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Incremental descriptions
1 Total Lagrangian formulation. Reference configuration is the initial configuration Ω0.

2 Updated Lagrangian formulation

1 Reference configuration is the last equilibrium state Ω1. Incrementally updated Lagrangian.

2 Reference configuration is the state from the last iterate Ω
(i)
1 , weather or not it is in equilibrium.

Updated Lagrangian.

3 Eulerian formulation. Reference to the current state Ω2.
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Principle of virtual work (PVW)

Slight change in notation - the left subscript in tensor quantities indicates the reference state. Total
Lagrangian (TL) formulation

−
∫

Ω0

δ0E : 0S dV 0 +

∫
Ω0

δu·ρ0b̄ dV 0 +

∫
∂Ωt0

δu · t̄ dA0 −
∫

Ω0

δu · üρ0 dV 0 = 0

Incremental Updated Lagrangian (IL) formulation

−
∫

Ω1

δ1E : 1S dV 1 +

∫
Ω1

δu·ρ1b̄ dV 1 +

∫
∂Ωt1

δu · t̄ dA1 −
∫

Ω1

δu · üρ1 dV 1 = 0

Eulerian formulation - Updated Lagrangian formulation (UL)

−
∫

Ω2

δ2e : 2σ dV 2 +

∫
Ω2

δu·ρ2b̄ dV 2 +

∫
∂Ωt2

δu · t̄ dA2 −
∫

Ω2

δu · üρ2 dV 2 = 0

Variation or linearization of a spatial field is formally equivalent to the Lie time derivative.
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Variation of the Almansi strain tensor

Variation of the Eulerian Almansi strain tensor:

1 Apply the pull back operation to obtain a material field.

2
0FT (2

2e)2
0F = 2

0E , in the sequel FT eF = E .

2 Take the variation of the material Green-Lagrange tensor

δE = 1
2
(δH TF + FT δH ) = symδH TF

3 Apply the push forward operation to obtain the spatial field:

F−T δEF−1 = F−T 1
2
(δH TF + FT δH )F−1 = F−T 1

2
[(Gradδu)TF + FTGradδu ]F−1

Notice that the spatial gradient gradδu = Gradδu F−1, thus

F−T 1
2
[(Gradδu)TF + FTGradδu ]F−1 = 1

2
[(gradδu)T + gradδu ] = δe.
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Internal virtual work

It has to be equivalent

−
∫

Ω0

δ2
0E : 2

0S dV 0 = −
∫

Ω2

δ2
2e : 2

2σ dV 2

Taking into account equations

2
0S = J(2

0F−1)2
2σ

2
0F−T δ2

0E = 2
0FT δ2

2e2
0F ,

we get

−
∫

Ω0

FT δeF : F−1σF−TJdV 0 = −
∫

Ω2

δe : σdV 2.
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Internal virtual work (cont’d)

Here F = 2
0F etc.

Let us look a little bit closer the term FT δeF : F−1σF−T . It is easy to simplify in the index form

δEKL = FpKδepqFqL, SKL = JF−1
KmσmnF

−1
Ln ,

the inner product is then

δE : S = δEKLSKL = JFpKδepqFqLF
−1
KmσmnF

−1
Ln = Jδpmδqnδepqσmn

= Jδemnσmn = Jδe : σ
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Linearization of the internal virtual work

In the total Lagrangian formulation

−
∫

Ω0

δE : S dV (1)

Assuming constitutive equation in the form S = CE and we are in the displaced state u1 and we try to
solve the increment to obtain u2 = u1 + ∆u . At the configuration 1 stresses are denoted as S1 and
then

S2 = S1 + ∆S = S1 + C : ∆E ,

substituting it and δE , ∆E and F 2 = F 1 + ∆F = F 1 + ∆H into the internal VW-expression (1) gives

