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Geometrically exact Reissner beam model - kinematics (1/4)
It is a geometrically non-linear formulation of the Timoshenko beam model where the average transverse
shear strain is taken into account. It is based on the following two kinematic assumptions:

1 fibers normal to the beam’s axis in the undeformed state remain straight,

2 these normal fibers do not stretch.

These assumptions can be satisfied by the following
displacement field

u(X1, X2) =uc(X1)−X2 sin θ(X1),

v(X1, X2) = vc(X1)−X2(1− cos θ(X1)).

Deformation mapping is thus

ϕ1(X1, X2) =X1 + uc(X1)−X2 sin θ(X1),

ϕ2(X1, X2) =X2 + vc(X1)−X2(1− cos θ(X1)

= vc(X1) +X2 cos θ(X1)
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Geometrically exact Reissner beam model - kinematics (2/4)
Deformation gradient is

F =
∂ϕ

∂X
=

[
1 + u′c −X2(cos θ)θ′ − sin θ
v′c −X2(sin θ)θ′ cos θ

]
Polar decomposition is F = RU , in plane the right Cauchy-Green stretch tensor U can be obtained by
a simple formula

U =
1√

I1(C ) + 2J(C )
(C + J(C )I ) ,

where I1(C ) = C11 + C22 and J(C ) =
√
C11C22.

A more versatile decomposition is

QŨ , where Q =

[
cos θ − sin θ
sin θ cos θ

]
.

Then

Ũ = QTF =

[
(1 + u′c) cos θ + v′c sin θ −X2θ

′ 0
−(1 + u′c) sin θ + v′c cos θ 1

]
Notice that Ũ is not symmetric.
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Geometrically exact Reissner beam model - kinematics (3/4)

Biot type strain measure is now defined as

Ẽ
(1)

= Ũ − I

=

[
(1 + u′c) cos θ + v′c sin θ −X2θ

′ 0
−(1 + u′c) sin θ + v′c cos θ 0

]
=

[
εc +X2κ 0

γ 0

]
,

where

εc = (1 + u′c) cos θ + v′c sin θ,

κ = − θ′,
γ =− (1 + u′c) sin θ + v′c cos θ.
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Geometrically exact Reissner beam model - kinematics (4/4)

The strain Ẽ
(1)

is conveniently displayed in a vector form{
e(1)
}

= [T (θ)] {u′} − {N} ,

where

{
e(1)
}

=

εcγ
κ

 [T (θ)] =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , {u′} =

1 + u′c
v′c
−θ′

 , {N} =

1
0
0

 .

In 3D the problem is much more difficult. An excellent paper is J. Mäkinen, Total Lagrangian Reissner’s
geometrically exact beam element without singularities, International journal for numerical methods in
engineering, vol 70, issue 9, 2006 https://doi.org/10.1002/nme.1892
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Geometrically exact Reissner beam model - virtual work

The weak form is

−
∫ L

0

(Nδεc +Qδγ +Mδκ) dX1 + δW ext = 0.

The resultant form constitutive equations are

N =EAεc,

Q =GAsγ,

M =EIκ.

The shear rigidity should be redefined as

GAs →
GAs

1 +
GAs(h

(e))2

12EI

.

to avoild ill-conditioning of the stiffness matrix.
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Solution of parametrized non-linear algebraic equations (1/8)
The FE discretization produces non-linear algebraic equation system

f (q) = r(q)− p(q),

where r is the internal resistance force vector, p is the external load vector which may or may not
depend on displacement vector q .

In many cases the load can be parametrized with a single non-dimensional variable, the load parameter
λ as p = λpr, where pr is a reference external force vector.

The equilibrium equation is then
f (q , λ) = r(q)− λpr(q). (1)

If the loads does not dependent on deformations, like in dead-weight loading, the reference load vector
pr is a constant vector.

If the dimension of the displacement vector q is N , then equation (1) define a one dimensional
equilibrium curve in a N + 1 dimensional displacement-load space.

