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Chapter 1
Introduction

1.1 The general structure of continuum mechanics

In principle, the general structure of equations in continuum mechanics is threefold. First,
there is a balance equation (or balance equations) stating the equilibrium or force balance
of the system considered. These equations relate e.g. the stress with external forces. Sec-
ondly, the stress is related to some kinematical quantity, such as strain, by the constitutive
equations. Thirdly, the strain is related to displacements by the kinematical equations.

Balance equations are denoted as B*o = f, where B* is the equilibrium operator, usu-
ally a system of differential operators. In the constitutive equations ¢ = C'c the operator
C can be either an algebraic or differential operator. Finally, the geometrical relation, i.e.
the kinematical equations, are denoted as ¢ = Bu. These three equations form the system
to be solved in continuum mechanics and it is illustrated in figure 1.1. The equilibrium
operator B* is the adjoint operator of the kinematical operator B. Therefore, there are
only two independent operators in the system.

Example - axially loaded bar. The equilibrium equation in terms of the axial force N
is

dN

= = 1.1

d:L‘ f7 ( )
where f is the distributed load [force/length] in the direction of the bar’s axis. Thus, the
equilibrium operator B* is

d

B = ——.
dx

(1.2)

The axial force is related to the strain via the elastic constitutive equation (containing the
cross-section area as a geometric quantity)

N = EAe. (1.3)



2 CHAPTER 1. Introduction

Figure 1.1: The general structure of equations in mechanics.

In this case the constitutive operator C' is purely algebraic constant C' = E'A. The kine-
matical relation is

du
= — 1.4
thus, the kinematic operator
d
B=— 1.5
o (1.5)

for which B* is clearly the adjoint. The equilibrum equation expressed in terms of axial
displacement is

B*CBu = _di (EA%) = f. (1.6)

T dx

Example - thin beam bending. The equilibrium equation in terms of the bending mo-
ment M is P2
M

B [ (1.7)
where f is the distributed transverse load [force/length]. Thus, the equilibrium operator
B*is L2

B = ——. 1.8

o2 (1.8)

The bending moment is related to the curvature via the elastic constitutive equation (con-
taining the inertia of the cross-section as a geometric quantity)

M = EIk. (1.9)

Again, the constitutive operator C'is purely algebraic constant C' = E'I. The kinematical
relation is
d?v

S da?

(1.10)

K =
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1.2. Vectors and tensors 3

The kinematical operator is
d2
B=—— 1.11
EpSE (1.11)
for which B* is clearly the adjoint and also in this case B* = B. The equilibrum equation

expressed in terms of the axial displacement is

d? d?v
B*CBu=—— | El— | = [. 1.12
CBu da? ( de) / (1.12)

Example - linear 3-D elasticity. The equilibrium, constitutive and kinematical equa-
tions are

—dive” =pb, and o =o" (1.13)
o= Ce, (1.14)
€ = symgrad u, (1.15)

where o is the symmetric stress tensor, p is the material density, b is the body force per

unit mass, u is the displacement vector and C' is the elasticity tensor. Thus the operators
B*, B and C are

B* = —div, (1.16)

B = grad, (1.17)

Cc=20C. (1.18)
The formal adjoint of the B* = — div operator is the gradient operator.

1.2 Vectors and tensors
1.2.1 Motivation

In any physical science physical phenomena are described by mathematical models, which
should be independent of the position and orientation of the observer. If the equations of
a particular model are expressed in one coordinate system, they have to be able describe
the same behaviour also in another coordinate system too. Therefore, the equations of
mathematical models describing physical phenomena are vecor or tensor equations, since
vectors and tensors transform from one coordinate system to another coordinate system
in such a way that if a vector or tensor equation holds in one coordinate system, it holds
in any other coordinate system not moving relative to the first one [14, p. 7].

1.2.2 Vectors

In three-dimensional space a vector can be visualized as a an arrow having a length and a
direction. In mathematics a vector can have a more abstract meaning.

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



4 CHAPTER 1. Introduction

1.2.3 Second order tensors

A second order tensor, denoted e.g. by A can be understood as a general linear transfor-
mation that acts on a vector » and producing a vector v.

v=A-u. (1.19)

In many texts the symbol indicating the multiplication, -, is omitted and the equation
(1.19) can be written as
v = Au. (1.20)

In this lecture notes, only cartesian rectangular coordinate system is used, and the or-
thonormal unit base vectors of an arbitrary coordinate system are denoted as e;, e; and
e3. Since the tensor equation (1.19), or (1.20) embraces information of the the underlying
coordinate system, it can be expressed in a dyadic form

A =Apee; + Aperes+ Ajzeres
+ As1ese + Ay eses + Asseses
+ Asz1ese; + Aseses + Aszeses, (1.21)

which can be written shortly as

3
A= Z Aijeiej = Aijeiej. (122)

=1 j=1

In the last form of (1.22) the Einstein’s summation convention is used.! The summation
convention states that whenever the same letter subscript occurs twice in a term, a sum-
mation over the range of this index is implied unless othetwise indicated. That index is
called a dummy index and the symbol given for a dummy index is irrelevant. The tensor
product?, or dyad, uv of the two vectors w and v is a second order defined as a linear
transformation

w - w=u(v- -w)= (v wu, (1.23)

1.e. it transforms a vector w in the direction of the vector w. In the literature the notation

u @ v for the tensor product is also used. In index notation it is written as w;v; and in

matrix form as uv?.

As an example, a scalar product between two vectors is defined as

a-b=(ae +ayes+azes)(bies +brey + bzes)
= aiei-bjej = aibjel- . ej = al-bjéij = CLZ'bZ', (124)
!The summation convention appeared first time in Albert Einstein’s (1879-1955) paper on general rela-

tivity in 1916.
’The tensor product is also known as a direct or matrix product.
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1.2. Vectors and tensors 5

where the Kronecker delta-symbol, which is defined as

Loif i
by=4" 7 (1.25)
0, if @#j,
which defines the second order unit tensor.
Using the summation convention the equation (1.19) can be written as
vie; = Al-jel-ej UL = Al-jukéjkei = Aijujel-, (126)
from which we can deduce
(Uz‘ — Aijuj)ei = 0, (127)
and the relation between the components is
V; = Aijuj. (128)

Since in this lecture notes only cartesian coordinate systems are used, the tensor equations
can be written simply either in the absolute notation, like equation (1.19), or in the index
notation without the base vectors, like in equation (1.28). The cartesian second-order
tensor operates just like a matrix. An index which is not dummy is called free, like the
index ¢ in eq. (1.28).

The dot product of two second-order tensors A and B is denoted as A - B (in litera-
ture also denoted as A B) and is defined as

(A-B)u=A(B-u) (1.29)

for all vectors w. The result of a dot product between two second-order tensors is also a
second-order tensor. In general, the dot product is not commutative,ie. A - B #+ B - A.
The components of the dot product C = A - B between cartesian tensors A and B are
given as

Cij = AixBy;j. (1.30)

The transpose of a tensor is defined as
b-A" a=a-A-b=A-b-a, (1.31)

for all vectors a, b. Note that (A7) = A.
The trace of a dyad ab is defined as

tr(ab) = a -+ b = a;b;. (1.32)

For a second-order tensor A, expressed in an orthonormal basis (e, e, e3), the trace is
thus given as

tl"A = tr(Aijel-ej) = Aij tr(eiej) = Aijei . ej = Aijéij = A“ (133)
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6 CHAPTER 1. Introduction

A double dot product of two second-order tensors is defined as
A:B=tr(A"B) =tr(BTA) =tr(AB") = tr(BA") = B : A, (1.34)

which in index notation and for cartesian tensors can be written as
A;jB;j = Bij Aij. (1.35)

A second-order tensor A can be written as a sum of it’s eigenvalues \; and eigenvec-
tors ¢ as

3
A= A9 =) iy, (1.36)

i=1

which is known as the spectral decomposition or spectral representation of A.

1.2.4 Higher-order tensors

In these lecure notes, the permutation tensor £ is the only third order tensor to be used. It
is expressed as

E= €ijk€;€; €L, (137)

where €, = (e; X e;) - e are the 3% components of £. The components €;j; can be
expressed as®

+1, for even permutations of (i, j, k),i.e. 123,231, 312,
€k = § —1, for odd permutations of (i, j, k),i.e. 132, 213, 321, (1.38)

0, if there are two or more equal indexes.

Fourth-order tensors are used in constitutive models. As an example of a fourth-order
tensor is a tensor product of two second-order tensors

C = AB, orinindex notation Cjji = A;jBj. (1.39)
There are two different fourth-order unit tensors I and I, defined as
A=1:A, and AT =1: A, (1.40)

for any second-order tensor A. In index notation for cartesian tensors the identity tensors
have the forms

Lijri = Oidji,  Lijra = Oudji. (L41)

3The permutation symbol €i;k 1s also known as alternating or Levi-Civita-e symbol.
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1.3. Nomenclature 7

1.2.5 Summary

Some hints to access the validity of a tensor equation expressed in the index notation:

1. identify the dummy and free indexes,

2. if three or more same indexes appear in a single term, there is an error,

3. perform contactions (dot products) and replacements (identity tensor) if possible.

1.3 Nomenclature

Strain and stress

e,e;; = deviatoric strain tensor
s,s;; = deviatoric stress tensor
s1,892,53 = principal values of the deviatoric stress
v = shear strain
Yoet = octahedral shear strain
€ij = strain tensor
€oct = octahedral strain
€, = volumetric strain
€1,€2,€3 = principal strains
o = normal stress
o,0;; = stress tensor
Om = mean stress
0ot = octahedral stress
01,09,03 = principal stresses
7 = shear stress
Tm = mean shear stress
Toct = octahedral shear stress
Invariants
Li(A)=trA=A; = the firstinvariant of tensor A
I,(A) = 1[tr(A®) — (tr A)*) = second invariant

Jo(8) = L trs?

third invariant
second invariant of the deviatoric tensor s

]3 =det A

D)

J3 =dets = third invariant of a deviatoric tensor
&, p,0 = the Heigh-Westergaard stress coordinates
¢ = hydrostatic length
p = the length of the stress radius on the deviatoric plane
6@ = the Lode angle on the deviatoric plane

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



8 CHAPTER 1. Introduction

Material parameters

E = Young’s modulus
G = shear modulus
Gy = fracture energy
K = bulk modulus, hardening parameter
k = shear strength
m = f c = mf t
a, [ = parameters in the Drucker-Prager yield condition
v = Poisson’s ratio
¢ = internal friction angle of the Mohr-Coulomb criterion

1.4 On the references

This lecture notes is mostly based on the following excellent books:

1. L.E. Malvemn: Introduction to the Mechanics of a Continuous Medium. Beautifully
written treatease on the topic.

2. G.A. Holzapfel: Nonlinear Solid Mechanics, A Continuum Approach for Engineers.
A modern treatment of some basic material in Malvern’s book. Contains usefull
material for understanding nonlinear finite element methods.

3. J. Lemaitre, J.-L. Chaboche: Mechanics of Solid Materials.
4. N.S. Ottosen, M. Ristinmaa: Mechanics of Constitutive Modelling.

5. J.N. Reddy: An Introduction to Continuum Mechanics with Applications.
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Chapter 2
Stress

2.1 Stress tensor and the theorem of Cauchy

Consider a body B in a 3-dimensional space occupying a volume domain (2, see figure
2.1. If the body B is divided into two parts by a surface S and the parts separated from
each other. The force acting on a small surface AS is denoted by Af. A traction vector ¢
is defined as

o A _dF
T ASS0AS T dS
The traction vector depends on the position & and also on the normal direction 7 of the
surface, 1.e.

t 2.1)

t=1t(xz,n), (2.2)

a relationship, which is called as the postulate of Cauchy.'

In the rectangular cartesian coordinate system, the traction vectors acting in three
perpendicular planes, parallel to the coordinate axes are denoted as ¢y, ¢, and t3, see
figure 2.2. The components of the traction vectors are shown in the figure and expressed
in terms of the unit vectors parallel to the coordinate axes e; the traction vectors are

ti =one; +o2ey + 013€3, (2.3)
ty = 091€1 + 09€5 + 093€3, (2.4)
t3 = 031€1 + 032€5 + 033€3. (2.5)

To obtain the expression of the traction vector in terms of the components o;;, let
us consider a tetrahedra where the three faces are parallel to the coordinate planes and
the remaining one is oriented in an arbitrary direction, see figure 2.3. In each of the
faces, the average traction is denoted as ¢, where ¢ = 1,2, 3, and the area of the triangle
A1 Ay Az is denoted as AS and ASy, AS,, AS3 are the areas of triangles O Ay A3, O A3 A,
and O A; A,, respectively. The body force acting on the tetrahedra is p*b* AV, where the
volume element AV = %hAS, and h is the distance ON.

ISometimes traction vector  is also called as a stress vector. However, in this lecture notes this naming
is not used since the stress has a tensor character.
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Figure 2.1: A continuum body and the traction vector.

Figure 2.2: Traction vectors in three perpendicular directions.
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2.1. Stress tensor and the theorem of Cauchy 11

Zs3

Figure 2.3: Traction vectors acting on te faces of the Cauchy’s tetrahedra.

Equilibrium equation for the tetrahedra is
tAS + %p*b*hAS — t1AS] — t5ASy + t5AS55 = 0, (2.6)
which can be written as
AS(E; + Lp*b"h — it — noty + naty) = 0. 2.7

Now, letting h — 0, we get t7 — ¢, and

3
1=1

=nyi(o11€1 + 0122 + 013€3) + Na2(021€1 + 029 €9 + 093 €3)

+ ns(os1e1 + 032e9 + 033€3), (2.8)

or
n1011 + N2021 + N3031
tn = N1019 + NoT29 + N3032 =N o=0 n. (29)
N1013 + N2023 + N3033

Notice the transpose in the stress tensor o in the last expression. The stress tensor o,
expressed in rectangular cartesian coordinate system is

011 012 013 Oxe Ozy Ogxz Ox Tay Trz
O= | 021 02 023 | = | Oyx Oyy Oy | = | Tyw Oy Ty | - (2.10)
031 032 033 Oz Ozy Oz Tex Tzy Oz

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



12 CHAPTER 2. Stress

The form of the right hand side is know as von Kdrmén notation and the o-symbol in it
describes the normal component of the stress and 7 the shear stresses. Such notation is
common in engineering literature.

The equation (2.9) is called the Cauchy stress theorem and it can be written as

t(xz,n)=[o(x)] n, (2.11)

expressing the dependent quantities explicitly. It says that the traction vector depends
linearly on the normal vector 7.

2.2 Coordinate transformation

If the stress tensor (or any other tensor) is known in a rectangular Cartesian coordinate
system (1, 22, x3) with unit base vectors e, ez, e3 and we would like to know its compo-
nents in other recangular Cartesian coordinate system (', x5, %) with unit base vectors
e, e,, e}, a coordinate transformation tensor is needed. Let us write the stress tensor o
in the z;-coordinate system as

O =011€1€1 + 012€e1€3 + 013€1€63 + 0z1€9€1 + 0n€x€e3 + 023€32€3

+ 031€3€1 + 032€3€9 + 033€3€3. (212)

This kind of representation is called the dyadic form and the base vector part e;e; can is
written either as e; ® e; or in matrix notation eieJT. It underlines the fact that a tensor
contains not only the components but also the base in which it is expressed. Using the
Einstein’s summation convention it is briefly written as

o =o0jee; =o€, (2.13)
indicating the fact that the tensor is the same irrespectively in which coordinate system it
is expressed.

Taking a scalar product by parts with the vector e, from the left and with e, from the
right, we obtain

Oij €y € €j-e, =0, € €; e}-e . (2.14)
S—~— S~ N——
Bri Bip Oki 5;
It can be written in the index notation as
al;p = BriBp;joi;  or in matrix notation [o'] = [(][o] 37, (2.15)

where the compnents of the transformation matrix are 3;; = e;-e;. Notice that 3 is the
transformation from z;-system to x;-coordinate system.
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2.3. Principal stresses and -axes 13

2.3 Principal stresses and -axes
The pricipal values of the stress tensor ¢ are obtained from the linear eigenvalue problem
(Uij — O'(Sij)nj, (216)

where the vector n; defines the normal of the plane where the principal stress acts. The
homogeneous system (2.16) has solution only if the coefficient matrix is singular, thus the
determinant of it has to vanish, and we obtain the characteristic equation

— 0¥+ Lo*+ Lo+ I; = 0. (2.17)
The coefficients [;,7 =1,...,3 are
Il = tro = 0j; 2011+0'22+O'33, (218)
L = iftr(0?) — (tro)?] = 1(0y05 — I7), (2.19)
[3 = det(al-j). (220)

Solution of the characteristic equation gives the principal values of the stress tensor, i.e.
principal stresses 01, 09 ja 03, which are often numbered as: 01 > 09 > 03.

The coefficients /1, I> and I3 are independent of the chosen coordinate system, thus
they are called invariants.”> Notice, that the principal stresses are also independent of the
chosen coordinate system. Invariants have a central role in the development of constitutive
equations, as we will see in the subsequent chapters.

If the cordinate axes are chosen to coincide to the principal directions n; (2.16), the
stress tensor will be diagonal

01 0 0
o=lojl=1 0 oo 0 |. (2.21)
0 0 03
The invariants [y, ..., I3 have the following forms expressed in terms of the principal
stresses
Il :O'1+0'2+O'3, (222)
_[2 — —0109 — 0903 — 03071, (223)
[3 = 010903. (224)

’The invariants appearing in the characteristic equation are usually called as principal invariants. Notice
that in this note the second invariant is often defined as of opposite sign. However, we would like to define
the principal invariants of the tensor and its deviator in a similar way. This convention is also used e.g. in
[13]

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



14 CHAPTER 2. Stress

2.4 Deviatoric stress tensor

The stress tensor can be additively decomposed into a deviatoric part, describing a pure
shear state and an isotropic part describing hydrostatic pressure

Oij = Sij -+ O-méijy (225)
where o, = I = —akk is the mean or hydrostaticstress and s;; the deviatoric stress ten-
sor, for which the notation o' is also often used in the literature. From the decomposition
(2.25) it is observed that the trace of the deviatoric stress tensor will vanish

trs = 0. (2.26)
The principal values s of the deviatoric stress tensor s can be solved from
|sij — sdij| =0, (2.27)
giving the characteristic equation
— 3+ 1$P+ Jos + J3 =0, (2.28)

where Ji, ..., J3 are the invariants of the deviatoric stress tensor. They can be expressed
as

Ji=trs =s5; =5, +s,+5, =0, (2.29)

Jo = 3ltr(s?) — (trs)?] = 3tr(s®) = §si;s;s (2.30)

= %[(Ux —0,)* + (0, —0.)* + ( —0,)%] + sz + TyZZ + 72 (2.31)

= (01 — 02)* + (02 — 03)* + (03 — 01)?], (2.32)

J3 = det s. (2.33)

The deviatoric stress tensor is obtained from the stress tensor by substracting the
isotropic part, thus the principal directions of the deviatoric stress tensor coincide to the
principal directions of the stress tensor itself. Also the principal values of the deviatoric
stress tensor are related to those of the stress tensor as

S1 01 Om
S9 = 09 — Om (234)
S3 03 Om
The deviatoric invariants expressed in terms of the principal values are
Jy = 1(s7+ 53+ 53), (2.35)
J3 = 1(s} + 55 + 53) = s15283. (2.36)
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2.5. Octahedral plane and stresses 15

In general, the characteristic equation (2.28) for the deviator, i.e.
— 88+ Jys + J3 =0, (2.37)

facilitates the direct computation of the principal values of the deviatoric stress tensor and
thus also for the stress tensor itself via equations (2.34). Substituting transformation

2
s =——=1/Jycost 2.38)
7 V2 (
to the characteristic equation (2.37) results into equation

2
— = (4cos®*H — 3cosh J3/2+J =0. 2.39
m( ) J5 3 (2.39)

Since 4 cos® @ — 3 cos ) = cos 30, the angle 6 can be calculated as
1 3v3 J
0 = 3 arccos <—\/_—3> . (2.40)

If the angle 0 satisfies 0 < 30 < m, then 30 + 27 and 30 — 27 have the same cosine.
Therefore 0y = 6 4 27/3 and 05 = 6 — 27 /3 and the principal values of the deviator can
be computed from (2.38).

