, where $\epsilon_{\mathrm{r}}=\sigma_{r} / E$.
Formulate the problem as a first order ordinary differential equation for the stress and solve it numerically using the implicit Euler method. The loading is a constant strain rate: $\epsilon(t)=\tau^{-1} \epsilon_{\mathrm{r}}$ t. Integrate to the final time $t=4 \tau$ by using a time step $\Delta t=2 \tau$. Hint: Formulate the equation (1) is a dimensionless form using a dimensionless stress $y=\sigma / \sigma_{\mathrm{r}}$. When you differentiate the equation (1) w.r.t. time, you can assume the Young's modulus E to be a constant.
2. Investigate the stability of the Crank-Nicolson scheme for the problem

$$
\dot{y}+a(t) y=0, \quad y(0)=y_{0}, \quad \text { where } \quad a(t)>0 .
$$

Home exercise: Consider time-dependent diffusion problem

$$
\begin{gathered}
\rho c \dot{u}-k u^{\prime \prime}=0,0<x<L, \\
q(0)=q_{0}=-\alpha_{0}\left(u-u_{0}\right), \\
q(L)=q_{L}=\alpha_{L}\left(u-u_{L}\right) .
\end{gathered}
$$

The problem describes temperature evolution e.g. in a wall.

1. Write the semi-discrete form of the diffusion problem using one linear finite element. Assume that the outdoor temperature u_{0} changes in time as $u_{0}=$ $u_{L} \cos (\pi t / T)$ and the indoor temperature is constant u_{L}.
In the boundary terms, the parameter α is the heat transfer coefficient. In general it depends on temperature of the surface, but in this case the problem will be nonlinear. Let's assume it to be constant. The dimensionless ratio

$$
B_{i}=\frac{\alpha_{i} L}{k}
$$

is the Biot number.
2. Solve the problem by using (a) the explicit-, (b) the implicit Euler method and (c) the method of Crank-Nicolson in time interval $(0<t \leq 2 T)$. Perform the computations with the Biot's number 1 and 5 . You can assume that the wall is made from concrete for which $\rho=2400 \mathrm{~kg} / \mathrm{m}^{3}, c=880 \mathrm{~J} /(\mathrm{kg} \mathrm{K}), k=1.7$ $\mathrm{W} /(\mathrm{mK})$, and $T=12$ hours and the indoor temperature is $u_{L}=20^{\circ} \mathrm{C}$. Use the value $L=0.2 \mathrm{~m}$ for the thickness of the wall. Use only lumped capacity matrix for the explicit method and consistent one for implicit schemes.

