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Chapter 1

Introduction

1.1 The general structure of continuum mechanics

In principle, the general structure of equations in continuum mechanics is threefold. First,
there is a balance equation (or balance equations) stating the equilibrium or force balance
of the system considered. These equations relate e.g. the stress with external forces. Sec-
ondly, the stress is related to some kinematical quantity, such as strain, by the constitutive
equations. Thirdly, the strain is related to displacements by the kinematical equations.

Balance equations are denoted as B∗σ = f , where B∗ is the equilibrium operator, usu-
ally a system of differential operators. In the constitutive equations σ = Cε the operator
C can be either an algebraic or differential operator. Finally, the geometrical relation, i.e.
the kinematical equations, are denoted as ε = Bu. These three equations form the system
to be solved in continuum mechanics and it is illustrated in figure 1.1. The equilibrium
operator B∗ is the adjoint operator of the kinematical operator B. Therefore, there are
only two independent operators in the system.

Example - axially loaded bar. The equilibrium equation in terms of the axial force N
is

− dN

dx
= f, (1.1)

where f is the distributed load [force/length] in the direction of the bar’s axis. Thus, the
equilibrium operator B∗ is

B∗ = − d

dx
. (1.2)

The axial force is related to the strain via the elastic constitutive equation (containing the
cross-section area as a geometric quantity)

N = EAε. (1.3)

1



2 CHAPTER 1. Introduction

ε u

σ f
B⋆σ = f

σ = Cε B⋆CBu = f

ε = Bu

✻

✲

✛

Figure 1.1: The general structure of equations in mechanics.

In this case the constitutive operator C is purely algebraic constant C = EA. The kine-
matical relation is

ε =
du

dx
, (1.4)

thus, the kinematic operator

B =
d

dx
, (1.5)

for which B∗ is clearly the adjoint. The equilibrum equation expressed in terms of axial
displacement is

B∗CBu = − d

dx

(

EA
du

dx

)

= f. (1.6)

Example - thin beam bending. The equilibrium equation in terms of the bending mo-
ment M is

− d2M

dx2 = f, (1.7)

where f is the distributed transverse load [force/length]. Thus, the equilibrium operator
B∗ is

B∗ = − d2

dx2 . (1.8)

The bending moment is related to the curvature via the elastic constitutive equation (con-
taining the inertia of the cross-section as a geometric quantity)

M = EIκ. (1.9)

Again, the constitutive operator C is purely algebraic constant C = EI . The kinematical
relation is

κ = −d2v

dx2 . (1.10)
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1.2. Vectors and tensors 3

The kinematical operator is

B = − d2

dx2 , (1.11)

for which B∗ is clearly the adjoint and also in this case B∗ = B. The equilibrum equation
expressed in terms of the axial displacement is

B∗CBu = − d2

dx2

(

EI
d2v

dx2

)

= f. (1.12)

Example - linear 3-D elasticity. The equilibrium, constitutive and kinematical equa-
tions are

− div σT = ρb , and σ = σT (1.13)

σ = Cε, (1.14)

ε = sym gradu , (1.15)

where σ is the symmetric stress tensor, ρ is the material density, b is the body force per
unit mass, u is the displacement vector and C is the elasticity tensor. Thus the operators
B∗, B and C are

B∗ = − div, (1.16)

B = grad, (1.17)

C = C . (1.18)

The formal adjoint of the B∗ = − div operator is the gradient operator.

1.2 Vectors and tensors

1.2.1 Motivation

In any physical science physical phenomena are described by mathematical models, which
should be independent of the position and orientation of the observer. If the equations of
a particular model are expressed in one coordinate system, they have to be able describe
the same behaviour also in another coordinate system too. Therefore, the equations of
mathematical models describing physical phenomena are vecor or tensor equations, since
vectors and tensors transform from one coordinate system to another coordinate system
in such a way that if a vector or tensor equation holds in one coordinate system, it holds
in any other coordinate system not moving relative to the first one [14, p. 7].

1.2.2 Vectors

In three-dimensional space a vector can be visualized as a an arrow having a length and a
direction. In mathematics a vector can have a more abstract meaning.

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



4 CHAPTER 1. Introduction

1.2.3 Second order tensors

A second order tensor, denoted e.g. by A can be understood as a general linear transfor-
mation that acts on a vector u and producing a vector v .

v = A · u . (1.19)

In many texts the symbol indicating the multiplication, ·, is omitted and the equation
(1.19) can be written as

v = Au . (1.20)

In this lecture notes, only cartesian rectangular coordinate system is used, and the or-
thonormal unit base vectors of an arbitrary coordinate system are denoted as e1, e2 and
e3 . Since the tensor equation (1.19), or (1.20) embraces information of the the underlying
coordinate system, it can be expressed in a dyadic form

A =A11e1e1 + A12e1e2 + A13e1e3

+ A21e2e1 + A22e2e2 + A23e2e3

+ A31e3e1 + A32e3e2 + A33e3e3 , (1.21)

which can be written shortly as

A =
3∑

i=1

3∑

j=1

Aije ie j = Aije iej . (1.22)

In the last form of (1.22) the Einstein’s summation convention is used.1 The summation
convention states that whenever the same letter subscript occurs twice in a term, a sum-
mation over the range of this index is implied unless othetwise indicated. That index is
called a dummy index and the symbol given for a dummy index is irrelevant. The tensor
product2, or dyad, uv of the two vectors u and v is a second order defined as a linear
transformation

uv · w = u(v · w ) = (v · w)u , (1.23)

i.e. it transforms a vector w in the direction of the vector u . In the literature the notation
u ⊗ v for the tensor product is also used. In index notation it is written as uivj and in
matrix form as uvT .

As an example, a scalar product between two vectors is defined as

a · b = (a1e1 + a2e2 + a3e3)·(b1e1 + b2e2 + b3e3)

= aie i·bje j = aibje i · ej = aibjδij = aibi, (1.24)

1The summation convention appeared first time in Albert Einstein’s (1879-1955) paper on general rela-
tivity in 1916.

2The tensor product is also known as a direct or matrix product.
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1.2. Vectors and tensors 5

where the Kronecker delta-symbol, which is defined as

δij =

{

1, if i = j,

0, if i 6= j,
(1.25)

which defines the second order unit tensor.
Using the summation convention the equation (1.19) can be written as

vie i = Aije iej · ukek = Aijukδjke i = Aijuje i, (1.26)

from which we can deduce
(vi −Aijuj)e i = 0 , (1.27)

and the relation between the components is

vi = Aijuj. (1.28)

Since in this lecture notes only cartesian coordinate systems are used, the tensor equations
can be written simply either in the absolute notation, like equation (1.19), or in the index
notation without the base vectors, like in equation (1.28). The cartesian second-order
tensor operates just like a matrix. An index which is not dummy is called free, like the
index i in eq. (1.28).

The dot product of two second-order tensors A and B is denoted as A · B (in litera-
ture also denoted as AB ) and is defined as

(A · B)·u = A·(B · u) (1.29)

for all vectors u . The result of a dot product between two second-order tensors is also a
second-order tensor. In general, the dot product is not commutative, i.e. A · B 6= B · A.
The components of the dot product C = A · B between cartesian tensors A and B are
given as

Cij = AikBkj. (1.30)

The transpose of a tensor is defined as

b · AT · a = a · A · b = A · b · a , (1.31)

for all vectors a , b . Note that (AT )T = A.
The trace of a dyad ab is defined as

tr (ab) = a · b = aibi. (1.32)

For a second-order tensor A, expressed in an orthonormal basis (e1, e2, e3), the trace is
thus given as

trA = tr(Aije ie j) = Aij tr (e iej) = Aije i · ej = Aijδij = Aii. (1.33)
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6 CHAPTER 1. Introduction

A double dot product of two second-order tensors is defined as

A : B = tr(ATB) = tr(BTA) = tr(ABT ) = tr(BAT ) = B : A, (1.34)

which in index notation and for cartesian tensors can be written as

AijBij = BijAij . (1.35)

A second-order tensor A can be written as a sum of it’s eigenvalues λi and eigenvec-
tors φ as

A = A·φiφi =
3∑

i=1

λiφiφi, (1.36)

which is known as the spectral decomposition or spectral representation of A.

1.2.4 Higher-order tensors

In these lecure notes, the permutation tensor E is the only third order tensor to be used. It
is expressed as

E = ǫijke ie jek, (1.37)

where ǫijk = (e i × e j) · ek are the 33 components of E . The components ǫijk can be
expressed as3

ǫijk =







+1, for even permutations of (i, j, k), i.e. 123, 231, 312,

−1, for odd permutations of (i, j, k), i.e. 132, 213, 321,

0, if there are two or more equal indexes.

(1.38)

Fourth-order tensors are used in constitutive models. As an example of a fourth-order
tensor is a tensor product of two second-order tensors

C = AB , or in index notation Cijkl = AijBkl. (1.39)

There are two different fourth-order unit tensors I and Ī, defined as

A = I : A, and AT = Ī : A, (1.40)

for any second-order tensor A. In index notation for cartesian tensors the identity tensors
have the forms

Iijkl = δikδjl, Īijkl = δilδjk. (1.41)

3The permutation symbol ǫijk is also known as alternating or Levi-Civita-ǫ symbol.
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1.2.5 Summary

Some hints to access the validity of a tensor equation expressed in the index notation:

1. identify the dummy and free indexes,

2. if three or more same indexes appear in a single term, there is an error,

3. perform contactions (dot products) and replacements (identity tensor) if possible.

1.3 Nomenclature

Strain and stress

e, eij = deviatoric strain tensor
s , sij = deviatoric stress tensor

s1, s2, s3 = principal values of the deviatoric stress
γ = shear strain

γoct = octahedral shear strain
εij = strain tensor
εoct = octahedral strain
εv = volumetric strain

ε1, ε2, ε3 = principal strains
σ = normal stress

σ, σij = stress tensor
σm = mean stress
σoct = octahedral stress

σ1, σ2, σ3 = principal stresses
τ = shear stress

τm = mean shear stress
τoct = octahedral shear stress

Invariants

I1(A) = trA = Aii = the first invariant of tensor A
I2(A) = 1

2
[tr(A2)− (trA)2] = second invariant

I3 = detA = third invariant
J2(s) =

1
2
tr s2 = second invariant of the deviatoric tensor s

J3 = det s = third invariant of a deviatoric tensor
ξ, ρ, θ = the Heigh-Westergaard stress coordinates

ξ = hydrostatic length
ρ = the length of the stress radius on the deviatoric plane
θ = the Lode angle on the deviatoric plane
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8 CHAPTER 1. Introduction

Material parameters

E = Young’s modulus
G = shear modulus
Gf = fracture energy
K = bulk modulus, hardening parameter
k = shear strength
m = fc = mft

α, β = parameters in the Drucker-Prager yield condition
ν = Poisson’s ratio
φ = internal friction angle of the Mohr-Coulomb criterion

1.4 On the references

This lecture notes is mostly based on the following excellent books:

1. L.E. Malvern: Introduction to the Mechanics of a Continuous Medium. Beautifully
written treatease on the topic.

2. G.A. Holzapfel: Nonlinear Solid Mechanics, A Continuum Approach for Engineers.
A modern treatment of some basic material in Malvern’s book. Contains usefull
material for understanding nonlinear finite element methods.

3. J. Lemaitre, J.-L. Chaboche: Mechanics of Solid Materials.

4. N.S. Ottosen, M. Ristinmaa: Mechanics of Constitutive Modelling.

5. J.N. Reddy: An Introduction to Continuum Mechanics with Applications.
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Chapter 2

Stress

2.1 Stress tensor and the theorem of Cauchy

Consider a body B in a 3-dimensional space occupying a volume domain Ω, see figure
2.1. If the body B is divided into two parts by a surface S and the parts separated from
each other. The force acting on a small surface ∆S is denoted by ∆f . A traction vector t
is defined as

t = lim
∆S→0

∆f

∆S
=

df

dS
. (2.1)

The traction vector depends on the position x and also on the normal direction n of the
surface, i.e.

t = t(x ,n), (2.2)

a relationship, which is called as the postulate of Cauchy.1

In the rectangular cartesian coordinate system, the traction vectors acting in three
perpendicular planes, parallel to the coordinate axes are denoted as t1, t2 and t3, see
figure 2.2. The components of the traction vectors are shown in the figure and expressed
in terms of the unit vectors parallel to the coordinate axes e i the traction vectors are

t1 = σ11e1 + σ12e2 + σ13e3, (2.3)

t2 = σ21e1 + σ22e2 + σ23e3, (2.4)

t3 = σ31e1 + σ32e2 + σ33e3. (2.5)

To obtain the expression of the traction vector in terms of the components σij , let
us consider a tetrahedra where the three faces are parallel to the coordinate planes and
the remaining one is oriented in an arbitrary direction, see figure 2.3. In each of the
faces, the average traction is denoted as t∗i , where i = 1, 2, 3, and the area of the triangle
A1A2A3 is denoted as ∆S and ∆S1,∆S2,∆S3 are the areas of triangles OA2A3, OA3A1

and OA1A2, respectively. The body force acting on the tetrahedra is ρ∗b∗∆V , where the
volume element ∆V = 1

3
h∆S, and h is the distance ON .

1Sometimes traction vector t is also called as a stress vector. However, in this lecture notes this naming
is not used since the stress has a tensor character.

9



10 CHAPTER 2. Stress

Figure 2.1: A continuum body and the traction vector.

x

y

z

n1

n2

n3

t1

t2

t3

σ11

σ12

σ13

σ22

σ21

σ23

σ33

σ31
σ32

Figure 2.2: Traction vectors in three perpendicular directions.
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O

A

B

C

x1

x2

x3

n
t∗n∆S−t∗2∆S2

−t∗3∆S3

−t∗1∆S1

ρ∗b∗∆V

Figure 2.3: Traction vectors acting on te faces of the Cauchy’s tetrahedra.

Equilibrium equation for the tetrahedra is

t∗n∆S + 1
3
ρ∗b∗h∆S − t∗1∆S1 − t∗2∆S2 + t∗3∆S3 = 0, (2.6)

which can be written as

∆S(t∗n +
1
3
ρ∗b∗h− n1t

∗
1 − n2t

∗
2 + n3t

∗
3) = 0. (2.7)

Now, letting h → 0, we get t∗i → t i and

tn =
3∑

i=1

n1t i = nit i

= n1(σ11e1 + σ12e2 + σ13e3) + n2(σ21e1 + σ22e2 + σ23e3)

+ n3(σ31e1 + σ32e2 + σ33e3), (2.8)

or

tn =





n1σ11 + n2σ21 + n3σ31

n1σ12 + n2σ22 + n3σ32

n1σ13 + n2σ23 + n3σ33



 = nTσ = σTn . (2.9)

Notice the transpose in the stress tensor σ in the last expression. The stress tensor σ,
expressed in rectangular cartesian coordinate system is

σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 =





σx τxy τxz
τyx σy τyz
τzx τzy σz



 . (2.10)
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12 CHAPTER 2. Stress

The form of the right hand side is know as von Kármán notation and the σ-symbol in it
describes the normal component of the stress and τ the shear stresses. Such notation is
common in engineering literature.

The equation (2.9) is called the Cauchy stress theorem and it can be written as

t(x ,n) = [σ(x )]Tn , (2.11)

expressing the dependent quantities explicitly. It says that the traction vector depends
linearly on the normal vector n .

2.2 Coordinate transformation

If the stress tensor (or any other tensor) is known in a rectangular Cartesian coordinate
system (x1, x2, x3) with unit base vectors e1, e2, e3 and we would like to know its compo-
nents in other recangular Cartesian coordinate system (x′

1, x
′
2, x

′
3) with unit base vectors

e ′
1, e

′
2, e

′
3, a coordinate transformation tensor is needed. Let us write the stress tensor σ

in the xi-coordinate system as

σ = σ11e1e1 + σ12e1e2 + σ13e1e3 + σ21e2e1 + σ22e2e2 + σ23e2e3

+ σ31e3e1 + σ32e3e2 + σ33e3e3. (2.12)

This kind of representation is called the dyadic form and the base vector part e iej can is
written either as e i ⊗ e j or in matrix notation e ie

T
j . It underlines the fact that a tensor

contains not only the components but also the base in which it is expressed. Using the
Einstein’s summation convention it is briefly written as

σ = σije iej = σ′
ije

′
ie

′
j , (2.13)

indicating the fact that the tensor is the same irrespectively in which coordinate system it
is expressed.

Taking a scalar product by parts with the vector e ′
k from the left and with e ′

p from the
right, we obtain

σij e
′
k·e i
︸ ︷︷ ︸

βki

ej·e
′
p

︸ ︷︷ ︸

βjp

= σ′
ij e

′
k·e

′
i

︸ ︷︷ ︸

δki

e ′
j·e

′
p

︸ ︷︷ ︸

δjp

. (2.14)

It can be written in the index notation as

σ′
kp = βkiβpjσij or in matrix notation [σ′] = [β][σ][β]T , (2.15)

where the compnents of the transformation matrix are βij = e ′
i·e j . Notice that β is the

transformation from xi-system to x′
i-coordinate system.
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2.3. Principal stresses and -axes 13

2.3 Principal stresses and -axes

The pricipal values of the stress tensor σ are obtained from the linear eigenvalue problem

(σij − σδij)nj , (2.16)

where the vector ni defines the normal of the plane where the principal stress acts. The
homogeneous system (2.16) has solution only if the coefficient matrix is singular, thus the
determinant of it has to vanish, and we obtain the characteristic equation

− σ3 + I1σ
2 + I2σ + I3 = 0. (2.17)

The coefficients Ii, i = 1, . . . , 3 are

I1 = trσ = σii = σ11 + σ22 + σ33, (2.18)

I2 =
1
2
[tr(σ2)− (trσ)2] = 1

2
(σijσji − I21 ), (2.19)

I3 = det(σij). (2.20)

Solution of the characteristic equation gives the principal values of the stress tensor, i.e.
principal stresses σ1, σ2 ja σ3, which are often numbered as: σ1 ≥ σ2 ≥ σ3.

The coefficients I1, I2 and I3 are independent of the chosen coordinate system, thus
they are called invariants.2 Notice, that the principal stresses are also independent of the
chosen coordinate system. Invariants have a central role in the development of constitutive
equations, as we will see in the subsequent chapters.

If the cordinate axes are chosen to coincide to the principal directions n i (2.16), the
stress tensor will be diagonal

σ = [σij ] =





σ1 0 0
0 σ2 0
0 0 σ3



 . (2.21)

The invariants I1, . . . , I3 have the following forms expressed in terms of the principal
stresses

I1 = σ1 + σ2 + σ3, (2.22)

I2 = −σ1σ2 − σ2σ3 − σ3σ1, (2.23)

I3 = σ1σ2σ3. (2.24)

2The invariants appearing in the characteristic equation are usually called as principal invariants. Notice
that in this note the second invariant is often defined as of opposite sign. However, we would like to define
the principal invariants of the tensor and its deviator in a similar way. This convention is also used e.g. in
[13]
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14 CHAPTER 2. Stress

2.4 Deviatoric stress tensor

The stress tensor can be additively decomposed into a deviatoric part, describing a pure
shear state and an isotropic part describing hydrostatic pressure

σij = sij + σmδij , (2.25)

where σm = 1
3
I1 =

1
3
σkk is the mean or hydrostaticstress and sij the deviatoric stress ten-

sor, for which the notation σ′ is also often used in the literature. From the decomposition
(2.25) it is observed that the trace of the deviatoric stress tensor will vanish

trs = 0. (2.26)

The principal values s of the deviatoric stress tensor s can be solved from

|sij − sδij | = 0, (2.27)

giving the characteristic equation

− s3 + J1s
2 + J2s+ J3 = 0, (2.28)

where J1, . . . , J3 are the invariants of the deviatoric stress tensor. They can be expressed
as

J1 = trs = sii = sx + sy + sz = 0, (2.29)

J2 =
1
2
[tr(s2)− (trs)2] = 1

2
tr(s2) = 1

2
sijsji (2.30)

= 1
6
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2] + τ 2xy + τ 2yz + τ 2zx (2.31)

= 1
6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2], (2.32)

J3 = det s . (2.33)

The deviatoric stress tensor is obtained from the stress tensor by substracting the
isotropic part, thus the principal directions of the deviatoric stress tensor coincide to the
principal directions of the stress tensor itself. Also the principal values of the deviatoric
stress tensor are related to those of the stress tensor as





s1
s2
s3



 =





σ1

σ2

σ3



−





σm

σm

σm



 . (2.34)

The deviatoric invariants expressed in terms of the principal values are

J2 =
1
2
(s21 + s22 + s23), (2.35)

J3 =
1
3
(s31 + s32 + s33) = s1s2s3. (2.36)
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2.5. Octahedral plane and stresses 15

In general, the characteristic equation (2.28) for the deviator, i.e.

− s3 + J2s+ J3 = 0, (2.37)

facilitates the direct computation of the principal values of the deviatoric stress tensor and
thus also for the stress tensor itself via equations (2.34). Substituting transformation

s =
2√
3

√

J2 cos θ (2.38)

to the characteristic equation (2.37) results into equation

− 2

3
√
3

(
4 cos3 θ − 3 cos θ

)
J
3/2
2 + J3 = 0. (2.39)

Since 4 cos3 θ − 3 cos θ = cos 3θ, the angle θ can be calculated as

θ =
1

3
arccos

(

3
√
3

2

J3

J
3/2
2

)

. (2.40)

If the angle θ satisfies 0 ≤ 3θ ≤ π, then 3θ + 2π and 3θ − 2π have the same cosine.
Therefore θ2 = θ + 2π/3 and θ3 = θ − 2π/3 and the principal values of the deviator can
be computed from (2.38).