2.5 Octahedral plane and stresses

Octahedral plane is a plane, the normal of which makes equal angles with each of the
principal axes of stress. In the principal stress space the normal to the octahedral plane

takes the form .
n = [y, ny,na)t = —=[1,1,1]" (2.41)

V3

The normal stress on the octahedral plane is thus
Ooct = 04T = 0'177,% -+ 0'277,3 -+ a3n§ = %(0'1 + 09 + 0'3) = Om (242)
and for the shear stress on the octahedral plane, the following equation is obtained

2 2 2
Toct = tztz — Ogct = Jijaiknjnk — (al-jnmj) . (243)

Expressed in terms of principal stresses, the octahedral shear stress is

2 _
7-oct -

(07 + 05 +03) — &(01 + 03 + 03)° (2.44)
(o7 — 02)2 + (09 — 03)2 + (05 — 01)2]7 (2.45)

Ol= W=
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16 CHAPTER 2. Stress

which an be written as

Toct = §\/7'122 + 7'223 + T??l. (2.46)

If the expression (2.44) is written as 72, = 3(0} + 03 + 03) + 302, and using the

relationships o; = s; 4+ oy, the following expression is obtained
Toer = 5(57 + 83 + 53), (2.47)

and the octahedral shear stress can be written in terms of the second invariant of the

deviatoric stress tensor as
Toct = A/ %JQ (248)

2.6 Principal shear stresses

It is easy to see with the help of Mohr’s circles that the maximun shear stress is one-half
of the largest difference between any two of the principal stresses and occurs in a plane
whose unit normal makes an angle of 45° with each of the corresponding principal axes.
The quantities

1 1 1
7-1:§|0-2_0-3‘7 7—2:§|0’1_0’3‘7 7'3:§|0'1—02| (2.49)

are called as principal shear stresses and
Tmax = Max(7y, Ta, T3) (2.50)

or
Tmax:%‘o'l_o-3|7 (251)

if the convention o7 > 09 > 03 is used.

2.7 Geometrical illustration of stress state and invariants

The six-dimensional stress space is difficult to elucidate, therefore the principal stress
space is more convenient for illustration purposes. Let’s consider a three-dimensional
euclidean space where the coordinate axes are formed from the principal stresses o1, 09
and o3, see figure 2.4.

Considering the stress point P (o4, 02, 03), the vector O P can be assumed to represent
the stress. The hydrostatic axis is defined through relations 0; = 09 = 03, and it makes
equal angle to each of the principal stress axes and thus the unit vector parallel to the

hydrostatic axis is

1
=—[1,1,1". 2.52
n \/g[??] (5)
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g1
P(Ul7 02, 0-3)

03

Figure 2.4: Principal stress space.

hydrostatic axis

Since the deviatoric stress tensor vanishes along the hydrostatic axis, the plane perpen-
dicular to it is called the deviatoric plane. The special deviatoric plane going through the

origin, i.e.
o1+ 09+ 03=0,

is called the 7-plane. A stress state on the 7-plane is a pure shear stress state.

(2.53)

The vector O P can be divided into a component parallel to the hydrostatic axis O N
and a component lying on the deviatoric plane N P, which are thus perpendicular to each

other.
The length of the hydrostatic part ON is

. . 1
£=|ON|=0P -n=—I, = V30, = V30,

V3

and its component representation has the form

Om 1
ON = Om = %Il 1
Om 1

Respectively, the component /N P on the devatoric plane is

01 Om S1
NP= oy | —| om | = | 59
03 Om 53
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18 CHAPTER 2. Stress

Figure 2.5: Deviatoric plane. The projections of the principal stress axes are shown with
dashed line.

Square of the length NP is
p?=|NP]?=3s>+s2+s2=2J, =372, = 572. (2.57)

oct m

The invariants /; and J, have thus clear geometrical and physical interpretation. The
cubic deviatoric invariant J5 is related to the angle ¢ defined on the deviatoric plane as an
angle between the projected o;-axis and the vector NP, see figure 2.5. The vector e; is a
unit vector in the direction of the projected o4-axis and has the form

1 2
eg=—1| -1 1. (2.58)
Vo |

The angle 6 can then be determined by using the dot product of vectors NP and e; as

NP . e; = pcosb, (2.59)
which gives
cosf = 2\/1372(231 — Sy — S§3) = ;\Z;TQ _ 2o 2_\/?’)2—@_ 7 (2.60)
From the trigonometric identity, it is obtained
cos 30 = 4cos®f — 3cos b (2.61)
and
cos3 = 23 I3 _ V25 (2.62)

2 JS/Z )

oct

A stress space described by the coordinates &, p and € is called the Heigh-Westergaard
stress space.
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2.8. Solved example problems 19

2.8 Solved example problems

Example 2.1. A stress state in a continuum at a point P is given by the following
stress matrix
(s} 20’0 30’0
g = 20 0 4o 0 60 0
3o 0 6o 0o 0o
1. Determine the traction vector t on a plane, having the normal in the direction
1:-1:2.
2. Determine the traction vector at the point P acting on the plane 2x1 — 2x9 —
r3 = 0.
Determine the normal and shear components on that plane.
4. Determine the principal stresses and directions.

=

Solution.

1. The unit normal vector in the direction 1:-1:2 is n = [1, —1,2]7 /v/6 and the
traction vector is

oy 20’0 30’0 1 1 o 5}
t=c'n=| 200 40y 60y 1 p—==-"24 10
30’0 60’0 o)y 2 \/6 \/6 -1
2. The plane 2z1 — 225 — 23 = 0 has a normal n = [3,—2, —1]7, thus the

traction vector on the plane is

oo 200 309 2 1 o )
t=| 200 40y 609 -2 5230 ~10
30’0 60’0 (1) -1 -7

3. The normal stress action on the plane is just the projection of the traction vector

on the direction of the normal
17
Tp= —og ~ 1,90.

9

The absolute value of the shear component action on the plane can be obtained
by the Pythagoras theorem

T =1\/tTt — 02 = \/(%5)2 + (3292 + (552 = ()2]00| = V1277/9|0¢| &~ 3,97|00]-

4. The principal stresses ¢ and the normals of the planes where the principal
stresses act n, are obtained from the eigenvalue problem

op =1

og— O 20’0 30’0 ni 0
20’0 40’0 — 0 60’0 n9 = 0
300 60 0og— 0O n3 0
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A homogeneous equation system has a nontrivial solution only if the coeffi-
cient matrix is singular, thus

og— 0 200 300
det 200 4o09—0 6oy =
300 60 og— O
ogp—o  bog 200 6oy 200 409—0
= — -2
(00 = 0) 60 o) — 0O a0 30 o09g—0 +300 30 60

= ()7
from which the characteristic equation
3 2 _
—0° + 60¢0 + 40050 =0

is obtained. Solution for the principal stresses is then 100, 0, —40y.
For 100¢ the corresponding direction of the principal stress space is obtained

—909 209 300 n1 0
20’0 —60’0 60’0 ng = 0 s
300 60’0 —90’0 ns 0

from where the solution ny : ny : ng = 3 : 6 : 5 is obtained. Directions cor-
responding to the other principal stresses can be obtained in a similar fashion,
and they are —2: 1 :0and 1 : 2 : —3. Notice that the directions are mutually
orthogonal.

Example 2.2. A stress state of a continuum body is given by the stress matrix

0 T0 70
g = T0 0 T0
T0 70 0

Determine the principal stresses and the corresponding principal directions.

Solution. The principal stresses o and the principal directions n can be solved
from the eigenvalue problem

—0 T T0 ny 0
T —0 1o N9 = 0
T0 T0 —0 ns 0

To have a non-trivial solution for n, the determinant of the coefficient matrix has to
vanish

-0 T9 70
det | ¢ —o 719

70

+ 70
—0 T0 T0
T0 T0 —0
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from which the characteristic equation is obtained
—o® + 37'020 + 27'5’ =0.

Since tr o = 0 the stress matrix is purely deviatoric. The position of the stress state
on the 7-plane, which is the spesific deviatoric plane going through the origin of the
principal stress space can be determined if the radius p = /s : s = /2J5 and the
Lode angle 6 is known. The deviatoric invariants J5 and J3 have the values

Ja = %Sijsjz‘ = 37’02, J3=dets =deto = 27-5’,
thus p = /2.J = v/6|7o| and the Lode angle 6 can be solved from equation
_ 3V3J3

275/

cos 30 =1,

resulting in # = 0°. Thus the current point in the stress space is located on the

deviatoric plane at distance /67 from the origo on a line parallel to the projection
of the largest principal stress axis onto the deviatoric plane, see Fig. 2.5.

The principal stresse can be obtained by using (2.38) and substituting 6 = 0°, result-
ingin oy = s1 = (2/V/3)\/J2 = 279. The other two principal stresses are obtained
after substituting 5 = 120° and § = —120°, giving

09 = 892 = —1T0, and 03 = 83 = —1790.

It is always recommendable to check the results, since the deviator is traceless s +
s+ 53 =0,and Jo = %(s% + 83 + sg) = 37'3 and furhermore J3 = 515953 = 27'5’.

The principal directions can be obtained when substituting the principal stresses back
to the eigenvalue problem. For the case o1 = 27p:

-2 1 1 ni 0
1 -2 1 no = 0 3
1 1 -2 ng 0

from where n; = %(ng + n3) and ng = n3. The direction of the normal where the
principal stress 27 acts is 1:1:1.

Directions corresponding to the double eigenvalue —7 can be obtained from

111 ni 0
111 ne »=40 %,
111 ns 0

resulting in a single equation n; + no + n3 = 0. This condition shows that the prin-
cipal stress —7y is acting on an arbitrary plane, the normal of which is perpendicular
to the direction 1:1:1.
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Example 2.3. Consider a stress state expressed by the matrix

oo O 0
g = 0 (s} 0
0 0 o9+ aog

where o is a dimensionless constant. Draw the stress state both in the (o, p)-
coordinate system and in the deviatoric plane as a function of the parameter o €
[—2,2].

Solution: The mean stress is 0, = % tr o = (1+ $a)og and the deviatoric stress

matrix .
— g(XO'Q 0 0
s = 0 —%aao 0 ,
0 0  2ao0o

from where the radius p on the deviatoric plane can be determined as p = /2/3|aoy|.

Solving o¢ as a function of the mean stress oy, and substituting the result in the

expression of p, gives
2 a
= = 70’111
P ‘\/gl + %a

which present lines on the (o, p)-plane. The slope of these lines depends on the
parameter ««. However, when drawing these lines in the (o, /00, p/0q)-coordinate
system, the expressions

Um/UO =1+ %a, and p/UO =V 2/3|a|’

is used. Fixing two points, one on the o,-axis and the second on p-axis, gives an
easy interpretation.

)

The Lode angle 6 on the deviatoric plane is determined from

~ 3V3J3

0s 30 .
275/

: SRR : . 1,2 2 2 33
Calculating the deviatoric invariants: Jy = 3070 and J3 = s1S983 = 2—7a 0>
gives

ao
cos 30 = 0
||

Notice that J3 has sign, but J as a quadratic quantity is always positive or zero. If
09 is positive, then cos 30 = 41 depends on the sign of agg. If « and o have same
sign, the Lode angle § = 0 and if « and o have different signs, the Lode angle has
the value 0 = 7 /3.
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Balance equations

3.1 Balance of momentum

The Newton’s second law postulate for a set of particles that the time rate of change of
the total momentum equals to the sum of all the external forces acting of the set. For a
continuum the mass of a body occupying a volume V is given as [ pdV/, and the rate of
change of change of the total momentum of the mass is

av,
at ), "°

where d/dt denotes the material time derivative. The postulate of the momentum balance
can be stated as'

d
T p'vdV /tdS+/pde (3.1)

where t is the surface traction vector and b is the body force density per unit mass. By
using the Cauchy’s stress theorem stating that ¢ = o’ n and using the Gauss divergence
theorem the surface integral can be transformed to a volume integral resulting in equation?

/ d—”dv /(V~UT+pb) dv, (3.2)
Pa v

which can be rearranged in the form

dv
/(E—V o —pb)deO. (3.3)

! Also known as the balance of linear momentum.

2In the literature the transpose of the stress is often missing. Either (i) the meaning of the indexes of the
stress tensor is defined differently (e.g. in [6]), or (ii) the divergence operator is defined in another way (e.g.
in [14]).
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24 CHAPTER 3. Balance equations

In the index notation it has the form?

dUZ' 8aﬂ
2 by ) dV = 0. 3.4
/V(,O i on, P ) (3.4)

Since the balance has to be satisfied in every volume of the material body, the inte-
grand of (3.4) has to be zero and the local form of the momentum balance can be written
as

d’Ui aO'ji
= b;, 3.5
P oz, +p (3.5)
or in the coordinate free notation
d
pd—,lt) — V.ol 1 pb. (3.6)

It should be noted that the form (3.6) of the equations of motion is valid in any coordinate
system while the index form in eq. (3.5) is expressed in rectangular cartesian coordinate
system.

In the case of static equilibrium the acceleration dv /dt is zero, the equations of motion
simplifies to the form

_ 995
(’lrj
These three equations do not contain any kinematical variables, however, they do not in

general suffice to determine the stress distribution; it is a statically indeterminate problem
except some special cases.

— pb;, or in coordinate free notation — V -o! = pb. (3.7

3.2 Balance of moment of momentum

In the absense of distributed couples the postulate of the balance of moment of momentum
is expressed as

d
— (Tva)dV:/rxtdS+/(rpr)dV, (3.8)
dt Jy s v
or in indicial notation
d
&/ eijkxjpvkd\/:/eijkxjtk dS+/ €ijxT;pbr AV . 3.9
1% S 1%

As in the case of the momentum balance, transforming the surface integral to a a volume
integral results in equations

/“/szk&(xjvk)pdv = /Veijk [ajixn +xjpbk] dv. (310)

3Equations (3.3) and (3.4) are also called as Cauchy’s (1827) or Euler’s (~1740) first law of motion.
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Since dz;/dt = vj, this becomes

d do,
/ €ijk (Ujvk + 5’3]%) pdV = / €ijk {5’3]’ (% + ﬂbk) + 5jm0mk} dv. @.1D
v v Tn

Due to the symmetry of v;v, the product €;;,v;v, = 0, and after rearrangements the
following form is obtained

dvk 8ank
[/Qﬂc {%‘ ('OE — or. - pbk) + O'jk:| dV =0. (3.12)

Since the term in the parenthesis vanishes, resulting in equations

/ €ijkOjk dV = 0, (313)
1%
which have to be valid for every volume

0'23—0'32:0, forizl,
€ijkOjk = 0, i.e. 031 — 013 = 0, for: = 2, (314)

0'12—0'21:0, fori:?),

showing the symmetry of the stress matrix o;; = 0;.

3.3 Solved example problems

Example 3.1. Derive the equilibrium equations of an axially loaded bar.

N ety Nie2)
T €To

Solution. The force equilibrium in the horizontal direction is
)
N(as) = Non) + [ fla)do =0,
x1

which can be written as

T2 T2
N(z)+ / fdx =0,
T 1
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)
/ <d—N+f> dz = 0.
2\ do

Since the values x; and x5 are arbitrary it can be deduced that

and furthemore

dN

Example 3.2. Derive the equilibrium equations of a beam model, loaded by a verti-
cal force intensity q(x).

M(zy) q(x)

I S A e

x1 Z2

Solution. The force equilibrium in the vertical direction is

x2
Qa2) = Qo)+ [ ala)ds =0,
1
which can be written as

C o) + [ awar=o

X1 1

2 /4
/ (—Q + q> dz = 0.
2 \dz

Since the values x; and x5 are arbitrary it can be deduced that

dQ _
dx_Q’

and furthemore

z€(0,L). (3.15)

The moment equilibrium equation with respect to an arbitrary point xg is

2

M(ﬂfl)—M($2)+Q(~’U2)(ﬂ?2—xo)—Q(ﬂfl)(Cﬂl—ﬂ:o)+/ q(z)(x —x1)dz =0,

1

which can be written as

T2 )

Q@) —a)+ [ a(a)(o — w0)da,

1

M(x) +

z1 1
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Proceeding in a similar way as in the previous example gives

- [t [ @) - det [ ata)e - an)do =0,

. dz dx 1

[ [T (@ -2 ) aos [ o - a0

1 1 1

/{:2 (Q—%) d:r:+/::2(ac—x0) (g— )dx:().

Due to the vertical force equilibrium equation (3.15) the last integral vanishes and
the moment equilibrium equations results in

dAM

Q= 1 (3.16)

from which
d*M
da?
Example 3.3. Determine the shear stress distribution in a cross-section for a beam
with solid rectangular cross-section.

:q_

Solution. In the Euler-Bernoulli beam model, the shear force cannot be obtained
through the kinematical and constitutive equations, due to the kinematical constraint.
However, the distribution of the shear stress in the cross-section can be obtained from
the general equilibrium equations, which in the plane case are

0 0
Iz Tyr 0 horizontal equilibrium
N
ITay + 99y _ 0 vertical equilibrium
ox oy

In the Euler-Bernoulli beam model the axial strain has a linear variation aloong the
cross-section height and assuming linear elastic material the normal stress o, also
has a linear variation

Oy = —TY.

I
Assuming that the beam’s cross-section is uniform in the axial direction, / = con-
stant, it is obtained
OTey M Q
dy —Ty = 797
where the symmetry property of the stress tensor is taken into account. After inte-
gration it is obtained

Toy = —Q;;C)yQ +C,

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



28 CHAPTER 3. Balance equations

where C' is the integration constant. From the stress-free boundary conditions
Toy(z,£h/2) =0,
the value for C' is obtained as
C= —Qh2
T
Thus

Qh? y\?] _ 3Q y\?] _ 3@ y\?
- 1-4(—) = 2% 1-4(—) = 1-4(—) :
Y h 2bh h 24 h
The maximun shear stress is located on the neutral axis and it is 50 % higher than
the average shear stress () /A.

