

Low-energy buildings in Europe Building envelope peformance and energy standards

Katharina Thullner

White architects, Sweden

Dennis Johansson

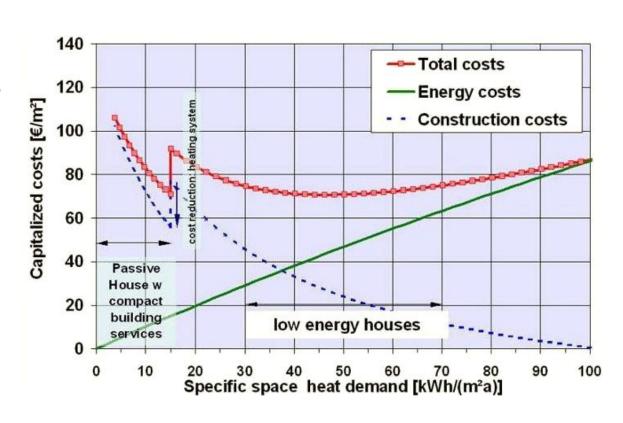
Swegon AB, Building Services - Lund University, Sweden dennis.johansson@swegon.se

Ulla Janson

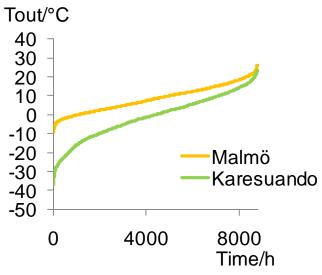
MKB, Malmö kommunala bostadsbolag, Sweden

Introduction – Why low energy houses?

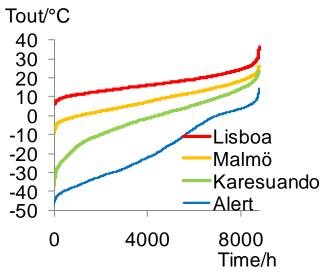
- 40% energy, 36% CO₂
- EPBD, 2020, 2050
- Resources
- National incentives
- Indoor climate
- Economy?
- New versus old buildings


Initiatives on low energy houses

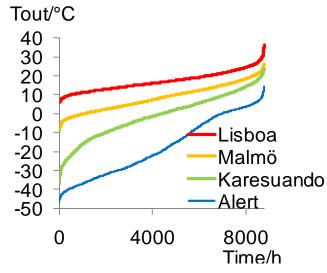
- Improved building codes
 - Swedish BBR
 - functional demands
 - improving over time
- Life cycle analysis life cycle economics
- Green building, BREEAM, LEED
- Low energy houses
- Passive houses
- (Net) zero energy houses

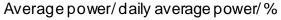

Passive houses

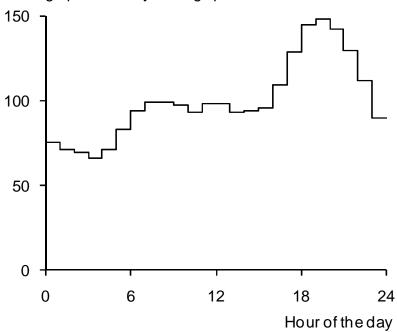
- 'Very low' heating demand
- Air heating
 - Air exchange efficiency
- Heat recovery of ventilation
- 'Air tight'
- Under-pressure
- Solar gains
 - 'Continental'


Why compare standards?

- Why have different standards?
 - Outdoor climate,
 resources, inhabitant
 behaviour,
 optimisation, opinions
- What differs?
 - Design
 - Components
 - Process prediction,verification
 - Relevance

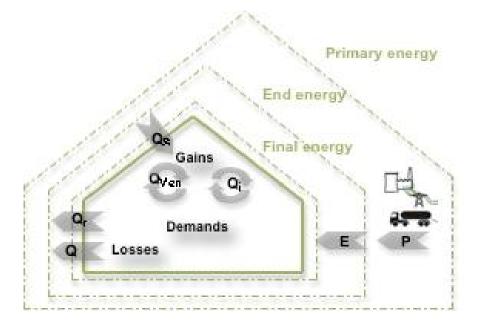

Why compare standards?


- Why have different standards?
 - Outdoor climate,
 resources, inhabitant
 behaviour,
 optimisation, opinions
- What differs?
 - Design
 - Components
 - Process prediction,verification
 - Relevance



Why compare standards?

- Why have different standards?
 - Outdoor climate,
 resources, inhabitant
 behaviour,
 optimisation, opinions
- What differs?
 - Design
 - Components
 - Process prediction,verification
 - Relevance


Objectives

- Explore, compare and compile the different types and definitions of low energy buildings in Europe
 - Sweden, Denmark, Norway, Finland, Germany,
 Austria, Switzerland, Great Britain and Poland
- Present part of the result
- More comprehensive in thesis of Thullner

What to standardize?

