MEI-55200 Numerical methods for field problems

5. Exercise: isoparametric elements

1. Determine the derivative as a function of the global x-coordinate for the following quadratic isoparametric line element. Nodal coordinates are $x_{1}=0, x_{2}=\alpha L, x_{3}=L(\alpha>0)$. What is the allowable range of the parameter α ? The function to be interpolated is $u(x)=u_{3}(x / L)^{2}=\alpha^{2} u_{3} N_{2}+u_{3} N_{3}$, where $N_{2}=1-\xi^{2}, N_{3}=\frac{1}{2} \xi(1+\xi)$. Draw the derivative $d u / d x$ with the following values of the α-parameter: $\alpha=1 / 4$ ja $\alpha=1 / 3$. What can you say about the accuracy?
2. The nodal temperatures of an isoparametric element shown below are: $u_{1}=u_{2}=u_{5}=$ $0, u_{3}=2 \bar{u}, u_{4}=\bar{u}, u_{6}=5 / 8 \bar{u}, u_{7}=35 / 16 \bar{u}, u_{8}=1 / 2 \bar{u}$. Assuming the material to be isotropic with thermal conductivity k, determine the heat flux vector $\vec{q}=-k \nabla u$ at node 4.

$$
L / 4 \quad L / 4 \quad L / 4 \quad L / 4
$$

Home exercise: For a quadrilateral isoparametric four-node element, the nodal value of the electric potentials are $\phi_{1}=\phi_{2}=\phi_{4}=\phi_{0}, \phi_{3}=-4 \phi_{0}$. Determine the electric field vector $\boldsymbol{E}=-\nabla \phi$ inside the element. The element geometry is shown below.

To be returned at latest in the next exercise!