2.5 Octahedral plane and stresses

Octahedral plane is a plane, the normal of which makes equal angles with each of the
principal axes of stress. In the principal stress space the normal to the octahedral plane
takes the form

n = [n1, n2, n3]
T =

1√
3
[1, 1, 1]T (2.41)

The normal stress on the octahedral plane is thus

σoct = σijninj = σ1n
2
1 + σ2n

2
2 + σ3n

2
3 =

1
3
(σ1 + σ2 + σ3) = σm (2.42)

and for the shear stress on the octahedral plane, the following equation is obtained

τ 2oct = titi − σ2
oct = σijσiknjnk − (σijninj)

2. (2.43)

Expressed in terms of principal stresses, the octahedral shear stress is

τ 2oct =
1
3
(σ2

1 + σ2
2 + σ2

3)− 1
9
(σ1 + σ2 + σ3)

2 (2.44)

= 1
9
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2], (2.45)
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16 CHAPTER 2. Stress

which an be written as

τoct =
2
3

√

τ 212 + τ 223 + τ 231. (2.46)

If the expression (2.44) is written as τ 2oct = 1
3
(σ2

1 + σ2
2 + σ3

3) +
1
9
σ2
m, and using the

relationships σi = si + σm, the following expression is obtained

τ 2oct =
1
3
(s21 + s22 + s23), (2.47)

and the octahedral shear stress can be written in terms of the second invariant of the
deviatoric stress tensor as

τoct =
√

2
3
J2. (2.48)

2.6 Principal shear stresses

It is easy to see with the help of Mohr’s circles that the maximun shear stress is one-half
of the largest difference between any two of the principal stresses and occurs in a plane
whose unit normal makes an angle of 45◦ with each of the corresponding principal axes.
The quantities

τ1 =
1
2
|σ2 − σ3|, τ2 =

1
2
|σ1 − σ3|, τ3 =

1
2
|σ1 − σ2| (2.49)

are called as principal shear stresses and

τmax = max(τ1, τ2, τ3) (2.50)

or
τmax =

1
2
|σ1 − σ3|, (2.51)

if the convention σ1 ≥ σ2 ≥ σ3 is used.

2.7 Geometrical illustration of stress state and invariants

The six-dimensional stress space is difficult to elucidate, therefore the principal stress
space is more convenient for illustration purposes. Let’s consider a three-dimensional
euclidean space where the coordinate axes are formed from the principal stresses σ1, σ2

and σ3, see figure 2.4.
Considering the stress point P (σ1, σ2, σ3), the vector OP can be assumed to represent

the stress. The hydrostatic axis is defined through relations σ1 = σ2 = σ3, and it makes
equal angle to each of the principal stress axes and thus the unit vector parallel to the
hydrostatic axis is

n =
1√
3
[1, 1, 1]T . (2.52)
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σ2

σ3

σ1

O ξ

hydrostatic axis

n
b

N

ρ

bP (σ1, σ2, σ3)

Figure 2.4: Principal stress space.

Since the deviatoric stress tensor vanishes along the hydrostatic axis, the plane perpen-
dicular to it is called the deviatoric plane. The special deviatoric plane going through the
origin, i.e.

σ1 + σ2 + σ3 = 0, (2.53)

is called the π-plane. A stress state on the π-plane is a pure shear stress state.
The vector OP can be divided into a component parallel to the hydrostatic axis ON

and a component lying on the deviatoric plane NP , which are thus perpendicular to each
other.

The length of the hydrostatic part ON is

ξ = | ~ON | = ~OP · n =
1√
3
I1 =

√
3σm =

√
3σoct, (2.54)

and its component representation has the form

~ON =





σm

σm

σm



 = 1
3
I1





1
1
1



 . (2.55)

Respectively, the component NP on the devatoric plane is

~NP =





σ1

σ2

σ3



−





σm

σm

σm



 =





s1
s2
s3



 . (2.56)
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18 CHAPTER 2. Stress

σ1

σ2 σ3

θ

ρ e1

N

P

Figure 2.5: Deviatoric plane. The projections of the principal stress axes are shown with
dashed line.

Square of the length ~NP is

ρ2 = | ~NP |2 = s21 + s22 + s23 = 2J2 = 3τ 2oct = 5τ 2m. (2.57)

The invariants I1 and J2 have thus clear geometrical and physical interpretation. The
cubic deviatoric invariant J3 is related to the angle θ defined on the deviatoric plane as an
angle between the projected σ1-axis and the vector ~NP , see figure 2.5. The vector e1 is a
unit vector in the direction of the projected σ1-axis and has the form

e1 =
1√
6





2
−1
−1



 . (2.58)

The angle θ can then be determined by using the dot product of vectors ~NP and e1 as

~NP · e1 = ρ cos θ, (2.59)

which gives

cos θ =
1

2
√
3J2

(2s1 − s2 − s3) =
3

2

s1√
3J2

=
2σ1 − σ2 − σ3

2
√
3J2

. (2.60)

From the trigonometric identity, it is obtained

cos 3θ = 4 cos3 θ − 3 cos θ (2.61)

and

cos 3θ =
3
√
3

2

J3

J
3/2
2

=

√
2J3

τ 3oct
. (2.62)

A stress space described by the coordinates ξ, ρ and θ is called the Heigh-Westergaard
stress space.
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2.8 Solved example problems

Example 2.1. A stress state in a continuum at a point P is given by the following

stress matrix

σ =





σ0 2σ0 3σ0
2σ0 4σ0 6σ0
3σ0 6σ0 σ0



 .

1. Determine the traction vector t on a plane, having the normal in the direction

1:-1:2.

2. Determine the traction vector at the point P acting on the plane 2x1 − 2x2 −
x3 = 0.

3. Determine the normal and shear components on that plane.

4. Determine the principal stresses and directions.

Solution.

1. The unit normal vector in the direction 1:-1:2 is n = [1,−1, 2]T /
√
6 and the

traction vector is

t = σTn =





σ0 2σ0 3σ0
2σ0 4σ0 6σ0
3σ0 6σ0 σ0











1
−1
2







1√
6
=

σ0√
6







5
10
−1






.

2. The plane 2x1 − 2x2 − x3 = 0 has a normal n = [23 ,−2
3 ,−1

3 ]
T , thus the

traction vector on the plane is

t =





σ0 2σ0 3σ0
2σ0 4σ0 6σ0
3σ0 6σ0 σ0











2
−2
−1







1

3
=
σ0
3







−5
−10
−7






.

3. The normal stress action on the plane is just the projection of the traction vector
on the direction of the normal

σn = tTn =
17

9
σ0 ≈ 1, 9σ0.

The absolute value of the shear component action on the plane can be obtained
by the Pythagoras theorem

τn =

√

tT t − σ2n =
√

(−5
3 )2 + (−10

3 )2 + (−7
3 )2 − (179 )

2|σ0| =
√
1277/9|σ0| ≈ 3, 97|σ0|.

4. The principal stresses σ and the normals of the planes where the principal
stresses act n , are obtained from the eigenvalue problem





σ0 − σ 2σ0 3σ0
2σ0 4σ0 − σ 6σ0
3σ0 6σ0 σ0 − σ











n1
n2
n3






=







0
0
0






.
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20 CHAPTER 2. Stress

A homogeneous equation system has a nontrivial solution only if the coeffi-
cient matrix is singular, thus

det





σ0 − σ 2σ0 3σ0
2σ0 4σ0 − σ 6σ0
3σ0 6σ0 σ0 − σ



 =

= (σ0 − σ)

∣
∣
∣
∣

σ0 − σ 6σ0
6σ σ0 − σ

∣
∣
∣
∣
− 2σ0

∣
∣
∣
∣

2σ0 6σ0
3σ σ0 − σ

∣
∣
∣
∣
+ 3σ0

∣
∣
∣
∣

2σ0 4σ0 − σ
3σ 6σ0

∣
∣
∣
∣

= 0,

from which the characteristic equation

−σ3 + 6σ0σ + 40σ20σ = 0

is obtained. Solution for the principal stresses is then 10σ0, 0,−4σ0.
For 10σ0 the corresponding direction of the principal stress space is obtained
from 



−9σ0 2σ0 3σ0
2σ0 −6σ0 6σ0
3σ0 6σ0 −9σ0











n1
n2
n3






=







0
0
0






,

from where the solution n1 : n2 : n3 = 3 : 6 : 5 is obtained. Directions cor-
responding to the other principal stresses can be obtained in a similar fashion,
and they are −2 : 1 : 0 and 1 : 2 : −3. Notice that the directions are mutually
orthogonal.

Example 2.2. A stress state of a continuum body is given by the stress matrix

σ =





0 τ0 τ0
τ0 0 τ0
τ0 τ0 0





Determine the principal stresses and the corresponding principal directions.

Solution. The principal stresses σ and the principal directions n can be solved
from the eigenvalue problem





−σ τ0 τ0
τ0 −σ τ0
τ0 τ0 −σ











n1
n2
n3






=







0
0
0






.

To have a non-trivial solution for n , the determinant of the coefficient matrix has to
vanish

det





−σ τ0 τ0
τ0 −σ τ0
τ0 τ0 −σ



 = −σ
∣
∣
∣
∣

−σ τ0
τ0 −σ

∣
∣
∣
∣
−τ0

∣
∣
∣
∣

τ0 τ0
τ0 −σ

∣
∣
∣
∣
+τ0

∣
∣
∣
∣

τ0 −σ
τ0 τ0

∣
∣
∣
∣
= 0,
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from which the characteristic equation is obtained

−σ3 + 3τ20σ + 2τ30 = 0.

Since trσ = 0 the stress matrix is purely deviatoric. The position of the stress state
on the π-plane, which is the spesific deviatoric plane going through the origin of the
principal stress space can be determined if the radius ρ =

√
s : s =

√
2J2 and the

Lode angle θ is known. The deviatoric invariants J2 and J3 have the values

J2 =
1
2sijsji = 3τ20 , J3 = det s = detσ = 2τ30 ,

thus ρ =
√
2J2 =

√
6|τ0| and the Lode angle θ can be solved from equation

cos 3θ =
3
√
3J3

2J
3/2
2

= 1,

resulting in θ = 0◦. Thus the current point in the stress space is located on the
deviatoric plane at distance

√
6τ0 from the origo on a line parallel to the projection

of the largest principal stress axis onto the deviatoric plane, see Fig. 2.5.

The principal stresse can be obtained by using (2.38) and substituting θ = 0◦, result-
ing in σ1 = s1 = (2/

√
3)
√
J2 = 2τ0. The other two principal stresses are obtained

after substituting θ2 = 120◦ and θ = −120◦, giving

σ2 = s2 = −τ0, and σ3 = s3 = −τ0.

It is always recommendable to check the results, since the deviator is traceless s1 +
s2 + s3 = 0, and J2 =

1
2(s

2
1 + s22 + s23) = 3τ20 and furhermore J3 = s1s2s3 = 2τ30 .

The principal directions can be obtained when substituting the principal stresses back
to the eigenvalue problem. For the case σ1 = 2τ0:





−2 1 1
1 −2 1
1 1 −2











n1
n2
n3






=







0
0
0






,

from where n1 = 1
2(n2 + n3) and n2 = n3. The direction of the normal where the

principal stress 2τ0 acts is 1:1:1.

Directions corresponding to the double eigenvalue −τ0 can be obtained from





1 1 1
1 1 1
1 1 1











n1
n2
n3






=







0
0
0






,

resulting in a single equation n1 + n2 + n3 = 0. This condition shows that the prin-
cipal stress −τ0 is acting on an arbitrary plane, the normal of which is perpendicular
to the direction 1:1:1.
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Example 2.3. Consider a stress state expressed by the matrix

σ =





σ0 0 0
0 σ0 0
0 0 σ0 + ασ0





where α is a dimensionless constant. Draw the stress state both in the (σm, ρ)-
coordinate system and in the deviatoric plane as a function of the parameter α ∈
[−2, 2].

Solution: The mean stress is σm = 1
3 trσ = (1+ 1

3α)σ0 and the deviatoric stress
matrix

s =





−1
3ασ0 0 0
0 −1

3ασ0 0
0 0 2

3ασ0



 ,

from where the radius ρ on the deviatoric plane can be determined as ρ =
√

2/3|ασ0|.
Solving σ0 as a function of the mean stress σm and substituting the result in the
expression of ρ, gives

ρ =

∣
∣
∣
∣
∣

√
2
3

α

1 + 1
3α
σm

∣
∣
∣
∣
∣
,

which present lines on the (σm, ρ)-plane. The slope of these lines depends on the
parameter α. However, when drawing these lines in the (σm/σ0, ρ/σ0)-coordinate
system, the expressions

σm/σ0 = 1 + 1
3α, and ρ/σ0 =

√

2/3|α|,

is used. Fixing two points, one on the σm-axis and the second on ρ-axis, gives an
easy interpretation.

The Lode angle θ on the deviatoric plane is determined from

cos 3θ =
3
√
3J3

2J
3/2
2

.

Calculating the deviatoric invariants: J2 = 1
3α

2σ20 and J3 = s1s2s3 =
2

27
α3σ30,

gives

cos 3θ =
ασ0
|ασ0|

.

Notice that J3 has sign, but J2 as a quadratic quantity is always positive or zero. If
σ0 is positive, then cos 3θ = ±1 depends on the sign of ασ0. If α and σ0 have same
sign, the Lode angle θ = 0 and if α and σ0 have different signs, the Lode angle has
the value θ = π/3.
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Chapter 3

Balance equations

3.1 Balance of momentum

The Newton’s second law postulate for a set of particles that the time rate of change of
the total momentum equals to the sum of all the external forces acting of the set. For a
continuum the mass of a body occupying a volume V is given as

∫
ρ dV , and the rate of

change of change of the total momentum of the mass is

d

dt

∫

V

ρv dV ,

where d/dt denotes the material time derivative. The postulate of the momentum balance
can be stated as1

d

dt

∫

V

ρv dV =

∫

S

t dS +

∫

V

ρb dV, (3.1)

where t is the surface traction vector and b is the body force density per unit mass. By
using the Cauchy’s stress theorem stating that t = σTn and using the Gauss divergence
theorem the surface integral can be transformed to a volume integral resulting in equation2

∫

V

ρ
dv

dt
dV =

∫

V

(
∇ · σT + ρb

)
dV , (3.2)

which can be rearranged in the form

∫

V

(

ρ
dv

dt
−∇ · σT − ρb

)

dV = 0. (3.3)

1Also known as the balance of linear momentum.
2In the literature the transpose of the stress is often missing. Either (i) the meaning of the indexes of the

stress tensor is defined differently (e.g. in [6]), or (ii) the divergence operator is defined in another way (e.g.
in [14]).
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In the index notation it has the form3

∫

V

(

ρ
dvi
dt

− ∂σji

∂xj

− ρbi

)

dV = 0. (3.4)

Since the balance has to be satisfied in every volume of the material body, the inte-
grand of (3.4) has to be zero and the local form of the momentum balance can be written
as

ρ
dvi
dt

=
∂σji

∂xj
+ ρbi, (3.5)

or in the coordinate free notation

ρ
dv

dt
= ∇ · σT + ρb. (3.6)

It should be noted that the form (3.6) of the equations of motion is valid in any coordinate
system while the index form in eq. (3.5) is expressed in rectangular cartesian coordinate
system.

In the case of static equilibrium the acceleration dv/dt is zero, the equations of motion
simplifies to the form

− ∂σji

∂xj
= ρbi, or in coordinate free notation −∇ · σT = ρb. (3.7)

These three equations do not contain any kinematical variables, however, they do not in
general suffice to determine the stress distribution; it is a statically indeterminate problem
except some special cases.

3.2 Balance of moment of momentum

In the absense of distributed couples the postulate of the balance of moment of momentum
is expressed as

d

dt

∫

V

(r × ρv) dV =

∫

S

r × t dS +

∫

V

(r × ρb) dV , (3.8)

or in indicial notation

d

dt

∫

V

ǫijkxjρvk dV =

∫

S

ǫijkxjtk dS +

∫

V

ǫijkxjρbk dV . (3.9)

As in the case of the momentum balance, transforming the surface integral to a a volume
integral results in equations

∫

V

ǫijk
d

dt
(xjvk)ρ dV =

∫

V

ǫijk

[
∂(xjσnk)

∂xn

+ xjρbk

]

dV . (3.10)

3Equations (3.3) and (3.4) are also called as Cauchy’s (1827) or Euler’s (∼1740) first law of motion.
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Since dxj/dt = vj , this becomes

∫

V

ǫijk

(

vjvk + xj
dvk
dt

)

ρ dV =

∫

V

ǫijk

[

xj

(
∂σnk

∂xn
+ ρbk

)

+ δjmσmk

]

dV . (3.11)

Due to the symmetry of vjvk the product ǫijkvjvk = 0, and after rearrangements the
following form is obtained

∫

V

ǫijk

[

xj

(

ρ
dvk
dt

− ∂σnk

∂xn

− ρbk

)

+ σjk

]

dV = 0. (3.12)

Since the term in the parenthesis vanishes, resulting in equations
∫

V

ǫijkσjk dV = 0, (3.13)

which have to be valid for every volume

ǫijkσjk = 0, i.e.







σ23 − σ32 = 0, for i = 1,

σ31 − σ13 = 0, for i = 2,

σ12 − σ21 = 0, for i = 3,

(3.14)

showing the symmetry of the stress matrix σij = σji.

3.3 Solved example problems

Example 3.1. Derive the equilibrium equations of an axially loaded bar.

x2x1

f
N(x1) N(x2)

Solution. The force equilibrium in the horizontal direction is

N(x2)−N(x1) +

∫ x2

x1

f(x)dx = 0,

which can be written as ∣
∣
∣
∣

x2

x1

N(x) +

∫ x2

x1

f dx = 0,
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and furthemore ∫ x2

x1

(
dN

dx
+ f

)

dx = 0.

Since the values x1 and x2 are arbitrary it can be deduced that

−dN

dx
= f, x ∈ (0, L).

Example 3.2. Derive the equilibrium equations of a beam model, loaded by a verti-

cal force intensity q(x).

x

y

x2x1

q(x)

Q(x1) Q(x2)

M(x1) M(x2)

Solution. The force equilibrium in the vertical direction is

Q(x2)−Q(x1) +

∫ x2

x1

q(x)dx = 0,

which can be written as
∣
∣
∣
∣

x2

x1

Q(x) +

∫ x2

x1

q(x) dx = 0,

and furthemore ∫ x2

x1

(
dQ

dx
+ q

)

dx = 0.

Since the values x1 and x2 are arbitrary it can be deduced that

− dQ

dx
= q, x ∈ (0, L). (3.15)

The moment equilibrium equation with respect to an arbitrary point x0 is

M(x1)−M(x2)+Q(x2)(x2−x0)−Q(x1)(x1−x0)+
∫ x2

x1

q(x)(x−x1) dx = 0,

which can be written as

−
∣
∣
∣
∣

x2

x1

M(x) +

∣
∣
∣
∣

x2

x1

Q(x)(x − x0) +

∫ x2

x1

q(x)(x− x0) dx.
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Proceeding in a similar way as in the previous example gives

−
∫ x2

x1

dM

dx
dx+

∫ x2

x1

d

dx
[Q(x)(x− x0)] dx+

∫ x2

x1

q(x)(x− x0) dx = 0,

−
∫ x2

x1

dM

dx
dx+

∫ x2

x1

(

Q+ (x− x0)
ddQ

dx

)

dx+

∫ x2

x1

q(x)(x− x0) dx = 0

∫ x2

x1

(

Q− dM

dx

)

dx+

∫ x2

x1

(x− x0)

(
dQ

dx
− q

)

dx = 0.

Due to the vertical force equilibrium equation (3.15) the last integral vanishes and
the moment equilibrium equations results in

Q =
dM

dx
, (3.16)

from which

−d2M

dx2
= q.

Example 3.3. Determine the shear stress distribution in a cross-section for a beam

with solid rectangular cross-section.

Solution. In the Euler-Bernoulli beam model, the shear force cannot be obtained
through the kinematical and constitutive equations, due to the kinematical constraint.
However, the distribution of the shear stress in the cross-section can be obtained from
the general equilibrium equations, which in the plane case are







∂σx
∂x

+
∂τyx
∂y

= 0 horizontal equilibrium

∂τxy
∂x

+
∂σy
∂y

= 0 vertical equilibrium
.

In the Euler-Bernoulli beam model the axial strain has a linear variation aloong the
cross-section height and assuming linear elastic material the normal stress σx also
has a linear variation

σx =
M

I
y.

Assuming that the beam’s cross-section is uniform in the axial direction, I = con-
stant, it is obtained

∂τxy
∂y

= −M
′

I
y =

Q

I
y,

where the symmetry property of the stress tensor is taken into account. After inte-
gration it is obtained

τxy = −Q(x)

2I
y2 + C,
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28 CHAPTER 3. Balance equations

where C is the integration constant. From the stress-free boundary conditions

τxy(x,±h/2) = 0,

the value for C is obtained as

C =
Qh2

8I
.

Thus

τxy =
Qh2

8I

[

1− 4
(y

h

)2
]

=
3Q

2bh

[

1− 4
(y

h

)2
]

=
3Q

2A

[

1− 4
(y

h

)2
]

.