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



Chapter4
Kinematical relations

4.1 Motion of a continuum body

Motion of a continuum body B embedded in a three-dimensional Euclidean space and
occupying a domain (2 will be studied. Consider a point P which has an initial position
X attime ¢t = 0. At time ¢ > 0 the body occcupies another configuration and the motion
of the particle P is described by mapping

x = x(X,t), orinindex notation x; = x;(Xg,?). “4.1)

The motion x is assumed to be invertible and sufficiently many times differentiable. The
displacement vector is defined as

u=x— X. “4.2)

4.2 Deformation gradient

The most important measure of deformation in non-linear continuum mechanics is the
deformation gradient, which will be introduced next. Consider a material curve I" at the
initial configuration, a position of a point on this curve is given as X = I'(£), where
denotes a parametrization, see figure 4.1. Notice that the material curve does not depend
on time. During the motion, the material curve deforms into curve

z =(¢t) = x(T(€),1). (4.3)

The tangent vectors of the material and deformed curves are denoted as d X and dz,
respectively, and defined as

dX =T'(£)d¢, (4.4)

dz = o/ (€, )06 = TXT'(E)de = F-dX, (4.5)

29
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P otimet=0
o

Figure 4.1: Deformation of a material curve, figure from [6, page 70].

since on the deformed curve * = (&, t) = x(I'(§),t). The quantity F is called the
deformation gradient and it describes the motion in the neighbourhod of a point. It is
defined as

_ 9x
- 0X’

124

F .
X,

or in indicial notation  Fj; = 4.6)

The deformation gradient reduces into identity tensor I if there is no motion, or the
motion is a rigid translation. However, rigid rotation will give a deformation gradient not
equal to the identity.

4.3 Definition of strain tensors

Let us investigate the change of length of a line element. Denoting the length of a line
element in the deformed configuration as ds and as d.S in the initial configuration, thus

%[(ds)2 —(dS)?] = %(dw-dw —dX-dX) = %(F-dX-F-dX —dX-dX)

1
= §dX-(FT-F —~I)-dX =dX-E-dX, (4.7)
where the tensor
1
E = 5(FT-F — 1) (4.8)

is called the Green-Lagrange strain tensor.
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Let us express the Green-Lagrange strain in terms of displacement vector w. It is first
observed that the deformation gradient takes the form

Ox _p, v (4.9)

F=ax~"1t3x

where the tensor Ou /00X is called the displacement gradient. Thus, the Green-Lagrange
strain tensor takes the form

1- ou\" ou
B <I+8—X) <I+8—X)—I]

1 :8u ou\" ou\" [ Ou
=3 a—x+(a—x) +<a—x) (a—X)] (4.10)

ou; N Ou, N Ouy, Ouy,
0X; 00X, 0X,0X;)

If the elements of the displacement gradient are small in comparison to unity, i.e.

or in index notation

1

(4.11)

8ui
X,

<1, (4.12)

then the quadratic terms can be neglected and the infinitesimal strain tensor can be defined
as the symmetric part of the displacement gradient

1 8UZ 8Uj
P ~ B, 4.1
il T g (axj + axi) i (4.13)

Let us define a stretch vector A in the direction of a unit vector ng as
A= F-.ng, (4.14)

and the length of the stretch vector A = || is called the stretch ratio or simply the stretch.
The square of the stretch ratio is

N =XX=n¢Fl.Fng=ny C-ny, (4.15)

where the tensor C = F7 . F is called the right Cauchy-Green strain tensor. The attribute
right comes from the fact that the deformation gradient operates on the right hand side.
The right Cauchy-Green strain tensor is symmetric and positive definite tensor, i.e. C =
Clandn-C-n >0, Vn #0.

For values 0 < A < 1, a line element is compressed and elongated for values A > 1.
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The deformation gradient can also be decomposed multiplicatively as
F=R-U=V- R, (4.16)

where R is an othogonal tensor (R”-R = R - R" = I) describing the rotation of a
material element and U and V are symmetric positive definite tensors describing the
deformation. The decomposition (4.16) is also called the polar decomposition. The tensor
U is called as the right stretch tensor and V the left stretch tensor.

The square of the stretch can be expressed as

N=AXA=ngURT-R- U-nyg=no-UT-U-ny = ny-U?-m,. 4.17)
Other strain measures can be defined as

1
EM™ = —(U™-1). (4.18)
m
For m = 2, we obtain the Green-Lagrange strain tensor which have already been dis-
cussed. With m = 0 we obtain the Hencky or logarithmic strain tensor

EO®O =mhU. (4.19)

The logarithmic strain' has a special position in non-linear continuum mechanics, espe-
cially in formulating constitutive equations, since it can be additively decomposed into
volumetric and isochoric parts similarly as the small strain tensor .
For m = 1, we obtain
EY=U -1, (4.20)

which is called the Biot strain tensor. If the deformation is rotation free, i.e. R = I, the
Biot strain tensor coincides with the small strain tensor €. It is much used in dimensionally
reduced continuum models, such as beams, plates and shells.

4.4 Geometric intepretation of the strain components

Let us investigate the extension € = A — 1 of a line element, for instance in a direction
ng = (1,0,0)7, thus

M=V, B =3Cu—1) = Cn=1+205,

:>)\:\/1—|—2E11 :>€:\/1—|—2E11—1 (421)

!'The logarithmic strain is sometimes called also as the true strain. Such naming is not used in this text, all
properly defined strain measures are applicable, since the definition of strain is a geometrical construction.
Naturally, the choice of strain measure dictates the choise of the stress. However, deeper discussion on this
topic is beyond the present lecture notes.
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Secondly, let us compute the angle change of two unit vectors IN; and N,. In the
deformed configuration they are ny = F' - N, and n; = F' - N5 and the angle between
them can be determined from

. N,-C-N
cos Oy — —L12 ! 2 . (4.22)
[ni||ns|  /N{-C-N;\/N,-C-N,
If we choose the directions N; and N, as
1 0
N,=| 0], Ny=|11]|, (4.23)
0 0
then o o 5
12 12 2E1
cos B9 = = = ) (4.24)
= VC11C%  AnAe) \/(1 +2F11)(1 4 2E%)
Using the trigonometric identity
sin(%w — 012) = cos by (4.25)
and if F, Fos < 1 then
%’Tf — (912 =~ 2E12. (426)

Thus, the component F5 is approximately one half of the angle change of the two direc-
tion vectors.

4.5 Definition of the infinitesimal strain

Let us investigate the motion of two neighbouring points, which are denoted as P () in the
undeformed configuration. After deformation these points occupy the positions marked
by p and ¢. Displacement of the point () relative to P is defined as, see fig. 4.2,

du = ug — up. (4.27)

Length of the vector PZQ is denoted as d.S, thus

du; _ Ou; dz;

s dz; dS’

(4.28)

where the Jacobian matrix J = Ju/0x can be divided additively into a symmetric and
an antisymmetric part as
J=e+9Q, (4.29)
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Figure 4.2: Relative displacement du of () relative to P.

where the symmetric part € is the infinitesimal strain tensor

1 1
€11 €12 €13 Ezx Exy Ezz Ex 57963; 57962
1 1
€ = €21 €22 €23 = Eyr Eyy Eyz = 5 Vyx Ey 7 Vyz ) (4.30)
1
€31 €32 €33 Eze Ezy Ezz 5’}/,21 §7zy €z

and the antisymmetric part €2 is the infinitesimal rotation tensor

0 Qg Q43
Q= -0, 0 Q. 4.31)
—y3 =y 0

Written in the displacement components, these tensor have the expressions
e = 3(uig+u;) and Qi = 5(ug; — uy;). (4.32)

The infinitesimal rotation matrix is a skew matrix and when operating with a vector
the following relation holds

Qa =w X a, (4.33)
where a is an arbitrary vector and w is the vector
w=—Qe; — 3160 —Qse3, or w; = —%eijkﬁjk. (4.34)
Expressed in terms of the displacement vector w the infinitesimal rotation vector w is
w=1Vxu. (4.35)

It should be emphasised that the rotation matrix 2 near the point P describes the rigid
body rotation only if the elements (2;; are small.
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4.5.1 Principal strains

The principal strains ¢ are obtained from the linear eigenvalue problem
(5ij — 55Z~j)nj = 0, (436)

where the vector n; defines the normal direction of the principal strain plane. Thus, the
characteristic polynomial has the form

— S+ L+ Le+13=0, (4.37)
where the strain invariants /;,7 = 1,...,3 are
I =tre =€, = €11 + €92 + €33, (4.38)
_[2 = %[tl"(&'Q) — (trs)Q] = %(gijgji — j12), (439)
I3 = det(g). (4.40)

If the coordinate axes are chosen to coincide with the axes of principal strains, the strain
matrix will be a diagonal matrix

&1 0 0
e=lej]=1]0 e 0 |. (4.41)
0 0 €3
The invariants [, ..., I3 expressed in terms of the principal strains €y, ..., €3 have the
forms
]1 =€ +¢e9+ €3, (442)
[2 = —E1&9 — E9&3 — £3¢&1, (443)
]3 = £1&9€3. (444)

4.5.2 Deviatoric strain

As in the case of the stress tensor, the infinitesimal strain tensor can be additively decom-
posed into a deviatoric part and an isotropic part as

€ij = €ij + 5Ekk0ij, (4.45)

where the deviatoric strain tensor is denoted as e. In the literature the notation €' is also
used. By definition the, deviatoric strain tensor is traceless

tre = 0. (4.46)
The eigenvalues of the deviatoric strain e; can be solved from the equation

|eij — 652‘j| = 0, (447)
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and the characteristic equation is

— &S+ e+ Jhe + J3 =0, (4.48)
where the invariants Ji, . . ., J3 have expressions
Ji=tre=¢;=e; +e,+e, =0, (4.49)
Jy = %[tr(e2) — (tre)?] = %tr(eQ) = %eijeﬂ (4.50)
= %[(61 — 82)2 + (g9 — 83)2 + (g3 — 81)2], 4.51)
Js = det e = tr(e®) = ejeqes. (4.52)

For small strains the first invariant I, = ¢, + ¢, + €, = &, describes the relative
volume change.
The octahedral strains are defined similarly as for the stress

Eoct = %Il = %Evu (453)
Vi, =28 (4.54)

For the first sight, the equation (4.54) might look strange as compared to the expression
of the octahedral stress, but we have to remember that 7, = 2¢,,, etc.

4.6 Solved example problems

Example 4.1. The following equations define the deformation state of the body:

1. 1‘1=X1, x2:X2+OéX17 3 = X3,

2. 1 =+2aX1+ B, w2=7Xs, wx3=10X3,
3. 1 = Xy cos(aXs) + Xosin(aX3), xz9=—Xsin(aXs)+ Xscos(aXs),
r3 = (1 + af)Xs.

Determine the deformation gradient ¥ and the Green-Lagrange strain tensor E. In
addition determine also the small strain and rotation tensors € and §2, respectively.

Solution. The deformation gradient expressed in terms of the displacement gra-

dient is 5
u
F=1+—
X
or using the index notation
ou;
Fz‘j = 5ij + 9 XZ]
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Case a. Let’s determine first the displacements and the displacement gradient

ulle—Xlzo,
up = w2 — Xo = aXjy,

U,3=.%'3—X3:O.

ou u1,1 U2 U3 0 00
a—X = U21 U2 U3 = a 0 0
U3,1 U322 U33 0 0 0
The deformation gradient is
1 0 0
F=|a 1 0
0 01
The Green-Lagrange strain tensor is
1 1 a2 a 0
E:§(FTF—I):§ a 0 0
0 0 O
The small strain tensor is
. 1<6u+<8u>T> 1 0 (g 8
= — _ _ = — (87 y
2 \ 90X oX 2 00 0
and the infinitesimal rotation tensor is
Q 1<8u <8u>T> 1 0 —Oa 8
= — —_— —_— P — a
2\ 90X oX 2 0 0 0

Draw the deformation state in (X, X2)-plane. What kind of deformation it is?

Case b. The dislacement vector has components

up =21 — X1 =+v2aX; + 8- Xy,

uy = 9 — Xo = (v — 1) Xo,

us = I3 —X3 = (6 — 1)X3
ou Ul U2 U3 Oé/\/QOéXl +p8-1 0 0
= | u21 ug2 U3 | = 0 v—1 0

oX u3;1 u32 U33 0 0 6—1
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The deformation gradient is

1 a?/(2aX;+B)-1 0 0
E:§(FTF—I):— 0 -1 0
0 0 -1

The small strain tensor is

“alax Tlox) |72 0 yob 0

1<8u <8u>T> 1 o/v2eXi+f 0 0
e — _
2

0 0 0—1

and the infinitesimal rotation tensor is

01 <6u <6u>T> N
2\ 0X 0X 00 0
What kind of deformation it is? For the small strain assumption to be valid what are
the restrictions should be imposed to the constants «, 3,7 and §?

Case c. The displacement vector is

u; = Xq(cos(aXs) — 1) + Xy sin(aX3),
ug = — Xy sin(aXs3) + Xo(cos(aXs) — 1),

us = Oéﬁng.
ou Ul U2 U3
IX | Yer uz2 u23
u31 u32 U33
cos(aX3) —1  sin(aXs) —aX; sin(aX3) + aXs cos(aXs)
= | —sin(aX3) cos(aX3)—1 —aX;cos(aXs3)— aXssin(aXs)
0 0 af

The deformation gradient is

cos(aX3) sin(aX3) —aXjsin(aXs)+ aXscos(aXs)
F = | —sin(aX3) cos(aX3) —aX;cos(aXs3)— aXssin(aXs)
0 0 1+ af
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The Green-Lagrange strain tensor is

1 L 0 Xy
E= 5(FTF ~D=3] 0 0 —aX;
aXs —aX; o?(X?+ Xo+ B%) +2a8

What kind of deformation state it is?

If we assume small displacements and strains then we have to assume that the angle «
is small as well as the parameter 3. Therefore sin(aX3) ~ aX3 and cos(aX3) ~ 1.
Neglecting the quadratic terms, the displacement gradient is thus

0 OéXg CYXQ

—OéXg 0 —OéXl
0 0 af

Ou _
oxX

and the infinitesimal strain tensor is

0 0 aXo

1( 60u <8u>T> 1
e=—-| ===+ == = - 0 0 —-aX | .,
2 <6X oX 2 aXy —aX; 2ap

and the infinitesimal rotation tensor is

0 0 aXs

1/( Ou ou\"’ 1
n:_<__(_>>:_ 0 0 ek
2 \ 90X 0X 2 —aXy aXi 0

Draw the deformation state in (X5, X3)-plane. What kind of deformation it is?

Example 4.2. A unit square OABC deforms to a quadrilateral shape OA’B’C’ with
the three forms shown below. Write down in each case the displacement fields u, uo
as a function of material coordinates, i.e. the coordinates describing the material
point in the undeformed configuration (X1, X2). Further determine the deformation
gradient ¥ and the Green-Lagrange strain tensor E. Determine also the infinitesimal
strain tensor used in linear theory € and the rotation tensor Q.

Xps X5 Xy, X5 Xy, X
A i
K g W
I " B A e ) A B
A :I f‘{\r B ir ,""‘-.
e g ¢ ’ VI A T~
= Y Ch b g B
I e ¥ F
C'iC . a1 z 4 L X
" XA 7 T Xy e ’ T xp,A
0 1 =11 0 C 1:21 (O ,‘_Z‘:l‘f’;,
(a) (b) () ¢

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



40

CHAPTER 4. Kinematical relations

Solution. The deformation state is homogeneous, thus the displacement field can
be determined as
ui (X1, Xo) = a; + b; X1 + ¢; Xo,

where a;,b; and ¢; are constants. We can determine the coefficients using three
points.

In the (a) case:

21(0,0) = a1 =0,

z1(LL0)=a1+by=1—-¢1 = b=1-—¢g
21(0,1) =1 =0,

22(0,0) = az = 0,

x2(1,0) = by =0,

x2(0,1) = co =1+ 9,

thus z1 = (1 — 1) X1, and 29 = (1 + £9) X5 and the displacement field is

up =21 — X1 = —1X1,

U = 9 — X2 = €2X2.

The deformation gradient is

P ox 8x_[1—51 0 }’

:—:I _— =
oX +8X 0 1—|—€2

and the Green-Lagrange strain tensor is

E:%(FTF—I):[

c — —E&1 0
o 0 £9 ’

and the infinitesimal rotation matrix is a zero matrix.

1
—e1 + 56% 0
0 &9 + %E% ’

The small strain matrix is

In the (b) case:

x1(0,0) = a; =0,

x1(1,0) =a; + by =cos = by =cosb
21(0,1) = ¢; = sin¥,

22(0,0) = az =0,

x2(1,0) = by = sinb,

x2(0,1) = ¢g = cos 0
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and so on. The result for the Green-Larrange strain tensor is

0 % sin 20

E= %sin29 0

In order to be consistent with the small displacements and strain hypothesis, the
angle 6 should be small, thus sin § = 6 and cos # ~ 1. Then the small strain, small
displacement strain and rotation matrices follow.

In the (b) case:

1+b=cosy = by =cosy

and so on. The result for the Green-Larrange strain tensor is
00
E= .
0o
Thus the motion is pure rigid body motion.

Example 4.3. A square plate ABCD with a side length L as shown below deform
to the state AB’C’D. Determine the deformation gradient F, the Green-Lagrange
strain tensor E and the infinitesimal strain tensor €. Determine also the deformed
length AC’ of the diagonal by using these three deformation measures.

2,y C
D C
_____________ |
|
|
| L
|
|
|
|
|
IB’
I
A B: 2A
A T1,T
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Solution. The displacement field is then u1 (X1, X2) = A(X; /L) and ug (X1, X2) =
2A(X1/L). Deformation gradient is F;; = d;; + Ou;/0X}, thus

F:<12+A%L (1)>

The Green-Lagrange strain tensor is E = 1(F7-F — I) = 3(C — I):

[ 1+ A/L)?+4(A/L)? 2A/L [ A/L+3(A/L)? AL
C‘( 2A/L 1 ) and E‘( AJL 0 )

The infinitesimal strain tensor, i.e. the engineering strain tensor is €;; = %(8% JOX;+

Ou; /0X;) .
11
E_f<1 0>'

It is noticed that the engineering strain € is a good approximation of the Green-
Lagrange strain E if the displacements are small, i.e. A/L < 1.

Denoting the vector defining the undeformed diagonal AC as a and the deformed
diagonal as a’, thus a = L(e; + e3) and

’ - 1+A/L . L+ A
@ =F a_<1+2A/L L={r1on )

The length of a’ is

/| = L+ A2+ (L+2A)2 = \/1+3A/L + 5(A/L)V2L

Since the deformation is homogeneous and the diagonal is straight, the deformed
length of the diagonal can be computed directly using the definition of the Green-
Lagrange strain (4.7):

la’|> = |a|*=2a - E - a,

thus
la'|”=|a*+2a - E - a =3L*+2(3AL+3A%) = 2L*(1+3(A/L)+ 3(A/L)?)

and

la'| = /1 +3(A/L) + 3(A/L)2V2L (4.55)
Naturally the same result is obtained as with the deformation gradient.

The deformed length computed from the linear strain measure € is
la'| = (1 +¢4)lal,
where ¢, is the strain in the direction of a

€4 = Ng €Ny
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and n, is the unit vector in the direction of a. Thus the deformed length of the
diagonal is
la’| = (1+3A/L)V2L. (4.56)

Remembering the series expansion of 1+ 2z =1+ %m — %xQ + --- and applying
it in (4.55) gives

la'| = (1+ 3A/L+ §(A/L)* + - )V2L.

If A/L < 1 then the engineering strain is a good approximation of the Green-
Lagrange strain.
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Chapter 5
Constitutive models

5.1 Introduction

Constitutive equations describe the response of a material to applied loads. In continuum
mechanics, distinction between fluids and solids can be characterized in this stage. It is
important to notice that the balance equations and the kinematical relations described in
the previous sections are equally valid both for fluids and solids. In this lecture notes
only macroscopic' models will be introduced, which roughly means that mathematical
expressions are fitted to experimental data. Macroscopic models are not capable to relate
the actual physical mechanisms of deformation to the underlying mcroscopic physical
structure of the material.

