FEM advanced course

3. exercise - kinematics, time rates, constitutive model

1. A one-dimensional motion of a bar is given as $x=\left(1+t / t_{0}\right) X, x \in[0,2 L]$.
(a) Determine the material time derivative of the Green-Lagrange strain \boldsymbol{E}.
(b) Determine the material time derivative of the Almansi strain $\boldsymbol{e}=\frac{1}{2}\left(\boldsymbol{I}-\boldsymbol{F}^{-T} \boldsymbol{F}^{-1}\right)$.
(c) Determine the rate of deformation tensor \boldsymbol{d}.
(d) For this particular motion, show that the following equations are correct: $\boldsymbol{d}=$ $\boldsymbol{F}^{-\mathrm{T}} \dot{\boldsymbol{E}} \boldsymbol{F}^{-1}$ and $\boldsymbol{d}=\dot{\boldsymbol{e}}+\boldsymbol{l}^{\mathrm{T}} \boldsymbol{e}+\boldsymbol{e l}$, where \boldsymbol{l} is the spatial velocity gradient.
(e) Temperature field in the bar is given as $T=T_{0}(X / L)\left(t / t_{0}\right)^{2}$. Determine the spatial form $T(x, t)$? Using $T(x, t)$, determine \dot{T} and show that it equals to $\mathrm{d} T(X, t) / \mathrm{d} t$.
2. Extend your non-linear 1D-truss element code to handle incompressible neo-Hookean material model having the strain energy function

$$
\begin{equation*}
W\left(I_{C}\right)=\frac{1}{2} \mu\left(I_{C}-3\right), \quad \text { and } \quad \boldsymbol{S}=2 \frac{\partial W}{\partial \boldsymbol{C}} \tag{1}
\end{equation*}
$$

where μ is the shear modulus, $I_{C}=\operatorname{tr} \boldsymbol{C}$ and S is the second Piola-Kirchhoff stress. Solve the problem with boundary conditions $u(0)=0$ and force H is acting at $X=L_{0}$. Plot also the Cauchy stress-displacement curve. You can use same values as in home assignment 2, i.e. $L_{0}=100 \mathrm{~mm}, A_{0}=10 \mathrm{~mm}^{2}$, and the shear modulus $\mu=33.333 \mathrm{MPa}$. Compute to the maximum load 6 kN in tension and same in compression. Compare results with the St. Venant constitutive model.

Home assignment 3. Extend your non-linear 1D-truss element code to handle incompressible Mooney-Rivlin material model having the strain energy function (3.115) in the study book

$$
\begin{equation*}
W\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\frac{1}{2} \mu_{1}\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}-3\right)-\frac{1}{2} \mu_{2}\left(\lambda_{1}^{-2}+\lambda_{2}^{-2}+\lambda_{3}^{-2}-3\right) . \tag{2}
\end{equation*}
$$

The principal PK2-stresses can now be obtained as

$$
\begin{equation*}
S_{i}=\frac{1}{\lambda_{i}} \frac{\partial W}{\partial \lambda_{i}} . \tag{3}
\end{equation*}
$$

1. Solve the problem with boundary conditions $u(0)=0$ and force H is acting at $X=L_{0}$. Use one element.
2. Solve the problem of a hanging rubber band. Displacement is supressed at $X=0$ and the other end at $X=L_{0}$ is free. The loading is now the gravity load $\rho_{0} g$ in the positive X-axis direction. Use 1, 2 and 100 elements.

Choose μ_{1} and μ_{2} such that the initial response is the same as in before. For the density use 1000 times the desity of rubber, i.e. about $\rho_{0}=1.1 \cdot 10^{6} \mathrm{~kg} / \mathrm{m}^{3}$.

You can use same dimensions for initial length and cross-section area as in problem 2. Plot also the Cauchy stress-displacement curve.

Solution report should be returned in Moodle prior to exercise 5