The maximun shear stress is located on the neutral axis and it is 50 % higher than
the average shear stress Q/A.
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Chapter 4

Kinematical relations

4.1 Motion of a continuum body

Motion of a continuum body B embedded in a three-dimensional Euclidean space and
occupying a domain Ω will be studied. Consider a point P which has an initial position
X at time t = 0. At time t > 0 the body occcupies another configuration and the motion
of the particle P is described by mapping

x = χ(X , t), or in index notation xi = χi(Xk, t). (4.1)

The motion χ is assumed to be invertible and sufficiently many times differentiable. The
displacement vector is defined as

u = x −X . (4.2)

4.2 Deformation gradient

The most important measure of deformation in non-linear continuum mechanics is the
deformation gradient, which will be introduced next. Consider a material curve Γ at the
initial configuration, a position of a point on this curve is given as X = Γ(ξ), where ξ
denotes a parametrization, see figure 4.1. Notice that the material curve does not depend
on time. During the motion, the material curve deforms into curve

x = γ(ξ, t) = χ(Γ(ξ), t). (4.3)

The tangent vectors of the material and deformed curves are denoted as dX and dx ,
respectively, and defined as

dX = Γ′(ξ)dξ, (4.4)

dx = γ ′(ξ, t)dξ =
∂χ

∂X
Γ′(ξ)dξ = F ·dX , (4.5)
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30 CHAPTER 4. Kinematical relations

Figure 4.1: Deformation of a material curve, figure from [6, page 70].

since on the deformed curve x = γ(ξ, t) = χ(Γ(ξ), t). The quantity F is called the
deformation gradient and it describes the motion in the neighbourhod of a point. It is
defined as

F =
∂χ

∂X
, or in indicial notation Fij =

∂χi

∂Xj
. (4.6)

The deformation gradient reduces into identity tensor I if there is no motion, or the
motion is a rigid translation. However, rigid rotation will give a deformation gradient not
equal to the identity.

4.3 Definition of strain tensors

Let us investigate the change of length of a line element. Denoting the length of a line
element in the deformed configuration as ds and as dS in the initial configuration, thus

1

2
[(ds)2 − (dS)2] =

1

2
(dx ·dx − dX ·dX ) =

1

2
(F ·dX ·F ·dX − dX ·dX )

=
1

2
dX ·(F T

·F − I )·dX = dX ·E ·dX , (4.7)

where the tensor

E =
1

2
(F T

·F − I ) (4.8)

is called the Green-Lagrange strain tensor.
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4.3. Definition of strain tensors 31

Let us express the Green-Lagrange strain in terms of displacement vector u . It is first
observed that the deformation gradient takes the form

F =
∂χ

∂X
= I +

∂u

∂X
, (4.9)

where the tensor ∂u/∂X is called the displacement gradient. Thus, the Green-Lagrange
strain tensor takes the form

E =
1

2

[(

I +
∂u

∂X

)T (

I +
∂u

∂X

)

− I

]

=
1

2

[

∂u

∂X
+

(
∂u

∂X

)T

+

(
∂u

∂X

)T (
∂u

∂X

)]

, (4.10)

or in index notation

Eij =
1

2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂uk

∂Xi

∂uk

∂Xj

)

. (4.11)

If the elements of the displacement gradient are small in comparison to unity, i.e.

∂ui

∂Xj

≪ 1, (4.12)

then the quadratic terms can be neglected and the infinitesimal strain tensor can be defined
as the symmetric part of the displacement gradient

εij =
1

2

(
∂ui

∂Xj
+

∂uj

∂Xi

)

≈ Eij . (4.13)

Let us define a stretch vector λ in the direction of a unit vector n0 as

λ = F ·n0, (4.14)

and the length of the stretch vector λ = |λ| is called the stretch ratio or simply the stretch.
The square of the stretch ratio is

λ2 = λ·λ = n0·F
T
·F ·n0 = n0·C ·n0, (4.15)

where the tensor C = F T
·F is called the right Cauchy-Green strain tensor. The attribute

right comes from the fact that the deformation gradient operates on the right hand side.
The right Cauchy-Green strain tensor is symmetric and positive definite tensor, i.e. C =
C T and n · C · n > 0, ∀n 6= 0.

For values 0 < λ < 1, a line element is compressed and elongated for values λ > 1.
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The deformation gradient can also be decomposed multiplicatively as

F = R · U = V · R, (4.16)

where R is an othogonal tensor (RT
·R = R · RT = I ) describing the rotation of a

material element and U and V are symmetric positive definite tensors describing the
deformation. The decomposition (4.16) is also called the polar decomposition. The tensor
U is called as the right stretch tensor and V the left stretch tensor.

The square of the stretch can be expressed as

λ2 = λ·λ = n0·U
T
·RT

·R · U ·n0 = n0·U
T
·U ·n0 = n0·U

2
·n0. (4.17)

Other strain measures can be defined as

E (m) =
1

m
(Um − I ). (4.18)

For m = 2, we obtain the Green-Lagrange strain tensor which have already been dis-
cussed. With m = 0 we obtain the Hencky or logarithmic strain tensor

E (0) = lnU . (4.19)

The logarithmic strain1 has a special position in non-linear continuum mechanics, espe-
cially in formulating constitutive equations, since it can be additively decomposed into
volumetric and isochoric parts similarly as the small strain tensor ε.

For m = 1, we obtain
E (1) = U − I , (4.20)

which is called the Biot strain tensor. If the deformation is rotation free, i.e. R = I , the
Biot strain tensor coincides with the small strain tensor ε. It is much used in dimensionally
reduced continuum models, such as beams, plates and shells.

4.4 Geometric intepretation of the strain components

Let us investigate the extension ε = λ − 1 of a line element, for instance in a direction
n0 = (1, 0, 0)T , thus

λ(1) =
√

C11, E11 =
1
2
(C11 − 1) ⇒ C11 = 1 + 2E11

⇒ λ =
√

1 + 2E11 ⇒ ε =
√

1 + 2E11 − 1 (4.21)

1The logarithmic strain is sometimes called also as the true strain. Such naming is not used in this text, all
properly defined strain measures are applicable, since the definition of strain is a geometrical construction.
Naturally, the choice of strain measure dictates the choise of the stress. However, deeper discussion on this
topic is beyond the present lecture notes.
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4.5. Definition of the infinitesimal strain 33

Secondly, let us compute the angle change of two unit vectors N 1 and N 2. In the
deformed configuration they are n1 = F · N 1 and n1 = F · N 2 and the angle between
them can be determined from

cos θ12 =
n1·n2

|n1||n2|
=

N 1·C · N 2√
N 1·C · N 1

√
N 2·C · N 2

. (4.22)

If we choose the directions N 1 and N 2 as

N 1 =





1
0
0



 , N 2 =





0
1
0



 , (4.23)

then

cos θ12 =
C12√
C11C22

=
C12

λ(1)λ(2)
=

2E12
√

(1 + 2E11)(1 + 2E22)
. (4.24)

Using the trigonometric identity

sin(1
2
π − θ12) = cos θ12 (4.25)

and if E11, E22 ≪ 1 then
1
2
π − θ12 ≈ 2E12. (4.26)

Thus, the component E12 is approximately one half of the angle change of the two direc-
tion vectors.

4.5 Definition of the infinitesimal strain

Let us investigate the motion of two neighbouring points, which are denoted as P Q in the
undeformed configuration. After deformation these points occupy the positions marked
by p and q. Displacement of the point Q relative to P is defined as, see fig. 4.2,

du = uQ − uP . (4.27)

Length of the vector ~PQ is denoted as dS, thus

dui

dS
=

∂ui

∂xj

dxj

dS
, (4.28)

where the Jacobian matrix J = ∂u/∂x can be divided additively into a symmetric and
an antisymmetric part as

J = ε+Ω, (4.29)
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P

Q

dS

p

uQ

du

uP

q

Figure 4.2: Relative displacement du of Q relative to P .

where the symmetric part ε is the infinitesimal strain tensor

ε =





ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



 =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 =





εx
1
2
γxy

1
2
γxz

1
2
γyx εy

1
2
γyz

1
2
γzx

1
2
γzy εz



 , (4.30)

and the antisymmetric part Ω is the infinitesimal rotation tensor

Ω =





0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0



 . (4.31)

Written in the displacement components, these tensor have the expressions

εij =
1
2
(ui,j + uj,i) and Ωij =

1
2
(ui,j − uj,i). (4.32)

The infinitesimal rotation matrix is a skew matrix and when operating with a vector
the following relation holds

Ωa = ω × a , (4.33)

where a is an arbitrary vector and ω is the vector

ω = −Ω23e1 − Ω31e2 − Ω12e3, or ωi = −1
2
ǫijkΩjk. (4.34)

Expressed in terms of the displacement vector u the infinitesimal rotation vector ω is

ω = 1
2
∇× u . (4.35)

It should be emphasised that the rotation matrix Ω near the point P describes the rigid
body rotation only if the elements Ωij are small.
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4.5.1 Principal strains

The principal strains ε are obtained from the linear eigenvalue problem

(εij − εδij)nj = 0, (4.36)

where the vector ni defines the normal direction of the principal strain plane. Thus, the
characteristic polynomial has the form

− ε3 + I1ε
2 + I2ε+ I3 = 0, (4.37)

where the strain invariants Ii, i = 1, . . . , 3 are

I1 = trε = εii = ε11 + ε22 + ε33, (4.38)

I2 =
1
2
[tr(ε2)− (trε)2] = 1

2
(εijεji − Ī21 ), (4.39)

I3 = det(ε). (4.40)

If the coordinate axes are chosen to coincide with the axes of principal strains, the strain
matrix will be a diagonal matrix

ε = [εij ] =





ε1 0 0
0 ε2 0
0 0 ε3



 . (4.41)

The invariants I1, . . . , I3 expressed in terms of the principal strains ǫ1, . . . , ǫ3 have the
forms

I1 = ε1 + ε2 + ε3, (4.42)

I2 = −ε1ε2 − ε2ε3 − ε3ε1, (4.43)

I3 = ε1ε2ε3. (4.44)

4.5.2 Deviatoric strain

As in the case of the stress tensor, the infinitesimal strain tensor can be additively decom-
posed into a deviatoric part and an isotropic part as

εij = eij +
1
3
εkkδij , (4.45)

where the deviatoric strain tensor is denoted as e . In the literature the notation ǫ′ is also
used. By definition the, deviatoric strain tensor is traceless

tre = 0. (4.46)

The eigenvalues of the deviatoric strain ei can be solved from the equation

|eij − eδij | = 0, (4.47)
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and the characteristic equation is

− e3 + J1e
2 + J2e + J3 = 0, (4.48)

where the invariants J1, . . . , J3 have expressions

J1 = tre = eii = ex + ey + ez = 0, (4.49)

J2 =
1
2
[tr(e2)− (tre)2] = 1

2
tr(e2) = 1

2
eijeji (4.50)

= 1
6
[(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε3 − ε1)

2], (4.51)

J3 = det e = tr(e3) = e1e2e3. (4.52)

For small strains the first invariant I1 = εx + εy + εz ≡ εv describes the relative
volume change.

The octahedral strains are defined similarly as for the stress

εoct =
1
3
I1 =

1
3
εv, (4.53)

γ2
oct =

8
3
J2. (4.54)

For the first sight, the equation (4.54) might look strange as compared to the expression
of the octahedral stress, but we have to remember that γxy = 2ǫxy, etc.

4.6 Solved example problems

Example 4.1. The following equations define the deformation state of the body:

1. x1 = X1, x2 = X2 + αX1, x3 = X3,

2. x1 =
√
2αX1 + β, x2 = γX2, x3 = δX3,

3. x1 = X1 cos(αX3) +X2 sin(αX3), x2 = −X1 sin(αX3) +X2 cos(αX3),
x3 = (1 + αβ)X3.

Determine the deformation gradient F and the Green-Lagrange strain tensor E. In

addition determine also the small strain and rotation tensors ε and Ω, respectively.

Solution. The deformation gradient expressed in terms of the displacement gra-
dient is

F = I+
∂u

∂X
,

or using the index notation

Fij = δij +
∂ui
∂Xj

.
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Case a. Let’s determine first the displacements and the displacement gradient

u1 = x1 −X1 = 0,

u2 = x2 −X2 = αX1,

u3 = x3 −X3 = 0.

∂u

∂X
=





u1,1 u1,2 u1,3
u2,1 u2,2 u2,3
u3,1 u3,2 u3,3



 =





0 0 0
α 0 0
0 0 0





The deformation gradient is

F =





1 0 0
α 1 0
0 0 1



 .

The Green-Lagrange strain tensor is

E =
1

2
(FT

F− I) =
1

2





α2 α 0
α 0 0
0 0 0



 .

The small strain tensor is

ε =
1

2

(

∂u

∂X
+

(
∂u

∂X

)T
)

=
1

2





0 α 0
α 0 0
0 0 0



 ,

and the infinitesimal rotation tensor is

Ω =
1

2

(

∂u

∂X
−
(
∂u

∂X

)T
)

=
1

2





0 −α 0
α 0 0
0 0 0



 .

Draw the deformation state in (X1,X2)-plane. What kind of deformation it is?

Case b. The dislacement vector has components

u1 = x1 −X1 =
√

2αX1 + β −X1,

u2 = x2 −X2 = (γ − 1)X2,

u3 = x3 −X3 = (δ − 1)X3.

∂u

∂X
=





u1,1 u1,2 u1,3
u2,1 u2,2 u2,3
u3,1 u3,2 u3,3



 =





α/
√
2αX1 + β − 1 0 0

0 γ − 1 0
0 0 δ − 1




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The deformation gradient is

F =





α/
√
2αX1 + β 0 0
0 γ 0
0 0 δ



 .

The Green-Lagrange strain tensor is

E =
1

2
(FT

F− I) =
1

2





α2/(2αX1 + β)− 1 0 0
0 γ2 − 1 0
0 0 δ2 − 1



 .

The small strain tensor is

ε =
1

2

(

∂u

∂X
+

(
∂u

∂X

)T
)

=
1

2





α/
√
2αX1 + β 0 0
0 γ − 1 0
0 0 δ − 1



 ,

and the infinitesimal rotation tensor is

Ω =
1

2

(

∂u

∂X
−
(
∂u

∂X

)T
)

=





0 0 0
0 0 0
0 0 0



 .

What kind of deformation it is? For the small strain assumption to be valid what are
the restrictions should be imposed to the constants α, β, γ and δ?

Case c. The displacement vector is

u1 = X1(cos(αX3)− 1) +X2 sin(αX3),

u2 = −X1 sin(αX3) +X2(cos(αX3)− 1),

u3 = αβX3.

∂u

∂X
=





u1,1 u1,2 u1,3
u2,1 u2,2 u2,3
u3,1 u3,2 u3,3





=





cos(αX3)− 1 sin(αX3) −αX1 sin(αX3) + αX2 cos(αX3)
− sin(αX3) cos(αX3)− 1 −αX1 cos(αX3)− αX2 sin(αX3)

0 0 αβ





The deformation gradient is

F =





cos(αX3) sin(αX3) −αX1 sin(αX3) + αX2 cos(αX3)
− sin(αX3) cos(αX3) −αX1 cos(αX3)− αX2 sin(αX3)

0 0 1 + αβ



 .
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The Green-Lagrange strain tensor is

E =
1

2
(FT

F− I) =
1

2





0 0 αX2

0 0 −αX1

αX2 −αX1 α2(X2
1 +X2 + β2) + 2αβ



 .

What kind of deformation state it is?

If we assume small displacements and strains then we have to assume that the angle α
is small as well as the parameter β. Therefore sin(αX3) ≈ αX3 and cos(αX3) ≈ 1.
Neglecting the quadratic terms, the displacement gradient is thus

∂u

∂X
=





0 αX3 αX2

−αX3 0 −αX1

0 0 αβ



 .

and the infinitesimal strain tensor is

ε =
1

2

(

∂u

∂X
+

(
∂u

∂X

)T
)

=
1

2





0 0 αX2

0 0 −αX1

αX2 −αX1 2αβ



 .,

and the infinitesimal rotation tensor is

Ω =
1

2

(

∂u

∂X
−
(
∂u

∂X

)T
)

=
1

2





0 0 αX2

0 0 −αX1

−αX2 αX1 0



 .

Draw the deformation state in (X2,X3)-plane. What kind of deformation it is?

Example 4.2. A unit square OABC deforms to a quadrilateral shape OA’B’C’ with

the three forms shown below. Write down in each case the displacement fields u1, u2
as a function of material coordinates, i.e. the coordinates describing the material

point in the undeformed configuration (X1,X2). Further determine the deformation

gradient F and the Green-Lagrange strain tensor E. Determine also the infinitesimal

strain tensor used in linear theory ε and the rotation tensor Ω.
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Solution. The deformation state is homogeneous, thus the displacement field can
be determined as

ui(X1,X2) = ai + biX1 + ciX2,

where ai, bi and ci are constants. We can determine the coefficients using three
points.

In the (a) case:

x1(0, 0) = a1 = 0,

x1(1, 0) = a1 + b1 = 1− ε1 ⇒ b1 = 1− ε1

x1(0, 1) = c1 = 0,

x2(0, 0) = a2 = 0,

x2(1, 0) = b2 = 0,

x2(0, 1) = c2 = 1 + ε2,

thus x1 = (1− ε1)X1, and x2 = (1 + ε2)X2 and the displacement field is

u1 = x1 −X1 = −ε1X1,

u2 = x2 −X2 = ε2X2.

The deformation gradient is

F =
∂x

∂X
= I+

∂x

∂X
=

[
1− ε1 0

0 1 + ε2

]

,

and the Green-Lagrange strain tensor is

E =
1

2
(FT

F− I) =

[
−ε1 + 1

2ε
2
1 0

0 ε2 +
1
2ε

2
2

]

,

The small strain matrix is

ε =

[
−ε1 0
0 ε2

]

,

and the infinitesimal rotation matrix is a zero matrix.

In the (b) case:

x1(0, 0) = a1 = 0,

x1(1, 0) = a1 + b1 = cos θ ⇒ b1 = cos θ

x1(0, 1) = c1 = sin θ,

x2(0, 0) = a2 = 0,

x2(1, 0) = b2 = sin θ,

x2(0, 1) = c2 = cos θ.
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and so on. The result for the Green-Larrange strain tensor is

E =

[
0 1

2 sin 2θ
1
2 sin 2θ 0

]

.

In order to be consistent with the small displacements and strain hypothesis, the
angle θ should be small, thus sin θ ≈ θ and cos θ ≈ 1. Then the small strain, small
displacement strain and rotation matrices follow.

In the (b) case:

x1(0, 0) = a1 = 0,

x1(1, 0) = a1 + b1 = cosψ ⇒ b1 = cosψ

x1(0, 1) = c1 = sinψ,

x2(0, 0) = a2 = 0,

x2(1, 0) = b2 = − sinψ,

x2(0, 1) = c2 = cosψ.

and so on. The result for the Green-Larrange strain tensor is

E =

[
0 0
0 0

]

.

Thus the motion is pure rigid body motion.

Example 4.3. A square plate ABCD with a side length L as shown below deform

to the state AB’C’D. Determine the deformation gradient F , the Green-Lagrange

strain tensor E and the infinitesimal strain tensor ε. Determine also the deformed

length AC’ of the diagonal by using these three deformation measures.

x1, x

x2, y

L
∆

L

2∆A B

CD

B’

C’
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Solution. The displacement field is then u1(X1,X2) = ∆(X1/L) and u2(X1,X2) =
2∆(X1/L). Deformation gradient is Fij = δij + ∂ui/∂Xj , thus

F =

(
1 + ∆/L 0
2∆/L 1

)

.

The Green-Lagrange strain tensor is E = 1
2 (F

T
·F − I ) = 1

2(C − I ):

C =

(
(1 + ∆/L)2 + 4(∆/L)2 2∆/L

2∆/L 1

)

and E =

(
∆/L+ 5

2(∆/L)
2 ∆/L

∆/L 0

)

.

The infinitesimal strain tensor, i.e. the engineering strain tensor is εij =
1
2(∂ui/∂Xj+

∂uj/∂Xi)

ε =
∆

L

(
1 1
1 0

)

.

It is noticed that the engineering strain ε is a good approximation of the Green-
Lagrange strain E if the displacements are small, i.e. ∆/L≪ 1.

Denoting the vector defining the undeformed diagonal AC as a and the deformed
diagonal as a ′, thus a = L(e1 + e2) and

a ′ = F · a =

(
1 + ∆/L
1 + 2∆/L

)

L =

(
L+∆
L+ 2∆

)

.

The length of a ′ is

|a ′| =
√

(L+∆)2 + (L+ 2∆)2 =
√

1 + 3∆/L+ 5
2(∆/L)

2
√
2L

Since the deformation is homogeneous and the diagonal is straight, the deformed
length of the diagonal can be computed directly using the definition of the Green-
Lagrange strain (4.7):

|a ′|2 − |a |2 = 2a · E · a ,

thus

|a ′|2 = |a |2+2a · E · a = 3L2+2(3∆L+ 5
2∆

2) = 2L2(1+3(∆/L)+ 5
2 (∆/L)

2)

and

|a ′| =
√

1 + 3(∆/L) + 5
2(∆/L)

2
√
2L (4.55)

Naturally the same result is obtained as with the deformation gradient.

The deformed length computed from the linear strain measure ε is

|a ′| = (1 + εa)|a |,

where εa is the strain in the direction of a

εa = na·ε·na
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and na is the unit vector in the direction of a . Thus the deformed length of the
diagonal is

|a ′| = (1 + 3
2∆/L)

√
2L. (4.56)

Remembering the series expansion of
√
1 + x = 1 + 1

2x− 1
8x

2 + · · · and applying
it in (4.55) gives

|a ′| = (1 + 3
2∆/L+ 1

8(∆/L)
2 + · · · )

√
2L.

If ∆/L ≪ 1 then the engineering strain is a good approximation of the Green-
Lagrange strain.