−
∫

Ω0

1
2 [δH T (F 1 + ∆H ) + (FT

1 + ∆H T )δH ] : (S1 + C : 1
2 [∆H T (F 1 + ∆H ) + (FT

1 + ∆H )∆H ]) dV

(2)
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Linearization of the internal virtual work - updated formulation

Since
δe = 1

2 [(gradδu)T + gradδu ] = 1
2 (δhT + δh) = symδh ,

also
∆e = 1

2 [(grad∆u)T + grad∆u ] = 1
2 (∆hT + ∆h) = sym∆h ,

Starting from

∆

(
−
∫

Ω0

δE : S dV

)
= −

∫
Ω0

[δE : ∆S + ∆(δE) : S ] dV , (3)

applying push forward (contravariant tensor) to the term ∆S = C : ∆E , and ∆E = sym(FTGrad∆u)
we get

∆τ = F∆SFT = F (C : FTGrad∆u)FT = F (C : FT grad∆uF )FT ,

where the minor symmetries of C is taken into account.
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Linearization of the internal virtual work - updated formulation (cont’d)

The stress increment
∆τ = F∆SFT = F (C : FT grad∆uF )FT ,

can be put in the form
∆τ = Jc : grad∆u , (4)

where the spatial constitutive tensor c is

cijkl = J−1FiMFjNFkPFlQCMNPQ.
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Linearization of the internal virtual work - updated formulation (cont’d)

The second term in

−
∫

Ω0

[δE : ∆S + ∆(δE) : S ] dV

is easy, just applying push forward to covariant tensor ∆(δE) and contravariant S and noticing that
∆δe = sym[(gradδu)T grad∆u ]

−
∫

Ω0

F−T∆(δE)F−1 : FSFT dV = −
∫

Ω0

∆(δe) : τ dV = −
∫

Ω2

∆(δe) : σ dV 2

= −
∫

Ω2

gradδu : grad∆uσdV 2

and taking (4) into account, the linearization of the internal virtual work in the spatial description is

−
∫

Ω2

(gradδu : c : grad∆u + gradδu : grad∆uσ) dV 2.
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Linearization of the internal virtual work - incremental updated formulation
Reference state the configuration Ω1.

Notice that
2
0F = ∆2

1F (1
0F )

We need
2
1S = 1

1σ + ∆2
1S = 1

1σ + 2
1C : ∆2

1E ,
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Incremental updated formulation (cont’d)

Incremental updated Lagrangian approach is quite similar to the TL approach, however, some
modifications needed.

1 After every step the stresses 2
1S has to be transformed to Cauchy stresses

2
2σ = J−1∆2

1F 2
1S2

1∆FT

2 Constitutive operator need to be transformed (similar to Eulerian approach), but with respect to
the configuration 1

2
1Cijkl = (J−1)(1

0FiM )(1
0FjN )(1

0FkP )(1
0FlQ)2

0CMNPQ,

where J = det(1
0F ).
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Truss element in 1, 2 and 3-D
Professor emeritus Steen Krenk has presented an elegant formulation for a truss element in his book Non-linear
modeling and analysis of solids and structures, Cambridge University Press 2009.

Two nodes A and B having coordinates xA and xB in the current state. Initial positions are XA and XB .
Vectors connection points A and B are

X = XB −XA, and x = xB − xA,

and the length of an element in the initial `0 and deformed configurations ` are

`20 = X TX , and `2 = xTx .

Displacements at nodes A and B are denoted as uA and uB respectively and u = uB − uA, then x = X + u
and

`2 = xTx = (X + u)T(X + u).