The constitutive equations should obey the thermodynamic principles, (i) the conser-
vation of energy and (ii) the dissipation inequality, i.e. the nonnegativity of the entropy
rate.

Excellent texts for materials modelling are [12, 17].

"Macroscopic models are often called as phenomenological models in contrast to micromechanical mod-
els where the physical mechanisms can be more directly modelled. Hwever, in micromechanical models
the phenomenology is only a level or some levels deeper.
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Chapter6
Elastic constitutive models

Elasticity means that the response of a material is independent of the load history. The
most general form of elasticity is called as Cauchy-elasticity and it essentially means that
there exists one-to-one relation between stress and strain

oij = fij(em), or ey = gij(owm). (6.1)

The tensor valued tensor functions f;; and g;; are called as response functions. For non-
linear Cauchy-elastic models, the loading-unloading process may yield hysteresis, which
is incompatible with the notion of elasticity, where the response should be reversible. For
more detailed discussion of Cauchy elasticity, see [17]. In this lecture notes Cauchy-
elasticity is not treated.

Another form of elasticity, where the constitutive equations are expressed in rate-form

dz’j = fz‘j(Ukl, émn) (6.2)
is called hypo-elastic. If the material is incrementally linear, it can be written in the form
Gij = Cijkt(Omn)Exi- (6.3)

The most rigorous form of elasticity is called as hyper-elasticity, and the constitutive
equations of a hyper-elastic model can be derived from a potential, i.e. the strain energy
function W = W (e;;) as
oW
e

Alternatively, the hyperelastic constitutive models can be derived from a complemen-
tary function, depending on stress, such that
_owe
-~ Joyj
These two potentials W and W€ are related with each other by the Legendre-Fenchel
transformation

(6.4)

Uij

(6.5)

gij

We = 0i5Ei5 — W. (66)
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6.1 Isotropic elasticity

A material which behaviour is independent of the direction in which the response is mea-
sured is called isotropic. Therefore also the strain energy density should be an isotropic
tensor valued scalar function

W =W(e) =W(e)=W(BeB") = W(l, I, I), (6.7)

where [y, I, and I3 are the principal invariants of the strain tensor and 3 is the transfor-
mation tensor from the z-coordinate system to the x’-system, i.e. &’ = Bx. Alternatively
the strain energy density function W can be written as

W =W(L,JJs), or W=W(«,I,I), (6.8)

where J, and J5 are the invariants of the deviatoric strain tensor and 1:2, 1:3 the generic
invariants defined as

I =1tr(e?), Iy=1tx(eY). (6.9)
Equations (6.7) and (6.8) are special forms of representation theorems, for which an al-
ternative form can be written as: the most general form of an isotropic elastic material
model can be written as

o = apl + aje + ase?, (6.10)

where the coefficients ag, a; and as can be non-linear functions of the strain invariants.
Proof for the representation theorem (6.10) can be found e.g. in ref. [22, Appendix].

Al alternative form to (6.10) can be formulated using the complementary potential
resulting in

EIbQI+b10+b20'2, (611)

where by, b; and by can be non-linear functions of stress invariants. In many cases this
form gives more illustrative description of physically relevant constitutive parameters.

From (6.10) and (6.11) it can be easily seen that the principal directions of the strain-
and stress tensors coincide for an isotropic elastic material.

For a linear isortropic elastic material the constitutive equation (6.10) reduces to

o =apl + a€, (6.12)

where a; has to be a constant and the scalar ay can depend only linearly on strain, i.e.
ap = A1 = \tr(e), thus

o= \r(e)I +2ue, or o, = Aepidi; + 2peij, (6.13)

where A\, u are the Lamé constants, and p equals to the shear modulus, i.e. ¢ = G. To
relate the Lamé’s constants to the modulus of elasticity £ and the Poisson’s ratio v, it is
useful to invert equation (6.13) as follows. First, solve the volume change £,

1

g 6kk+ Mg ( + M)gjj gkk 3)\‘1‘2,&

Okk> (614)
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and substituting it back to (6.13) gives

A 1
T T Bh+ 20) 5 0ij- 6.15
AT WY S T 6.15)
Writing equations (6.15) componentwise
At A 1 v
a2 T 2u(3N + 2p) = —on — (02 +oxn), (6.16
€11 ,u(3)\ n 2#) 011 2#(3)\ n 2#) (022 + 033) E011 E(022 022) ( )
TN+ 20) 2 2u(3N + 2p) =02 4 , (6.17
€22 13N+ 20) 022 21031+ 211) (011 + 033) EUQQ z (011 + 033) ( )
At A 1 y
TG 20 % T 2u(3h + 20) = oy — =(on +on), (618
€33 ,u(3)\ n 2#) 033 2#(3)\ n 2#) (011 + 022) E033 E(O'H 022) ( )
1 1
2T T e (6.19)
1 1
BT 5B T 9" (6.20)
1 1
ST 9 T g 6.21)

From (6.16)-(6.21) it can be seen that u = G and £ = pu(3\ + 2u) /(X + p). Also the
physical meaning of the Posson’s ratio is clear from eqs. (6.16)-(6.18). If, for example,
the body is under uniaxial stress in the z;-direction, the Poisson’s ratio is expressed as

y =2 (6.22)

€11

If the decomposition of strain into volumetric and deviatoric parts is susbtituted into
eq. (6.13)

0ij = Aerrdij + 2u(eij + 5Erk0i5)
= ()\ -+ %u)akk&] -+ 2,LL€Z']'
= K€V5ij + QGGZ‘j, (623)

where ¢, = ¢, = I is the volumetric strain and K is the bulk modulus. It can be seen
that the constitutive equation (6.23) can be slit into volymetric-pressure and deviatoric
strain-stress relations as

P = —K{fv, and Sij = 2G6ij, (624)

where the pressure p is defined as p = —oy,, = —opi /3.
Linearly elastic constitutive equations can be written either in the form

o=Ce, or €=Do, (6.25)

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



50 CHAPTER 6. Elastic constitutive models

where C'is the material stiffness tensor or matrix, and D is the compliance tensor/matrix
or the material flexibility tensor/matrix. They are obviously related as C = D' and they
are symmetric positive definite operators, i.e. all their eigenvalues are positive.

The strain energy function for a linearly elastic isotropic material can be given e.g. in
the following forms

W =1KI}+2G s, (6.26)
= INIT +2uls. (6.27)

Since the bulk and shear modulus have to be positive, the Young’s modulus and the Pois-
son’s ratio v have to satisfy the following inequalities

E>0, -—-l<v<i. (6.28)

For natural materials, the Poisson’s ratio is usually positive. Incompressibility is ap-
proached when the Posson’s ratio is near 1/2. For metals it is usually in the range 0.25-
0.35 and for concrete it is near 0.2. Cork has an almost zero Poisson’s ratio which make it
a good material for sealing wine bottles. Materials with negative Poisson’s ratio are called
auxetics.

Relations between the different elasticity coefficients are given in the following equa-
tions [14, pages 293-294],[ 16, table 3.1.1 on page 71]:

p=G = 2(1i 7= A(IQ_VQ”) - S(K —), (6.30)
v 2(>\1 W (3K>\— N 2??}(122)’ ©.31)
b u(:s;j;u) A+ u)y(1 —2) _ 9}2{}(_—;)7 632
K=At g ~ 301 fzu) - A(I:; 4 3(3(6;;]5—7 E) (635

6.1.1 Material parameter determination
6.2 Transversely isotropic elasticity

A material is called transversely isotropic if the behaviour of it is isotropic in a plane and
different in the direction of the normal of that isotropy plane. The strain energy density
function can now be written as

W =W(e, M) =W (BeB", M), (6.34)
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Figure 6.1: Stratified rock at Grand Canyon shows clearly transversely isotropic structure.
Courtesy by Luca Galuzzi.

where M = mm7 is called the structural tensor and the unit vector m defines the normal
of the isotropy plane.

Examples of transversely isotropic materials are those having unidirectional reinforc-
ment , stratified soils and rocks, crystalline materials with hexagonal close packed struc-
ture.

The representation theorem of a transversely isotropic solid says that the strain energy
density function can depend on five invariants

W =W (I, Iy, I3, 14, I5), (6.35)
where the invarinats [; are
I, =tre, I,= %tr(sQ), Iy = %tr(s?’), I, =tr(eM), I =tr(e’M). (6.36)
The invariants I, and I5 can also be written as
I, =tr(eM) = mTem, Iy = tr(e’ M) = m'e’m. (6.37)

The constitutive equation is thus

oW oW oW ow , oW oW
=5 = 8III+ 8I2€+ 8135 + a[4M+ oI (eM + Me). (6.38)

o
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If we restrict to linear elasticity, the cefficients 0WW/0I; has to satisfy

Z_I”f L, + b4, (639)
86_11/12/ = ag, (6.40)
aﬁ—IM: =0, (6.41)
Z—IVZ = asl; + aqly, (6.42)
aﬁ—lmf = as, (6.43)
since all the terms in (6.38) have to be linear in €. Due to the identity
2 2
aigj B (’fljg/li’ (644)
we have now
% <88—]m1/> = ai[l <88—1M:) thus b= as. (6.45)

Transversely isotropic linear solid has thus five material coefficients, and the constitutive
equation can be written as

o= (ajtret+aztr(eM))I +ase+ (aztre+astr(eM))M +as(e M + Me). (6.46)

If the isotropy plane coincides with the x5, z3-plane, i.e. m is in the direction of the
x1-axis, physically comprehensible material parameters are the Young’s modulus Fy =
E3 = E7p and the Poisson’s ratio v93 = v3y = v in the isotropy plane x5, x3. The
three remaining elastic coefficients are the Young’s modulus £, in the longitudinal ;-
direction, the Poisson’s ratio associated with the z-direction and a direction in the x5, x3-
plane, 115 = 113 = v and the shear modulus Gy = G13 = (. Notice that the
coefficients £, G, and vy, are independent of each other.

As in the isotropic case, the complementary approach gives an easier way to interpret
the material constants. Using similar arguments which resulted the equation (6.46), we
get

e=(bitro+bstr(ocM))I+byo+ (bstro+bstr(cM))M +bs(c M+ Mo). (6.47)

Example 6.1. Express (6.47) in Voigt’s notation and find out the relationship be-
tween the parameters by, . . . , by and the physically meaningfull elasticity coefficients
Er,Gr,vr, Ep and vp. Assume that the longitudinal direction coincides to the xq
axis, i.e. the transverse isotropy plane is (x2, x3)-plane. In the Voigt notation use the
following ordering of the stress and strain components: o = [011, 022, 033, T23, T13, Tlg]T
and € = [e11, €22, €33, 723, V13, Y12] -
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6.2. Transversely isotropic elasticity 53

Solution. Now the longitudinal direction is m = (1,0,0)T, thus

1 00 2011 T2 T13
M=mm™=|00 0|, and eoM+Mo=| 7o 0 0 |,

0 0 0 713 0 0
and

I =troe =011 + 092 + 033, Iy=tr(c M) =o01;.

Hence

€11 €12 €13 100 o11 T2 Ti3
€12 €22 €23 | =[bi(o11+otoss)+bzon] | 0 1 0 |+bo| 712 o022 T3
€13 €23 €33 0 01 T13 €23 033
1 0 0 2011 Ti2 Ti3
+[bg(0’11+0’22+0’33)—|—b40’11] 0 0 O + bs T12 0 0
0 0 0

Collecting the results gives

€11 [ by + by + bg + 2(53 + b5) by +bs by +b3 O 0 0 011
€922 by + b3 by + by by 0 0 0 0922
€33 . b1 + b3 by bi+by 0 0 0 033
€923 o 0 0 0 bQ 0 0 723
€13 0 0 0 0 by +bs 0 T13
€12 i 0 0 0 0 0 ba + b5 | T12
Putting the above expression into the Voigt notation with v;; = 2¢;;, we get
€11
€22
€33 _
Y23
713
712
_b1+b2+b4+2(bg+b5) by +bs by +b3 O 0 0 1 o11
b1 + b3 b1 + by b1 0 0 0 099
by + b3 by bi1+by O 0 0 033
0 0 0 2by 0 0 T93
0 0 0 0 2(b2 + b5) 0 T13
i 0 0 0 0 0 2(b2 + b5) ] T12

From the above expression we can immedately notice that the shear modulus in the
isotropy plane GGa3 = G'r can be expressed by bs as

1 1+ vp
=G , hence by=— =——.
T23 T 723 2 26T Er
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54 CHAPTER 6. Elastic constitutive models

The Poisson’s ratio in the isotropy plane v7 is the opposite value of the ratio between
the normal strain in the transverse and longitudinal directions caused by a normal
stress in the longitudinal direction. Now the isotropy plane is the z2, z3-plane and
the normal stress acts in the x3-directions, then

€22 = —UVTE33.
This results in
€90 = b1o33 = by Epesz = —b1Erea/vr,
therefore
vr
by = — L.
Er

As a check, we can observe that

1
€99 = (b1 + be)oge = 022
T

The term f5 can be solved from the shear components in the plane (z1,z2) or
(z1,23):

1 1/ 1 1
b2+b5:E’ from which we get b5:§<G_L_G_T>'

The coefficient b3 can be solved by considering normal strain in the xo-direction
when the stress in acting in the longitudinal direction. The Poisson’s ratio vp, is
defined as (when o171 # 0)

€22 = —Vré€11, Or £33 = —Vrenl.
Since 017 = Ere;; we get
g9g = (by +b3)o11 = (b1 +b3)Eren

from which we obtain

€
22— _yp = (by +b3)EyL,
€11
and finaly we get b3 as
149 vr VL
b= —— —bhy = — — =
¥ E, ' Er Ep

The last coefficient b, can be solved from

1

€11 = (bl + by + by + 2(()3 + b5))0'11 = E—LO'11
which gives
1 1+ 2vg, 1 1
by=— —b; —by—2(b bs) = —_— .
4 i 1— 02 (b3 +bs5) EL Er G
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As a result the coefficients can be collected as

vr
by = —— 4
1 B (6.48)
1+ vp
bp = ——— 4
2 By (6.49)
vr vy,
by = — — — .
= B (6.50)
1+ 2vg 1 1
by = —_— = = 6.51
4 EL ET GL, ( )
1/1 1
bs == =—— = 6.52
5 2 <GL GT> ) ( )
and the flexibility matrix has the form
1/E,  —vip/EL —-vi/EL 0 0 0
—I/L/EL 1/ET —VT/ET 0 0 0
| —vi/EL —vr/Er 1/Er 0 0 0
D= 0 0 0 1/Gr 0 0 6.53)
0 0 0 0 1/Gp, 0
0 0 0 0 0 1/Gp,

We can immediately notice that the flexibility matrix of linearly elastic transversely
isotropic solid reduces that of isotropic one when v = vy = vy, E = Er = Er, and

G=Gr=Gr=E/21+v).

It can be also seen that the constitutive equation with the flexibility matrix (6.47) can
be written in the form

€11 Dy Dy Do 0 0 0 011
€22 Dy Dy Do 0 0 0 022
€33 Diy Di3 Doy 0 0 0 033
= , 6.54
Y23 0 0 0 2(D22 — D23) 0 0 T23 ( )
Y13 O 0 O O D44 0 T13
V12 . 0 0 0 Dy Ti2
where
D L L p L D U Dy = (6.55)
11 . ) 22 ET ) 12 EL ) 23 ET ) 44 GL ) .
and
2(1 + I/T) 1
2(D9g — Dgs) = ——L = —, 6.56
( 22 23) Er Gr ( )
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56 CHAPTER 6. Elastic constitutive models

6.2.1 Thermodynamic restrictions to the material parameters

As in the case of linear isotropic elasticity, the compliance and stiffness matrices of the
material have to be positive definite, cf. (6.28). The matrix is positive definite if all its
principal minors are positive, thus

Dy >0= EL>0, Dy >0 = ET>0,

2(Dyg — D93) >0= Gr >0, Dy>0 =G,>0, (6.57)
Dy Dy 2 Er
>0= Dy1Dyp—Dj;>0 =1——v;>0
Di» Do e Ey "
= —\/ EL/ET < < \/EL/ET, (658)
Dyy Dy > 2 1
Doz Doy >0= D3 —D5>0 = E%_E:%>O
= 1-1A>0 = -l<up<l, (6.59)
Dll D12 D12
Dis Doy Dy | >0= (1—v3)Ep, — 2B (1 +vp) >0
D12 D23 D22

EL(l —VT) EL(l —VT)
:—,/72% <VL<w/72ET . (6.60)

It is seen that due to restriction (6.59) the inequality (6.60) is more restrictive than
(6.58). As a summary the thermodynamic restrictions to the material parameters for a
linear transversely isotropic elastic material are

Ep, >0, Er>0, Gp>0, (6.61)
—1l<uvp <1, (6.62)

EL(l — l/T) EL(l — I/T)
_ S << /72ET . (6.63)

The thermodynamic restrictions have necessarily to be fulfilled. However, an addi-
tional restrictions emerge if the longitudinal and transverse modulae are considered as
extreme values for the Young’s modulus £ in an arbitrary direction. To obtain conditions
for monotonous dependence, it is equivalent to consider the applied uniaxial stress in the
x1-axis direction and the longitudinal direction m forms an angle o w.r.t. the z;-direction.
Therefore m = (cos o, sin a, 0)T and using the following notations for brevity ¢ = cos «
and s = sin «, it is obtained

2 sc 0 220, sco, 0
M=mm”=| sc s> 0|, and oM+ Mo = 5C0; o 01,
0 0 O 0 0 0
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6.2. Transversely isotropic elasticity 57

and
I =tro =0, I,=tr(cM)=co,.

The strain tensor has now the form
€ = (bio, + b3c?o,) I + byo + (b3o, + byc?o, )M +bs(c M + Mo),
from which we can obtain the strain in the z;-axis direction
€x = (by + by + 2(b3 + bs)c® + byct)o,
which has the following expression written in the stiffness form

1
by + by 4+ 2(bg + bs)c? + 540481.

Oz

The Young’s modulus in the a-direction is thus

1
by + by +2(bg + bs) cos? o + by cost a”

E(a)

Now we can investigate if the denominator f(z) = by + by + 2(b3 + bs)x + byz?
have extreme values when 0 < x < 1. The function f has zero derivative at v = ¢? =
—(b3 + bs)/by. For f to be monotoneous in the interval 0 < z < 1, the expressions
bs + bs and b, have to have same sign and the function f do not have extreme values in
the interval.