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



44 CHAPTER 4. Kinematical relations

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



Chapter 5

Constitutive models

5.1 Introduction

Constitutive equations describe the response of a material to applied loads. In continuum
mechanics, distinction between fluids and solids can be characterized in this stage. It is
important to notice that the balance equations and the kinematical relations described in
the previous sections are equally valid both for fluids and solids. In this lecture notes
only macroscopic1 models will be introduced, which roughly means that mathematical
expressions are fitted to experimental data. Macroscopic models are not capable to relate
the actual physical mechanisms of deformation to the underlying mcroscopic physical
structure of the material.

The constitutive equations should obey the thermodynamic principles, (i) the conser-
vation of energy and (ii) the dissipation inequality, i.e. the nonnegativity of the entropy
rate.

Excellent texts for materials modelling are [12, 17].

1Macroscopic models are often called as phenomenological models in contrast to micromechanical mod-
els where the physical mechanisms can be more directly modelled. Hwever, in micromechanical models
the phenomenology is only a level or some levels deeper.
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Chapter 6

Elastic constitutive models

Elasticity means that the response of a material is independent of the load history. The
most general form of elasticity is called as Cauchy-elasticity and it essentially means that
there exists one-to-one relation between stress and strain

σij = fij(εkl), or εij = gij(σkl). (6.1)

The tensor valued tensor functions fij and gij are called as response functions. For non-
linear Cauchy-elastic models, the loading-unloading process may yield hysteresis, which
is incompatible with the notion of elasticity, where the response should be reversible. For
more detailed discussion of Cauchy elasticity, see [17]. In this lecture notes Cauchy-
elasticity is not treated.

Another form of elasticity, where the constitutive equations are expressed in rate-form

σ̇ij = fij(σkl, ε̇mn) (6.2)

is called hypo-elastic. If the material is incrementally linear, it can be written in the form

σ̇ij = Cijkl(σmn)ε̇kl. (6.3)

The most rigorous form of elasticity is called as hyper-elasticity, and the constitutive
equations of a hyper-elastic model can be derived from a potential, i.e. the strain energy
function W = W (εij) as

σij =
∂W

∂εij
. (6.4)

Alternatively, the hyperelastic constitutive models can be derived from a complemen-
tary function, depending on stress, such that

εij =
∂W c

∂σij

. (6.5)

These two potentials W and W c are related with each other by the Legendre-Fenchel

transformation

W c = σijεij −W. (6.6)

47



48 CHAPTER 6. Elastic constitutive models

6.1 Isotropic elasticity

A material which behaviour is independent of the direction in which the response is mea-
sured is called isotropic. Therefore also the strain energy density should be an isotropic
tensor valued scalar function

W = W (ε) = W (ε′) = W (βεβT ) = W (I1, I2, I3), (6.7)

where I1, I2 and I3 are the principal invariants of the strain tensor and β is the transfor-
mation tensor from the x -coordinate system to the x ′-system, i.e. x ′ = βx . Alternatively
the strain energy density function W can be written as

W = W (I1, J2, J3), or W = W (I1, Ĩ2, Ĩ3), (6.8)

where J2 and J3 are the invariants of the deviatoric strain tensor and Ĩ2, Ĩ3 the generic
invariants defined as

Ĩ2 =
1
2
tr(ε2), Ĩ3 =

1
3
tr(ε3). (6.9)

Equations (6.7) and (6.8) are special forms of representation theorems, for which an al-
ternative form can be written as: the most general form of an isotropic elastic material
model can be written as

σ = a0I + a1ε+ a2ε
2, (6.10)

where the coefficients a0, a1 and a2 can be non-linear functions of the strain invariants.
Proof for the representation theorem (6.10) can be found e.g. in ref. [22, Appendix].

Al alternative form to (6.10) can be formulated using the complementary potential
resulting in

ε = b0I + b1σ + b2σ
2, (6.11)

where b0, b1 and b2 can be non-linear functions of stress invariants. In many cases this
form gives more illustrative description of physically relevant constitutive parameters.

From (6.10) and (6.11) it can be easily seen that the principal directions of the strain-
and stress tensors coincide for an isotropic elastic material.

For a linear isortropic elastic material the constitutive equation (6.10) reduces to

σ = a0I + a1ε, (6.12)

where a1 has to be a constant and the scalar a0 can depend only linearly on strain, i.e.
a0 = λI1 = λ tr(ε), thus

σ = λ tr(ε)I + 2µε, or σij = λεkkδij + 2µεij, (6.13)

where λ, µ are the Lamé constants, and µ equals to the shear modulus, i.e. µ = G. To
relate the Lamé’s constants to the modulus of elasticity E and the Poisson’s ratio ν, it is
useful to invert equation (6.13) as follows. First, solve the volume change εkk

σii = 3λεkk + 2µεii = (3λ+ 2µ)εjj ⇒ εkk =
1

3λ+ 2µ
σkk, (6.14)
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and substituting it back to (6.13) gives

εij = − λ

2µ(3λ+ 2µ)
σkk +

1

2µ
σij . (6.15)

Writing equations (6.15) componentwise

ε11 =
λ+ µ

µ(3λ+ 2µ)
σ11 −

λ

2µ(3λ+ 2µ)
(σ22 + σ33) =

1

E
σ11 −

ν

E
(σ22 + σ22), (6.16)

ε22 =
λ+ µ

µ(3λ+ 2µ)
σ22 −

λ

2µ(3λ+ 2µ)
(σ11 + σ33) =

1

E
σ22 −

ν

E
(σ11 + σ33), (6.17)

ε33 =
λ+ µ

µ(3λ+ 2µ)
σ33 −

λ

2µ(3λ+ 2µ)
(σ11 + σ22) =

1

E
σ33 −

ν

E
(σ11 + σ22), (6.18)

ε12 =
1

2µ
σ12 =

1

2G
σ12, (6.19)

ε23 =
1

2µ
σ23 =

1

2G
σ23, (6.20)

ε31 =
1

2µ
σ31 =

1

2G
σ31. (6.21)

From (6.16)-(6.21) it can be seen that µ = G and E = µ(3λ + 2µ)/(λ + µ). Also the
physical meaning of the Posson’s ratio is clear from eqs. (6.16)-(6.18). If, for example,
the body is under uniaxial stress in the x1-direction, the Poisson’s ratio is expressed as

ν = −ε22
ε11

. (6.22)

If the decomposition of strain into volumetric and deviatoric parts is susbtituted into
eq. (6.13)

σij = λεkkδij + 2µ(eij +
1
3
εkkδij)

= (λ+ 2
3
µ)εkkδij + 2µeij

= Kεvδij + 2Geij, (6.23)

where εv = εkk = I1 is the volumetric strain and K is the bulk modulus. It can be seen
that the constitutive equation (6.23) can be slit into volymetric-pressure and deviatoric
strain-stress relations as

p = −Kεv, and sij = 2Geij, (6.24)

where the pressure p is defined as p = −σm = −σkk/3.
Linearly elastic constitutive equations can be written either in the form

σ = Cε, or ε = Dσ, (6.25)
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where C is the material stiffness tensor or matrix, and D is the compliance tensor/matrix

or the material flexibility tensor/matrix. They are obviously related as C = D−1 and they
are symmetric positive definite operators, i.e. all their eigenvalues are positive.

The strain energy function for a linearly elastic isotropic material can be given e.g. in
the following forms

W = 1
2
KI21 + 2GJ2, (6.26)

= 1
2
λI21 + 2µĨ2. (6.27)

Since the bulk and shear modulus have to be positive, the Young’s modulus and the Pois-
son’s ratio ν have to satisfy the following inequalities

E > 0, −1 < ν < 1
2
. (6.28)

For natural materials, the Poisson’s ratio is usually positive. Incompressibility is ap-
proached when the Posson’s ratio is near 1/2. For metals it is usually in the range 0.25-
0.35 and for concrete it is near 0.2. Cork has an almost zero Poisson’s ratio which make it
a good material for sealing wine bottles. Materials with negative Poisson’s ratio are called
auxetics.

Relations between the different elasticity coefficients are given in the following equa-
tions [14, pages 293-294],[16, table 3.1.1 on page 71]:

λ =
Eν

(1 + ν)(1− 2ν)
= K − 2

3
G =

G(E − 2G)

(3G−E)
, (6.29)

µ ≡ G =
E

2(1 + ν)
=

λ(1− 2ν)

2ν
=

3

2
(K − λ), (6.30)

ν =
λ

2(λ+ µ)
=

λ

(3K − λ)
=

3K − 2G

2(3K +G)
, (6.31)

E =
µ(3λ+ 2µ)

λ+ µ
=

λ(1 + ν)(1 − 2ν)

ν
=

9K(K − λ)

3K − λ
, (6.32)

K = λ+
2

3
µ =

E

3(1− 2ν)
=

λ(1 + ν)

3ν
=

GE

3(3G−E)
. (6.33)

6.1.1 Material parameter determination

6.2 Transversely isotropic elasticity

A material is called transversely isotropic if the behaviour of it is isotropic in a plane and
different in the direction of the normal of that isotropy plane. The strain energy density
function can now be written as

W = W (ε,M ) = W (βεβT ,βMβT ), (6.34)
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Figure 6.1: Stratified rock at Grand Canyon shows clearly transversely isotropic structure.
Courtesy by Luca Galuzzi.

where M = mmT is called the structural tensor and the unit vector m defines the normal
of the isotropy plane.

Examples of transversely isotropic materials are those having unidirectional reinforc-
ment , stratified soils and rocks, crystalline materials with hexagonal close packed struc-
ture.

The representation theorem of a transversely isotropic solid says that the strain energy
density function can depend on five invariants

W = W (I1, I2, I3, I4, I5), (6.35)

where the invarinats Ii are

I1 = tr ε, I2 =
1

2
tr(ε2), I3 =

1

3
tr(ε3), I4 = tr(εM ), I5 = tr(ε2M ). (6.36)

The invariants I4 and I5 can also be written as

I4 = tr(εM ) = mTεm , I5 = tr(ε2M ) = mTε2m . (6.37)

The constitutive equation is thus

σ =
∂W

∂ε
=

∂W

∂I1
I +

∂W

∂I2
ε+

∂W

∂I3
ε2 +

∂W

∂I4
M +

∂W

∂I5
(εM +M ε). (6.38)

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



52 CHAPTER 6. Elastic constitutive models

If we restrict to linear elasticity, the cefficients ∂W/∂Ii has to satisfy

∂W

∂I1
= a1I1 + bI4, (6.39)

∂W

∂I2
= a2, (6.40)

∂W

∂I3
= 0, (6.41)

∂W

∂I4
= a3I1 + a4I4, (6.42)

∂W

∂I1
= a5, (6.43)

since all the terms in (6.38) have to be linear in ε. Due to the identity

∂2W

∂Ii∂Ij
=

∂2W

∂Ij∂Ii
, (6.44)

we have now
∂

∂I4

(
∂W

∂I1

)

=
∂

∂I1

(
∂W

∂I4

)

thus b = a3. (6.45)

Transversely isotropic linear solid has thus five material coefficients, and the constitutive
equation can be written as

σ = (a1 tr ε+a3 tr(εM ))I +a2ε+(a3 tr ε+a4 tr(εM ))M +a5(εM +M ε). (6.46)

If the isotropy plane coincides with the x2, x3-plane, i.e. m is in the direction of the
x1-axis, physically comprehensible material parameters are the Young’s modulus E2 =
E3 = ET and the Poisson’s ratio ν23 = ν32 = νT in the isotropy plane x2, x3. The
three remaining elastic coefficients are the Young’s modulus EL in the longitudinal x1-
direction, the Poisson’s ratio associated with the x1-direction and a direction in the x2, x3-
plane, ν12 = ν13 ≡ νL and the shear modulus G12 = G13 = GL. Notice that the
coefficients EL, GL and νL are independent of each other.

As in the isotropic case, the complementary approach gives an easier way to interpret
the material constants. Using similar arguments which resulted the equation (6.46), we
get

ε = (b1 trσ+b3 tr(σM ))I +b2σ+(b3 trσ+b4 tr(σM ))M +b5(σM +Mσ). (6.47)

Example 6.1. Express (6.47) in Voigt’s notation and find out the relationship be-

tween the parameters b1, . . . , b5 and the physically meaningfull elasticity coefficients

EL, GL, νL, ET and νT . Assume that the longitudinal direction coincides to the x1
axis, i.e. the transverse isotropy plane is (x2, x3)-plane. In the Voigt notation use the

following ordering of the stress and strain components: σ = [σ11, σ22, σ33, τ23, τ13, τ12]
T

and ε = [ε11, ε22, ε33, γ23, γ13, γ12]
T .
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Solution. Now the longitudinal direction is m = (1, 0, 0)T , thus

M = mmT =





1 0 0
0 0 0
0 0 0



 , and σM +Mσ =





2σ11 τ12 τ13
τ12 0 0
τ13 0 0



 ,

and
I1 = trσ = σ11 + σ22 + σ33, I4 = tr(σM ) = σ11.

Hence




ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33



 = [b1(σ11+σ22+σ33)+b3σ11]





1 0 0
0 1 0
0 0 1



+b2





σ11 τ12 τ13
τ12 σ22 τ23
τ13 ε23 σ33





+ [b3(σ11 + σ22 + σ33) + b4σ11]





1 0 0
0 0 0
0 0 0



+ b5





2σ11 τ12 τ13
τ12 0 0
τ13 0 0



 .

Collecting the results gives










ε11
ε22
ε33
ε23
ε13
ε12











=











b1 + b2 + b4 + 2(b3 + b5) b1 + b3 b1 + b3 0 0 0
b1 + b3 b1 + b2 b1 0 0 0
b1 + b3 b1 b1 + b2 0 0 0

0 0 0 b2 0 0
0 0 0 0 b2 + b5 0
0 0 0 0 0 b2 + b5





















σ11
σ22
σ33
τ23
τ13
τ12











.

Putting the above expression into the Voigt notation with γij = 2εij , we get











ε11
ε22
ε33
γ23
γ13
γ12











=











b1 + b2 + b4 + 2(b3 + b5) b1 + b3 b1 + b3 0 0 0
b1 + b3 b1 + b2 b1 0 0 0
b1 + b3 b1 b1 + b2 0 0 0

0 0 0 2b2 0 0
0 0 0 0 2(b2 + b5) 0
0 0 0 0 0 2(b2 + b5)





















σ11
σ22
σ33
τ23
τ13
τ12











.

From the above expression we can immedately notice that the shear modulus in the
isotropy plane G23 = GT can be expressed by b2 as

τ23 = GT γ23, hence b2 =
1

2GT
=

1 + νT
ET

.
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The Poisson’s ratio in the isotropy plane νT is the opposite value of the ratio between
the normal strain in the transverse and longitudinal directions caused by a normal
stress in the longitudinal direction. Now the isotropy plane is the x2, x3-plane and
the normal stress acts in the x3-directions, then

ε22 = −νT ε33.

This results in
ε22 = b1σ33 = b1ET ε33 = −b1ET ε22/νT ,

therefore
b1 = − νT

ET
.

As a check, we can observe that

ε22 = (b1 + b2)σ22 =
1

ET
σ22.

The term β5 can be solved from the shear components in the plane (x1, x2) or
(x1, x3):

b2 + b5 =
1

2GL
, from which we get b5 =

1

2

(
1

GL
− 1

GT

)

.

The coefficient b3 can be solved by considering normal strain in the x2-direction
when the stress in acting in the longitudinal direction. The Poisson’s ratio νL is
defined as (when σ11 6= 0)

ε22 = −νT ε11, or ε33 = −νT ε11.

Since σ11 = ELε11 we get

ε22 = (b1 + b3)σ11 = (b1 + b3)ELε11

from which we obtain
ε22
ε11

= −νL = (b1 + b3)EL,

and finaly we get b3 as

b3 = − νL
EL

− b1 =
νT
ET

− νL
EL

.

The last coefficient b4 can be solved from

ε11 = (b1 + b2 + b4 + 2(b3 + b5))σ11 =
1

EL
σ11

which gives

b4 =
1

EL
− b1 − b2 − 2(b3 + b5) =

1 + 2νL
EL

+
1

ET
− 1

GL
.
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As a result the coefficients can be collected as

b1 = − νT
ET

, (6.48)

b2 =
1 + νT
ET

, (6.49)

b3 =
νT
ET

− νL
EL

, (6.50)

b4 =
1 + 2νL
EL

+
1

ET
− 1

GL
, (6.51)

b5 =
1

2

(
1

GL
− 1

GT

)

, (6.52)

and the flexibility matrix has the form

D =











1/EL −νL/EL −νL/EL 0 0 0
−νL/EL 1/ET −νT/ET 0 0 0
−νL/EL −νT /ET 1/ET 0 0 0

0 0 0 1/GT 0 0
0 0 0 0 1/GL 0
0 0 0 0 0 1/GL











. (6.53)

We can immediately notice that the flexibility matrix of linearly elastic transversely
isotropic solid reduces that of isotropic one when ν = νT = νL, E = ET = EL and
G = GL = GT = E/2(1 + ν).

It can be also seen that the constitutive equation with the flexibility matrix (6.47) can
be written in the form











ε11
ε22
ε33
γ23
γ13
γ12











=











D11 D12 D12 0 0 0
D12 D22 D23 0 0 0
D12 D23 D22 0 0 0
0 0 0 2(D22 −D23) 0 0
0 0 0 0 D44 0
0 0 0 D44





















σ11

σ22

σ33

τ23
τ13
τ12











, (6.54)

where

D11 =
1

EL

, D22 =
1

ET

, D12 = − νL
EL

, D23 = − νT
ET

, D44 =
1

GL

, (6.55)

and

2(D22 −D23) =
2(1 + νT )

ET
=

1

GT
. (6.56)
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6.2.1 Thermodynamic restrictions to the material parameters

As in the case of linear isotropic elasticity, the compliance and stiffness matrices of the
material have to be positive definite, cf. (6.28). The matrix is positive definite if all its
principal minors are positive, thus

D11 > 0 ⇒ EL > 0, D22 > 0 ⇒ ET > 0,

2(D22 −D23) > 0 ⇒ GT > 0, D44 > 0 ⇒ GL > 0, (6.57)
∣
∣
∣
∣

D11 D12

D12 D22

∣
∣
∣
∣
> 0 ⇒ D11D22 −D2

12 > 0 ⇒ 1− ET

EL

ν2
L > 0

⇒ −
√

EL/ET < νL <
√

EL/ET , (6.58)
∣
∣
∣
∣

D22 D23

D23 D22

∣
∣
∣
∣
> 0 ⇒ D2

22 −D2
23 > 0 ⇒ 1

E2
T

− ν2
T

E2
T

> 0

⇒ 1− ν2
T > 0 ⇒ −1 < νT < 1, (6.59)

∣
∣
∣
∣
∣
∣

D11 D12 D12

D12 D22 D23

D12 D23 D22

∣
∣
∣
∣
∣
∣

> 0 ⇒ (1− ν2
T )EL − 2ETν

2
L(1 + νT ) > 0

⇒ −
√

EL(1− νT )

2ET
< νL <

√

EL(1− νT )

2ET
. (6.60)

It is seen that due to restriction (6.59) the inequality (6.60) is more restrictive than
(6.58). As a summary the thermodynamic restrictions to the material parameters for a
linear transversely isotropic elastic material are

EL > 0, ET > 0, GL > 0, (6.61)

− 1 < νT < 1, (6.62)

−
√

EL(1− νT )

2ET

< νL <

√

EL(1− νT )

2ET

. (6.63)

The thermodynamic restrictions have necessarily to be fulfilled. However, an addi-
tional restrictions emerge if the longitudinal and transverse modulae are considered as
extreme values for the Young’s modulus E in an arbitrary direction. To obtain conditions
for monotonous dependence, it is equivalent to consider the applied uniaxial stress in the
x1-axis direction and the longitudinal direction m forms an angle α w.r.t. the x1-direction.
Therefore m = (cosα, sinα, 0)T and using the following notations for brevity c = cosα
and s = sinα, it is obtained

M = mmT =





c2 sc 0
sc s2 0
0 0 0



 , and σM +Mσ =





2c2σx scσx 0
scσx 0 0
0 0 0



 ,
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and
I1 = trσ = σx I4 = tr(σM ) = c2σx.

The strain tensor has now the form

ε = (b1σx + b3c
2σx)I + b2σ + (b3σx + b4c

2σx)M + b5(σM +Mσ),

from which we can obtain the strain in the x1-axis direction

εx = (b1 + b2 + 2(b3 + b5)c
2 + b4c

4)σx,

which has the following expression written in the stiffness form

σx =
1

b1 + b2 + 2(b3 + b5)c2 + b4c4
εx.

The Young’s modulus in the α-direction is thus

E(α) =
1

b1 + b2 + 2(b3 + b5) cos2 α + b4 cos4 α
.

Now we can investigate if the denominator f(x) = b1 + b2 + 2(b3 + b5)x + b4x
2

have extreme values when 0 < x < 1. The function f has zero derivative at x = c2 =
−(b3 + b5)/b4. For f to be monotoneous in the interval 0 ≤ x ≤ 1, the expressions
b3 + b5 and b4 have to have same sign and the function f do not have extreme values in
the interval.

In the example 6.1 the coefficients b1, . . . , b5 are given in terms of EL, ET , GL, νL and
νT in equations (6.48)-(6.52). It is now assumed that EL > ET . Considering the equation

c2 = −b3 + b5
b4

,

in order to have a real solution it is required that

−b3 + b5
b4

> 1, or − b3 + b5
b4

< 0.