- Design of details
- Power demand
- Energy use
- Primary energy use
- Inhabitant behaviour
- Indoor climate

P Energy needed for generation, conversion and transportation

E Supplied, delivered energy

Q_T Heat losses by transmission

Q_V Heat losses by ventilation and air leakage

Q_S Gained solar energy

Q_{Ven} Gained energy by heat exchanger

Q_i Internal heat gains by persons, appliances, electronic devices and lighting

 Different kinds of low energy houses 1st January 2010

- Of: Official

- SO: Semi official

- UO: Unofficial

- Ce: Certified

Location	Issuer	St	Ce
EU			
Low-energy building	EU Green Building	so	✓
SWEDEN			
Low-energy "Minienergi"	FEBY	so	✓
Passive house	FEBY	SO	\checkmark
Zero-energy house	FEBY	SO	✓
NORWAY			
Low-energy house class 1	Standard Norge	Of	-
Low-energy house class 2	Standard Norge	Of	-
Passive house	Standard Norge	Of	-
Passive house	PHI Darmstadt	so	✓
DENMARK			
Low-energy house class 1	Bygningsreglement	Of	-
Low-energy house class 2	Bygningsreglement	Of	-
Passive house	PHI Darmstadt	SO	✓
FINLAND			
Low-energy house	RIL	so	-
Passive house	RIL	so	-

 Different kinds of low energy houses 1st January 2010

- Of: Official

- SO: Semi official

- UO: Unofficial

- Ce: Certified

GERMANY			
RAL Low-energy house	RAL	so	\checkmark
RAL Passive house	RAL	SO	✓
Passive house	PHI Darmstadt	so	✓
3-litre-house	Fraunhofer Institut	UO	-
Effizienzhaus 70	KfW	SO	-
Effizienzhaus 85	KfW	SO	-
AUSTRIA			
Low-energy (state-aided)	MA 25	Of	-
Passive house (state-aided)	MA 25	Of	_
3-litre house	3-Liter-Haus	so	✓
Klima:aktiv Passive house	Klima:aktiv	SO	✓
Klima:aktiv house	Klima:aktiv	SO	✓
SWITZERLAND			
Low-energy (Minergie)	MINERGIE	SO	✓
Passive house (Minergie-P)	MINERGIE	SO	✓
Minergie-ECO/P-ECO	MINERGIE	SO	✓
GREATBRITAIN			
Passive house	PHI Darmstadt	so	✓
POLAND			
Passive house	PHIDarmstadt	UO	-

	Uwalls/ (W/(m²K))	Air tightness at ∆50 Pa	Peak load (W/m²)	Primary energy (kWh/m²year)	End en (kWh/m	500000000000000000000000000000000000000	Final energy (kWh/m²year)
EU							
Low-energy Green-Building	-	-	-	-	25% < nati building re		-
SWEDEN (Limit values for U-v	nponents mear	n value) 3					
Low-energy "Minienergi"	<u>-</u>	\leq 0.3 l/s m ²	16-20	80-88	-		_
Low-e "Minienergi" < 200 m²	-	\leq 0.3 l/s m ²	20-24	80-88	_		-
Passive house	-	\leq 0.3 l/s m ²	10-12	60-68	-		-
Passive house < 200 m ²	_	\leq 0.3 l/s m ²	12-14	60-68	-		-
Zero-energy house	-	\leq 0.3 l/s m ²	Same as passive	≤ produced energy	-		-
NORWAY (Limit values for U-v	nponents mea	n value)				4	
For buildings < 250 m ² the ene	building of 11	0 m ²			θ _{ym} ≥6.3°C	θ _{ym} <6.3 °C e.g. 3°C	
Low-e class 1 < 250 m ²	≤ 0.18	≤ 1.0 h ⁻¹	-	-	41.2	56	23-2
> 250 m ²	≤ 0.18	≤ 1.0 h ⁻¹	-	-	30	41	-
Low-e class 2 < 250 m ²	≤ 0.22	≤ 3.0 h ⁻¹	-	-	59	80	-
> 250 m ²	≤ 0.22	≤ 3.0 h ⁻¹	-	-	45	61	S -
Passive house < 250 m ²	≤ 0.15	≤ 0.6 h ⁻¹	-	<u>-</u> 1	22.6	32	
> 250 m²	≤ 0.15	≤ 0.6 h ⁻¹	-	-	15	22	-
Passive house current	≤ 0.15	≤ 0.6 h ⁻¹	German	German	Germ	nan	German