The Green-Lagrange strain is easily computed as (now ε is used for the GL strain)

ε =
`2 − `20

2`20
=

1

`20

(
X + 1

2
u
)T

u =
1

`20

1
2

(X + X + u)T u =
1

`20

1
2

(X + x )T u =
1

`20
xT

1/2u .
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Truss element in 1, 2 and 3-D (cont’d)

The virtual strain is

δε =
1

`20
(X + u)T δu =

1

`20
xTδu ,

and the virtual work equation takes the form (element contribution)

δW = −
∫ `0

0

Nδεds+ pAδuA + pBδuB

= −
∫ `0

0

1

`20
(NxT)(δuB − δuA) ds+ pAδuA + pBδuB

= δuT
A

(∫ `0

0

1

`20
(Nx )ds+ pA

)
+ δuT

B

(
−
∫ `0

0

1

`20
(Nx )ds+ pB

)
= 0

⇒ pA = − 1

`0
Nx , pB =

1

`0
Nx

and the internal forces are

rA = − 1

`0
Nx , rB =

1

`0
Nx
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Truss element in 1, 2 and 3-D (cont’d)
Assuming the constitutive equation

N = EA0ε

then the internal forces are
rA = −EA0ε

x

`0
, rB = EA0ε

x

`0
.

Notation:

X̃ =

(
XA

XB

)
, x̃ =

(
xA
xB

)
, ũ =

(
uA
uB

)
, r̃ =

(
rA
rB

)
.

The initial element length is

`20 = X TX = X̃
T
(

I −I
−I I

)
X̃ ,

and the Green-Lagrange strain can be written as

ε =
1

`20

1
2
(X̃ + x̃ )T

(
I −I
−I I

)
ũ ,

and the virtual strain takes the form

δε =
1

`20
x̃T

(
I −I
−I I

)
δũ .
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Truss element in 1, 2 and 3-D (cont’d)

The internal forces have the expressions

r̃ =
N

`0

(
I −I
−I I

)
x̃ =

EA0ε

`0

(
I −I
−I I

)
x̃ .

Notice that the strain and internal force are non-linear functions of displacements.

Linearization.

∆r̃ =
∆N

`0

(
I −I
−I I

)
x̃ +

N

`0

(
I −I
−I I

)
∆x̃ =

EA0∆ε

`0

(
I −I
−I I

)
x̃ +

N

`0

(
I −I
−I I

)
∆ũ .

From the previous slide

∆ε =
1

`20
x̃T

(
I −I
−I I

)
∆ũ .
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Truss element in 1, 2 and 3-D (cont’d)

Inserting ∆ε to the increment of the internal force we get

∆r̃ =

(
EA0

`30

(
xxT −xxT

−xxT xxT

)
+
N

`0

(
I −I
−I I

))
∆ũ = K∆ũ .

The Jacobian matrix K is often called also as the tangent stiffness matrix, and it can be decomposed
into three parts

K 0 =
EA0

`30

(
XX T −XX T

−XX T XX T

)
,

K u =
EA0

`30

(
XuT + uX T + uuT −(XuT + uX T + uuT)

−(XuT + uX T + uuT) XuT + uX T + uuT

)
,

K σ =
N

`0

(
I −I
−I I

)
.
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Algorithm for total Lagrangian formulation of a truss element

Load steps n = 1, 2, . . . , nmax

Increment load pn = pn−1 + ∆pn and set q (0)
n = qn−1

Iterate i = 0, 1, 2, . . . , imax

I In each element extract u from q and compute x = X + u and strains

ε(i)
n =

1

`20

1
2
(X̃ + x̃ )T

(
I −I
−I I

)
ũ(i)
n

I Compute internal force vector from element contributions

r̃ =
EA0

`0
ε(i)
n

(
I −I
−I I

)
x̃ (i)
n

I Assemble the global stiffness matrix K
(i)
n = K 0(X ) + Ku(X ,u

(i)
n ) + Kσ(ε

(i)
n ),

I Compute the global residual force f (i)
n = r

(i)
n − pn

I Solve the linearized system K
(i)
n δq (i)

n = f (i)
n , notice: δ symbol here means the iterative change!

I Update global displacement vector q i+1
n = q (i)

n − δq (i)
n
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Next

Exercises on Thursday.
Coding 1,2 and 3-D (same code) total Lagrangian truss element.

Next lecture, truss element with updated Lagrangian formulation, 2-D Reissner beam.
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