Continuum mechanics

1. exercise - mathematical preliminaries
2. (Holzapfel ex. 9 p. 20)

Find the axial vector of a skew tensor $\mathbf{W}=\frac{1}{2}(\mathbf{u} \otimes \mathbf{v}-\mathbf{v} \otimes \mathbf{u})$.
2. (CMT, ex 2.13 p. 68)

Consider the dyad $\mathbf{D}=\mathbf{a} \otimes \mathbf{a}$ constructed from the vector \mathbf{a}.
(a) Write out the components of \mathbf{D} in matrix form.
(b) Compute the three principal invariants of $\mathbf{D}: I_{1}, I_{2}, I_{3}$. Simplify your expressions as much as possible.
(c) Compute the eigenvalues of \mathbf{D}.
3. Assume that \mathbf{v} is an arbitrary vector and $\hat{\mathbf{n}}$ is a unit vector. Show that

$$
\mathbf{v}=(\mathbf{v} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\hat{\mathbf{n}} \times(\mathbf{v} \times \hat{\mathbf{n}}) .
$$

What is the meaning of this formula?
4. Derive the vector identity below connecting three arbitrary vectors \mathbf{A}, \mathbf{B} and \mathbf{C} by the method of vector analysis

$$
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \cdot \mathbf{B}) \mathbf{C} .
$$

