

NTNU

Content

- Introduction
 - Sustainability and the built environment
 - The double-skin facade as an integrating building system
 - Objectives
- Methodology
 - Convective heat transfer on vertical surfaces
 - Internal shading device
 - Distribution of solar radiation
- Results

DNTNU

- Conclusions
- Summary

Introduction

- Need for sustainable development
- Key role of Building industry

Energy consumption (Norway)

Image credits: IEA, 2006

Introduction

- New concepts for sustainable buildings
- Double-skin facades for office buildings

left: Multimedia Center, Hamburg, Germany by Foster and Partners right: Uni, Erlangen, Germany by UBA Erlangen Image credit: http://www.fosterandpartners.com

Introduction

• The facade as an integrating building system

Double-skin facades (DSF)

- Dynamic performance
- g-value

U-value

() SINTEF

6

Objectives

- Performance evaluation of buildings with DSF
- Radiation and conduction models were needed to describe the optical and thermal heat transfer mechanism in glass-glass configurations with vertical airflow regimes.
- Radiative, conductive, and convective heat transfer coefficients for the heat transfer through glass-glass configuration with internal obstructions were needed.
- Obstructions in the vertical airflow regime (i.e. shading device) with reflective and absorptive properties demand new heat transfer balance.

Methodology

- Convective heat transfer on vertical surfaces
- Internal shading device
- Distribution of solar radiation
- Transmission of radiation

Convective heat transfer coefficients

External vertical facade:

• hconv,o

Internal facade (cavity):

• hconv,i

Internal facade (room):

• hc,i

Internal shading device:

• Cconv,sh

Convective heat transfer coefficients

$$-h_{conv,s,o} = 64 \text{ kJ/(hm}^2 \text{ K}) = 17,78 \text{ W/(m}^2 \text{ K})$$
(1)

$$- \text{ For internal vertical surfaces}$$
natural ventilated cavities:
$$h_{c,t} = 1.5 \times (T_{s,t} - T_{atr})^{0.25}$$
(2)
mechanical ventilated cavities:
$$h_{c,i} = 5.76 \times (T_{s,i} - T_{air})^{0.3}$$
(3)
where

$$h_{c,i} = \text{ convective heat transfer coefficient for internal vertical surface}$$

T_{s,i}

T_{air}

DNTNU

(4)

□ NTNU

Convective heat transfer coefficients

DNTNU

• T13

Party Cloudy Day

□ NTNU

Sunny Day

• T15

Sunny Day

Party Cloudy Day

() SINTEF

NTNU

• Tdsf

Sunny Day

Party Cloudy Day

() SINTEF

DNTNU

Conclusions

- Obstructions in the vertical airflow regime (i.e. shading device) with reflective and absorptive properties demand the set-up of a new heat transfer balance.
- In order to describe the optical and thermal heat transfer mechanism in glass-glass configurations with vertical airflow regimes radiation and conduction models were developed.
- The simulation results were validated with measured data of air temperature regimes and different solar radiation in an existing ventilated double façade.
- The comparison show very good agreement. However, it must be realized that the "evidence" is based on a rather limited number of experimental data and comparisons.
- Thus, more research and an increase in number of experimental data is needed in order to get a better confidence in using the model for further energy analysis of this type of facade.

Summary

- Introduction
- Methodology
 - Convective heat transfer on vertical surfaces
 - Internal shading device
 - Distribution of solar radiation
- Results
- Conclusions

() SINTEF