Procedures to trace such a one dimensional equilibrium path are called continuation or path following
methods. They are incremental, step-wise algorithms. A typical continuation step includes the predictor
and the corrector phases.
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Solution of parametrized non-linear algebraic equations (2/8)

Constant load incrementation (see lecture 1), solution of system f (q , λ) = 0

1 Select an initial value q0
1, usually a zero vector if λ0 = 0. and compute r0 = ‖f (q1

0)‖

2 Increment load λn = λn−1 + ∆λ

3 Set i = 0, and ∆qn = 0 and iterate until convergence

(i) Compute f ′(q in)

(ii) Solve f ′(q in)δq = −f (q in)

(iii) Update ∆q i+1
n = ∆q in + δq

(iv) Update q i+1
n = qn−1 + ∆q i+1

n

(v) Set i = i+ 1

(vi) Compute f (q i)

(vii) If ‖f (q i)‖ < εrr0 + εa and ‖δq‖ > εr‖∆q i‖+ εa converged and proceed to a new step, go to 2.
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Solution of parametrized non-linear algebraic equations (3/8)

Pseudo arc-length methods
If λ is also considered as an unknown, then in the system (1) there are N equations and N + 1 unknowns.

A constraint equation c(q , λ) in the displacement-load space is needed.

h(q , λ) =

{
f (q , λ) = 0
c(q , λ) = 0.

(2)

This kind of procedures are also commonly called arc-length methods. Using the Newton-Raphson linearization
on the extended system (2) results in{

f ′δq + f ,λδλ+ f (q , λ) = K δq − prδλ+ f = 0

c′δq + c,λδλ+ c(q , λ) = bT δq + eδλ+ c = 0
, (3)

where f ′ = ∂f /∂q = K and f ,λ = ∂f /∂λ, c′ = ∂c/∂q = bT and c,λ = ∂c/∂λ = e.
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Solution of parametrized non-linear algebraic equations (4/8)
Illustration in 1D case

R. Kouhia (Tampere University, Structural Mechanics) FEM advanced course 10 / 14



Solution of parametrized non-linear algebraic equations (5/8)

Block elimination scheme
To utilize the spesific sparsity pattern and possible symmetry of the tangent stiffness matrix K , the
solution of the augmented equations (3) is usually performed by the three phase block elimination
method, also known as bordering algorithm

1 solve K δqf = −f and Kqp = pr ,

2 compute δλ = −(c+ bT δqf )/(e+ bTqp) ,

3 compute δq = δqf + δλqp .

If a direct linear solver is used the computational workload consist of

one factorization of K ,

two reductions of vectors −f and pr and backsubstitutions to obtain δqf and qp,

two scalar products and one vector update.
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Solution of parametrized non-linear algebraic equations (6/8)

Nonsymmetric sparse format

H δy = −h , H =

[
K −pr

bT e

]
, δy =

{
δq
δλ

}
, h =

{
f
c

}
,

is more convenient if the linear system is solved with iterative methods, like Krylov subspace methods.
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Solution of parametrized non-linear algebraic equations (7/8)

Forms of constraint

c(q , λ) = tTCn − c0 = 0 (4)

where t and n are n+ 1 dimensional vectors and c0 is a scalar. The weighting matrix C can be
partitioned as

C =

[
W

α2

]
, (5)

where W is a positive definite or semidefinite diagonal matrix corresponding to displacements and α is
a scaling factor. Updating the weight factors in W has proved to be beneficial for overall efficiency.
Intuitively it can be understood easily, since then the process puts more weight on the most rapidly
changing parts.
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Solution of parametrized non-linear algebraic equations (8/8)

constraint tT nT c0 References

NP tT1 /‖t1‖C [∆qT
i ,∆λi] ∆s E. Riks 1970, E. Ramm 1981

UNP tTi−1/‖t i−1‖C [(∆q i)
T ,∆λi] ∆s Ramm 1981

E [∆qT
i ,∆λi] [∆qT

i ,∆λi] (∆s)2 M. Crisfield 1981
VCP [(∆q i)

T ,∆λi] ek ∆s Rheinboldt 1977

NP normal plane
UNP updated normal plane

E elliptical
VCP variable control parameter
tTj [∆qT

j ,∆λj ]
∆ incremental quantity
δ iterative change

∆s (pseudo) arc-length
ek a unit vector having a component 1 at position k
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