Considering first the condition −(b3 + b5)/b4 > 1, from which the following condition is
obtained provided that b4 > 0:

−(b3 + b5) > b4 ⇒ − νT
ET

+
νL
EL

+
1

2GT
− 1

2GL
>

1 + 2νL
EL

+
1

ET
− 1

GL
,

and after some intermediate steps the inequality

GL <
EL

2(1 + νL)
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α

E
(α

)/
E

L

π/23π/8π/4π/80
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Figure 6.2: Young’s modulus in different orientation with respect to the longitudinal di-
rection, red curve GL/EL = 0.5, blue curve GL/EL = 0.3, green curve GL/EL= 0.15,
νL = νT = 0.25, ET/EL = 0.4.

is obtained. The condition b3 + b5 < 0 results in

GL >
EL

2(νL + EL/ET )
.

As an example consider the case ET/EL = 2/5 = 0.4 and νL = νT = 1/4 = 0.25.
These values provide the following limits for GL:

GL

EL
<

1

2(1 + νL)
=

2

5
= 0.4 and

GL

EL
>

1

2(νL + EL/ET )
=

2

11
≈ 0.182.

In Fig. 6.2 the cases GL/EL = 0.5 (the uppermost curve), GL/EL = 0.3 (the middle
curve) and GL/EL = 0.15 (the lowest curve).

6.2.2 Material parameter determination

The linear elasticity constants for transversely isotropic solid can be determined from
the following tests, where it is assumed that the longitudinal direction coincides with the
x1-axis direction.

1. Apply a stress in the longitudinal direction 1, i.e. σ11, and measure ε11, ε22 = ε33,
then E1 = EL = σ11/ε11 and νL = ν12 = ν13 = −ε22/ε11.
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2. Apply a stress in the transverse direction, i.e. σ22, and measure strain in the three
perpendicular direction ε11, ε22 and ε33, then E2 = ET = σ22/ε22, ν23 = −ε33/ε22 =
νT

3. Apply a shear stress in the 1-2 plane, then G12 = GL = τ12/γ12. Note G12 = G13.

4. This test is not necessary. Shear in the isotropy plane, i.e. in the 2-3 plane. G23 =
τ23/γ23. Could also be obtained from G23 = E2/(1 + ν23).

6.3 Orthotropic material

A material is called orthotropic if it has three perpendicular symmetry planes. Let’s denote
the unit vectors normal to the symmetry planes as m1,m2 and m3. Due to the orthog-
onality m i·m j = δij . The structural tensors associated with these direction vectors are
M i = m im

T
i , and they satisfy

M 1 +M 2 +M 3 = I , (6.64)

due to the orthogonality. Thus, only two structural tensors are necessary to describe the
behaviour of an orthotropic material

W = W (ε,M 1,M2 ) = W (βεβT ,βM 1β
T ,βM 2β

T ). (6.65)

The representation theorem of an orthotropic solid says that the strain energy density
function can depend on seven invariants

W = W (tr ε, 1
2
tr(ε2), 1

3
tr(ε3), tr(εM 1), tr(εM 2), tr(ε

2M 1), tr(ε
2M 2)). (6.66)

It can be written in a form, where all the structural tensors M i are symmetrically present.
Notice that

εM 1 + εM 2εM 3 = ε(M 1 +M 2 +M 3) = ε, (6.67)

M 1ε+M 2ε+M 3ε = (M 1 +M 2 +M 3)ε = ε, (6.68)

thus summing by parts gives

ε = 1
2
(εM 1 +M 1ε) +

1
2
(εM 2 +M 2ε) +

1
2
(εM 3 +M 3ε), (6.69)

and
tr ε = tr(εM 1) + tr(εM 2) + tr(εM 3). (6.70)

In a similar way it can be deduced

tr (ε2) = tr(ε2M 1) + tr(ε2M 2) + tr(ε2M 3). (6.71)
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In other words, the invariants tr ε, tr(εM 1) and tr(εM 2) can be replaced by the invari-
ants I1 = tr(εM 1), I2 = tr(εM 2) and I3 = tr(εM 3). In a similar way the invariants
tr(ε2), tr(ε2M 1) and tr(ε2M 2) can be replaced by the invariants I4 = tr(ε2M 1), I5 =
tr(ε2M 2) and I6 = tr(ε2M 3). If we now denote the cubic invariant I7 = 1

3
tr(ε3), the

strain energy density function for an orthotropic material can be written as a function of
these seven invariants as

W = W (I1, . . . , I7), (6.72)

and the constitutive equation has the form

σ =
∂W

∂ε
=

7∑

i=1

∂W

∂Ii

∂Ii
∂ε

=
∂W

∂I1
M 1 +

∂W

∂I2
M 2 +

∂W

∂I3
M 3 +

∂W

∂I4
(εM 1 +M 1ε)

+
∂W

∂I5
(εM 2 +M 2ε) +

∂W

∂I6
(εM 3 +M 3ε) +

∂W

∂I7
ε2. (6.73)

If we now restrict to a linear model, the coefficients ∂W/∂Ii has to satisfy the follow-
ing conditions

∂W

∂I1
= a1I1 + c1I2 + c2I3, (6.74)

∂W

∂I2
= a2I1 + a3I2 + c3I3, (6.75)

∂W

∂I3
= a4I1 + a5I2 + a6I3, (6.76)

∂W

∂I4
= a7, (6.77)

∂W

∂I5
= a8, (6.78)

∂W

∂I6
= a9, (6.79)

∂W

∂I7
= 0. (6.80)

Due to the identity of the second derivatives (6.44), we have

∂

∂I2

(
∂W

∂I1

)

=
∂

∂I1

(
∂W

∂I2

)

⇒ c1 = a2, (6.81)

∂

∂I3

(
∂W

∂I1

)

=
∂

∂I1

(
∂W

∂I3

)

⇒ c2 = a4, (6.82)

∂

∂I3

(
∂W

∂I2

)

=
∂

∂I2

(
∂W

∂I3

)

⇒ c3 = a5. (6.83)
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The constitutive equation is thus

σ =(a1I1 + a2I2 + a4I3)M 1 + (a2I1 + a3I2 + a5I3)M 2 + (a4I1 + a5I2 + a6I3)M 3

+ a7(εM 1 +M 1ε) + a8(εM 2 +M 2ε) + a9(εM 3 +M 3ε)

= [a1 tr(εM 1) + a2 tr(εM 2) + a4 tr(εM 3)]M 1

+ [a2 tr(εM 1) + a3 tr(εM 2) + a5 tr(εM 3)]M 2

+ [a4 tr(εM 1) + a5 tr(εM 2) + a6 tr(εM 3)]M 3

+ a7(εM 1 +M 1ε) + a8(εM 2 +M 2ε) + a9(εM 3 +M 3ε) (6.84)

Starting from the complementary energy density a similar expression can be obtained

ε = [b1 tr(σM 1) + b2 tr(σM 2) + b4 tr(σM 3)]M 1

+ [b2 tr(σM 1) + b3 tr(σM 2) + b5 tr(σM 3)]M 2

+ [b4 tr(σM 1) + b5 tr(σM 2) + b6 tr(σM 3)]M 3

+ b7(σM 1 +M 1σ) + b8(σM 2 +M 2σ) + b9(σM 3 +M 3σ). (6.85)

If the directions of the unit vectors m i coincide with the coordinate axis, the material
coefficients ai and bi can be expressed in terms of physically comprehensible material
constants, which for orthotropic material are the Young’s modulae in the 1,2 and 3 mate-
rial directions E1, E2 and E3, the Poisson’s ratios νij , defined as a ratio of transverse strain
in the jth direction to the axial strain in the ith direction when stressed in the i-direction,
i.e.

εj = −νijεi = −νij
σi

Ei

, no sum in i, (6.86)

and the shear modulae in the 1-2, 2-3 and 1-3 planes G12, G23 and G13.
The compliance matrix has the form

D =











1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G23 0
0 0 0 0 0 1/G13











. (6.87)

Due to the symmetry requirement of the compliance matrix D the following relations
have to hold

ν21
E2

=
ν12
E1

,
ν32
E3

=
ν23
E2

,
ν13
E1

=
ν21
E3

, (6.88)

or written in a more easily memorized form

νijEj = νjiEi. (6.89)
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Since the compliance matrix has to be positive definite, an immediate consequence is
that the elasticity- and shear modulae has to be positive

E1 > 0, E2 > 0, E3 > 0, G12 > 0, G23 > 0, and G13 > 0. (6.90)

In addition the following minors have to be positive
∣
∣
∣
∣

1/E1 −ν21/E2

−ν12/E1 1/E2

∣
∣
∣
∣
=

1− ν12ν21
E1E2

> 0, (6.91)

∣
∣
∣
∣

1/E2 −ν32/E3

−ν23/E2 1/E3

∣
∣
∣
∣
=

1− ν23ν32
E2E3

> 0, (6.92)

∣
∣
∣
∣

1/E1 −ν31/E3

−ν13/E1 1/E3

∣
∣
∣
∣
=

1− ν13ν31
E1E3

> 0, (6.93)

and

∣
∣
∣
∣
∣
∣

1/E1 −ν21/E2 −ν31/E3

−ν12/E1 1/E2 −ν32/E3

−ν13/E1 −ν23/E2 1/E3

∣
∣
∣
∣
∣
∣

=
1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν32ν21ν13

E1E2E3
> 0. (6.94)

Since the Young’s modulae are positive, the inequalities (6.91)-(6.93) can be written in
the form

1− νijνji > 0, (6.95)

which after taking the reciprocal relation (6.89) into account has the form

1− ν2
ijEj/Ei > 0, or |νij| <

√

Ei/Ej . (6.96)

The positive definiteness is thus quaranteed if the inequalities for the modulae (6.90)
together with the inqualities (6.96) and

1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν32ν21ν13 > 0 (6.97)

for the Poisson’s ratios are satisfied.

6.4 Thermoelasticity

6.5 Solved example problems
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Chapter 7

Elasto-plastic constitutive models

7.1 Introduction

On the contrary to elastic behaviour, the characteristic feature of plastic behaviour is ir-
reversibility. If an elastic-plastic solid is first stressed above the elastic treshold and then
the stress is removed, permanent strains are generated.

In the analysis of elasto-plastic behaviour of solids, three set of equations will be
required to complete the analysis.

1. Yield criterion, to define the borderline between elastic and plastic behaviour.

2. Flow rule, which describe how the plastic strains evolve,

3. Hardening rule, which models the change of the yield criterion with evolving plas-
tic strains.

7.2 Yield criteria

For an initially isotropic solid the yield criterion can only depend of the invariants of the
stress tensor and possibly some parameters. Since the principal stresses form a valid set
of invariants, the yield criterion can be expressed

f(σ1, σ2, σ3) = 0. (7.1)

Alternatively, the principal invariants of the stress tensor can be used. However, the yield
function is usually expressed by using the set I1, J2 and cos 3θ, since they give a clear
physical intepretation of the stress state.

To have a picture on the shape of the yield surface, it is advisable to determine its
trace on the deviatoric- and meridian planes. On the meridian plane, the deviatoric radius
ρ =

√
2J2, or the effective stress σe =

√
3J2, is shown as a function of the mean stress

σm, or I1, at certain value of the Lode angle θ on the deviatoric plane. Three meridian
planes are of special interest: (i) the tensile meridian, (ii) the compressive meridian and
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(iii) the shear meridian. To give a physical meaning of these meridian planes, let’s order
the principal stresses as σ1 ≥ σ2 ≥ σ3. Therefore the intermediate principal stress can be
expressed as a linear combination of the extreme ones, i.e.

σ2 = (1− α)σ1 + ασ3, where 0 ≤ α ≤ 1. (7.2)

All stress states can therefore be expressed with the α-values in the range [0, 1]. The mean
stress and the principal deviatoric stresses are

σm = 1
3
(σ1 + σ2 + σ3) =

1
3
[(2− α)σ1 + (1 + α)σ3], (7.3)

s1 = σ1 − σm = 1
3
(1 + α)(σ1 − σ3), (7.4)

s2 = σ2 − σm = 1
3
(1 + 2α)(σ1 − σ3), (7.5)

s3 = σ3 − σm = 1
3
(α− 2)(σ1 − σ3). (7.6)

The Lode angle has the expression (2.60)

cos θ =

√
3

2

s1√
J2

=
1

2

1 + α√
1− α + α2

. (7.7)

Tensile meridian corrsponds to a stress state where a uniaxial tensile stress is superim-
posed to a hydrostatic stress state, thus σ1 > σ2 = σ3, giving the value α = 1 and the
Lode angle θ = 0◦.

Compressive meridian corresponds to a stress state where a uniaxial compressive stress
is superimposed to a hydrostatic stress state, thus σ1 = σ2 > σ3, resulting into the value
α = 0 and the Lode angle 60◦.

Shear meridian is obtained when α = 1
2
, thus corresponding to a stress state where a

shear stress in the 1 − 3-plane is superimposed to a hydrostatic stress state. The Lode
angle has the value θ = 30◦.

For initially isotropic elastic solids, the yield criteria can be classified in two groups:
(i) pressure independent and (ii) pressure dependent criteria. In this lecture notes only
the two most important pressure independent yield criterion of Tresca and von Mises are
described. Also their generalizations to pressure dependent forms which are the Drucker-
Prager and Mohr-Coulomb yield criterion, respectively, are dealt with.

If the yield condition do not depend on the Lode angle θ, the trace of the yield surface
in the deviatoric plane is circular. In general, for isotropic material the yield locus on
the deviatoric plane is completely described in the sector 0 ≤ θ ≤ 60◦. If both σij and
−σij will cause initial yield of a given material, as it is characteristic for metals, the yield
curve in the deviatoric plane have symmetry about θ = 30◦, which implies that the tensile
and compressive meridians have the same distrance from the hydrostatic axis. For a more
detailed discussion on the symmetry properties of the yield surface see [17, section 8.2].
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7.2.1 Tresca’s yield criterion

For metals yielding is primarily due to slip in the crystal lattice. Tresca’s criterion states
that plastic deformations occur when the maximun shear stress attains a critical value

τmax − k = 0,

where k is the yield stress in shear. Since τmax = (σ1 − σ3)/2,in uniaxial tension the
criterion has the form

σ1 − 2k = 0, i.e. σ1 − σy = 0,

where σy is the yield stress in uniaxial stress state. Notice, that similar expression is also
obtained in uniaxial compression. Tresca’s criterion do not depend on the hydrostatic
pressure, i.e. on the first invariant of the stress tensor I1.

7.2.2 Von Mises yield criterion

For metals the most used yield criterion is von Mises criterion, which can be written as
√

J2 − k = 0, (7.8)

where k is the yield stress in shear. Often, the criterion is given in the form
√

3J2 − σy = 0, in short σe − σy = 0, (7.9)

where σy is the yield stress in uniaxial tension/compression. The notation σe =
√
3J2 is

known as the effective stress. It is easily seen that the ratio between the uniaxial and shear
yield stresses is

√
3 ≈ 1, 732.

Von Mises yield criterion can be viewed in the principal stress space as a circular
cylinder around the hydrostatic axis, and its cut with the surface σ3 = 0 (plane stress
state) is ellipse

√

σ2
1 + σ2

2 − σ1σ2 − σy = 0. (7.10)

If the only nonzero components of the stress tensor are σx = σ and τxy = τ , the yield
criterion has the form √

σ2 + 3τ 2 − σy = 0. (7.11)

7.2.3 Drucker-Prager yield criterion

Drucker-Prager yield criterion, presented in 1952, is the most simple generalisation of the
von-Mises criterion for pressure dependent plastic materials. In the deviatoric plane its
shape is a circle with radius depending on the hydrostatic stress. Expressed by invariants
I1 and J2, the criterion can be written in the form

f(I1, J2) =
√

3J2 + αI1 − β = σe + 3ασm − β = 0, (7.12)
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Figure 7.1: Von Mises (black) and Tresca (blue dashed lines) yield criteria. (a) in meridian
plane (the shear meridian of Tresca criterion is drawn with a red line), (b) on the π-plane,
(c) in plane stress state and (d) for (σ, τ)-stresses. The uniaxial tensile stress is matched,
thus the tensile- and compressive meridians of Tresca and von Mises criteria coincide.
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Figure 7.2: Drucker-Prager yield criterion: (a)on meridian plane, (b) on the π-plane, (c)
in the plane stress state, (d) for (σ, τ)-stresses. In the figures the relation between the
equibiaxial and compressive yield stressea is fbc = 1, 16fc, which implies α = 0, 12 and
β = 0, 88fc.

or alternatively written in terms of I1, ρ

f(I1, ρ) = ρ+
√

2/3αI1 −
√

2/3β = 0. (7.13)

The criterion is reduced to the von Mises criterion when α = 0. Drucker-Prager (DP)
yield criterion describes a linear dependency of yield on the hydrostatic stress and thus
its ability to describe the plastic behaviour of pressure dependent real materials is very
limited. The shape of DP-yield criterion on the meridian plane is a straight line, see fig.
7.2

The two material parameters α ja β can be determined e.g. by using two of the follow-
ing four experiments: (i) uniaxial compression (fc), (ii) uniaxial tension (ft), (i) equibiax-
ial compression (fbc), or (iv) equibiaxial tension (fbt). Values of these material strengths
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can be expressed wit parameters α and β as

fc =
β

1− α
, ft =

β

1 + α
, (7.14)

fbc =
β

1− 2α
, fbt =

β

1 + 2α
. (7.15)

If the uniaxial and equibiaxial compressive strengths are known, the values for α and β
are

α =
fbc − fc
2fbc − fc

=
(fbc/fc)− 1

2(fbc/fc)− 1
, β = (1− α)fc. (7.16)

Alternatively, if the uniaxial strengths are known, the following expressions will be ob-
tained

α =
fc − ft
fc + ft

, β = (1− α)fc. (7.17)

If the ratio of uniaxial compressive strength with respect to the uniaxial tensile strength is
denoted by m, fc = mft, the expressions are

α =
m− 1

m+ 1
, β =

2

m+ 1
fc. (7.18)

In the plane stress state (σ3 ≡ 0) DP-criterion has the form

√

σ2
1 + σ2

2 − σ1σ2 + α(σ1 + σ2)− β = 0, (7.19)

which presents an ellipse in the (σ1, σ2)-plane, whose main axis makes 45◦-angle with the
σ1-axis, see fig. 7.2c.

If the only nonzero components of the stress tensor are σ and τ , the DP-criterion
expressed in terms of the uniaxial material strengths as follows

√
σ2 + 3τ 2 +

m− 1

m+ 1
σ − 2

m+ 1
fc = 0, (7.20)

which is shown in fig. 7.2d.

7.2.4 Mohr-Coulomb yield criterion

Mohr-Coulomb yield criteria can be understood as a generalisation of Tresca’s criterion
to pressure dependent plastc materials.

Coulomb’s criterion, dating back to the year 1773, is the oldest known yield or failure
criterion. It assemes a linear relationship between the extreme principal stresses (σ1 ≥
σ2 ≥ σ3)

mσ1 − σ3 − fc = 0, (7.21)
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c/µ
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τ = c− µσ

φ
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(σ1 − σ3)
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(σ1 + σ3)

τ

σσ1σ3

Figure 7.3: Mohr’s circles and Coulomb’s yield criterion.

where m = fc/ft. Using the Mohr’s circles, the criterion can be written also as

|τ |+ µσ − c = 0, (7.22)

where the two material constans are µ and c. From the figure 7.3 it is obtained

µ = tanφ, (7.23)

where φ friction angle. For frictionless materials (φ = 0) and the Mohr-Coulomb citerion
(7.22) is reduced to the maximum shear criterion and the cohesion parameters c is equal
to the yield stress in shear k.

Under pure hydrostatic stress σ1 = σ2 = σ3 = σ and using equation (7.21), the
following equation is obtained

σ =
fc

m− 1
=

c

µ
. (7.24)

The relation between the friction angle and the uniaxial strengths is

m =
fc
ft

=
1 + sin φ

1− sinφ
. (7.25)

Very usefull are also the relations

µ = tanφ =
m− 1

2
√
m

, (7.26)

and

c =
fc

2
√
m
. (7.27)
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Let’s determine the equations for the straight meridian lines. Expressions of the in-
variants I1 and ρ on the compressive meridian (σ1 = σ2 > σ3, θ = 60◦) are

I1c = 2σ1 + σ3, ρc =
√

2J2c =
√

2
3
(σ1 − σ3). (7.28)

Expressing the principal stresss σ1 and σ3 in terms of I1c and ρc and substituting them
into equation (7.21), the expression for the compressive meridian line is

ρc +
√

2
3

m− 1

m+ 2
I1c −

√
6

m+ 2
fc = 0, or (7.29)

σe + 3
m− 1

m+ 2
σm − 3

m+ 2
fc = 0. (7.30)

On the tensile meridian (σ1 > σ2 = σ3, θ = 0◦) the expressions for the invariants are

I1t = σ1 + 2σ3, ρt =
√

2J2t =
√

2
3
(σ1 − σ3), (7.31)

and the following equation for the tensile meridian is obtained

ρt +
√

2
3

m− 1

2m+ 1
I1t −

√
6

2m+ 1
fc = 0, or (7.32)

σe + 3
m− 1

2m+ 1
σm − 3

2m+ 1
fc = 0. (7.33)

Eliminating the invariant I1 = I1t = I1c, the ratio between the radius of compressive and
tensile meridians is obtained

ρc
ρt

=
2m+ 1

m+ 2
=

3 + sinφ

3− sinφ
. (7.34)

The shape of the yield surface on the deviatoric plane is thus dependent on the ratio
between the uniaxial strengths m.

