Continuum mechanics

1. exercise – mathematical preliminaries

- 1. (Holzapfel ex.9 p. 20) Find the axial vector of a skew tensor $\mathbf{W} = \frac{1}{2} (\mathbf{u} \otimes \mathbf{v} - \mathbf{v} \otimes \mathbf{u}).$
- 2. (CMT, ex 2.13 p. 68) Consider the dyad $\mathbf{D} = \mathbf{a} \otimes \mathbf{a}$ constructed from the vector \mathbf{a} .
 - (a) Write out the components of **D** in matrix form.
 - (b) Compute the three principal invariants of \mathbf{D} : I_1, I_2, I_3 . Simplify your expressions as much as possible.
 - (c) Compute the eigenvalues of **D**.
- 3. Assume that \mathbf{v} is an arbitrary vector and $\hat{\mathbf{n}}$ is a unit vector. Show that

$$\mathbf{v} = (\mathbf{v} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}} + \hat{\mathbf{n}} \times (\mathbf{v} \times \hat{\mathbf{n}}).$$

What is the meaning of this formula?

4. Derive the vector identity below connecting three arbitrary vectors **A**, **B** and **C** by the method of vector analysis

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}.$$