FEM advanced course

1. exercise - intro to non-linear problems, Newton's method

1. In the section 2.1.2 of the study book (Wriggers: Nonlinear finite element methods) the equilibrium equation (2.8) can be written as

$$
f(x ; \hat{F})=2 x\left(1-\frac{1}{\sqrt{1+x^{2}}}\right)-\hat{F}=0
$$

where $x=w / \ell$ is the non-dimensional deflection (state variable) and $\hat{F}=F / c \ell$ is the non-dimensional load (control variable). Formulate and code the Newton iteration process. Experiment the code with different values of \hat{F} as $0.25,0.5$ and 1. Start with $x=0.1$. Why the iteration cannot be started from the undeformed state $x=0$?
2. Consider the same problem as in the previous exercise problem 2 but now having a non-linear force-elongation relation

$$
S_{F}=c_{0} \tanh \left(c_{1} \varepsilon / c_{0}\right), \quad \varepsilon=\sqrt{1+x^{2}}-1
$$

The equilibrium equation is

$$
2 S_{F} \sin \varphi=F, \quad \sin \varphi=\frac{x}{\sqrt{1+x^{2}}}
$$

which can be written as

$$
f(x ; \hat{F})=0
$$

where the non-dimensional force is defined as $\hat{F}=F / c_{0}$. Use $c_{0}=1, c_{1}=8$ and use the initial value $x_{0}=0.1$. Experiment $\hat{F}=0.1,0.2,0.25$ and 0.3 . What are your conclusions and explanations for the behaviour.
Can you figure out the reason for different performance of the Newton's method in these two problems?
3. Program a simple solver for non-linear algebraic equations and test it with the following problem:

$$
\begin{aligned}
& f_{1}\left(q_{1}, q_{2}\right)=q_{1}^{2}+q_{2}^{2}-1=0 \\
& f_{1}\left(q_{1}, q_{2}\right)=q_{1}-q_{2}=0
\end{aligned}
$$

i.e. yu have to find the crossing point of the circle and a line. Select a proper initial value. Design the code in such a way that it can be easily extended to future problems, including the present home assignment.

Home assignment 1. Consider a two-bar Mises truss. Length and the initial angle of the bars at the initial state are L and α, respectively, and the axial stiffness equals to $E A$. The bars are assumed to be absolutely rigid in bending. See, lecture notes Computational Techniques for the non-linear analysis of structures, Example 1.3.1.

The equilibrium equations can be written in a dimensionless form as

$$
\begin{align*}
& f_{1}\left(q_{1}, q_{2} ; \lambda\right)=2\left(\cos ^{2} \alpha\right) q_{1}+q_{1}^{3}-2(\sin \alpha) q_{1} q_{2}+q_{1} q_{2}^{2}-\eta \lambda=0 \tag{1}\\
& f_{2}\left(q_{1}, q_{2} ; \lambda\right)=-(\sin \alpha) q_{1}^{2}+q_{1}^{2} q_{2}+2\left(\sin ^{2} \alpha\right) q_{2}-3(\sin \alpha) q_{2}^{2}+q_{2}^{3}-2 \lambda=0, \tag{2}
\end{align*}
$$

where q_{1}, q_{2} are the dimensionless horizontal and vertical displacements of the load point $q=v / L$, respectively, and the load parameter is $\lambda=P / E A$.

Write a computer code to solve the system incrementally-iterative, i.e. increment the load in steps $\lambda_{n}=\lambda_{n-1}+\Delta \lambda$ and correct the solution within a step with Newton's method. Design the code such that both full Newton's or a modfied Newton's method can be used. Compute the derivative needed in the Newton's method (the Jacobian) either by using explicit formula or by numerical differentiation.

Select the angle $\alpha=30^{\circ}$ and compute the equilibrium path up to $\lambda_{\max }=0.19 \sin ^{3} \alpha$ using

1. a small load step, e.g $\Delta \lambda=\lambda_{\max } / 100$ and $\eta=0$,
2. large load step, e.g. $\Delta \lambda=\lambda_{\max } / 2$ and $\Delta \lambda=\lambda_{\max }$ and $\eta=0$,
3. with $\eta=0.2$ what is the largest load for which you can find a converged solution?

Try to solve the equilibrium position of the symmetric deformation mode $(\eta=0)$ at $\lambda=\frac{\sqrt{3}}{9} \sin ^{3} \alpha \approx 0.1925 \sin ^{3} \alpha$ using only a single load step.

Monitor and plot the convergence of the iterative procedure using both the residual $\|\boldsymbol{f}\|$ or the relative displacement $\left\|\delta \boldsymbol{q}_{i}\right\| /\left\|\Delta \boldsymbol{q}_{i}\right\|$. What are your conclusions about the convergence?

Solution report should be returned in Moodle prior to exercise 2