7.3 Flow rule

Evolution equations for the plastic flow are assumed to be given in the following form

ε̇pij = λ̇
∂g

∂σij

and κ̇α = −λ̇
∂g

∂Kα
, (7.35)

where g is the plastic potential, a function depending on the stress σ and the hardening
parameters Kα. The factor λ is called the plastic multiplier. If a yield function is used
for the plastic potential, the flow rule is called associated, otherwise it is called non-

associated.
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Figure 7.4: Illustrations of Mohr-Coulomb yield criterion when m = 4: (a) on meridian
plane, (b) on the π-plane, (c) in the plane stress state and (d) in the plane strain state
(ν = 1/3).
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During the plastic deformation process the point of stress stays on the yield surface,
thus f(σij, K

α) = 0 and also

ḟ =
∂f

∂σij

σ̇ij +
∂f

∂Kα
K̇α =

∂f

∂σij

σ̇ij +
∂f

∂Kα

∂Kα

∂κβ
κ̇β = 0. (7.36)

The equation above is called as the consistency condition. Inserting the evolution equation
of the hardening variable κ in eq. (7.35) into the consistency condition (7.36), the result
is

ḟ =
∂f

∂σij
σ̇ij − λ̇H, (7.37)

where H is the plastic hardening modulus

H =
∂f

∂Kα

∂Kα

∂κβ

∂g

∂Kβ
. (7.38)

Taking the time derivative of the constitutive equation

σ̇ij = Cijkl(ε̇ij − ε̇pij) = Cijkl(ε̇ij − λ̇
∂g

∂σkl
). (7.39)

Multiplying the above equation by parts from the left with the gradient of the yield surface,
i.e. ∂f/∂σij , it is obtained

∂f

∂σij

σ̇ij =
∂f

∂σij

Cijklε̇kl − λ̇
∂f

∂σij

Cijkl
∂g

∂σkl

. (7.40)

Taking the consistency condition (7.37) into account results in

λ̇ =
1

A

∂f

∂σij
Cijklε̇kl. (7.41)

Substituting the expression for the rate of the plastic multiplier back to the constitutive
equation, gives

σ̇ij = Cijkl

(

ε̇kl −
1

A

∂f

∂σmn
Cmnpqε̇pq

∂g

∂σkl

)

, (7.42)

which after some rearrangements become

σ̇ij =

(

Cijkl −
1

A
Cijmn

∂g

∂σmn

∂f

∂σpq

Cpqkl

)

ε̇kl, (7.43)

defining the elastic-plastic constitutive operator as

Cep
ijkl = Cijkl −

1

A
Cijmn

∂g

∂σmn

∂f

∂σpq
Cpqkl. (7.44)
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7.3.1 Example.

Let’s consider von Mises solid and assume that the yield stress σy is a function of a scalar
internal variable κ as σy = σy0 +K(κ), where σy0 is the yield stress of a virgin material.
The yield condition is thus

f =
√

3J2 − (σy0 +K(κ)) = 0. (7.45)

Assuming associated flow, the evolution equations for the plastic variables are

ε̇pij = λ̇
∂f

∂σij

= λ̇
3

2

sij
σy

, (7.46)

κ̇ = −λ̇
∂f

∂K
= λ̇. (7.47)

The plastic hardening modulus is

H =
∂f

∂Kα

∂Kα

∂κβ

∂f

∂Kβ
=

∂σy

∂κ
. (7.48)

To make different strain evolutions in some sense comparable, let’s define an equivalent
plastic strain as

ε̄p =

∫

˙̄εp dt, where ˙̄εp =
√

2
3
ε̇pij ε̇

p
ij. (7.49)

For von Mises model the plastic deformation is incompressible, i.e. tr εp = 0, as can be
seen from the flow rule (7.46), in uniaxial tension/compression test in the x1-direction,
the plastic part of the strain rate tensor has the following non-zero components

εp11, ε̇p22 = ε̇p33 = −1
2
ε̇p11. (7.50)

The equivalent plastic strain rate is ˙̄εp = ε̇p11 and thus the equivalent plastic strain coin-
cides to the uniaxial plastic strain.

Taking the flow rule (7.46) into account results in

˙̄εp =
√

2
3
ε̇pij ε̇

p
ij =

√

3

2

sijsij
σy

λ̇ = λ̇. (7.51)

Thus we have obtained for associated flow of von Mises solid an important result that

κ = λ = ε̄p. (7.52)

Therefore the hardening modulus is

H =
∂σy

∂κ
=

∂σy

∂ε̄p
. (7.53)
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Figure 7.5: Linear isotropic (above) and kinematic hardening.

7.3.2 Hardening rule

In the previous example the evolution of the hardening variable K was not defined and the
hardening expressed as increase of the yield stress in the form σy = σy0+K(κ) results in
isotropic expansion of the yield curve in the deviatoric plane, see fig. 7.5. Thus this type
of hardening is called as isotropic hardening. Considering a material which is first loaded
in the plastic region to a stress σy. In subsequent reversed loading the yield starts at the
stress state −σy if the material obeys the isotropic hardening rule. However, for metals
lowering of the yield stress in reversed loading is observed. This phenomenon is known
as Bauschinger effect, and kinematic hardening rules have been developed to model it.
In ideal kinematic hardening, the size of the yield surcafe do not change, while the yield
surface moves in the stress space, see fig. 7.5.

Some materials show change of the yield surface shape when plastically deformed.
Such third type of hardening is called distortional or anisotropic hardening.
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σy0 +K∞

1
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σ

ε̄p

Figure 7.6: Hardening rule (7.56).

Example, isotropic hardening Linear hardening is the most simple isotropic hardening
rule

H =
∂σy

∂ε̄p
= constant, (7.54)

thus K = Hε̄p. In reality, the yield stress has an upper bound and

K = K∞(1− exp(−hε̄p/K∞)), (7.55)

i.e.

σy = σy0 +K∞(1− exp(−hε̄p/K∞)), (7.56)

is videly used hardining equation. The plastic hardening modulus modulus is

H =
∂σy

∂ε̄p
= h exp(−hε̄p/K∞). (7.57)

This exponential hardening rule has two material parameters h and K∞, which have a
clear physical intepretation, see fig. 7.6.

The hardening rule (7.55) can be expressed in the rate form

K̇ = h exp(hε̄p/K∞) ˙̄εp, (7.58)

which can be written also in the form

K̇ = h(1−K/K∞) ˙̄εp. (7.59)
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Example, kinematic hardening Let’s consider kinematically hardening von Mises model.
Now the hardening parameter K is a second order tensor α, which defines the center of
the yield curve in the deviatoric plane and it is called as the back stress. The yield surface
is now defined as

f(σij, αij) =
√

3
2
(sij − αij)(sij − αij)− σy0. (7.60)

Assuming associated flow rule, the plastic strain rate and the rate of the internal variable
κ̇ij , dual to the back stress αij are

ε̇pij = λ̇
∂f

∂σij
= λ̇

3

2

sij − αij

σy0
, (7.61)

κ̇ij = −λ̇
∂f

∂αij
= λ̇

3

2

sij − αij

σy0
= ε̇pij. (7.62)

Thus, for kinematically hardening associated von Mises plasticity the ineternal variable
equals to the plastic strain. Notice that the back stress tensor α has to be deviatoric to
result in isochoric1 plastic flow.

Two well know kinematic hardening rules are the Melan-Prager

α̇ij = cκ̇ij = cε̇pij, (7.63)

and the Ziegler’s rule
α̇ij = λ̇c̄(σij − αij), (7.64)

where c and c̄ are material parameters.

7.4 Anisotropic yield

7.4.1 Transverse isotropy

As in the case of elastic constitutive models, the material can posses different symmetry
properties. The yield function can be formulated in terms of the proper integrity base. For
transverse isotropy the most general yield function can be expressed as

f(I1, I2, I3, I4, I5) = 0 (7.65)

where the invariants are

I1 = trσ, I2 =
1
2
tr(σ2), I3 =

1
3
tr(σ3), I4 = tr(σM ), I5 = tr(σ2M ), (7.66)

and M = mmT is the structural tensor with the unit vector m defining the normal of the
isotropy plane. In some cases it can be easier to operate with the deviatoric invariants

J2 =
1
2
tr(s2), J3 =

1
3
tr(s3), J4 = tr(sM ), J5 = tr(s2M ). (7.67)

1Isochoric = volume preserving.
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Example 7.1. Consider the following form of transversely isotropic yield function

f(σ,M ) =
√

k1J2 + k2J
2
4 + k3J5 − σyL = 0. (7.68)

Determine the parameters k1, k2 and k3 from the following tests results:

1. uniaxial yield strength in the longitudinal direction σyL,

2. uniaxial yield strength in the transverse isotropy plane σyT,

3. and the shear strength in a plane containing the longitudinal axis τyL.

Determine also the shear strength (τyT) which is predicted by the yield function. If

σyT = σyL and τyL = σyL/
√
3, does the yield function (7.68) reduce to the von

Mises yield function?

Solution. When the x1-direction is chosen as the longitudinal direction, i.e. the
normal direction of the isotropy plane, the structural tensor is

M =





1 0 0
0 0 0
0 0 0



 .

Let us first investigate the yield in the longitudinal direction σ11 = σyL, then

σ =





σyL 0 0
0 0 0
0 0 0



 , s =





2
3σyL 0 0
0 −1

3σyL 0
0 0 −1

3σyL



 , s2 =





4
9σ

2
yL 0 0

0 1
9σ

2
yL 0

0 0 1
9σ

2
yL



 ,

thus
J2 =

1
3σ

2
yL, J4 =

2
3σyL, J5 =

4
9σ

2
yL.

Substituting the above expressions in to the yield condition (7.68), we get

1
3k1σ

2
yL + 4

9k2σ
2
yL + 4

9k3σ
2
yL = σ2yL,

or
1
3k1 +

4
9k2 +

4
9k3 = 1. (7.69)

Investigating the yield in the transverse isotropy plane, and choosing σ22 = σyT
(equally we could choose σ33 = σyT), then

σ =





0 0 0
0 σyT 0
0 0 0



 , s =





−1
3σyT 0 0
0 2

3σyT 0
0 0 −1

3σyT



 , s2 =





1
9σ

2
yT 0 0

0 4
9σ

2
yT 0

0 0 1
9σ

2
yT



 ,
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and

J2 =
1
3σ

2
yT, J4 = −1

3σyT, J5 =
1
9σ

2
yT.

Substituting these into the yield condition gives

1
3k1σ

2
yT + 1

9k2σ
2
yT + 1

9σ
2
yT = σ2yL

⇒ 1
3k1 +

1
9k2 +

1
9k3 =

(
σyL
σyT

)2

≡ ξ2. (7.70)

Let us now investigate shear in a plane containing the longitudinal direction, For
simplicity we can choose either the 1-2 or 1-3 plane. Choosing τ12 = τyL we get

σ =





0 τyL 0
τyL 0 0
0 0 0



 = s, s2 =





τ2yL 0 0

0 τ2yL 0

0 0 0



 ,

resulting in

J2 = τ2yL, J4 = 0, J5 = τ2yL.

Substituting into the yield condition gives

k1τ
2
yL + k3τ

2
yL = σ2yL, ⇒ k3 =

(
σyL
τyL

)2

− k1 = η2 − k1.

Further substituting this in (7.69) and (7.70) we get

1
3k1 +

4
9k2 +

4
9(η

2 − k1) = 1,
1
3k1 +

1
9k2 +

1
9(η

2 − k1) = ξ2,

from which we obtain

−k1 + 4k2 = 9− 4η2,

2k1 + k2 = 9ξ2 − η2,

and the solution is

k1 = 4ξ2 − 1,

k2 = 2 + ξ2 − η2,

k3 = 1 + η2 − 4ξ2.

If now σyT = σyL and τyL = σyL/
√
3, i.e. ξ = 1 and η2 = 3, we get k2 = k3 = 0

and k1 = 3, and the model reduces in the isotropic case to the standard von Mises
yield condition.
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The last question is related to the yield strength in the transverse plane. Now the
stress and deviatoric tensors are

σ =





0 0 0
0 0 τyT
0 τyT 0



 = s , s2 =





0 0 0
0 τ2yT 0

0 0 τ2yT



 ,

resulting in
J2 = τ2yT, J4 = J5 = 0.

When substituting into the yield condition we get

k1τ
2
yT = σ2yL ⇒ τ2yT =

σ2yL
k1

=
σ2yT

4(σyL/σyT)2 − 1
.

Notice that σ2yL >
1
4σ

2
yT.

7.4.2 Orthotropy

For an orthotropic material the most general yield function is of the form

f(I1, . . . , I7) = 0, (7.71)

where the invariants can be defined in the symmetric format as

I1 = tr(σM 1), I2 = tr(σM 2), I3 = tr(σM 3), I4 =
1
2
tr(σ2M 1),

I5 =
1
2
tr(σ2M 2), I6 =

1
2
tr(σ2M 3), I3 =

1
3
tr(σ3). (7.72)

For metals the yield can often be modelled to be independent of the mean stress, thus it is
helpful to formulate the yield function in terms of the deviatoric stresses

J1 = tr(sM 1), J2 = tr(sM 2), J3 = tr(sM 3), J4 =
1
2
tr(s2M 1),

J5 =
1
2
tr(s2M 2), J6 =

1
2
tr(s2M 3), J7 =

1
3
tr(s3). (7.73)

As an example let us consider an orthotropic yield function which is independent of
hydrostatic stress and has equal compressive and tensile yield stresses in the directions of
the orthotropy. The yield function satisfying these requirements is of the form

f = σeff − σy1 = 0,

σeff =
√

α1(J1 − J2)2 + α2(J2 − J3)2 + α3(J3 − J1)2 + α4J4 + α5J5 + α6J6, (7.74)

where σy1 is the yield strength in the direction of m1. There are six material parameters
in the yield function (7.74), which can be determined from the following six tests for
individual stress components:
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• yield under normal stress state in the directions 1,2 and 3, yield stresses σy1, σy2, σy3,
respectively, and

• yield in shear on planes 1-2, 2-3 and 3-1, with respective yield stresses τy12, τy23, τy31.
For determining the parameters α1, . . . , α6, it is convenient to write the yield condition

in the form

α1(J1 − J2)
2 + α2(J2 − J3)

2 + α3(J3 − J1)
2 + α4J4 + α5J5 + α6J6 = σ2

y1. (7.75)

If we now associate the directions of orthotropy to coincide the coordinate axes.

• Stress in m1, i.e. x1-axis direction σ11 = σy1 results in

J1 =
2
3
σy1, J2 = J3 = −1

3
σy1, J4 =

4
9
σ2
y1, J5 = J6 =

1
18
σ2
y1.

and substituting it into (7.75) gives

α1 + α3 +
2
9
α4 +

1
18
α5 +

1
18
α6 = 1. (7.76)

• Stress in m2, i.e. x2-axis direction σ22 = σy2 results in

J2 =
2
3
σy2, J1 = J3 = −1

3
σy2, J5 =

4
9
σ2
y2, J4 = J6 =

1
18
σ2
y2.

and substituting these values into (7.75) gives

α1 + α2 +
1
18
α4 +

2
9
α5 +

1
18
α6 = (σy1/σy2)

2 ≡ ξ22. (7.77)

• Stress in m3, i.e. x3-axis direction σ33 = σy3 results in

J3 =
2
3
σy3, J1 = J2 = −1

3
σy3, J6 =

4
9
σ2
y3, J4 = J5 =

1
18
σ2
y3.

and substituting these values into (7.75) gives

α2 + α3 +
1
18
α4 +

1
18
α5 +

2
9
α6 = (σy1/σy3)

2 ≡ ξ23. (7.78)

• Shear stress in the 1-2 plane: τ12 = τy12 gives

J1 = J2 = J3 = 0, J4 = J5 =
1
2
τ 2y12, J6 = 0,

and substituting these values into (7.75) gives

α4 + α5 = 2(σy1/τy12)
2 ≡ η212 (7.79)
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• Shear stress in the 2-3 plane: τ23 = τy23 gives

J1 = J2 = J3 = 0, J5 = J6 =
1
2
τ 2y23, J6 = 0,

and substituting these values into (7.75) gives

α5 + α6 = 2(σy1/τy23)
2 ≡ η223. (7.80)

• Shear stress in the 3-1 plane: τ31 = τy31 gives

J1 = J2 = J3 = 0, J4 = J6 =
1
2
τ 2y31, J6 = 0,

and substituting these values into (7.75) gives

α4 + α6 = 2(σy1/τy31)
2 ≡ η231. (7.81)

From the shear stress conditions (7.79), (7.80) and (7.81), it is obtained

α4 =
1
2
(η212 + η231 − η223),

α5 =
1
2
(η223 + η212 − η231), (7.82)

α6 =
1
2
(η231 + η223 − η212).

Observe the logic in the cyclic symmetry of the indexes. Substituting these expressions
into (7.76), (7.76) and (7.78) results

α1 =
1
2
(1 + ξ22 − ξ23 − 5

18
η212 +

1
18
η223 +

1
18
η231),

α2 =
1
2
(ξ22 + ξ23 − 1− 5

18
η223 +

1
18
η231 +

1
18
η212), (7.83)

α3 =
1
2
(1− ξ22 + ξ23 − 5

18
η231 +

1
18
η212 +

1
18
η223).

For isotropic von Mises solid σy1 = σy2 = σy3 = σy and τy12 = τy23 = τy31 = σy/
√
3,

gives ξ2 = ξ3 = 1 and η2ij = 6, then α1 = α2 = α3 = 0 and α4 = α5 = α6 = 3. The
orthotropic yield function (7.74) reduces to

f =
√

3(J4 + J5 + J6)− σy

=
√

3
2
tr[s2(M 1 +M 2 +M 3)]− σy =

√
3
2
tr(s2)− σy = 0. (7.84)

which is identical to the isotropic von Mises yield condition (7.9).
Notice that the linear deviatoric invariants J1, J2 and J3 are not independent, since

tr(sM 1) + tr(sM 2) + tr(sM 3) = tr[s(M 1 +M 2 +M 3)] = tr s = 0, (7.85)

and therefore J3 = −J2 − J1. The effective stress (7.74) can thus be written as

σeff =
√

α̃1J2
1 + α̃2J2

2 + 2α̃3J1J2 + α4J4 + α5J5 + α6J6, (7.86)

where

α̃1 = α1 + α2 + 4α3 = 2 + 2ξ23 − ξ22 − 1
2
η231,

α̃2 = α1 + α3 + 4α2 = 2ξ22 + 2ξ23 − 1− 1
2
η223, (7.87)

α̃3 = 2α2 + 2α3 − α1 = −1
2
+ 1

2
ξ22 +

5
2
ξ23 +

1
4
(η212 − η223 − η231).
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7.5 Determining material parameters

7.6 Some solved example problems

Example 7.2. It is assumed that a yield of a certain material is governed by the yield

function

f(I1, J2) = J2 + α(a1 − I1)(I1 + a2) = 0, (7.88)

where J2 = 1
2 tr s

2 is the second invariant of the deviatoric stress and I1 = trσ is

the first stress invariant and α, a1, a2 are parameters which can be determined from

the three tests listed below.

In a triaxial loading device the following three stress states (a)-(c) cause yielding

1. hydrostatic compression σ11 = σ22 = σ33 = −2p0,

2. hydrostatic tension σ11 = σ22 = σ33 =
1
3p0,

3. under the cell pressure σ22 = σ33 = −1
2p0 the yield occurs when the compres-

sive stress in the 1-axis direction reaches the value σ11 = −2p0.

Above p0 is a positive stress value. Determine the material parameters α, a1, a2 such

that a1, a2 > 0. Notice that α is dimensionless while a1 and a2 has a dimension of

stress.

Determine the shear strength as a function of hydrostatic pressure p = −1
3I1 and its

maximum value. Draw a figure.

Solution. The loading case 1 and 2 are purely hydrostatic, that is J2 = 0 and
the first stress invariant I1 has values −6p0 and p0, respectively. Substituting these
values to the yield function gives

α(a1 + 6p0)(a2 − 6p0) = 0, (7.89)

α(a1 − p0)(a2 + p0) = 0. (7.90)

If the parameters a1 and a2 are assumed to be positive, it is obtained a1 = p0 and
a2 = 6p0.

For the loading case 3: σ11 = −2p0, σ22 = σ33 = −1
2p0, then I1 = −3p0 and the

deviatoric stress tensor has non-zero components s11 = −2p0 + p0 = −p0, s22 =
s33 = −1

2p0 + p0 = 1
2p0. As a check, notice that s11 + s22 + s33 = 0, as it

should be. The second invariant of the deviatoric stress has now the value J2 =
1
2(s

2
11 + s222 + s233) = 3

4p
2
0. Substituting the values of J2 and I1 into the yield

function (7.88) gives

3
4p

2
0 + α(p0 + 3p0)(−3p0 + 6p0) =

3
4p

2
0 + 12p20α = 0 ⇒ α = − 1

16 . (7.91)
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To compute the shear strength as a function of hydrostatic pressure p = −1
3I1, we

can use the following stress state

σ =





−p τ 0
τ −p 0
0 0 −p



 ⇒ J2 = τ2, I1 = −3p0. (7.92)

Substituting these values to the yield condition (7.88) gives

τ2 = 1
16 (p0 + 3p)(6p0 − 3p) = 9

16(
1
3p0 + p)(2p0 + p). (7.93)

Let us determine the extremum value of the function

g(p) = (13p0 + p)(2p0 + p) = −p2 + 5
3p0p+

2
3p

2
0,

g′(p) = −2p+ 5
3p0 = 0 ⇒ p = 5

6p0. (7.94)

Substituting this value into (7.93) results in τ2 = (7/8)p20, thus the maximum shear
strenght occurs at the hydrostatic pressure value p = (5/6)p0 and it is τmax =
√

7/8p0.

