

A study on the integration of upgraded weather forecast in a predictive control of building cooling systems

Angela Sasic Kalagasidis

 $^{\circ}$

Upgraded control of cooling systems An attempt for extended service

Upgraded control of cooling systems

Control in real time

-Following the weather forecast

- Efficient energy balance model
- Targets:
 - Redistribution of peak cooling loads
 - Decreased cooling demand
 - Decreased total cost of air conditioning

This work:

Decreased total energy demand for cooling

Modelling approach

Dynamic thermal model of a building
Dynamic thermal networks (response function method)
Instantaneous cooling load expressed by algebraic equations

Optimization) Forcing algorithm
Use free cooling, i.e. maximize ventilation by outdoor air whenever colder outside than inside and

Indoor air temperature and cooling demand without free cooling

CHALMERS

Example of results – with free cooling

<u>Results – savings in terms of cooling energy</u>

- 53 % at 24 h control
- 36 % at intermittent control

Total energy demand

Sum of

-Electricity for the cooling plant (COP=3)

Electricity for the ventilation fans SFP=1.5 or 2 kWh/(m³/s)

Air change rates of the fan limited to 1-5 ACH/h

Results – maximum savings of total energy demand

- 1.5 % at 24 h control
- 3.5 % at intermittent control

Conclusions March 2011

High potential of free cooling in reducing the cooling loads

Analyzis should be done for total energy demand

Since than ...

A generic optimization algorithm developed

Total energy savings 10 % if SFP=1, 3-5 % if SFP=2