In the example 6.1 the coefficients by, . . ., b; are given in terms of E, Er, G, vy, and
vr in equations (6.48)-(6.52). It is now assumed that £;, > Ep. Considering the equation

o bytbs
by

in order to have a real solution it is required that

b b b b
—3+5>1 or —3+5

< 0.
by ’ by

Considering first the condition — (b3 + bs) /by > 1, from which the following condition is
obtained provided that by > 0:
1 1 1+ 2y 1 1

vt vy,
byt bs) > by = DM s N
(bs + bs) > ba 2B, T3¢, 26, B, B G

and after some intermediate steps the inequality

Ey

Gp < ——t—
L2014 )
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1.1
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Figure 6.2: Young’s modulus in different orientation with respect to the longitudinal di-
rection, red curve G /FE; = 0.5, blue curve G /E;, = 0.3, green curve G,/ Er= 0.15,
Vi =UVr = 025, ET/EL =04.

is obtained. The condition b3 + b5 < 0 results in

Ep
Q(VL + EL/ET) '

GL>

As an example consider the case Er/E, = 2/5 = 0.4 and vy, = vp = 1/4 = 0.25.
These values provide the following limits for G'.:
GL 1 2 GL 1 2

— < ———=-=04 and —/ > = — ~0.182.
EL 2<1+VL) 5 EL 2(VL—|—EL/ET) 11

In Fig. 6.2 the cases G /E;, = 0.5 (the uppermost curve), G;/E; = 0.3 (the middle
curve) and G/ E; = 0.15 (the lowest curve).

6.2.2 Material parameter determination

The linear elasticity constants for transversely isotropic solid can be determined from
the following tests, where it is assumed that the longitudinal direction coincides with the
x1-axis direction.

1. Apply a stress in the longitudinal direction 1, i.e. 01, and measure €11, €99 = €33,
then E1 = EL = 0'11/611 and Vy = V1 = V13 = —622/811.
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6.3. Orthotropic material 59

2. Apply a stress in the transverse direction, i.e. 099, and measure strain in the three
perpendicular direction 11,22 and £33, then E2 = ET = 0'22/622, Vo3 = —833/622 =
Ut

3. Apply a shear stress in the 1-2 plane, then G2 = G = T12/712. Note G152 = Gi3.

4. This test is not necessary. Shear in the isotropy plane, i.e. in the 2-3 plane. Gy3 =
To3/7Ye3. Could also be obtained from Gaz = Ea/(1 + vs3).

6.3 Orthotropic material

A material is called orthotropic if it has three perpendicular symmetry planes. Let’s denote
the unit vectors normal to the symmetry planes as m, my and ms. Due to the orthog-
onality m,;-m; = 9;;. The structural tensors associated with these direction vectors are
M ; = m;m7!, and they satisfy

M+ Ms;+ M;=1, (6.64)

due to the orthogonality. Thus, only two structural tensors are necessary to describe the
behaviour of an orthotropic material

W =W(e, M, M,) =W (BeB",8M 8", 3M,3"). (6.65)

The representation theorem of an orthotropic solid says that the strain energy density
function can depend on seven invariants

W =W(tre, §tr(e?), +tr(e”), tr(e M), tr(e M>), tr(e* M), tr(e’M>)). (6.66)

It can be written in a form, where all the structural tensors M ; are symmetrically present.
Notice that

€M1+€M2€M3:€(M1+M2+M3):E, (667)
M1€+M2€+M3€:(M1—|—M2+M3)€:€, (668)

thus summing by parts gives

e=1(eM;+ M)+ 3(eMy+ M) + 3(e M3 + Mse), (6.69)
and
tr e = tI‘(EM1> + tI‘(EMz) + tI‘(EMg). (670)
In a similar way it can be deduced
tr (%) = tr(e? M) + tr(e* M) + tr(e*M3). (6.71)
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In other words, the invariants tr e, tr(e M 1) and tr(e M 5) can be replaced by the invari-
ants [; = tr(e M),y = tr(e M) and I3 = tr(e M3). In a similar way the invariants
tr(e?), tr(e? M) and tr(e? M) can be replaced by the invariants I; = tr(e*M,), [5 =
tr(e? M) and Is = tr(e M ). If we now denote the cubic invariant I; = £ tr(e®), the
strain energy density function for an orthotropic material can be written as a function of
these seven invariants as

W =wW({,...,I), (6.72)

and the constitutive equation has the form

oW L aw ol

O < < OI; Je
ow ow ow ow

O o Y o s o O e M
o, Mit Mo+ 5 My + (e M + Mie)

o

ow ow ow
—(eM M —(eM M —— &2, .
+ oL (eMy+ Mse) + A (eM3+ Mje) + 6175 (6.73)

If we now restrict to a linear model, the coefficients W /0I; has to satisfy the follow-
ing conditions

ow
- = CL1[1 + C1]2 + 02]3, (674)
ol
ow
—_— = (1,211 + a3]2 -+ 0313, (675)
0l
ow
—_— = CL411 + a5[2 + CL6]3, (676)
Ol
ow
(‘)—]4 = ar, (677)
ow
8—1,5 = as, (678)
ow
a—]G = dg, (679)
ow
— =0. 6.80
oL (6.80)
Due to the identity of the second derivatives (6.44), we have
o (oW g (oW
RS _ = — —_— = . 1
o, (8[1) oI, (8[2) - oaTe (681)
g (oW g (oW
[ _ = — —_— = . 2
0l (8]1) ol <813) v eT (6:82)
g (oW g (oW
—813 <—812) = —8]2 <—8I3) = C3 = Q5. (683)
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The constitutive equation is thus

o = (arly + asls + agds) My + (asly + agls + asls) Mo + (asdy + asly + agls) Mg
+a;(eMi+ Me) + as(eMy + Mae) + ag(e M 5 + M 3¢)
= [aytr(eMy) + axtr(eMs) + agtr(e M 3)| M,
+ lagtr(eM ) + aztr(e My) + as tr(e M 3)] M
+ [agtr(eM ) + astr(e M 3) + ag tr(e M 3)] M 5
+a7;(eMy+ Mg) + ag(eMy + Moe) + ag(e M 3 + M 3¢) (6.84)

Starting from the complementary energy density a similar expression can be obtained

e= [htr(cMy)+bytr(oMs) + bytr(ec M) M,
+ [batr(o M) + by tr(ocMy) + bs tr(o M 3)] M,
+ [batr(e M) + bs tr(oMy) + bg tr(e M 3)] M 3
+b;(cM;+ Mqo)+bs(cMy+ Mso) + by(c M3+ Mso). (6.85)

If the directions of the unit vectors m,; coincide with the coordinate axis, the material
coefficients a; and b; can be expressed in terms of physically comprehensible material
constants, which for orthotropic material are the Young’s modulae in the 1,2 and 3 mate-
rial directions £, > and Ej3, the Poisson’s ratios v;;, defined as a ratio of transverse strain
in the jth direction to the axial strain in the 7th direction when stressed in the i-direction,

i.e.
oF;

Ea
and the shear modulae in the 1-2, 2-3 and 1-3 planes GG15, GGo3 and G3.
The compliance matrix has the form

£ = —UyEi = —Uy no sum in 1, (6.86)

1/E1 —Vzl/EQ —V31/E3 0 0 0
—1/12/E1 ]_/EQ —1/32/E3 0 0 0
. —1/13/E1 —1/23/E2 ]./Eg 0 0 0
D= 0 0 0 1/Gi, 0 0 (6.87)
0 0 0 0 1/Gy; 0
0 0 0 0 0 1/Gys |

Due to the symmetry requirement of the compliance matrix D the following relations

have to hold
Vo1 Vi2 V2 Va3 Vis UV

22 T2 =t =2 — == 6.88
B B B B BB (59

or written in a more easily memorized form
VijEj = VjiEi- (689)
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Since the compliance matrix has to be positive definite, an immediate consequence is
that the elasticity- and shear modulae has to be positive

E > 0, Ey > 0, E3 > 0, G12 > 0, G23 > 0, and G13 > 0. (690)
In addition the following minors have to be positive

1/E1 —V21/E2 1_V12V21

= —)7">0, 691

—v12/Ey 1/E, EFE, ( )
1/E2 —1/32/E3 11— Va3V32

= 72 o, 6.92

_1/23/E2 1/E3 E2E3 ( )
1/E1 —V31/E3 1 — vz

=2 >0, 6.93

_V13/E1 1/E3 E1E3 ( )

and

/By —vn/Ey —vs/FE;s
—viog/Er  1/Ey  —vs/Es
—vis/E1 —vo3/Ey  1/E3
- 1 — v1ov91 — Vaslise — V3113 — ViaVlagls1 — Vsal21V13

_ 0. (6.94
B,y Es > 0. (654)

Since the Young’s modulae are positive, the inequalities (6.91)-(6.93) can be written in
the form
1— VijViji > 0, (6.95)

which after taking the reciprocal relation (6.89) into account has the form
1—v2E;j/E; >0, or |vy| <\/E/E;. (6.96)

The positive definiteness is thus quaranteed if the inequalities for the modulae (6.90)
together with the inqualities (6.96) and

1 — viga1 — 1339 — V3113 — Viglhasls1 — Vaalai iz > 0 (6-97)

for the Poisson’s ratios are satisfied.

6.4 Thermoelasticity

6.5 Solved example problems
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Chapter7
Elasto-plastic constitutive models

7.1 Introduction

On the contrary to elastic behaviour, the characteristic feature of plastic behaviour is ir-
reversibility. If an elastic-plastic solid is first stressed above the elastic treshold and then
the stress is removed, permanent strains are generated.

In the analysis of elasto-plastic behaviour of solids, three set of equations will be
required to complete the analysis.

1. Yield criterion, to define the borderline between elastic and plastic behaviour.
2. Flow rule, which describe how the plastic strains evolve,

3. Hardening rule, which models the change of the yield criterion with evolving plas-
tic strains.

7.2 Yield criteria

For an initially isotropic solid the yield criterion can only depend of the invariants of the
stress tensor and possibly some parameters. Since the principal stresses form a valid set
of invariants, the yield criterion can be expressed

flo1,09,03) = 0. (7.1)

Alternatively, the principal invariants of the stress tensor can be used. However, the yield
function is usually expressed by using the set 11, J, and cos 36, since they give a clear
physical intepretation of the stress state.

To have a picture on the shape of the yield surface, it is advisable to determine its
trace on the deviatoric- and meridian planes. On the meridian plane, the deviatoric radius
p = \/2.J5, or the effective stress 0. = +/3.J, is shown as a function of the mean stress
om, or Iy, at certain value of the Lode angle # on the deviatoric plane. Three meridian
planes are of special interest: (i) the tensile meridian, (ii) the compressive meridian and
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64 CHAPTER 7. Elasto-plastic constitutive models

(iii) the shear meridian. To give a physical meaning of these meridian planes, let’s order
the principal stresses as o, > 05 > o03. Therefore the intermediate principal stress can be
expressed as a linear combination of the extreme ones, i.e.

oy = (1 —a)o; + aog, where 0<a<l1. (7.2)

All stress states can therefore be expressed with the a-values in the range [0, 1]. The mean
stress and the principal deviatoric stresses are

O = % s(01 409+ 03) = %[(2 —a)or + (1 + a)os), (7.3)
51 =01 — 0m = 3(1+ @) (01 — 03), (7.4)
o =09 — O = 5(1 + 2a)(01 — 03), (7.5)
3 =03 — O = 3 (@ — 2)(01 — 03). (7.6)

The Lode angle has the expression (2.60)

\/381

cosf) = — =

1
2 VL 2Vi—-a+ta?

Tensile meridian corrsponds to a stress state where a uniaxial tensile stress is superim-
posed to a hydrostatic stress state, thus 0, > 0, = 03, giving the value o = 1 and the
Lode angle 6 = 0°.

(7.7)

Compressive meridian corresponds to a stress state where a uniaxial compressive stress
is superimposed to a hydrostatic stress state, thus o; = g9 > 03, resulting into the value
a = 0 and the Lode angle 60°.

Shear meridian is obtained when o = %, thus corresponding to a stress state where a
shear stress in the 1 — 3-plane is superimposed to a hydrostatic stress state. The Lode
angle has the value 6 = 30°.

For initially isotropic elastic solids, the yield criteria can be classified in two groups:
(i) pressure independent and (ii) pressure dependent criteria. In this lecture notes only
the two most important pressure independent yield criterion of Tresca and von Mises are
described. Also their generalizations to pressure dependent forms which are the Drucker-
Prager and Mohr-Coulomb yield criterion, respectively, are dealt with.

If the yield condition do not depend on the Lode angle 8, the trace of the yield surface
in the deviatoric plane is circular. In general, for isotropic material the yield locus on
the deviatoric plane is completely described in the sector 0 < ¢ < 60°. If both o;; and
—o;; will cause initial yield of a given material, as it is characteristic for metals, the yield
curve in the deviatoric plane have symmetry about # = 30°, which implies that the tensile
and compressive meridians have the same distrance from the hydrostatic axis. For a more
detailed discussion on the symmetry properties of the yield surface see [17, section 8.2].
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7.2.1 Tresca’s yield criterion
For metals yielding is primarily due to slip in the crystal lattice. Tresca’s criterion states
that plastic deformations occur when the maximun shear stress attains a critical value

7—max_k: = 07

where k is the yield stress in shear. Since 7,.c = (01 — 03)/2,in uniaxial tension the
criterion has the form

op—2k=0, ie. o3—o0y,=0,
where oy, is the yield stress in uniaxial stress state. Notice, that similar expression is also

obtained in uniaxial compression. Tresca’s criterion do not depend on the hydrostatic
pressure, i.e. on the first invariant of the stress tensor /.

7.2.2 Von Mises yield criterion

For metals the most used yield criterion is von Mises criterion, which can be written as

Vo —k =0, (7.8)

where £ is the yield stress in shear. Often, the criterion is given in the form
V3Jy—oy, =0, inshort o, — o, =0, (7.9)

where oy is the yield stress in uniaxial tension/compression. The notation o, = V3, is
known as the effective stress. It is easily seen that the ratio between the uniaxial and shear
yield stresses is V3 & 1,732.

Von Mises yield criterion can be viewed in the principal stress space as a circular
cylinder around the hydrostatic axis, and its cut with the surface o3 = 0 (plane stress
state) is ellipse

\/O’% + 0% — 0109 — 0y = 0. (7.10)

If the only nonzero components of the stress tensor are 0, = o and 7,, = 7, the yield

criterion has the form
Vo2 4312 —o, =0. (7.11)

7.2.3 Drucker-Prager yield criterion

Drucker-Prager yield criterion, presented in 1952, is the most simple generalisation of the
von-Mises criterion for pressure dependent plastic materials. In the deviatoric plane its
shape is a circle with radius depending on the hydrostatic stress. Expressed by invariants
I, and Js, the criterion can be written in the form

fi, J2) = /3 +al — 3 =0+ 3aoy, — =0, (7.12)
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Figure 7.1: Von Mises (black) and Tresca (blue dashed lines) yield criteria. (a) in meridian
plane (the shear meridian of Tresca criterion is drawn with a red line), (b) on the 7-plane,
(c) in plane stress state and (d) for (o, 7)-stresses. The uniaxial tensile stress is matched,
thus the tensile- and compressive meridians of Tresca and von Mises criteria coincide.
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Figure 7.2: Drucker-Prager yield criterion: (a)on meridian plane, (b) on the 7-plane, (c)
in the plane stress state, (d) for (o, 7)-stresses. In the figures the relation between the
equibiaxial and compressive yield stressea is f,. = 1, 16 f., which implies = 0, 12 and

g =0,88f..
or alternatively written in terms of [y, p

F(Ii,p) = p+ V/2/3als — /2/38 = 0. (7.13)

The criterion is reduced to the von Mises criterion when o« = 0. Drucker-Prager (DP)
yield criterion describes a linear dependency of yield on the hydrostatic stress and thus
its ability to describe the plastic behaviour of pressure dependent real materials is very
limited. The shape of DP-yield criterion on the meridian plane is a straight line, see fig.
7.2

The two material parameters « ja 5 can be determined e.g. by using two of the follow-
ing four experiments: (i) uniaxial compression (f.), (ii) uniaxial tension ( f;), (i) equibiax-
ial compression ( fi,c), or (iv) equibiaxial tension (fi,;). Values of these material strengths
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can be expressed wit parameters « and /3 as

__5 _ B

fc_ 1—04’ ft_ 1-'-04’ (714)
__5 _ B

Joe = o0’ Jot = 20 (7.15)

If the uniaxial and equibiaxial compressive strengths are known, the values for « and

are
“= 2ij)b__J; - 2(&//];))—_11 B=01-a)fe. (7.16)

Alternatively, if the uniaxial strengths are known, the following expressions will be ob-
tained
. fc - ft

TR

If the ratio of uniaxial compressive strength with respect to the uniaxial tensile strength is
denoted by m, f. = m f;, the expressions are

f=(1-a)fe. (7.17)

m—1 2
e = —f.. 7.18
o= B (7.18)

In the plane stress state (05 = 0) DP-criterion has the form

\/Uf + 02 — o100+ (o) +09) — =0, (7.19)

which presents an ellipse in the (01, 02)-plane, whose main axis makes 45°-angle with the
o1-axis, see fig. 7.2c.

If the only nonzero components of the stress tensor are o and 7, the DP-criterion
expressed in terms of the uniaxial material strengths as follows

—1 2
\/02+372+m

m+1a_m—|—1

fe=0, (7.20)
which is shown in fig. 7.2d.

7.2.4 Mohr-Coulomb yield criterion

Mohr-Coulomb yield criteria can be understood as a generalisation of Tresca’s criterion
to pressure dependent plastc materials.

Coulomb’s criterion, dating back to the year 1773, is the oldest known yield or failure
criterion. It assemes a linear relationship between the extreme principal stresses (o7 >
o3 > 03)

moy — o3 — f. =0, (7.21)
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Figure 7.3: Mohr’s circles and Coulomb’s yield criterion.

where m = f./ f;. Using the Mohr’s circles, the criterion can be written also as

|| + po — ¢ =0,

(7.22)

where the two material constans are ; and c. From the figure 7.3 it is obtained

= tan ¢,

(7.23)

where ¢ friction angle. For frictionless materials (¢ = 0) and the Mohr-Coulomb citerion
(7.22) is reduced to the maximum shear criterion and the cohesion parameters c is equal

to the yield stress in shear k.

Under pure hydrostatic stress 0 = 0, = 03 = o and using equation (7.21), the

following equation is obtained

fe c

m—lz,u

g =
The relation between the friction angle and the uniaxial strengths is

fe 14sing
m=‘"==——":
ft  1—sing

Very usefull are also the relations

and
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Let’s determine the equations for the straight meridian lines. Expressions of the in-
variants I; and p on the compressive meridian (o7, = 05 > 03,0 = 60°) are

110220'1"‘0'37 Pc = \/2J2C: \/%(O’l —0'3). (728)

Expressing the principal stresss o1 and o3 in terms of [;. and p. and substituting them
into equation (7.21), the expression for the compressive meridian line is

om—1 V6
2 - Y f = 7.2
por (Ao he— =T =0, or (7.29)
m—1 3
et 3——op — —— f.=0. 7.30
ot m—|—2J m+2f ( )

On the tensile meridian (o1 > 09 = 03,6 = 0°) the expressions for the invariants are

hi=01+20, po= /20 = /201~ o) (7.31)

and the following equation for the tensile meridian is obtained

; m—1 \/6
3om+1 " oam+1
m—1 3

1™ 2m 1

P+ fo=0, or (7.32)

fe=0. (7.33)

Eliminating the invariant [y = I;; = [;., the ratio between the radius of compressive and
tensile meridians is obtained
pe _ 2m+1  3+sing

= = ) 7.34
Pt m + 2 3 —sing ( )

The shape of the yield surface on the deviatoric plane is thus dependent on the ratio
between the uniaxial strengths m.

