

KATHOLIEKE UNIVERSITEIT

9th Nordic Symposium on Building Physics

Tampere, Finland, 29 May – 2 June, 2011

A PRAGMATIC APPROACH TO INCORPORATE THE EFFECT OF THERMAL BRIDGING WITHIN THE EPBD-REGULATION

Staf Roels, Mieke Deurinck, K.U.Leuven, Belgium Marc Delghust, Arnold Janssens, Ugent, Belgium Dirk Van Orshoven, BBRI, Belgium

Introduction

Thermal bridging accounts for \pm 5% of conduction heat losses

Different approaches to incorporate thermal bridges into EPBD-regulations, depending on member states.

• Numerical simulations

Ψ- and χ-values (W/mK) or (W/K)

The simplified approaches

ΔU added to U-value of componentUse of tabulated valuesUse of thermal bridge atlas

... but often still time consuming and not always an incentive to perform better

A PRAGMATIC APPROACH TO INCORPORATE THE EFFECT OF THERMAL BRIDGING WITHIN THE EPBD-REGULATION

• Overall methodology

three options to take thermal bridging into account

- The simplified approach
- Conclusions

Three options to take thermal bridges into account

Impact of thermal bridges on the overall heat losses

default value of fixed increase of overall transmittance taken as 3 W/K

Three options to take thermal bridges into account

9th Nordic Symposium on Building Physics

Three options to take thermal bridges into account

9th Nordic Symposium on Building Physics

Limit values of the linear transmittance coefficient

	Type of thermal bridge	Limit value
	External corners	
	- wall/wall connection	-0.10 W/m.K
	- other external corners	0.00 W/m.K
	Internal corners	0.15 W/m.K
	Wall/window and wall/door junction	0.10 W/m.K
6	Foundations	0.05 W/m.K
1913	Balconies	0.10 W/m.K
	Others	0.00 W/m.K

Global aim

- Simple rules (straight forward, easy to use)
- No calculations needed
- Based on common sense
- Flexible (broader applicable than e.g. thermal bridge atlas)

Starting point: guarantee THERMAL BREAK along building skin

Can easily be checked during design and construction phase \Rightarrow increase awareness !

Basic rule 1: minimal contact length

connecting insulation layers need a sufficient contact length

Basic rule 2: insertion of insulating element

Insulating elements have to fulfil three requirements

9th Nordic Symposium on Building Physics

Requirements to apply basic rule 2:

1. The intermediate material is an insulating material

 λ –value requirement: $\lambda \leq 0.2$ W/mK

2. Criterion of thermal resistance relative to components

R-value requirement : $R \ge min (R_1/2, R_2/2, 2)$

3. Sufficient contact length cfr. basic rule 1

Contact length : $d_{contact,i} \ge \frac{1}{2} * min(d_{ins. part}, d_x)$

Check basic rule 2

Intermediate element has to

1. have a low thermal conductivity

λ =0.08 ≤ 0.2 W/mK **OK!**

2. have a suffucient thermal resistance

 $\begin{array}{l} R_{facade} = \ 0.12/0.04 = 3 \ m^2 K/W \\ R_{floor} = \ 0.05/0.03 = 1.67 \ m^2 K/W \end{array}$

→R must be $\ge 1.67/2 = 0.84 \text{ m}^2\text{K/W}$ →R = 0.08/0.08 = 1 m²K/W **OK!**

3. make contact with other insulation layers

Cfr. Basic rule 1 **OK!**

Basic rule 3: path of minimal thermal resistance

If continuity is not possible, heat flow path needs to be sufficiently long

KATHOLIEKE UNIVERSITEIT

Conclusions

- Thermal bridging accounts for significant share of total heat losses.
- An approach with three options has been developed to take thermal bridges into account in Belgian EPBD-

regulation.

Three options to take thermal bridges into account

9th Nordic Symposium on Building Physics

Conclusions

- The basic rules guarantee a continuous insulation layer within the building envelope
- The rules are defined in such a way that requirements are relative to the insulation level of the building
- The proposed simplified approach is mainly based on common sense:
 - rules are easy to use
 - much broader applicable than e.g. thermal bridge atlas
 - can be easily checked by designers, contractors, inspectors
 - increase awareness of good thermal detailing

Thank you for your attention