Indoor Climate and Humidity Loads in Old Rural Houses with Different Usage Profiles

> <u>Alev, Ü., Kalamees, T., Arumägi, E.</u> Tallinn University of Technology, Estonia

INTRODUCTION

Rural house

New requirements

- comfort
- function
- energy-efficiency

Major renovation – continuous use – periodical use – unheated houses

Information

- current situation
- hygrothermal loads
- indoor climate

INTRODUCTION

Selection of buildings

- indoor climate was studied in 29 houses, equal number of
 - continuously used houses,
 - periodically used houses,
 - unheated houses (summer houses);
- average age 94 years (1856...1950);
- external walls made of logs;
- natural, passive stack ventilation;
- majority were heated with wooden oven.

METHODS

Temperature and RH measurements

- Hobo U-12 011 loggers at one-hour interval over one year period
- from master bedroom or living room
- on inner surface of first log
- from crawl space
- outdoor climate data from nearest weather station
- The air tightness with fan pressuration method
 - mean air leakage $q_{50}=15 \text{ m}^3/(\text{h}\cdot\text{m}^2)$
 - mean air change rate n₅₀=22 h⁻¹

METHODS

Indoor thermal conditions

- target values from CR 1752 and EN 15251
- Iowest indoor climate category was selected

METHODS

Indoor thermal conditions

- target values from CR 1752 and EN 15251
- Iowest indoor climate category was selected

Internal moisture excess

- maximum values of one-week period
- the higher 10% level was calculated

Risk for mould growth:

- indoor air (furniture, separating walls), crawl space, thermal bridges (lower log)
- the time of the temperature and RH conditions favourable for mould growth

 $RH_{crit} = \begin{cases} -0.00\\ 80\% \end{cases}$

 $-0.00267 \cdot t^{3} + 0.160 \cdot t^{2} - 3.13 \cdot t + 100$ 80% ,when $t ≤ 20^{\circ}$ C ,when $t > 20^{\circ}$ C $\Delta v = v_i - v_e$

Outdoor temperature

- Average of winter months -5°C (min. -31°C)
- Coldest monthly average -12°C
- Average of summer months +17°C

Warmest monthly average +22°C

Indoor temperature in continuously heated house

Indoor temperature in all houses

Indoor relative humidity in continuously heated house

Indoor relative humidity in all houses

Moisture excess in:

- continuously used and heated house
- in winter unheated-unused house

The maximum weekly average moisture excess: ~5g/m³

Cool temperatures

Reasons of cool temperatures:

- Iarge heat losses of the house envelope;
- problems connected with ovens
 - Iow heating capacity;
 - limited heating time due to ovens' condition;
 - heating is not done properly;
- residents accept lower indoor temperatures.

Risk of mould growth

- in indoor air
- on inner surface of first log

Time when there is a mould growth risk

- on inner surface of first log
- in the crawl space
 - in the middle of crawl space
 - side of crawl space, near the ventilation hole

Conclusion I

- The measured indoor temperatures in continuously heated houses are slightly lower in wintertime when compared to indoor climate standard III category limits.
- RH in continuously and periodically used houses is in the range of target values
- RH in winter unheated-unused houses is significantly higher than target values
 - RH levels also high in periodically used houses when not used
 - Option to heat the house througout the winter based on humidistat
 - Studies needed in houses which are unused during wintertime, but continuously heated to the desired humidity level

Conclusion II

Weekly maximum moisture excess in wintertime

- in continuously heated houses 2.5-5.7 g/m³
- in periodically heated houses 0.5-2.5 g/m³
- in winter unheated-unused houses 0.5-2.0 g/m³
- Design value of moisture excess in wintertime ~4...5g/m³, similar in continuously and periodically used houses

Risk for mould growth:

- Indoor air in >80% of unheated and periodically heated houses.
- >80% on inner surface of the first log because of the high RH wall surface.
- In every crawl space because of a lack of air change.