7.3 Flow rule
Evolution equations for the plastic flow are assumed to be given in the following form

> _ 3 99 o _ 5 09
= )\aaij and E —)\%, (7.35)

where ¢ is the plastic potential, a function depending on the stress o and the hardening
parameters K“. The factor X is called the plastic multiplier. If a yield function is used
for the plastic potential, the flow rule is called associated, otherwise it is called non-
associated.
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Figure 7.4: Illustrations of Mohr-Coulomb yield criterion when m = 4: (a) on meridian
plane, (b) on the m-plane, (c) in the plane stress state and (d) in the plane strain state

(v =1/3).
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During the plastic deformation process the point of stress stays on the yield surface,
thus f(o;;, K*) = 0 and also

af . of Ka_af, df 0K 4

f 8aijgj+8[(°‘ 8aijgj+8[(°‘ 8/-@51% ( )
The equation above is called as the consistency condition. Inserting the evolution equation
of the hardening variable « in eq. (7.35) into the consistency condition (7.36), the result

1S

. Of .
= 26, — \H, 7.37
where H is the plastic hardening modulus
of 0K* Jg
H = . 7.38
DK< OnP OIC? (7.38)
Taking the time derivative of the constitutive equation

. L . 0

Gij = Cijui(Eij — 8%) = Cijni(€ij — )\ﬁil . (7.39)

Multiplying the above equation by parts from the left with the gradient of the yield surface,
i.e. 0f/0o;;, it is obtained
of . of

Oy = CijriEr — A
&sz &sz

of
80ij

dg
Ciip——. 7.40
Jkl ao_kl ( )

Taking the consistency condition (7.37) into account results in

1 of

A= ——Cijuin. 7.41
A0, JKIERL (7.41)
Substituting the expression for the rate of the plastic multiplier back to the constitutive

equation, gives

) ) 1 of . 0g
045 = Uijkl (Ekl - Zﬁmncmnpquq%) y (742)
which after some rearrangements become
) 1 dg Of .
0ij = <C@'jkl — ZCz‘jmnao_—mnanqCqul) Ekl, (7.43)

defining the elastic-plastic constitutive operator as

1 dg Of
€p  __ ey — — (V.. - < <
Cifu = Cugmt = 5 Ciamny, 5o

p 2 Chghi- (7.44)
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7.3.1 Example.

Let’s consider von Mises solid and assume that the yield stress oy is a function of a scalar
internal variable  as o, = oy + K (k), where oy is the yield stress of a virgin material.
The yield condition is thus

3J2 O'yo -+ K )) 0. (745)

Assuming associated flow, the evolution equations for the plastic variables are

8 I 38
D= =\ 7.46
i = 8@] 20, ( )
8 af
f = =\ 7.47
The plastic hardening modulus is
KCV
2 af o af 0oy (7.48)

OKe OkP OKP — Ok’

To make different strain evolutions in some sense comparable, let’s define an equivalent
plastic strain as

gl = /ép dt, where EP = /26Dl (7.49)

2

37wy

For von Mises model the plastic deformation is incompressible, i.e. tr e? = 0, as can be
seen from the flow rule (7.46), in uniaxial tension/compression test in the x-direction,
the plastic part of the strain rate tensor has the following non-zero components

p b _ P __ 1.p

The equivalent plastic strain rate is &° = £}, and thus the equivalent plastic strain coin-
cides to the uniaxial plastic strain.
Taking the flow rule (7.46) into account results in

P = [2ehel = [ 5=\ (7.51)
37Ty 2 oy

Thus we have obtained for associated flow of von Mises solid an important result that

k= \=¢EP. (7.52)
Therefore the hardening modulus is
do do
H=—"2—-"2 7.53
Ok Oep (7.53)
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Figure 7.5: Linear isotropic (above) and kinematic hardening.

7.3.2 Hardening rule

In the previous example the evolution of the hardening variable K was not defined and the
hardening expressed as increase of the yield stress in the form o, = oy + K (k) results in
isotropic expansion of the yield curve in the deviatoric plane, see fig. 7.5. Thus this type
of hardening is called as isotropic hardening. Considering a material which is first loaded
in the plastic region to a stress oy. In subsequent reversed loading the yield starts at the
stress state —oy if the material obeys the isotropic hardening rule. However, for metals
lowering of the yield stress in reversed loading is observed. This phenomenon is known
as Bauschinger effect, and kinematic hardening rules have been developed to model it.
In ideal kinematic hardening, the size of the yield surcafe do not change, while the yield
surface moves in the stress space, see fig. 7.5.

Some materials show change of the yield surface shape when plastically deformed.
Such third type of hardening is called distortional or anisotropic hardening.
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g

0-y0 + Koo ———————————————————————————

Figure 7.6: Hardening rule (7.56).

Example, isotropic hardening Linear hardening is the most simple isotropic hardening
rule

19)
H= % = constant, (7.54)

thus K' = HEP. In reality, the yield stress has an upper bound and
K = Koo(1 —exp(—he?/Ky)), (7.55)

ie.
oy = 0yo + Koo(1 — exp(—he? /K )), (7.56)

is videly used hardining equation. The plastic hardening modulus modulus is

doy _
H= P hexp(—he?/Ky). (7.57)

This exponential hardening rule has two material parameters h and K, which have a
clear physical intepretation, see fig. 7.6.
The hardening rule (7.55) can be expressed in the rate form

K = hexp(he? /K2, (7.58)
which can be written also in the form

K = h(1 — K/K,)&. (7.59)
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Example, kinematic hardening Let’s consider kinematically hardening von Mises model.
Now the hardening parameter K is a second order tensor «, which defines the center of
the yield curve in the deviatoric plane and it is called as the back stress. The yield surface

is now defined as

floij, i) = \/%(Sz'j — aij)(sij — Qi) = Oy0. (7.60)

Assuming associated flow rule, the plastic strain rate and the rate of the internal variable
kij, dual to the back stress «;; are

8f : §Sij — Ozij

P\ =\ 7.61
5” 801-]» 2 O'yo ’ ( )
: (’9f 238 —
oy = AL 325 T e (7.62)
J 80@ 2 Oy0 J

Thus, for kinematically hardening associated von Mises plasticity the ineternal variable
equals to the plastic strain. Notice that the back stress tensor o has to be deviatoric to
result in isochoric! plastic flow.

Two well know kinematic hardening rules are the Melan-Prager

O%'j = C/"il'j = Céfj, (763)

and the Ziegler’s rule .
(jéij = )\E(O'ij — Oél'j>, (764)

where ¢ and ¢ are material parameters.

7.4 Anisotropic yield

7.4.1 Transverse isotropy

As in the case of elastic constitutive models, the material can posses different symmetry
properties. The yield function can be formulated in terms of the proper integrity base. For
transverse isotropy the most general yield function can be expressed as

f(Il7127I37I47I5) =0 (765)
where the invariants are
L =tro, Iy=1tr(c?), Iy = s tr(c”), I, =tr(eM), I; = tr(6? M),  (7.66)

and M = mm7 is the structural tensor with the unit vector m defining the normal of the
isotropy plane. In some cases it can be easier to operate with the deviatoric invariants
Jy = 2tr(s%), Jy = itr(s?), Jy=tr(sM), J5 =tr(s’M). (7.67)

Tsochoric = volume preserving.
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Example 7.1. Consider the following form of transversely isotropic yield function

F(o, M) = ki + ko J? + ks Js — o1, = 0. (7.68)
Determine the parameters k1, ko and ks from the following tests results:

1. uniaxial yield strength in the longitudinal direction oy,

2. uniaxial yield strength in the transverse isotropy plane oy,

3. and the shear strength in a plane containing the longitudinal axis Ty,
Determine also the shear strength (TyT) which is predicted by the yield function. If

OyT = Oyl and Ty], = Oy, / V3, does the vield function (7.68) reduce to the von
Mises yield function?

Solution. When the z-direction is chosen as the longitudinal direction, i.e. the
normal direction of the isotropy plane, the structural tensor is

OyL 0 0 ?J,UyL 0 0 %UgL
o= 0 00|, s= 0 —3ouL 0 , 82 = 0 3
0 00 0 0  —3oyL 0

thus

1 _2 2 4 2
JQ = gUyL, J4 = gO'yL, J5 = §UyL'

Substituting the above expressions in to the yield condition (7.68), we get
2 2 2 2
k10 + §haogr + ghaog = oy,

or
%kl + %/{?2 + %kg = 1. (7.69)

Investigating the yield in the transverse isotropy plane, and choosing 022 = oyr
(equally we could choose 033 = oyT), then

0 0 0 —doyr 0 0 5027
o=| 0 o 0], s= 0 éayT 0 . st= 0
0 0 0 0 0 —3oyr 0
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and

1 2 1 1.2
JQ = gO'yT7 J4 = —gUyT, J5 = §UyT'

Substituting these into the yield condition gives
1. 2 1y, 2 12 2
shoyr + gheoyr + 50y = oy

2
= g1+ gha + gks = <ZLL> =& (1.70)

Let us now investigate shear in a plane containing the longitudinal direction, For
simplicity we can choose either the 1-2 or 1-3 plane. Choosing 712 = 7y1, we get

0 7 O 00
o= wv. 0 0 = s, s? = 0 T}?L 01,
0 0 0 0 0 0

resulting in

2 2
JQ = TyL7 J4 = 07 J5 = TyL'

Substituting into the yield condition gives

2
2 2 2 OyL 2
leyL + k3TyL - UyL? = k3 = (%) - kl =17 — kl-
yL

Further substituting this in (7.69) and (7.70) we get
%kl + %kQ + %(772 — k1) =1,
1k + sky+ (7 — k) = &,
from which we obtain

—ky +4ky = 9 — 4n?,
2k1 + ko = 962 — 0%,

and the solution is

k=462 -1,
k2:2+§2_7727
ks =14 n* — 4¢2.

If now oyt = oyp, and 7y, = oy,/V/3, ie. € = landn? = 3, we get ky = k3 = 0
and k7 = 3, and the model reduces in the isotropic case to the standard von Mises
yield condition.
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The last question is related to the yield strength in the transverse plane. Now the
stress and deviatoric tensors are

0 0 0 0 0 0
o= 0 0 77 |=s, =10 Tsz 0 ,
0 7yv O 0 0 7p

resulting in
Jy =1, Ji=J5=0.

When substituting into the yield condition we get

2 2 —
leyT — UyL = TyT —_ 5 —

Notice that o2y, > o2

7.4.2 Orthotropy

For an orthotropic material the most general yield function is of the form
f([l,...7]7):0, (771)

where the invariants can be defined in the symmetric format as

L =tr(eM,), L =tr(oM,), I3=tr(cM;), I,=1tr(c’M,),

I; = 3 tr(0’ M), Is = 3tr(0’M;), Iy = gtr(0®). (1.72)

For metals the yield can often be modelled to be independent of the mean stress, thus it is
helpful to formulate the yield function in terms of the deviatoric stresses

Ji =tr(sMy), Jo=tr(sM,), J3=tr(sM3), Ji=21tr(s*M,),
Js = 1tr(s’My), Js=1tr(s’Ms), Jr=1tr(s?). (7.73)

) )

As an example let us consider an orthotropic yield function which is independent of
hydrostatic stress and has equal compressive and tensile yield stresses in the directions of
the orthotropy. The yield function satisfying these requirements is of the form

f:Ueff_Uylzoa

Oeff = \/041<J1 - J2)2 + a2(J2 — J3)2 —+ 043(J3 — J1)2 —+ Oé4J4 -+ Oé5J5 + Oé6J6, (774)

where oy is the yield strength in the direction of ;. There are six material parameters
in the yield function (7.74), which can be determined from the following six tests for
individual stress components:
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e yield under normal stress state in the directions 1,2 and 3, yield stresses oy, 0y2, 0y3,
respectively, and
e yield in shear on planes 1-2, 2-3 and 3-1, with respective yield stresses 7y12, Ty23, Ty31.
For determining the parameters o4, . . ., ag, it is convenient to write the yield condition
in the form

()él(Jl — J2)2 + OéQ(JQ — J3)2 + Oég(Jg — J1)2 + Oé4J4 + Oé5J5 + Oé6J6 = 031. (775)
If we now associate the directions of orthotropy to coincide the coordinate axes.

e Stress in m, i.e. x-axis direction oy, = 0y results in

2 2
J1=30y, Jo=Js=—300, Ji=300, Js=Js= 1504
and substituting it into (7.75) gives
2 1 1
o]+ o3+ 94 + 8% + 3% = 1. (776)
e Stress in m., i.e. xp-axis direction gy = 0y results in
2 4 2 2
Jy = 30y2, Ji=J3= 0y27 Js = 90y2> Jy=Js = 18 y2
and substituting these values into (7.75) gives
a1+ o+ Eay+ 2as + tag = (041 /042)° = &3 (7.77)
1 27T g™ T ™5 T g6 y1/0y2) = G2- .
e Stress in mg, i.e. w3-axis direction o33 = oy3 results in
2 2
Js =320y, Ji=Jy=—30y, Jo=1300, Ji=J5s= 100
and substituting these values into (7.75) gives
ay + g + gy + o5 + 2ag = (0y1/0y3)° = &5 (7.78)

e Shear stress in the 1-2 plane: 715 = 7y12 gives
Ji=Jy=J3=0, Jy=J5=172 Jo =0,

2 y127

and substituting these values into (7.75) gives
ay + as = 2(0y1/Ty12)2 = 107y (7.79)
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o Shear stress in the 2-3 plane: 7o3 = Tyo3 gives
Ji=Jy=J5=0, J5=1Jo=3Tras, Js=0,
and substituting these values into (7.75) gives
as + ag = 2(0y1/Tye3)? = 1. (7.80)
e Shear stress in the 3-1 plane: 731 = 7y31 gives
Ji=Jy=Js=0, Ji=Js=3705, Js=0,
and substituting these values into (7.75) gives
oy + ag = 2(0y1/Ty31)% = 13, (7.81)
From the shear stress conditions (7.79), (7.80) and (7.81), it is obtained
oy = %(77%2 + 77?2,1 - 7733)7
a5 = 513 + 11> — 1) (7.82)
Qg = %(7792,1 + 7733 — 11).

Observe the logic in the cyclic symmetry of the indexes. Substituting these expressions
into (7.76), (7.76) and (7.78) results

a1 = 1(1 +§§ - 532, - 1_5877%2 + %7733 + %77?2,1),

2
=G +E —1— 203+ L3 + 20h), (7.83)
az = %<1 —G+& - 1_587792,1 + %77%2 + %7733)-

For isotropic von Mises solid 01 = 0y9 = 0y3 = 0y and Ty19 = Ty93 = Ty31 = 0Oy/ V3,
gives & = &3 = landnfj =6,thena; = ay = a3 = 0and oy = a5 = ag = 3. The
orthotropic yield function (7.74) reduces to

f :\/3(J4 —+ J5 —+ J6) — 0'y
=[S u[s2 (M, + My + M) — oy = /3 a(s?) — 0, =0, (7.84)

which is identical to the isotropic von Mises yield condition (7.9).
Notice that the linear deviatoric invariants .J;, J> and J5 are not independent, since

tr(sM) + tr(sMsy) + tr(sM3) = tr[s(M + Mo+ M3)| =trs =0, (7.85)

and therefore J3 = —Jy — J;. The effective stress (7.74) can thus be written as

G = @1 T+ Go T} + 20511 Je + cuds + asds + o, (7.86)
where
a1 = a4 g + dag = 24 265 — & — 5131,
Go = a1 + a3+ dag = 265 + 265 — 1 — 13, (7.87)

a3 = 200 + 203 — o = —% + %fg + 3532, + i(ni - 77%3 - 7792,1)-
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7.5 Determining material parameters

7.6 Some solved example problems

Example 7.2. It is assumed that a yield of a certain material is governed by the yield
function

f([l, JQ) =Jo+ Oé(al — Il)(Il + ag) =0, (7.88)

where Jo = % tr s2 is the second invariant of the deviatoric stress and Iy = tr o is
the first stress invariant and o, a1, ag are parameters which can be determined from
the three tests listed below.

In a triaxial loading device the following three stress states (a)-(c) cause yielding

1. hydrostatic compression 011 = 099 = 033 = —2py,

2. hydrostatic tension 011 = 099 = 033 = %po,

3. under the cell pressure 099 = 033 = — %po the yield occurs when the compres-
sive stress in the 1-axis direction reaches the value 011 = —2py.

Above py is a positive stress value. Determine the material parameters o, a1, as such
that ay,as > 0. Notice that « is dimensionless while a1 and as has a dimension of
stress.

Determine the shear strength as a function of hydrostatic pressure p = —%I 1 and its
maximum value. Draw a figure.

Solution. The loading case 1 and 2 are purely hydrostatic, that is J, = 0 and
the first stress invariant I; has values —6pg and pg, respectively. Substituting these
values to the yield function gives

a(a1 + 6po)(az — 6py) = 0, (7.89)
a(ar — po)(az + po) = 0. (7.90)

If the parameters a; and asy are assumed to be positive, it is obtained a; = pg and

as = 6p0.

For the loading case 3: 017 = —2pg, 0902 = 033 = —%po, then 1 = —3pg and the
deviatoric stress tensor has non-zero components sy1; = —2pg + pg = —Po, S22 =
S33 = —%po + po = %po. As a check, notice that s1; + S22 + s33 = 0, as it

should be. The second invariant of the deviatoric stress has now the value Jo =

2(s? + 83, + s3) = 3p2. Substituting the values of Jo and I; into the yield

function (7.88) gives
3,2 _ 3.2 2 _ 1
100 + a(po + 3po)(—3po + 6po) = 3pp + 12ppa=0 = a=—g. (791)
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To compute the shear strength as a function of hydrostatic pressure p = —%I 1, We
can use the following stress state

-p T 0
o= T —p O = Jo= 7'2, I = =3po. (7.92)
0 0 -—p

Substituting these values to the yield condition (7.88) gives

72 = & (po + 3p)(6p0 — 3p) = (%P0 + p)(2p0 + D). (7.93)

Let us determine the extremum value of the function

9(p) = (3po +p)(2p0 +p) = —p* + 2pop + 2p5,
J(p)=-2p+3pp=0 = p=2py. (7.94)

Substituting this value into (7.93) results in 72 = (7/8)p3, thus the maximum shear
strenght occurs at the hydrostatic pressure value p = (5/6)pg and it is Tiax =

7/8]90.

Example 7.3. Hydrostatic pressure does not influence to yielding of metals in the
early phase of plastic deformation. However, if the material has unequal yield
stresses in compression and tension, the yield function has to depend also from the
third invariant of the deviatoric stress as

f(JQ, J3) =+3Jo+aJ;—5=0 (7.95)

where o and B are material parameters and the deviatoric invariants are Jo =
1 2 1, o — — 1 3y — 1o oo ]

5trs® = 58585 and J3 = dets = gtr(s ) = 38ijSjkSki- Determine the pa-
rameters o and 3 when the uniaxial tensile and compressive yield strengths are oy

and o, respectively. Write the yield function also in terms of p and cos 30, which are

defined as
3\/§ J3
p = \/5ijSij, cos3l = T?