Example 7.3. Hydrostatic pressure does not influence to yielding of metals in the

early phase of plastic deformation. However, if the material has unequal yield

stresses in compression and tension, the yield function has to depend also from the

third invariant of the deviatoric stress as

f(J2, J3) =
√

3J2 + αJ3 − β = 0 (7.95)

where α and β are material parameters and the deviatoric invariants are J2 =
1
2 tr s

2 = 1
2sijsji and J3 = det s = 1

3 tr(s
3) = 1

3sijsjkski. Determine the pa-

rameters α and β when the uniaxial tensile and compressive yield strengths are σt
and σc, respectively. Write the yield function also in terms of ρ and cos 3θ, which are

defined as

ρ =
√
sijsij, cos 3θ =

3
√
3

2

J3

J
3/2
2

.

Solution. At the uniaxial tensile yield we have

σ =





σt 0 0
0 0 0
0 0 0



 s = σ − 1
3 tr(σ)I =





2
3σt 0 0
0 −1

3σt 0
0 0 −1

3σt



 (7.96)

⇒ J2 =
1
3σ

2
t , J3 =

2
27σ

3
t (7.97)
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Correspondingly at the uniaxial compressive yield we have

σ =





−σc 0 0
0 0 0
0 0 0



 s = σ − 1
3 tr(σ)I =





−2
3σc 0 0
0 1

3σc 0
0 0 1

3σc



 (7.98)

⇒ J2 =
1
3σ

2
c , J3 = − 2

27σ
3
c . (7.99)

Inserting this data into the yield function (7.95) results in

σt + α 2
27σ

3
t − β = 0,

σc − α 2
27σ

3
c − β = 0,

and the solution is

α =
27

2

σc − σt
σ3c + σ3t

, β =
σtσ

3
c + σcσ

3
t

σ3c + σ3t
. (7.100)

Defining σc = mσc nicer expressions are obtained

α =
27

2

m− 1

m3 + 1

1

σ2t
, β =

m3 +m

m3 + 1
σt. (7.101)

Since J2 =
1
2ρ

2 and

J3 =
2

3
√
3
J
3/2
2 cos 3θ =

1

3
√
6
ρ3 cos 3θ,

the yield function (7.95) can be written in the form

f(ρ, cos 3θ) =

√

3

2
ρ+ α

ρ3

3
√
6
cos 3θ − β = 0. (7.102)

Draw the locus in the deviatoric plane!
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Chapter 8

Failure of brittle materials

Plastic behaviour is characteristic to metals and polymers. For ceramics, rock, concrete
and even for cast iron the material usually fails without significant plastic deformations.
Several failure criteria with different level of complexity have been proposed for different
brittle materials. In this lecture notes, only the most simple ones will be dealt with.

8.1 Rankine’s maximum principal stress criterion

According to the Rankine’s failure criterion, dating back to the year 1876, the material
fails when the maximum principal stress attains a critical value, i.e. the uniaxial tensile
strength of the material in question. The failure criterion is thus expressed simply as

max(σ1, σ2, σ3) = ft. (8.1)

Using the Heigh-Westergaard coordinates ξ, ρ, θ or the invariant set I1, J2, θ, the failure
criterion has the forms

f(ξ, ρ, θ) =
√
2ρ cos θ + ξ −

√
3ft = 0, (8.2)

or
f(I1, J2, θ) = 2

√

3J2 cos θ + I1 − 3ft = 0, (8.3)

On the deviatoric plane the shape of the Rankine’s failure surface is a triangle, and the
meridian curves are straight lines, see fig. 8.1a and b. The ratio between the tensile and
compressive meridians is ρt/ρc = 0, 5.

In the plane stress case the Rankine’s criterion is shown in fig. 8.1c. For the plane-
strain case, the failure surface is similar in the to the plane-stress in the (σ1, σ2)-stress
plane if the Poisson’s ratio is positive, i.e. in the range 0 ≤ ν ≤ 0, 5 (σz = ν(σ1 + σ2)).

If the only non-zero stress components are σ and τ , the failure criterion has the form

τ 2 = ft(ft − σ), (8.4)

85



86 CHAPTER 8. Failure of brittle materials

σm/ft

10−1−2−3

σe/ft

2

4

6

8

10

12θ = 60◦

θ = 0◦

σ1

√
3
2
ft

σ2 σ3

√
6ft

60◦

(a) (b)

σ1/ft10−1−2

σ2/ft
1

−1

−2

1

2

0−1−2−3 1

σ/ft

τ/ft

(c) (d)

Figure 8.1: Rankine’s maximum principal stress criterion: (a) comressive- and tensile
meridian lines, (b) π-plane, (c) state of plane-stress, (d) for (σ, τ )-stress state.
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and it is shown in fig. 8.1d.
Simplicity is the most important advantage of the Rankine’s criterion, it has only one

material parameter, ft, to be determined.

8.2 Maximum principal strain criterion

The maximum principal strain criterion, which is also called Saint-Venant’s criterion, is
completely analogous to Rankine’s maximum principal stress criterion. It is assumed that
the material fails when the maximum principal strain attains a critical value

max(ε1, ε1, ε3) = εt. (8.5)

For isotropic material, the directions of principal stresses and strains coincide, thus the
material parameter εt can be written by using the uniaxial tensile stress ft as

ft = Eεt. (8.6)

On the meridian plane, the failure condition can be written as

2
√

3J2 cos θ +
1− 2ν

1 + ν
I1 −

3

1 + ν
ft = 0, (8.7)

which is similar to Rankin’s maximum principal stress criterion (8.3). In pure hydrostatic
tension the maximum principal strain criterion predicts the value σmt = ft/(1 − 2ν),
which with the value of the Poisson’s ratio ν = 0, 2 results in the value 1, 667ft.

In the plane-stress state (σ3 ≡ 0) the principal strain can be written in terms of prin-
cipal stresses as

ε1 = (σ1 − νσ2)/E, (8.8)

ε1 = (σ2 − νσ1)/E, (8.9)

ε3 = −ν(σ1 + σ2)/E, (8.10)

and the failure curve in the (σ1, σ2)-plane is composed of straight lines

σ1 − νσ2 = ft, ε1 ≥ ε1, ε3, (8.11)

σ2 − νσ1 = ft, ε1 > ε1, ε3, (8.12)

σ1 + σ2 = −ft/ν, ε3 > ε1, ε1. (8.13)

The maximum principal strain criterion is illustrated in fig. 8.2.
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σm/ft
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ξ
√

3
2
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σ2 σ3

ξ
√
6ft
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(a) (b)
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2
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σ/ft
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(c) (d)

Figure 8.2: Maximum principal strain criterion: (a) compressive- and tensile meridians,
(b) π-plane, (c) plane-stress state, (d) for (σ, τ )-stress state. The black line corresponds to
Poisson’s ratio 0, 2 and red to 1/3, respectively.
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8.3 Continuum damage mechanics

8.3.1 Introduction

To model continuous degradation of a material Kachanov introduced in 1958 a formula-
tion where evolution of a single internal variable continuously reduces the elastic prop-
erties [7]. Physically such variable, which he called damage index or integrity φ, can be
interpreted as a ratio of the differential intact area element to the original area element,
i.e.

φ =
dA− dAdam

dA
. (8.14)

In uniaxial case, the constitutive equation is

σ = φEεe, (8.15)

where εe stands for the elastic strain, which in the small strain case can be written as

εe = ε− εth − εin, (8.16)

where εth and εin are thermal and inelastic strains, respectively. In the literature, it is quite
customary to work with the damage D, defined as

D =
dAdam

dA
= 1− φ. (8.17)

For the evolution of the integrity φ, Kachanov proposed the following kinetic law

φ̇ = A

(
σ

φ

)n

, (8.18)

where the superimposed dot denotes time rate and A, n are material parameters which can
depend on e.g. temperature. For an undamaged material φ = 1 (or D = 0) and during
the damaging process it decreases monotonically to the value 0 in the fully damaged state
(or increases monotonically to the value D = 1). The ratio σ/φ = σ/(1 − D) is called
the effective stress, which is the net stress acting on the undamaged area. Kachanov
used his theory in predicting creep failure times, see also [8]. Rabotnov [21] generalized
Kachanov’s evolution equation (8.18) to the form

φ̇ = − A

φp

(
σ

φ

)n

, (8.19)

where p is an additional material parameter. Since then, continuum damage mechanics
has developed into an important and active field of continuum mechanics exemplified by
numerous scientific articles and books, e.g. [1, 10, 11, 15, 23].
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8.3.2 Uniaxial behaviour

Let us consider a uniaxial constant strain-rate tensile/compression test in the absense of
thermal and inelastic strains, then the stress-strain relation is

σ = φEε = φEε̇0t, (8.20)

where ε̇0 is the applied strain-rate. For the damage evolution equation the following form
is chosen

φ̇ = − 1

tdφp

(
σ2

φ2σ2
r

)r

, (8.21)

where td, r and p are material parameters and σr is an arbitrary reference stress. Defining
εr = σr/E and using the constitutive equation (8.20), it is obtained

φ̇ = − 1

tdφp

(
ε2

ε2r

)r

= − 1

tdφp

(
ε̇20
ε2r

)r

, (8.22)

which can easily be integrated
∫ t

1

φkdφ = −
∫ t

0

1

td

(
ε̇0t

εr

)2r

dt, (8.23)

resulting in

φ =

[

1− (p+ 1)εr
(2r + 1)ε̇0td

(
ε

εr

)2r+1
]1/(p+1)

, if p 6= −1, (8.24)

φ = exp

[

− 1

(2r + 1)

εr
ε̇0td

(
ε

εr

)2r+1
]

if p = −1. (8.25)

Substituting it to the stress-strain relation (8.20) gives

σ

σr
=

[

1− (p+ 1)εr
(2r + 1)ε̇0td

(
ε

εr

)2r+1
]1/(p+1)(

ε

εr

)

. (8.26)

The ultimate tensile stress, i.e.the fracture stress σfrac can be found to occur at strain

ε

εr
=

[
(2r + 1)ε̇0td
(2r + p+ 2)εr

]1/(2r+1)

, (8.27)

and the fracture stress is thus found from

σfrac

σr
=

(
2r + 1

2r + p+ 2

) 1
p+1
(

(2r + 1)

(2r + p+ 2)

ε̇0td
εr

) 1
2r+1

=

(
2r + 1

2r + p+ 2

) 2r+p+2
(p+1)(2r+1)

(
ε̇0td
εr

) 1
2r+1

. (8.28)
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r = 2, 4, 6, p = 0, ε̇0td/εr = 1

ε/εr

σ
/σ

r

21.510.50

1

0.8

0.6

0.4

0.2

0

p = −2, 0, 1, r = 4, ε̇0td/εr = 1

ε/εr

σ
/σ

r

21.510.50

1

0.8

0.6

0.4

0.2

0

Figure 8.3: Stress-strain relation in a uniaxial constant strain-rate tensile test. Left-hand
side effect of the r-parameter variation. Increase of the r-parameter makes the model more
brittle, r = 2 red solid, r = 4, green dashed, r = 6 blue dotted curve. Right-hand side
effect of the p-parameter variation. Increasing k-parameter makes the model more brittle,
p = −2 red solid, p = 0, green dashed, p = 1 blue dotted curve.

In figure 8.3(left) the parameter r is varied while keeping the other parameters p and
td fixed. Incresing the r-parameter increases the ultimate tensile strength, however, it also
increases the “brittleness”.

In figure 8.3(right) the parameter p is varied while keeping the other parameters r and
td fixed. Incresing the p-parameter decreases the ultimate tensile strength, however, it also
increases the “brittleness”. It can be seen that if p < −1 the model shows terminal phase
ductility, thus σ → 0 when ε → ∞.

If the loading rate is increased and the other parameters are constant, the behaviour is
similar but the ultimate stress is increasing with increasing loading rate, see figure 8.4.

8.3.3 General elastic-damage model

A continuum damage model with a single damage variable can be generalised for a 3-
dimensional continuum as

σ = φC eεe = (1−D)C eεe, (8.29)

where C e is the elastic stiffness matrix. Models with single damage parameter are also
called isotropic damage models since the effect of damage is the same in all directions.
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p = 0, r = 4, ε̇0td/εr = 1/2, 1, 2
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Figure 8.4: Stress-strain relation in a uniaxial constant strain-rate tensile test, ε̇td varied,
i.e. either td varied or the loadig rate ε̇0. Increasing loading rate increases the maximum
stress, ε̇0td/εr = 1/2 red solid, ε̇0td/εr = 1, green dashed, ε̇0td/ǫr = 2 blue dotted curve.

8.3.4 On parameter estimation

Calibration of elasticity parameters has been discussed in Chapter 6, only the determi-
nation of parameters related to the damage evolution is explaned here. There are three
parameters r, p and td to be calibrated. However, the p-parameter practically influences
only the material’s post-peak behaviour and near the region of complete failure. Thus the
parameter p can be chosen in advance based purely on computational convenience. The re-
maining two “real” parameters r and td can be determined from two tensile/compression
tests performed with different strain-rate. Denoting ε̇01 and ε̇02 the two test strain-rates
and σfrac,1, σfrac,2 the correspnding fracture stresses, from (8.28) it is found that

r =
1

2

(
ln(ε̇02/ε̇01)

ln(σfrac,2/σfrac,1)
− 1

)

. (8.30)

Time parameter td is then obtained from either of the failure tests as

td =
εr
ε̇0i

(
1

β

σfrac,i

σr

)1/(2r+1)

, i = 1 or 2, and β =

(
2r + 1

2r + p + 2

) 2r+p+2
(p+1)(2r+1)

. (8.31)
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Chapter 9

Viscoelasticity

9.1 Introduction

All the previously described material models have been time- or rate independent, even
though the formulation of elasto-plastic constitutive models can conveniently be written
in rate-form. However, most materials show a pronounced influence of the rate of load-
ing, especially at high temperatures. For example increasing the strain-rate in a tensile or
compression test will result an increase in measured stress. Other viscoelastic effects are
(i) creep, i.e. increase of strain when the specimen is loaded by a constant stress and (ii)
stress relaxation when the strain is prescribed.

To describe viscoelastic materials a linear elastic spring and a linear viscous dashpot
are frequently used in deriving uniaxial constitutive equations, see Fig. 9.1.

For an elastic spring the length of the spring increases when a tensile force is ap-
plied and the spring returns to its original length when the load is removed. However, it
is preferable to use the stress σ and strain ε to describe the material behaviour instead
of force and displacement. A linear-elastic material is described by a linear relationship
between the stress and strain

σ = Eε, (9.1)

where E is the modulus of elasticity, or the Young’s modulus.
For a linear viscous dashpot the force increases linearly with the rate of elongation. In

terms of stress σ and strain-rate ε̇ the constitutive model of a linear-viscous material is

σ = η
dε

dt
= ηε̇, (9.2)

where η is the viscosity of the material.1 In fluid mechanics it is spesifically called the
dynamic viscosity relating the shear stress to the rate of shear strain.2

1Usually in fluid mechanics the dynamic viscosity is denoted by µ.
2The kinematic viscosity of a fluid, usually denoted by ν, is the ratio of the dynamic viscosity to the

density ρ: ν = η/ρ.
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σ
E

σ σ
η

σ

Figure 9.1: Basic viscoelastic elements: spring and dashpot.

9.2 Some special functions

Before entering to the actual viscoelastic models some functions are described.
The Heaviside step function, or the unit step function, is a discontinuous function

defined as

H(x) =

{

0 if x < 0

1 if x > 0
. (9.3)

The value at x = 0 is not usually needed, however, to obtain an odd function the value
H(0) = 1/2 can be chosen. However, there are other possibilities which are not discussed
here. The Heaviside step function can also be written as an integral of the Dirac delta

function δ(x)

H(x) =

∫ x

−∞

δ(x)dx. (9.4)

The Dirac delta function can be loosely defined as

δ(x) =

{

+∞ if x = 0

0 if x 6= 0
, (9.5)

and it is thus the derivative of the Heaviside step function3

dH

dx
= δ(x). (9.6)

An important property of the delta function is

∫ ∞

−∞

f(x)δ(x− a) dx = f(a), (9.7)

for an arbitrary continuous function f(x).

3In mathematical analysis the Dirac delta function and the Heaviside step functions are examples of
generalized functions also known as distributions. Distributions facilitate differentiation of functions whose
derivatives do not exist in the classical sense.
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Figure 9.2: (a) The Heaviside unit step function and (b) the Dirac delta function.

9.3 Maxwell’s model

A model in which a spring and a dashpot is combined in a series is known as the Maxwell’s
model of viscoelasticity, and it is illustrated in Fig. 9.3. The total strain ε is now additively
divided into the elastic strain εe in the spring and viscous strain εv in the dashpot

ε = εe + εv. (9.8)

Since the stress in both elements is the same

σ = Eεe = ηε̇v. (9.9)

Taking time derivative by parts of the constitutive equation for the linear spring gives

σ̇ = Eε̇e = E(ε̇− ε̇v). (9.10)

Substituting now the constitutive equation of the dashpot to the equation (9.10) the final
form of the of the Maxwell’s viscoelastic model is obtained

σ̇ +
E

η
σ = Eε̇. (9.11)

Behaviour in a creep test. In a creep test a constant stress σ = σ0 is imposed suddenly
at time t = 0. Thus the stress rate σ̇ is zero for t > 0, and the equation (9.11) gives
directly the strain-rate

ε̇ = η−1σ0, (9.12)
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σ

E

εe

η

εv σ

Figure 9.3: Maxwell’s material model of viscoelasticity.

i.e. the creep strain-rate is a constant and depends linearly on the applied stress. Simple
integration of the equation results in

ε(t) = η−1σ0t+ C, (9.13)

where C is the inegration constant, which can be determined from the initial condition

ε(0) = E−1σ0. (9.14)

Solution for a constant stress creep problem for the Maxwell model is thus

ε(t) =
σ0

E

(

1 +
E

η
t

)

=
σ0

E

(

1 +
t

τ

)

= σ0J(t), (9.15)

where τ = η/E is the relaxation time and the function J is called the creep compliance.
It defines the strain per unit applied stress and for t > 0 it is monotonously increasing
function. For t < 0, J(t) ≡ 0.

Behaviour in a relaxation test. In a relaxation test the material is loaded by a suddenly
applied constant strain ε0 at time t = 0. Thus the strain rate ε̇ vanish for times t > 0.
When the strain is imposed at t = 0 the elastic component reacts immediately, therefore
the initial value for the stress is σ(0) = σ0 = Eε0. The differential equation to be solved
is

σ̇ +
E

η
σ = 0, (9.16)

with the initial condition σ(0) = σ0 = Eε0. Trying to find the solution in the form
σ(t) = C exp(rt), and substituting it into the equation (9.16) results in

Cert(r + E/η) = 0, (9.17)

which gives the value r = −E/η and the solution of the homogeneous differential equa-
tion (9.16) is

σ(t) = Ce−Et/η. (9.18)
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Figure 9.4: Behaviour of Maxwell’s viscoelastic model in (a) creep and (b) relaxation
tests. The dashed red line indicates hypothetical relaxation with initial rate giving the
physical intepretation of the relaxation time τ = η/E.

The integration constant C is determined from the initial condition

σ(0) = C = σ0. (9.19)

Solution for the relaxation problem of the Maxwell viscoelastic model is

σ(t) = σ0e
−Et/η = σ0e

−t/τ = σ0G(t), (9.20)

where the function G(t) is called the relaxation modulus, which is the stress developed
in a relaxation test when loaded by a unit strain. This form gives also a simple physical
meaning for the relaxation time τ . It is a hypothetical time after which the stress is relaxed
to zero if the complete relaxation takes place with the initial rate, see Fig. 9.4.

It is also seen from (9.20) that the stress will tend to zero in the limit t → ∞. Therefore
the Maxwell model is often considered as a fluid model. However, distinction between a
fluid and a solid is is not a trivial task.

Uniaxial tensile test, influence of strain rate. If the strain is increased with a constant
rate, i.e. ε(t) = ε̇0t, the constitutive equation (9.11) has the form

σ̇ +
E

η
σ = Eε̇0. (9.21)
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The solution for the homogeneous equation is given in (9.18). A general solution for the
non-homogeneous equation (9.21) is a sum of the general solution of the homogeneous
equation and a particular solution, which in this case can be chosen to be a constant, thus

σ(t) = C exp(−Et/η) +B. (9.22)

Substituting it into (9.21) gives B = ηε̇0. The integration constant C can be solved from
the initial condition σ(0) = 0, giving C = −B, and the complete solution is

σ(t) = ηε̇0
(
1− e−Et/η

)
. (9.23)

It is seen that the limiting value when t → ∞ is ηε̇0.
To obtain a stress-strain relationship, time can be eliminated from ε(t) = ε̇0t, giving

σ(ε) = ηε̇0
(
1− e−Eε/ηε̇0

)
. (9.24)

From this equation, it can be verified that the modulus of elasticity for the Maxwell model
does not depend on strain rate

dσ

dε |ε=0
= E. (9.25)

Defining an arbitrary reference stress σr and a reference strain εr = σr/E, the stress-strain
relation can be written in the form

σ

σr
=

ηε̇0
σr

[

1− exp

(
σr

ηε̇0

ε

εr

)]

. (9.26)

In Fig. 9.5 the stress-strain is shown for various values of the strain-rate ε̇0.