	Uwalls/ (W/(m²K))	Air tightness at ∆50 Pa	Peak load (W/m²)	Primary energy (kWh/m²year)	End energy (kWh/m²year)	Final energy (kWh/m²year)
DENMARK					5	
Low-energy house class 1	-	≤ 1.5 h ⁻¹	-	-	(35+110/A)	÷
Low-energy house class 2	-	≤ 1.5 h ⁻¹	-	-	(50+1600/A	-
Passive house	≤ 0.15	≤ 0.6 h ⁻¹	10 <u>or</u> final energy	120	<u>-</u>	15 <u>or</u> peak Ioad
FINLAND					6	
Low-energy house M30	0.12-0.14	≤ 0.8 h ⁻¹	72	180	30-38	-
Low-energy house M35	0.12-0.14	≤ 0.8 h ⁻¹	-	180	35-45	-
Low-energy house M40	0.12-0.14	≤ 0.8 h ⁻¹	-	180	40-50	-
Low-energy house M40	0.12-0.14	≤ 0.8 h ⁻¹	-	180	45-58	4
Low-energy house M45	0.12-0.14	≤ 0.8 h ⁻¹	-	180	50-64	-
Passive house P15	0.08-0.12	≤ 0.6 h ⁻¹	72	135-140	15-20	_
Passive house P20	0.08-0.12	≤ 0.6 h ⁻¹	-	135-140	20-27	-
Passive house P25	0.08-0.12	≤ 0.6 h ⁻¹		135-140	25-33	

- 3:Sweden is divided into three climate zones.
- 4:Norway depending on the yearly mean outdoor temperature θ_{ym} .
- 5:A is related area

	Uwalls/ (W/(m ² K))	Air tightness at Δ50 Pa	Peak load (W/m²)	Primary energy (kWh/m²year)	End energy (kWh/m²year)	Final energy (kWh/m²year)
GERMANY						
RAL Low-energy house	-	≤ 1.0 h ⁻¹	-	-	-	40
RAL Passive house	-	≤ 0.6 h ⁻¹	-	120	=	15
Passive house	≤ 0.15	≤ 0.6 h ⁻¹	10 <u>or</u> final energy	120	-	15 <u>or</u> peak load
3-litre-house	-	-	-	33.3	-	-
Effizienzhaus 70	-	-	-	70% of the building reg	-	85% of the building reg
Effizienzhaus 85	-	-	-	85% of the building reg	-	100% of the building reg
AUSTRIA						
Low-energy (state-aided)	≤ 0.35 ′	≤ 3 h ⁻¹	-			11x(1+2.5 l _c)
Buildings with mechanical ventilation		≤ 1.5 h ⁻¹	-	-	-	15x(1+2.5 l _c)
Passive house (state- aided)	≤ 0.15	≤ 0.6 h ⁻¹	10	120 or 40 for the building services	-	15
3-litre house	12	≤ 1.0 h ⁻¹	-	-	2	30
Klima:aktiv Passive house	See state- aided low-e	≤ 0.6 h ⁻¹		65 for building services	-	15
Klima:aktiv house	See state- aided low-e	≤ 1.5 h ⁻¹	-	-	=	20-45 (relating to I _c)
Buildings with mechanical ventilation with heat recovery	See state- aided low-e	≤ 1.0 h ⁻¹	-	-	-	-

	Uwalls/ (W/(m²K))	Air tightness at ∆50 Pa	Peak load (W/m²)	Primary energy (kWh/m²year)	End energy (kWh/m²year)	Final energy (kWh/m²year)
SWITZERLAND 8						
Low-energy (Minergie, - ECO)	≤ 0.15	-	-	-	38	90% of building reg
Passive house (Minergie-P, P-ECO)	-	0.6	10	-	30	60% of building reg <u>or</u> 15
GREAT BRITAIN						
Passive house	≤ 0.15	0.6	10 <u>or</u> final energy	120	-	15 <u>or</u> peak Ioad
POLAND						
Passive house	≤ 0.15	0.6	10 <u>or</u> final energy	120	<u>-</u>	15 <u>or</u> peak load

- 6:Finland depending on climate zones.
- 7:Outer walls in general
- 8:U-value regards on of two methods

Conclusions

- Many definitions of low-energy buildings
 - comparing is hard due to the different initial parameters as calculation methods, areas and climate zones.
- Many different terms adjusting these would simplify the understanding between the countries.
- A common definition?
 - based on the same criteria levels, related areas and included energy-posts
 - national variations can still exist
- Air-tightness, ventilation and indoor climate is crucial and is not being considered in most of today's definitions of low-energy buildings.
- Low-energy buildings is a step towards requirements of nearly-zero energy in EPBD II, year 2020

Thank you for your attention!

Katharina Thullner

White architects, Sweden

Dennis Johansson

Swegon AB, Building Services - Lund University, Sweden dennis.johansson@swegon.se

Ulla Janson

MKB, Malmö kommunala bostadsbolag, Sweden