Solution. At the uniaxial tensile yield we have

o 00 gat 0 0
o= 0 00 s=o—itr(e) = 0 —3or O (7.96)
0 00 0 —1oy
= =107, J3=2%0} (7.97)
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84 CHAPTER 7. Elasto-plastic constitutive models

Correspondingly at the uniaxial compressive yield we have

—g. 0 0 —%O’C 0 0
o= 0 00 s=0—ttr(o)] = 0 2oc O (7.98)
0 00 0 0 2o
= Jo = %O’?, Jg = —%O’?. (7.99)
Inserting this data into the yield function (7.95) results in
Jt—i—oz%ag’—ﬁz(),
Jc—a%ag’—ﬁ:(),
and the solution is
_x G B= 09¢ + 0c0} “g“g’ (7.100)
2 02 +o; ol + o}
Defining 0. = mo nicer expressions are obtained
2T m—1 1 m3+m
= ——— = ———0y. 7.101
=y mirisr P (7.10D)
Since Jy = %pQ and
J3 = —=J,""cos30 = ——=p° cos 30,
3 3\/§ 2 3\/€p
the yield function (7.95) can be written in the form
F(p, cos 36) \/§ talcos30— =0 (7.102)
,COS =4/= a——=cos30 — 3 =0. .
p 5P 36

Draw the locus in the deviatoric plane!
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Chapter8
Failure of brittle materials

Plastic behaviour is characteristic to metals and polymers. For ceramics, rock, concrete
and even for cast iron the material usually fails without significant plastic deformations.
Several failure criteria with different level of complexity have been proposed for different
brittle materials. In this lecture notes, only the most simple ones will be dealt with.

8.1 Rankine’s maximum principal stress criterion

According to the Rankine’s failure criterion, dating back to the year 1876, the material
fails when the maximum principal stress attains a critical value, i.e. the uniaxial tensile
strength of the material in question. The failure criterion is thus expressed simply as

max(oy, 09, 03) = fi. (8.1)

Using the Heigh-Westergaard coordinates &, p, 6 or the invariant set [, J5, 6, the failure
criterion has the forms

F(€,p,0) =V2pcosf + & —3f =0, (8.2)

or
f(]l,JQ,H) =2 3J2COS€+]1 _3ft :0, (83)

On the deviatoric plane the shape of the Rankine’s failure surface is a triangle, and the
meridian curves are straight lines, see fig. 8.1a and b. The ratio between the tensile and
compressive meridians is p;/p. = 0, 5.

In the plane stress case the Rankine’s criterion is shown in fig. 8.1c. For the plane-
strain case, the failure surface is similar in the to the plane-stress in the (oq, 09)-stress
plane if the Poisson’s ratio is positive, i.e. in the range 0 < v < 0,5 (0, = v(o1 + 039)).

If the only non-zero stress components are o and 7, the failure criterion has the form

7 = fifi — o), (8.4)
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L 7/ fi

4-1
U/ft

-2 -3 -2 -1 0 1
(©) (d)

Figure 8.1: Rankine’s maximum principal stress criterion: (a) comressive- and tensile
meridian lines, (b) m-plane, (c) state of plane-stress, (d) for (o, 7)-stress state.
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and it is shown in fig. 8.1d.
Simplicity is the most important advantage of the Rankine’s criterion, it has only one
material parameter, f, to be determined.

8.2 Maximum principal strain criterion

The maximum principal strain criterion, which is also called Saint-Venant’s criterion, is
completely analogous to Rankine’s maximum principal stress criterion. It is assumed that
the material fails when the maximum principal strain attains a critical value

max(eq,€1,€3) = &. (8.5)

For isotropic material, the directions of principal stresses and strains coincide, thus the
material parameter £, can be written by using the uniaxial tensile stress f; as

fi = Eey. (8.6)

On the meridian plane, the failure condition can be written as

21/375 cos 6 + 11 +2V”11— 1iyftzo, (8.7)
which is similar to Rankin’s maximum principal stress criterion (8.3). In pure hydrostatic
tension the maximum principal strain criterion predicts the value o, = fi/(1 — 2v),
which with the value of the Poisson’s ratio v = 0, 2 results in the value 1, 667 f;.

In the plane-stress state (o3 = 0) the principal strain can be written in terms of prin-
cipal stresses as

1= (01 —voa)/E, (8.8)
e1 = (02— vou)/E, (8.9)
g3 = —v(oy +09)/E, (8.10)

and the failure curve in the (o7, 05)-plane is composed of straight lines

o1 — voy = fi, €1 > €1,€3, (8.11)
0'2—V01:ft, €1 > €1,€3, (812)
O'1+O'2:—ft/l/, €3 > €1,€1. (813)

The maximum principal strain criterion is illustrated in fig. 8.2.
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Ue/ft } o1

(b)

-5 -4 -3 -2 -1 0 1
(© (d)

Figure 8.2: Maximum principal strain criterion: (a) compressive- and tensile meridians,
(b) m-plane, (c) plane-stress state, (d) for (o, 7)-stress state. The black line corresponds to
Poisson’s ratio 0, 2 and red to 1/3, respectively.
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8.3. Continuum damage mechanics 89

8.3 Continuum damage mechanics

8.3.1 Introduction

To model continuous degradation of a material Kachanov introduced in 1958 a formula-
tion where evolution of a single internal variable continuously reduces the elastic prop-
erties [7]. Physically such variable, which he called damage index or integrity ¢, can be
interpreted as a ratio of the differential intact area element to the original area element,
ie.

dA — dAgam
= 8.14
¢ 1A (8.14)
In uniaxial case, the constitutive equation is
o= ¢Fe°, (8.15)

where ¢ stands for the elastic strain, which in the small strain case can be written as
=g —¢th_gin (8.16)

where €' and ™ are thermal and inelastic strains, respectively. In the literature, it is quite
customary to work with the damage D, defined as

dAdam
D p—
dA

=1-¢. (8.17)

For the evolution of the integrity ¢, Kachanov proposed the following kinetic law

y— A f)n, 8.18
¢ <¢ (8.18)

where the superimposed dot denotes time rate and A, n are material parameters which can
depend on e.g. temperature. For an undamaged material ¢ = 1 (or D = 0) and during
the damaging process it decreases monotonically to the value 0 in the fully damaged state
(or increases monotonically to the value D = 1). The ratio 0/¢ = o/(1 — D) is called
the effective stress, which is the net stress acting on the undamaged area. Kachanov
used his theory in predicting creep failure times, see also [8]. Rabotnov [21] generalized
Kachanov’s evolution equation (8.18) to the form

. A (o\"
—__2(Z 8.19
i=-5(9) (8.19)

where p is an additional material parameter. Since then, continuum damage mechanics
has developed into an important and active field of continuum mechanics exemplified by
numerous scientific articles and books, e.g. [1, 10, 11, 15, 23].
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8.3.2 Uniaxial behaviour

Let us consider a uniaxial constant strain-rate tensile/compression test in the absense of
thermal and inelastic strains, then the stress-strain relation is

o= ¢FEec = pFet, (8.20)
where € is the applied strain-rate. For the damage evolution equation the following form

is chosen )
. 1 o "
= — 8.21
b= (M) | 821)

where ¢4, r and p are material parameters and o, is an arbitrary reference stress. Defining
e, = o0,/ E and using the constitutive equation (8.20), it is obtained

: 1 [e2\" 1 [/&2\"
= (5) s () ®22

which can easily be integrated

t t . 2r
/ Prdg = —/ 1 (‘g—ot) dt, (8.23)
1 0 tq Er

1/(p+1)
(p+ e 2\ 2t ‘
— |- )ee (2 f 1 8.24
¢ [ (2r + 1)éota \ & i pE (8.24)

1 e e 2r+1
= - T (= if p=—1. 2
¢ = exp (2 + 1) Zota (s) nor (8.25)

resulting in

Substituting it to the stress-strain relation (8.20) gives

1 1
o _ |yt (e ) VY £ (8.26)
o (2r + 1)éotq \ & &) '

The ultimate tensile stress, i.e.the fracture stress o, can be found to occur at strain

e { (2r + 1)éptq }1/(27"“’
2r +p+ 2

and the fracture stress is thus found from

e [ 20+ 1 \TH [ (2r41) fotg\ T
o \2r+p+2 (2r+p+2) &

2 1 ( 27'1-;(1;2 1) - t 2 L 1

p+ 4 r+

e f0fa )T (g 08
2r+p+2 Er

, (8.27)

Er
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r=2,4,6,p=0,éptq/e, =1 p=—-2,0,1,r=4,¢éptq/e, =1
1 T T T 1 T T T
08 I ~ \\ N 08 // \
0.6 | / : 0.6
g / g
B s
04 + / i 0.4 \
02t / 102 \
0 | | L 0 / 1 1 1
0 0.5 1 1.5 2 0.5 1 1.5
/e £/

Figure 8.3: Stress-strain relation in a uniaxial constant strain-rate tensile test. Left-hand
side effect of the r-parameter variation. Increase of the r-parameter makes the model more
brittle, » = 2 red solid, » = 4, green dashed, » = 6 blue dotted curve. Right-hand side
effect of the p-parameter variation. Increasing k-parameter makes the model more brittle,
p = —2red solid, p = 0, green dashed, p = 1 blue dotted curve.

In figure 8.3(left) the parameter 7 is varied while keeping the other parameters p and
tq fixed. Incresing the r-parameter increases the ultimate tensile strength, however, it also
increases the “brittleness”.

In figure 8.3(right) the parameter p is varied while keeping the other parameters r and
tq fixed. Incresing the p-parameter decreases the ultimate tensile strength, however, it also
increases the “brittleness”. It can be seen that if p < —1 the model shows terminal phase
ductility, thus 0 — 0 when ¢ — oo.

If the loading rate is increased and the other parameters are constant, the behaviour is
similar but the ultimate stress is increasing with increasing loading rate, see figure 8.4.

8.3.3 General elastic-damage model

A continuum damage model with a single damage variable can be generalised for a 3-
dimensional continuum as
o=¢C%° = (1—-D)C"e®, (8.29)

where C° is the elastic stiffness matrix. Models with single damage parameter are also
called isotropic damage models since the effect of damage is the same in all directions.
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p=0,r=4,¢ptq/e, =1/2,1,2
1 T T T

0.8 | 298 ]

0.6 | | |

ooy

0.2 - | ]

e/e

Figure 8.4: Stress-strain relation in a uniaxial constant strain-rate tensile test, £t4 varied,
1.e. either ¢4 varied or the loadig rate (. Increasing loading rate increases the maximum
stress, gtq /e, = 1/2 red solid, £otq /e, = 1, green dashed, £¢tq /€, = 2 blue dotted curve.

8.3.4 On parameter estimation

Calibration of elasticity parameters has been discussed in Chapter 6, only the determi-
nation of parameters related to the damage evolution is explaned here. There are three
parameters r, p and ¢4 to be calibrated. However, the p-parameter practically influences
only the material’s post-peak behaviour and near the region of complete failure. Thus the
parameter p can be chosen in advance based purely on computational convenience. The re-
maining two “real” parameters r and ¢4 can be determined from two tensile/compression
tests performed with different strain-rate. Denoting £y; and ¢, the two test strain-rates
and Ofyac 1, Ofrac,2 the correspnding fracture stresses, from (8.28) it is found that

r=1 ( . (1“(’502/ Co1) - 1) . (8.30)

Ofrac,2 /O-fraql

Time parameter ¢4 is then obtained from either of the failure tests as

p+2

r 1 Tac,i 1/ @rt+l) 2 1 (P-QFZT(QT-H)
tdZ.g— = Jlracd ,i=1or2 and 8 = e . (831D
Eoi \B Oy 2r +p+2
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Chapter9
Viscoelasticity

9.1 Introduction

All the previously described material models have been time- or rate independent, even
though the formulation of elasto-plastic constitutive models can conveniently be written
in rate-form. However, most materials show a pronounced influence of the rate of load-
ing, especially at high temperatures. For example increasing the strain-rate in a tensile or
compression test will result an increase in measured stress. Other viscoelastic effects are
(i) creep, i.e. increase of strain when the specimen is loaded by a constant stress and (i)
stress relaxation when the strain is prescribed.

To describe viscoelastic materials a linear elastic spring and a linear viscous dashpot
are frequently used in deriving uniaxial constitutive equations, see Fig. 9.1.

For an elastic spring the length of the spring increases when a tensile force is ap-
plied and the spring returns to its original length when the load is removed. However, it
is preferable to use the stress ¢ and strain ¢ to describe the material behaviour instead
of force and displacement. A linear-elastic material is described by a linear relationship
between the stress and strain

o= L¥e, 9.1

where E is the modulus of elasticity, or the Young’s modulus.
For a linear viscous dashpot the force increases linearly with the rate of elongation. In
terms of stress ¢ and strain-rate € the constitutive model of a linear-viscous material is

de .
o= 77@ = 7)€, 9.2)

where 7 is the viscosity of the material.' In fluid mechanics it is spesifically called the
dynamic viscosity relating the shear stress to the rate of shear strain.’

'Usually in fluid mechanics the dynamic viscosity is denoted by .
2The kinematic viscosity of a fluid, usually denoted by v, is the ratio of the dynamic viscosity to the

density p: v = n/p.
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o o o | o
—o—WW—o o H—o

Figure 9.1: Basic viscoelastic elements: spring and dashpot.

9.2 Some special functions

Before entering to the actual viscoelastic models some functions are described.
The Heaviside step function, or the unit step function, is a discontinuous function
defined as
0 ifz<0

HO =11 oo ©3)

The value at z = 0 is not usually needed, however, to obtain an odd function the value
H(0) = 1/2 can be chosen. However, there are other possibilities which are not discussed
here. The Heaviside step function can also be written as an integral of the Dirac delta
function 0(x)

H(z) = / d(z)dx. 9.4)
The Dirac delta function can be loosely defined as
ifxr =0
Say=4 0 0 9.5)
0 ifz#0

and it is thus the derivative of the Heaviside step function®

dH

< =), (9.6)

An important property of the delta function is
| 1@ - a)de = fa), )

for an arbitrary continuous function f(z).

3In mathematical analysis the Dirac delta function and the Heaviside step functions are examples of
generalized functions also known as distributions. Distributions facilitate differentiation of functions whose
derivatives do not exist in the classical sense.
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1.0 50 00 =+o0
0.8 | 40 |
0.6 | 3.0 |
04 b 20 |
0.2 b 10 }

-3.0-2.0-10 0 1.0 2.0 3.0 —-3.0-2.0-10 0 1.0 2.0 3.0
z T

(a) (b)

Figure 9.2: (a) The Heaviside unit step function and (b) the Dirac delta function.

9.3 Maxwell’s model

A model in which a spring and a dashpot is combined in a series is known as the Maxwell’s
model of viscoelasticity, and it is illustrated in Fig. 9.3. The total strain ¢ is now additively
divided into the elastic strain €° in the spring and viscous strain " in the dashpot

e=¢e"4+¢". (9.8)
Since the stress in both elements is the same
o= Fe® =ne’. 9.9
Taking time derivative by parts of the constitutive equation for the linear spring gives
0 =Feé =FE(—¢). (9.10)

Substituting now the constitutive equation of the dashpot to the equation (9.10) the final
form of the of the Maxwell’s viscoelastic model is obtained

E
&+ —o = E&. ©.11)
"

Behaviour in a creep test. In a creep test a constant stress 0 = o is imposed suddenly
at time ¢ = 0. Thus the stress rate ¢ is zero for ¢ > 0, and the equation (9.11) gives

directly the strain-rate
¢ =n"'oy, 9.12)
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Figure 9.3: Maxwell’s material model of viscoelasticity.

1.e. the creep strain-rate is a constant and depends linearly on the applied stress. Simple
integration of the equation results in

e(t) = ntoot + C, (9.13)
where C' is the inegration constant, which can be determined from the initial condition
£(0) = B toy. (9.14)

Solution for a constant stress creep problem for the Maxwell model is thus

e(t) = % (1 + Et) = % (1 + ;) = 00J (1), (9.15)

where 7 = 7/ E is the relaxation time and the function J is called the creep compliance.
It defines the strain per unit applied stress and for ¢ > 0 it is monotonously increasing
function. For t < 0, J(t) = 0.

Behaviour in a relaxation test. In a relaxation test the material is loaded by a suddenly
applied constant strain £y at time ¢ = (. Thus the strain rate € vanish for times ¢t > 0.
When the strain is imposed at ¢ = 0 the elastic component reacts immediately, therefore
the initial value for the stress is 0(0) = 09 = Eeq. The differential equation to be solved
is 5
o+ —o =0, (9.16)
U]
with the initial condition 0(0) = 09 = Fe(. Trying to find the solution in the form
o(t) = C'exp(rt), and substituting it into the equation (9.16) results in

Ce"(r+ E/n) =0, 9.17)
which gives the value r = — E//n and the solution of the homogeneous differential equa-
tion (9.16) is

o(t) = Ce B/, (9.18)
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Figure 9.4: Behaviour of Maxwell’s viscoelastic model in (a) creep and (b) relaxation

tests. The dashed red line indicates hypothetical relaxation with initial rate giving the
physical intepretation of the relaxation time 7 = 1/ E.

The integration constant C' is determined from the initial condition
o(0) =C = oy. (9.19)
Solution for the relaxation problem of the Maxwell viscoelastic model is
o(t) = oge PV = g™ = 5y G(1), (9.20)

where the function G () is called the relaxation modulus, which is the stress developed
in a relaxation test when loaded by a unit strain. This form gives also a simple physical
meaning for the relaxation time 7. It is a hypothetical time after which the stress is relaxed
to zero if the complete relaxation takes place with the initial rate, see Fig. 9.4.

Itis also seen from (9.20) that the stress will tend to zero in the limit¢ — oo. Therefore
the Maxwell model is often considered as a fluid model. However, distinction between a
fluid and a solid is is not a trivial task.

Uniaxial tensile test, influence of strain rate. If the strain is increased with a constant
rate, i.e. £(t) = £ot, the constitutive equation (9.11) has the form

E
&+ —o = Fé. 9.21)
n
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The solution for the homogeneous equation is given in (9.18). A general solution for the
non-homogeneous equation (9.21) is a sum of the general solution of the homogeneous
equation and a particular solution, which in this case can be chosen to be a constant, thus

o(t) = Cexp(—Et/n) + B. (9.22)

Substituting it into (9.21) gives B = 7. The integration constant C' can be solved from
the initial condition o(0) = 0, giving C' = — B, and the complete solution is

o(t) =mngy (1 — e F1/m). (9.23)

It is seen that the limiting value when ¢ — 00 is 7)€y.
To obtain a stress-strain relationship, time can be eliminated from £(t) = £t, giving

o(e) = ney (1 — e Fe/m0) . (9.24)
From this equation, it can be verified that the modulus of elasticity for the Maxwell model

does not depend on strain rate

d
i — ) (9.25)
de |e=0

Defining an arbitrary reference stress o, and a reference strain ¢, = o,/ F, the stress-strain
relation can be written in the form

7 _ [1 ~exp ( o 3)} | 926)

Oy Oy 775‘:0 Er

In Fig. 9.5 the stress-strain is shown for various values of the strain-rate &.