9.4 Kelvin model

Another basic viscoelastic model is the Kelvin model4, where spring and dashpot are
placed in parallel, see Fig. 9.6. Now the stress σ is divided into components

σ = σ1 + σ2, where σ1 = Eε, and σ2 = ηε̇, (9.27)

and the costitutive equation for the viscoelastic Kelvin model is readily obtained in the
form

σ = Eε+ ηε̇. (9.28)

4Also known as the Kelvin-Voigt model.
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Figure 9.5: Behaviour of Maxwell’s viscoelastic model in a tensile test perform with pre-
scribed strain rates ε̇0 = σr/η (green line), 1.5σr/η (red line) and 2σr/η (blue line). The
limiting stress is shown by dotted lines.
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Figure 9.6: Viscoelastic Kelvin model.

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



100 CHAPTER 9. Viscoelasticity

Behaviour in a creep test. In a creep test a constant stress σ = σ0 is imposed suddenly
at time t = 0. From (9.28) it is obtained

ε̇+
E

η
ε =

σ0

η
. (9.29)

Analoguous to (9.22) general solution is of the form

ε(t) = C exp(−E/ηt) +B. (9.30)

Substituting the particular solution (constant B) into (9.29) gives B = σ0/E, thus

ε(t) = C exp(−Et/η) + σ0/E. (9.31)

The integration constant C can be determined from the initial condition. However,
it is not as obvious as in the case of the Maxwell model. For the Kelvin model there
is no instantaneous elasticity due to the parallel conbination of the spring and dashpot.
Therefore the proper initial condition for the creep test is ε(0) = 0, which results in
C = −σ0/E, and the solution for the creep problem of the Kelvin model is

ε(t) =
σ0

E

(
1− e−Et/η

)
, (9.32)

which is shown in Fig. 9.7a. Thus the creep compliance for the Kelvin model is

J(t) =
1

E

(
1− e−Et/η

)
. (9.33)

At the limit the creep strain of the Kelvin models approaches

lim
t→∞

ε(t) =
σ0

E
= ε∞. (9.34)

Relaxation test. If the suddenly imposed constant strain function ε(t) = ε0H(t) is
substituted into (9.28) results in

σ(t) = Eε0H(t) + ηε0δ(t), (9.35)

which shows no stress relaxation when t > 0 and the graph is shown in Fig. 9.7b. The
infinite stress at the jump is due to the viscous dashpot.

Behaviour of the Kelvin model in uniaxial constant strain-rate loading is unrealistic for
most materials and will not be discussed here. Determination of the response in constant
strain-rate loading is left as an exercise.

As a conclusion, the viscoelastic Kelvin model alone is a poor description of actual
material, either solid or fluid.

R. Kouhia: Introduction to materials modelling - lecture notes, version September 24, 2020



9.5. Linear viscoelastic standard model 101

0

0.2

0.4

0.6

0.8

1.0

0 1.0 2.0 3.0 4.0 5.0

t/τ

Eε/σ0

0

1.0

2.0

3.0

4.0

5.0

0 1.0 2.0 3.0 4.0 5.0

t/τ

σ/σ0

σ(0) = ∞

(a) (b)

Figure 9.7: Behaviour of Kelvin’s viscoelastic model in (a) creep and (b) relaxation tests.

9.5 Linear viscoelastic standard model

In Fig. 9.8 a three parameter model where an elastic spring and a Kelvin element is in
series. Such a model is known as the standard linear viscoelastic solid model, also known
as the Zener model.5 The same behaviour can also be obtained if the linear spring is in
parallel with the Maxwell model.6 Derivation of the constitutive equation is much more
involved in comparison to Maxwell and Kelvin models.

5Flügge [4] calls the standard viscoelastic model simply as a 3-parameter model.
6There exist also a standard linear viscoelastic fluid model.

σ
E1

E2

η

σ

Figure 9.8: Viscoelastic linear standard solid model.
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The constitutive law in the linear spring on the rigth hand side is

σ = E1ε1, (9.36)

and the stress σ is divided into two components in the Kelvin element

σ = σ1 + σ2, where

{

σ1 = E2ε2,

σ2 = ηε̇2.
(9.37)

The total strain of the three-parameter element is

ε = ε1 + ε2. (9.38)

Differentiating by parts w.r.t. time, Eq. (9.36) gives

σ̇ = E1ε̇1 = E1(ε̇− ε̇2). (9.39)

The strain-rate in the Kelvin element is

ε̇2 =
σ2

η
=

σ − σ1

η

=
1

η
[σ −E2(ε− ε1)] =

1

η

[

σ −E2

(

ε− σ

E1

)]

=
1

η

[(

1 +
E2

E1

)

σ − E2ε

]

. (9.40)

Substituting this expression into Eq. (9.39) gives the final form of the constitutive equation
for the standard solid

σ̇ +
E1

η

(

1 +
E2

E1

)

σ = E1ε̇+
E1E2

η
ε. (9.41)

Creep test. In the creep test the stress σ0 is suddenly applied at time t = 0, thus σ(t) =
σ0H(t) and substituting it into eq. (9.41) gives

ε̇+
E2

η
ε =

1

η

(

1 +
E2

E1

)

σ0 + δ(t)
σ0

E1
, (9.42)

where δ is the Dirac delta function. A trial function for the particular solution is

εp(t) = BH(t). (9.43)

Substituting this expression into Eq. (9.42) gives the value

B =

(

1 +
E2

E1

)
σ0

E2
. (9.44)
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ε(t) = A exp(−E2t/η) +

(

1 +
E2

E1

)
σ0

E2
(9.45)

Due to the spring element on the left hand side, the model can show an instantaneous

elastic strain. The initial condition is thus

lim
t→0+

ε(t) = ε0 =
σ0

E1
, (9.46)

the integration constant A can be solved, resulting in

A = − σ0

E2
. (9.47)

Solution to the creep problem for the viscoelastic standard solid is

ε(t) =
σ0

E2

[

1 +
E2

E1

− exp(−E2t/η)

]

=
σ0

E1

[

1 +
E1

E2

(1− exp(−E2t/η))

]

. (9.48)

The creep compliance is thus

J(t) =
1

E1

[

1 +
E1

E2

(1− exp(−E2t/η))

]

. (9.49)

It is easily seen that the limiting strain when t → ∞ is

ε∞ = (1 + E1/E2)
σ0

E1
. (9.50)

Relaxation test. In the relaxation test the strain is prescribed as ε(t) = ε0H(t), thus to
obtain the ralaxation function the following differential equation has to be solved

σ̇ +
E1

η

(

1 +
E2

E1

)

σ =
E1E2

η
ε0, (9.51)

with the initial condition
σ(0) = E1ε0. (9.52)

When the strain is suddenly imposed, the left elastic spring can only respond instanta-
neously, while the Kelvin element on the right hand side is initially infintely stiff, see
Fig. 9.7. Solution of the homogeneous part of Eq. (9.51) has the form

σh(t) = A exp(−(E1 + E2)t/η), (9.53)

and the particular solution is simply a constant σp = C, the value of which can be found
to be

C =
E1E2

E1 + E2
ε0. (9.54)
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Figure 9.9: Behaviour of standard viscoelastic model in (a) creep and (b) relaxation tests
(E2 = E1/4).

Using the initial condition, the following value for A can be obtained

A =
E2

1

E1 + E2

ε0. (9.55)

The complete solution for the relaxation problem is thus

σ(t) =
E1ε0

E1 + E2

[
E1e

−t/τ + E2

]
= σ0

[
E1

E1 + E2
e−t/τ +

E2

E1 + E2

]

, (9.56)

where τ = η/(E1 + E2) is the ralaxation time of the standard linar solid model.
It is easy to see that the limiting stress when t → ∞ is

σ∞ =
E1E2ε0
E1 + E2

=
E1ε0

1 + E1/E2

=
σ0

1 + E1/E2

. (9.57)

Uniaxial tensile test, influence of strain rate. If a uniaxial tensile test is performed
with a prescribed strain rate, i.e. ε(t) = ε̇0t, the response can be solved from the equation
(9.41) after substituting the prescribed strain into it, rsulting in

σ̇ +
E

η

(

1 +
E2

E1

)

σ = E1ε̇0 +
E1E2

η
ε̇0. (9.58)
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Solution of this linear ordinary constant coefficient differential equation can be obtained
as a sum of the general solution of the homogeneous equation and a particular solution
satisfying the full equation (9.58):

σh = A exp(−(E1 + E2)t/η), σp = C1 + C2t. (9.59)

Substituting the particular solution into (9.58) results in

C2 +
E1 + E2

η
(C1 + C2t) = E1ε̇0 +

E1E2

η
ε̇0t.

C1 =
E2

1

(E1 + E2)2
ε̇0η, C2 =

E1E2

E1 + E2

ε̇0.

The coefficient A is solved from the initial condition σ(0) = 0, and it is

A = −C1 = − E2
1

(E1 + E2)2
ε̇0η.

σ(t) =
E2

1

(E1 + E2)2
ε̇0η (1− exp(−(E1 + E2)t/η)) +

E1E2

E1 + E2
ε̇0t. (9.60)

Expressing the equation as a function of strain, the stress-strain relation in a constant
strain rate tensile test is thus

σ(ε) =
E2

1

(E1 + E2)2
ε̇0η (1− exp(−(E1 + E2)ε/ε̇0η)) +

E1E2

E1 + E2
ε. (9.61)

Notice that the Young’s modulus of the linear standard viscoelastic solid is

E =
dσ

dε |ε=0
=

E1E2

E1 + E2

+
E2

1

(E1 + E2)2
ε̇0η

E1 + E2

ε̇0η
=

E1E2

E1 + E2

+
E1

E1 + E2

= E1.

(9.62)
Defining an arbitrary reference stress σr and a reference strain εr = σr/E1, the stress-
strain relation can be written in the form

σ

σr
=

E2
1

(E1 + E2)2
ε̇0η

σr
(1− exp[−(1 + E2/E1)(σr/ε̇0η)(ε/εr)])+

1

1 + E1/E2

ε

εr
. (9.63)

In Fig. 9.10 the stress-strain is shown for various values of the strain-rate ε̇0.
Notice that the stress-strain relation resembles of the strain hardening elasto-plastic

model. The tangent modulus approaches the value E2 with increasing strain. Due to lin-
earity the strain increases linearly with increasing strain-rate.

9.6 Generalizations

9.7 Hereditary approach
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Figure 9.10: Behaviour of the standard linear viscoelastic solid model in a tensile test
perform with prescribed strain-rates ε̇0 = σr/η (green line), 1.5σr/η (red line) and 2σr/η
(blue line). Notice that the limiting tangent modulus dσ/dε is E2.
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Chapter 10

Creep

10.1 Introduction

Creep is time dependent inelastic deformation which is usually divided into three phases
shown schematically in Fig. 10.11. For metals and ceramics the room-temperature be-
haviour can practically be considered as time independent. For metals creep starts to be
significant when temperature exceeds 30 % of the melting temperature [?]. Therefore for
structures used with energy conversion applications, like turbines, reactors, boilers creep
has to be taken into account in their analysis and design.

In the primary phase, the creep strain-rate gradually decreases to a certain minimum
value. This time instant where the minimum strain-rate is reached determines the change
from primary to the secondary stage. During the primary phase dislocation movement is
gradually slowed down at the “erkauma”particles and the material is hardening. A char-
acteristic feature of the secondary creep phase is that the creep strain-rate is almost a
constant, and at that stage the birth and annihilation of dislocations are balanced. Voids
are formed at the grain boundaries, which starts to grow at the tertiary creep phase and
weakens the material causing the increase of creep strain-rate. This phase ends to a rupture
at trup, see 10.1.

The effect of temperature and stress is roughly speaking similar, i.e. increase of either
stress or temperature increases the creep strain-rate and shortens time to rupture trup.

In Fig. (10.2) a typical deformation mechanism map for a metal alloy is shown.

10.2 Classical creep models

In classic books on creep the creep strain-rate is often decomposed multiplicatively into
three separate functions depending on stress σ, time t and temperature T as

ε̇c = f(σ)g(t)h(T ). (10.1)

1These three phases were first noticed by Costa Andrade in 1910.
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III

trup

creep rupture

Figure 10.1: Three phases in the constant stress creep test: I primary creep, II secondary
creep, i.e. steady-state creep, III tertiary creep.

The most well know empirical time and stress functions to decribe the primary and sec-
ondary creep are the following [18]:

Norton 1929 f(σ) = C1(σ/σr)
p, (10.2)

Soderberg 1936 f(σ) = C2(exp(σ/σr)− 1), (10.3)

Dorn 1955 f(σ) = C3 exp(σ/σr), (10.4)

Garofalo 1965 f(σ) = sinhp(σ/σr), (10.5)

Andrade 1910 g(t) = (1 + bt1/3) exp(kt)− 1, (10.6)

Bailey 1935 g(t) = (t/tc)
n, usually 1

3
≤ n ≤ 1

2
, (10.7)

McVetty 1934 g(t) = C1(1− exp(−kt)) + C2t, (10.8)

where C1, C2, C3, b, p, k, tc, n and σr are parameters. Often σr is called as the drag stress.
The effect of temperature is often taken into account by using the Arrhenius-type

function

h(T ) ∝ exp(−Qc/RT ), (10.9)

where Qc is the activation energy and R (= 8, 314 J/molK) is the universal gas constant.
The product of strain-rate and the Arrhenius term

Z = ε̇ exp(Qc/RT ) (10.10)

is called as the Zener-Hollomon parameter.
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Figure 10.2: Schematic deformation mechanism map for a metal alloy.
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10.2.1 Creep modelling using internal variables

Instead of classic creep equations (10.2)-(10.8) a modern approach to model creep phe-
nomena is to use internal variables and evolution equations which describe their change.
Typically the evolution equations for the internal variables κi, which are either scalars or
second order tensors, are of the following form

κ̇i = hiε̇
c − rdyni κiε̇

c − rsti κi, (10.11)

where the functions hi, r
dyn and rst describe strain-hardening, dynamic and static recovery

[2].
A constitutive model which captures primary, secondary and tertiary creep phases can

be written as
σ = (1−D)C eεe = (1−D)C e(ε− εc − εth), (10.12)

were the infinitesimal strain tensor ε is decomposed into elastic, creep and thermal parts

ε = εe + εc + εth. (10.13)

Continuum damage mechanics can be used to obtain correct behaviour in the tertiary
creep phase and the following Kachanov-Rabotnov type damage evolution equation is
often used

Ḋ =
1

td

exp(−Qd/RT )

(1−D)k

(
σ̄

(1−D)σ0

)2r

, (10.14)

where td is a time parameter, Qd "damage activation energy", r is a dimensionless material
parameter and σ0 is an arbitray reference stress.

If the Norton-Bailey type stress function is chosen, the creep strain rate is

ε̇c =
1

tc
exp(−Q/RT )

(
σ̄

σr

)p

(10.15)

where tc is a time parameter, related to the relaxation time and σr is the drag stress. In the
above equation the temperature function is of Arrhenius2 type exp(−Q/RT ), where Q is
the activation energy and R the gas constant which has the value 8.3145 J/(mol K). The
scalar σ̄ is an effective stress for which some commonly used expressions are

σ̄ =







σeff =
√
3J2 von Mises stress,

ασeff + (1− α)σ1 convex combination of vM and the largest principal stress,

α〈σ1〉+ βI1 + γσeff isochronous form, Hayhurst 1972.

2Svante Arrhenius (1859-1927) was a Swedish physicist and the first Swedish laureate (1903 chemistry).
He was also the first to use the basic rinciples of physical chemistry to estimate the the effect of the increase
of carbon dioxide to the Earth’s surface temperature.
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In the isochronous case α + β + γ = 1.
Primary creep can be modelled by setting the drag stress σr dependent on the effective

creep strain

ε̄c =

∫

˙̄εcdt, ˙̄ε =

√

2

3
ε̇c : ε̇c (10.16)

Similar kind of hardening rules like in plasticity, see Section 7.3.2, equation (7.56), i.e.

σr = σr0 +K∞(1− exp(−hε̄c/K∞)). (10.17)

Notice that the parameters σr0, K∞ and h are usually temperature dependent as well as
the powers r and p in (10.14) and (10.15), respectively. For high-temperature behaviour
of metals usually p ≈ 2r, see e.g. [9].

10.2.2 Some empirical rule of thumb relations

Monkman-Grant (1956) observed that the product of the minimum creep strain-rate and
the failure time is a constant which is independent of the applied stress level and temper-
ature

(ε̇min)tf = CMC ≈ εf , (10.18)

and it is roughly the strain at failure. A slighly better fit to experimental results for some
materials can be obtained if it is written in the form

(ε̇min)
mtf = CMC, (10.19)

where the exponent m < 1.
A rough estimate for the failure time can also be determined by using the Larson-

Miller (1952) parameter P :
PLM = T (C + ln(tf)), (10.20)

where C ≈ 20 and the fracture time tf is given in hours. However, a more recommendable
form of the Larson-Miller relationship would be

P̃LM = T

[

p ln

(
σ

σ0

)

+ ln

(
tf
td

)]

=
Q

R
(10.21)
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Chapter 11

Viscoplasticity

11.1 Introduction

Many materials show strain-rate dependency in their plastic behaviour, especially in the
high strain rate regime. Viscoplastic models are used to capture this phenomena. For
macroscopic modelling of viscoplasticity there are basicly two types of approaches: (i)
the overstress and (ii) the consistency models. In the overstress models the stress can
lie outside the yield surface and the viscoplastic strain rate depend on some way on the
distance between the stress point and the yield surface.

11.2 Overstress viscoplasticity

11.2.1 Perzyna type overstress viscoplasticity

Perzyna [19, 20]1 proposed in 1963 an overstress type viscoplastic model where the vis-
coplastic strain rate is defined as

ε̇vp =
1

η
φ(f)

∂g

∂σ
, (11.1)

where η is the viscosity parameter, φ is some function of the yield function f and g is
the plastic potential. As in inviscid plasticity the model is called associative if g = f and
otherwise non-associative. Common choises for the overstress function φ are power laws

φ(f) =

〈
f

σy0

〉p

or φ(f) =

〈
f

σy

〉p

, (11.2)

in which p is a material parameter and σy, σy0 are the currect yield stress and the initial
value of it, respectively. The notation 〈y〉 refers to the Macaulay brackets, i.e. 〈y〉 =
yH(y) where H is the Heaviside unit step function.

1The idea of viscoplastic models goes back to Hohenemser & Prager 1932 [5].
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σ
E

σy

η

σ

Figure 11.1: A spring, dashpot and frictional unit model of viscoplasticity.

11.2.2 Duvaut-Lions type overstress viscoplasticity

An alternative format for viscoplasticity was proposed by Duvaut and Lions in 1972 [3]. In
their model the viscoplastic strain rate is based on the difference in the response between
the rate-independent material model and the viscoplastic one. This is in contrast to the
Perzyna model where the value of the yield surface determines the viscoplastic strain
rate. In the Duvaut-Lions model the viscoplastic strain rate is defined as

ε̇vp =
1

tvp
D e : (σ − σep), or ε̇vp =

1

η
(σ − σep), (11.3)

where σep is the solution of the rate-independent material model, also called as back-bone
model, and D e is the elastic compliance. The model has only one additional parameter to
the inviscid plasticity model, i.e. the viscosity η or time parameter tvp, depending which
of the forms in (11.3) is used.

11.3 Consistency viscoplasticity

In both the Perzyna and Duvaut-Lions approaches the current stress state can lie outside
the yield surface. Therefore also the consistency condition and the Kuhn-Tucker condi-
tions are not applicable in the overstress viscoplasticity. In consistency viscoplasticity the
yield surface restricts the allowable stress states but it depends on the strain rate, i.e.

f(σ, Kα, Rα) = 0, (11.4)

where the hardening parameters Kα depend on hardening variables κα and the rate hard-
ening parameters Ṙα depend on the rates κ̇α. The plastic strain-rate and the hardening
variables κα are obtained in a standard fashion from the plastic potential

ε̇vp = λ̇
∂g

∂σ
, κ̇α = −λ̇

∂g

∂Kα
, (11.5)
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where the plastic multiplier λ is obtained from the consistency condition

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂Kα
K̇α +

∂f

∂Rα
Ṙα

=
∂f

∂σ
: σ̇ +

∂f

∂Kα

∂Kα

∂κβ
κ̇β +

∂f

∂Rα

∂Rα

∂κ̇β
κ̈β = 0. (11.6)

Also the evolution equation for the κ̈α is required. Since the plastic potential cannot de-
pend on the rates κ̇α,

κ̈ =
dκα

dt
= λ̈

∂f

∂K̇
(11.7)

which now results in ordinary differential equation for the plastic multiplier λ:

ḟ =
∂f

∂σ
: σ̇ − ∂f

∂Kα

∂Kα

∂κβ

∂g

∂Kβ
λ̇− ∂f

∂Rα

∂Rα

∂κ̇β

∂g

∂Kβ
λ̈ = 0. (11.8)

In the above equation we can define the strain hardening modulus H and the strain rate
sensitivity parameter S

H =
∂f

∂Kα

∂Kα

∂κβ

∂g

∂Kβ
, (11.9)

S =
∂f

∂Rα

∂Rα

∂κ̇β

∂g

∂Kβ
. (11.10)

Above format is similar to the inviscid plasticity, the strain-hardening modulus is iden-
tical to (7.38), an additional term is the strain-rate sensitivity term. However, the consis-
tency condition (11.8) is now a differential equation in contrast to the algebraic equation
(7.36).

For many materials the strain rate sensitivityS is positive, i.e. the material is hardening
with increasing strain-rate. However, certain materials show negative strain rate sensitiv-
ity, which results in serrated stress-strain curve e.g. in a tensile test, which is known as the
Portevin-Le Chatelier (PLC) effect. It is a material instability phenomena and should not
be mixed with the formation of Lüders band which can be observed in strain-softening
solids.
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