9.4 Kelvin model

Another basic viscoelastic model is the Kelvin model*, where spring and dashpot are
placed in parallel, see Fig. 9.6. Now the stress o is divided into components

o = 01 + 09, where o, = Feg, and o9 = 1NE, (9.27)

and the costitutive equation for the viscoelastic Kelvin model is readily obtained in the
form

o= FEe+ne. (9.28)

4Also known as the Kelvin-Voigt model.
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Figure 9.5: Behaviour of Maxwell’s viscoelastic model in a tensile test perform with pre-
scribed strain rates €9 = o0, /7 (green line), 1.50, /7 (red line) and 20, /7 (blue line). The
limiting stress is shown by dotted lines.
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Figure 9.6: Viscoelastic Kelvin model.
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Behaviour in a creep test. In a creep test a constant stress o0 = o0 is imposed suddenly
at time ¢ = 0. From (9.28) it is obtained

e Bo_ o0 (9.29)
nooon

Analoguous to (9.22) general solution is of the form
e(t) = Cexp(—FE/nt) + B. (9.30)
Substituting the particular solution (constant B) into (9.29) gives B = 0/ F, thus
e(t) = Cexp(—=Et/n) + oo/ E. (9.31)

The integration constant C' can be determined from the initial condition. However,
it is not as obvious as in the case of the Maxwell model. For the Kelvin model there
is no instantaneous elasticity due to the parallel conbination of the spring and dashpot.

Therefore the proper initial condition for the creep test is £(0) = 0, which results in
C' = —0y/E, and the solution for the creep problem of the Kelvin model is
%0 —Et
e(t) = (1 —e Ftm), (9.32)

which is shown in Fig. 9.7a. Thus the creep compliance for the Kelvin model is
J(t) = — (L—e Py, (9.33)

At the limit the creep strain of the Kelvin models approaches

lim e(t) = % _ (9.34)

t—00

Relaxation test. If the suddenly imposed constant strain function £(t) = eoH (%) is
substituted into (9.28) results in

o(t) = EeoH (t) + nzod(t), (9.35)

which shows no stress relaxation when ¢ > 0 and the graph is shown in Fig. 9.7b. The
infinite stress at the jump is due to the viscous dashpot.

Behaviour of the Kelvin model in uniaxial constant strain-rate loading is unrealistic for
most materials and will not be discussed here. Determination of the response in constant
strain-rate loading is left as an exercise.

As a conclusion, the viscoelastic Kelvin model alone is a poor description of actual
material, either solid or fluid.
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Figure 9.7: Behaviour of Kelvin’s viscoelastic model in (a) creep and (b) relaxation tests.

9.5 Linear viscoelastic standard model

In Fig. 9.8 a three parameter model where an elastic spring and a Kelvin element is in
series. Such a model is known as the standard linear viscoelastic solid model, also known
as the Zener model.’ The same behaviour can also be obtained if the linear spring is in
parallel with the Maxwell model.® Derivation of the constitutive equation is much more
involved in comparison to Maxwell and Kelvin models.

SFliigge [4] calls the standard viscoelastic model simply as a 3-parameter model.
5There exist also a standard linear viscoelastic fluid model.

Es

Ey

Figure 9.8: Viscoelastic linear standard solid model.
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The constitutive law in the linear spring on the rigth hand side is
o= Eeq, (9.36)

and the stress o is divided into two components in the Kelvin element

o =0y +0,  where {‘71 = Eae, (9.37)
09 = NEs.
The total strain of the three-parameter element is
€=2¢1+éo. (9.38)
Differentiating by parts w.r.t. time, Eq. (9.36) gives
0= FEg1 = FE1(é —&9). (9.39)

The strain-rate in the Kelvin element is

g9 g — 01

é2 p— pr—
n n
1 1
1 B,
- Kl N E) . Eza] | (9.40)

Substituting this expression into Eq. (9.39) gives the final form of the constitutive equation
for the standard solid

E E E.E
d+—1<1+—2)a:E1é+ 12 9.41)
n E, n

Creep test. In the creep test the stress oy is suddenly applied at time ¢ = 0, thus o(¢) =
0o H (t) and substituting it into eq. (9.41) gives

. E2 1 ( EQ) (o)
e+ —e=—|14+—= )00+ (t)—=, (9.42)
2 =a\tE )ty
where J is the Dirac delta function. A trial function for the particular solution is
ep(t) = BH(t). (9.43)
Substituting this expression into Eq. (9.42) gives the value
E2 0o
B=(14+—=]—=. 9.44
(1+3) 57 (0.44
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9.5. Linear viscoelastic standard model 103

e(t) = Aexp(—FEqt/n) + <1 + 52) , (9.45)

Due to the spring element on the left hand side, the model can show an instantaneous
elastic strain. The initial condition is thus

0o

tl_l)%}‘r e(t) =eo = o (9.46)
the integration constant A can be solved, resulting in
00
A= ——. 9.47
i (9.47)
Solution to the creep problem for the viscoelastic standard solid is
E2 El
t 1+ = - —Est 1+ —(1- —Est . (948
0= 72 |14 - el Batfn)| = 52 |14 2 (1= (Bt 048)
The creep compliance is thus
1 E,
J(t) = 1+ — (1 —exp(—Est/n))| . (9.49)
A Ey
It is easily seen that the limiting strain when ¢ — oo is
e = (1+E1/By) 22, (9.50)
Ey

Relaxation test. In the relaxation test the strain is prescribed as €(t) = o H (t), thus to
obtain the ralaxation function the following differential equation has to be solved

E E E.E
&+ = (1—1——2)0: L2 e, 9.51)
n Ey n

with the initial condition
0'(0) = E180. (952)

When the strain is suddenly imposed, the left elastic spring can only respond instanta-
neously, while the Kelvin element on the right hand side is initially infintely stiff, see
Fig. 9.7. Solution of the homogeneous part of Eq. (9.51) has the form

on(t) = Aexp(—(Er + E3)t/n), (9.53)

and the particular solution is simply a constant o, = C, the value of which can be found

to be
C = 2 £0. 9.54
FEi + Es 0 ( )
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8/60:E18/0'0 O'/UOZU/(E1€0)
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Figure 9.9: Behaviour of standard viscoelastic model in (a) creep and (b) relaxation tests
(BEy = E1/4).

Using the initial condition, the following value for A can be obtained

B}
= ———¢p. 9.55
WAL (9.55)
The complete solution for the relaxation problem is thus
Ergg — Ey — Esy

ot)= ——— [Ewe™"+ By =0y | ——e 1" 4+ —2 |, 9.56
Q E1+E2[ ! 2} ° B+ B E1+ By ©:20)

where 7 = 1/(E) + E) is the ralaxation time of the standard linar solid model.

It is easy to see that the limiting stress when ¢ — oo is
EE E

_ Eailngy 1€0 00 (9.57)

O = = = )
Ei+E, 1+4+E/E, 14 E/E,

Uniaxial tensile test, influence of strain rate. If a uniaxial tensile test is performed
with a prescribed strain rate, i.e. £(t) = £yt, the response can be solved from the equation
(9.41) after substituting the prescribed strain into it, rsulting in

Erby £o. (9.58)

E E
d+—<1+—2>a:Eléo+
1 £y
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Solution of this linear ordinary constant coefficient differential equation can be obtained
as a sum of the general solution of the homogeneous equation and a particular solution
satisfying the full equation (9.58):

oy — Aexp(—(E1 + Eg)t/ﬂ), Op = Cl + CQt (959)

Substituting the particular solution into (9.58) results in

B+ E,

E,E
CQ+T(01 + Cot) = Brég + 2

€ot.

E3 . ELEs
ETADSU N ey A
The coefficient A is solved from the initial condition ¢(0) = 0, and it is

E? .
7(E1 n E2)2€077.

Clz

A=—-C=-

B, (1 (—(E\ + Ex)t/n)) + Eikr (9.60)
(E1+E2)280n exp 1 2)U/1 E1+E2€0 . .

Expressing the equation as a function of strain, the stress-strain relation in a constant
strain rate tensile test is thus

E? B E,

o(t) =

1 . .
0(e) = —=———==¢com (1 —exp(—(FE1 + Ey)e/e + —=. 9.61
(e) (B + By on ( p(—(E1 + Ez)e/con)) o 9.61)
Notice that the Young’s modulus of the linear standard viscoelastic solid is
d EFE E? . E1+FE E\FE E
:_0 _ 12+ 1 SEon 1' 2 _ 12+ 1 — B,
de le=0 El + E2 (El + EQ) Eon El + E2 El + E2
(9.62)

Defining an arbitrary reference stress o, and a reference strain ¢, = o,/FE}, the stress-
strain relation can be written in the form

g E12 807] 1

= (1 —exp[—(1 + Ea/Er)(ov/éon)(e/ex)]) + £ 9.63)

U_r (E4 +E2)2U—r 1+ Ey/Es e,

In Fig. 9.10 the stress-strain is shown for various values of the strain-rate €.

Notice that the stress-strain relation resembles of the strain hardening elasto-plastic
model. The tangent modulus approaches the value E5 with increasing strain. Due to lin-
earity the strain increases linearly with increasing strain-rate.

9.6 Generalizations

9.7 Hereditary approach
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ooy

1.5

1.0

0 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 9.0 10.0

e/e

Figure 9.10: Behaviour of the standard linear viscoelastic solid model in a tensile test
perform with prescribed strain-rates £y = o, /7 (green line), 1.50, /7 (red line) and 20, /7
(blue line). Notice that the limiting tangent modulus do /de is Es.
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Chapter 10
Creep

10.1 Introduction

Creep is time dependent inelastic deformation which is usually divided into three phases
shown schematically in Fig. 10.1!. For metals and ceramics the room-temperature be-
haviour can practically be considered as time independent. For metals creep starts to be
significant when temperature exceeds 30 % of the melting temperature [?]. Therefore for
structures used with energy conversion applications, like turbines, reactors, boilers creep
has to be taken into account in their analysis and design.

In the primary phase, the creep strain-rate gradually decreases to a certain minimum
value. This time instant where the minimum strain-rate is reached determines the change
from primary to the secondary stage. During the primary phase dislocation movement is
gradually slowed down at the “erkauma”particles and the material is hardening. A char-
acteristic feature of the secondary creep phase is that the creep strain-rate is almost a
constant, and at that stage the birth and annihilation of dislocations are balanced. Voids
are formed at the grain boundaries, which starts to grow at the tertiary creep phase and
weakens the material causing the increase of creep strain-rate. This phase ends to a rupture
at tyyp, see 10.1.

The effect of temperature and stress is roughly speaking similar, i.e. increase of either
stress or temperature increases the creep strain-rate and shortens time to rupture ;.

In Fig. (10.2) a typical deformation mechanism map for a metal alloy is shown.

10.2 Classical creep models

In classic books on creep the creep strain-rate is often decomposed multiplicatively into
three separate functions depending on stress o, time ¢ and temperature 7" as

e = [(o)g(A(T). (10.1)

I'These three phases were first noticed by Costa Andrade in 1910.
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creep rupture

€ |
|
|
|
|
|
|
|
minimum creep strain-rate region |
/ |
|
Eo w
= oy ¢
+
—1 I I

Figure 10.1: Three phases in the constant stress creep test: I primary creep, 1I secondary
creep, i.e. steady-state creep, III tertiary creep.

The most well know empirical time and stress functions to decribe the primary and sec-
ondary creep are the following [18]:

Norton 1929 f(o) = Ci(a/o, ), (10.2)
Soderberg 1936 f(o) = Cy(exp(o/oy) — 1), (10.3)
Dorn 1955 f(lo) = Csexp(a/oy), (10.4)
Garofalo 1965 f(o) =sinh?(0/0,), (10.5)
Andrade 1910 g(t) = (14 bt'/?) exp(kt) — 1, (10.6)
Bailey 1935 g(t) = (t/to)", usually £ <n<g, (10.7)
McVetty 1934 g(t) = C1(1 — exp(—kt)) + Cst, (10.8)

where C1, Cs, C3, b, p, k, t.,n and o, are parameters. Often o, is called as the drag stress.
The effect of temperature is often taken into account by using the Arrhenius-type
function

h(T) x exp(—Q./RT), (10.9)

where (). is the activation energy and R (= 8,314 J/mol K) is the universal gas constant.
The product of strain-rate and the Arrhenius term

Z =¢éexp(Q./RT) (10.10)
is called as the Zener-Hollomon parameter.
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Figure 10.2: Schematic deformation mechanism map for a metal alloy.
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10.2.1 Creep modelling using internal variables

Instead of classic creep equations (10.2)-(10.8) a modern approach to model creep phe-
nomena is to use internal variables and evolution equations which describe their change.
Typically the evolution equations for the internal variables «;, which are either scalars or
second order tensors, are of the following form

dy

K; = hlé‘c -7 n/‘iiéc - T?tlii, (101 1)

where the functions h;, %™ and 7! describe strain-hardening, dynamic and static recovery
[2].

A constitutive model which captures primary, secondary and tertiary creep phases can
be written as

o= (1-D)C%*=(1-D)Ce—e"—e™), (10.12)

were the infinitesimal strain tensor € is decomposed into elastic, creep and thermal parts
e=e"+e+e (10.13)

Continuum damage mechanics can be used to obtain correct behaviour in the tertiary
creep phase and the following Kachanov-Rabotnov type damage evolution equation is

often used )
o 1exp(=Qa/RT) o '
D= Dy ((1 - D)Uo) | (1019

where t4 is a time parameter, ()4 "damage activation energy", r is a dimensionless material
parameter and oy is an arbitray reference stress.
If the Norton-Bailey type stress function is chosen, the creep strain rate is

£° = tlexp(—Q/RT) (g)p (10.15)

c Oy

where . is a time parameter, related to the relaxation time and o, is the drag stress. In the
above equation the temperature function is of Arrhenius” type exp(—Q/RT'), where Q is
the activation energy and R the gas constant which has the value 8.3145 J/(mol K). The
scalar o is an effective stress for which some commonly used expressions are

Oef = V3J2 von Mises stress,
0= aoeg + (1 — a)oy convex combination of vM and the largest principal stress,
alor) + B + yoeg  isochronous form, Hayhurst 1972.
2Svante Arrhenius (1859-1927) was a Swedish physicist and the first Swedish laureate (1903 chemistry).

He was also the first to use the basic rinciples of physical chemistry to estimate the the effect of the increase
of carbon dioxide to the Earth’s surface temperature.
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In the isochronous case o + 3 + v = 1.
Primary creep can be modelled by setting the drag stress o, dependent on the effective
creep strain

) ) 2
£° = /s*dt, €= géc o (10.16)
Similar kind of hardening rules like in plasticity, see Section 7.3.2, equation (7.56), i.e.
0y = 0y0 + Koo (1 — exp(—he®/Ky)). (10.17)

Notice that the parameters 0,9, K, and h are usually temperature dependent as well as
the powers 7 and p in (10.14) and (10.15), respectively. For high-temperature behaviour
of metals usually p ~ 2r, see e.g. [9].

10.2.2 Some empirical rule of thumb relations

Monkman-Grant (1956) observed that the product of the minimum creep strain-rate and
the failure time is a constant which is independent of the applied stress level and temper-

ature
(Emin)tr = Cuc ~ e, (10.18)

and it is roughly the strain at failure. A slighly better fit to experimental results for some
materials can be obtained if it is written in the form

(Emin)™t = Chic, (10.19)

where the exponent m < 1.
A rough estimate for the failure time can also be determined by using the Larson-

Miller (1952) parameter P:
Py =T(C + In(te)), (10.20)

where C' = 20 and the fracture time ¢; is given in hours. However, a more recommendable
form of the Larson-Miller relationship would be

_ !
Py=T [pln (0_30) +ln (i)} - % (10.21)
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Chapter 11
Viscoplasticity

11.1 Introduction

Many materials show strain-rate dependency in their plastic behaviour, especially in the
high strain rate regime. Viscoplastic models are used to capture this phenomena. For
macroscopic modelling of viscoplasticity there are basicly two types of approaches: (i)
the overstress and (ii) the consistency models. In the overstress models the stress can
lie outside the yield surface and the viscoplastic strain rate depend on some way on the
distance between the stress point and the yield surface.

11.2 Overstress viscoplasticity

11.2.1 Perzyna type overstress viscoplasticity

Perzyna [19, 20]' proposed in 1963 an overstress type viscoplastic model where the vis-
coplastic strain rate is defined as

oo _ Ly 99
& =0 g0 (11.1)

where 7 is the viscosity parameter, ¢ is some function of the yield function f and g is
the plastic potential. As in inviscid plasticity the model is called associative if ¢ = f and
otherwise non-associative. Common choises for the overstress function ¢ are power laws

<z><f>=<0_iy0>p or ¢<f>=<o_iy>p, (112)

in which p is a material parameter and oy, oy are the currect yield stress and the initial
value of it, respectively. The notation (y) refers to the Macaulay brackets, i.e. (y) =
yH (y) where H is the Heaviside unit step function.

I'The idea of viscoplastic models goes back to Hohenemser & Prager 1932 [5].
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Figure 11.1: A spring, dashpot and frictional unit model of viscoplasticity.

11.2.2 Duvaut-Lions type overstress viscoplasticity

An alternative format for viscoplasticity was proposed by Duvaut and Lions in 1972 [3]. In
their model the viscoplastic strain rate is based on the difference in the response between
the rate-independent material model and the viscoplastic one. This is in contrast to the
Perzyna model where the value of the yield surface determines the viscoplastic strain
rate. In the Duvaut-Lions model the viscoplastic strain rate is defined as

1 1
=—D° (6—0®), or €P=—(0—0cP), (11.3)
typ n

e’

where o? is the solution of the rate-independent material model, also called as back-bone
model, and D° is the elastic compliance. The model has only one additional parameter to
the inviscid plasticity model, i.e. the viscosity 7 or time parameter t,,,, depending which
of the forms in (11.3) is used.

11.3 Consistency viscoplasticity

In both the Perzyna and Duvaut-Lions approaches the current stress state can lie outside
the yield surface. Therefore also the consistency condition and the Kuhn-Tucker condi-
tions are not applicable in the overstress viscoplasticity. In consistency viscoplasticity the
yield surface restricts the allowable stress states but it depends on the strain rate, i.e.

flo, K* R*) =0, (11.4)

where the hardening parameters A depend on hardening variables x* and the rate hard-
ening parameters 2 depend on the rates <. The plastic strain-rate and the hardening
variables k“ are obtained in a standard fashion from the plastic potential

dg . Jdg

‘Vp:'_ L
ev =3~ K Aorea (11.5)
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where the plastic multiplier A is obtained from the consistency condition

. Of . of .. Of ..
f=35 10+ g Ko+ 5o R
C9f . 9f OK* 5 9f OR* 5

=30 .0'+6Ka BP K R &%B/ﬁ =0. (11.6)

Also the evolution equation for the £ is required. Since the plastic potential cannot de-
pend on the rates K,

de®* - Of
= = \— 11.7
which now results in ordinary differential equation for the plastic multiplier A:
. 0 of OK* Jdg . of OR* 0g -
[ P J ! I 5 =0. (11.8)

90 % T 9K 0P 0K? OR® 01 OKP

In the above equation we can define the strain hardening modulus / and the strain rate
sensitivity parameter S

of OK" g
H = 51 57 0KF (11.9)
of OR* dg
= —_—. 11.1
S = SR 9P DK (11.10)

Above format is similar to the inviscid plasticity, the strain-hardening modulus is iden-
tical to (7.38), an additional term is the strain-rate sensitivity term. However, the consis-
tency condition (11.8) is now a differential equation in contrast to the algebraic equation
(7.36).

For many materials the strain rate sensitivity S is positive, i.e. the material is hardening
with increasing strain-rate. However, certain materials show negative strain rate sensitiv-
ity, which results in serrated stress-strain curve e.g. in a tensile test, which is known as the
Portevin-Le Chatelier (PLC) effect. It is a material instability phenomena and should not
be mixed with the formation of Liiders band which can be observed in strain-softening
solids.
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