Evaluation of the thermal bridges of prefabricated concrete large-panel and brick apartment buildings in Estonia

Simo llomets

Targo Kalamees, Leena Paap Tallinn University of Technology, Estonia

Importance of thermal bridges

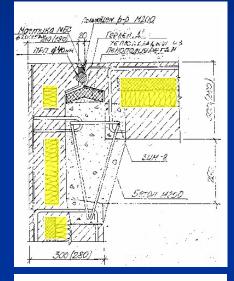
Old topic about thermal bridges in a cold climate is important for many reasons:

- Possible mould growth on internal surface of a building envelope
- Possible surface condensation
- Increase of heat losses
- Thermal discomfort due to cold draughts or radiation
- With improvement of thermal insulation level, the relative significance of heat losses through the thermal bridges has enlarged

Objectives

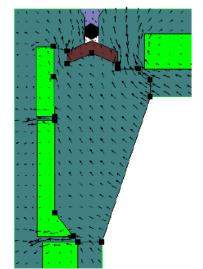
Purpose of the study was to assess the thermal bridges of concrete large-panel and brick apartment buildings:

- Assess criticality of thermal bridges depending on indoor humidity loads
- Calculate linear thermal conductance for typical structural joints (do not exist yet for older buildings)
- Analyze impact of additional internal and external insulation during a retrofit
- Results of this research can be used as inital data for stochastic analyze in IEA Annex 55 – RAP Retro

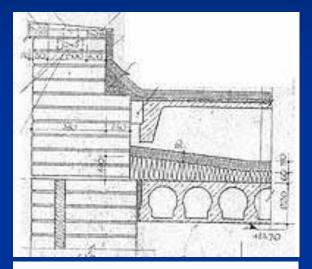


Methods – studied buildings

Prefabricated reinforced concrete largepanel element walls of three layers

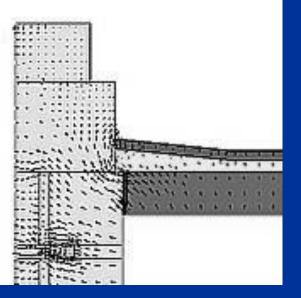

- Thickness of wall panels ~300 mm
- Insulation chip-cement, mineral wool, expanded polystyrene or phenoplast
- Joints of concrete panels contain areas without any thermal insulation

Thermal transmittance: 0.5-1.0 W/(m²K)



Methods – studied buildings

Calcium silicate or ceramic brick walls of three layers

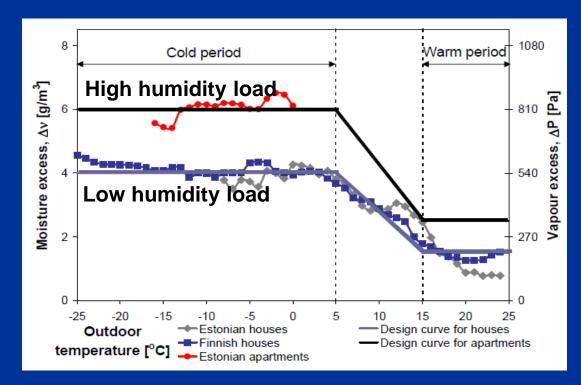

- Steel rods or rows of bricks as bonding
- 60-120 mm mineral wool insulation
- Joints without thermal insulation

Thermal transmittance: 0.5-1.0 W/(m²K)


Methods - measurements

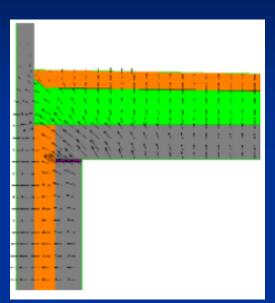
Field study by infrared thermography

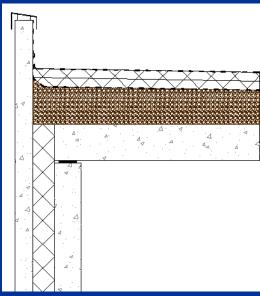
$$f_{Rsi} = \frac{R_T - R_{si}}{R_T} = \frac{t_{si} - t_e}{t_i - t_e}$$


 f_{Rsi} = temperature factor, t_{si} = temperature of internal surfice, °C t_i = temperature of the indoor air, °C t_e = temperature of the outdoor air, °C.

Methods – limit value for temperature factor

Humidity loads of dwellings	Limit value for temperature factor f_{Rsi} ,-	
	Mould growth	Surface
	filouid growin	condensation
Low humidity loads: low occupancy and good venti-	≥ 0.65	≥ 0.55
lation (moisture excess during cold period \leq +4 g/m ³		≥ 0.55
High humidity loads: high occupancy or/and low venti-	≥ 0.8	>07
lation (moisture excess during cold period \leq +6 g/m ³	20.8	≥ 0.7

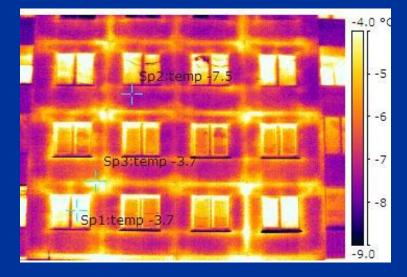

Methods - calculations

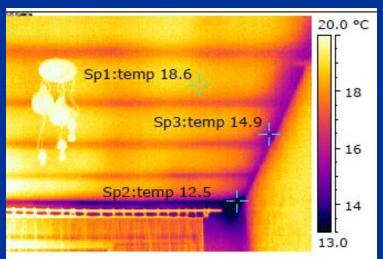

Calculations with two-dimensional heat transfer simulation program THERM 6.0

 $\Psi_{j} = (\overline{U} - U) \cdot x, W/(\mathbf{m} \cdot \mathbf{K})$

- Ψ_i linear thermal conductance, W/(m[·]K)
- U thermal transmittance with thermal bridge, W/(m²K)
- \overline{U} thermal transmittance without thermal bridge, W/(m²K)
- x length, m

Results of measurements and calculations were compared

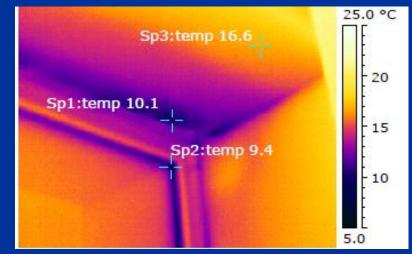




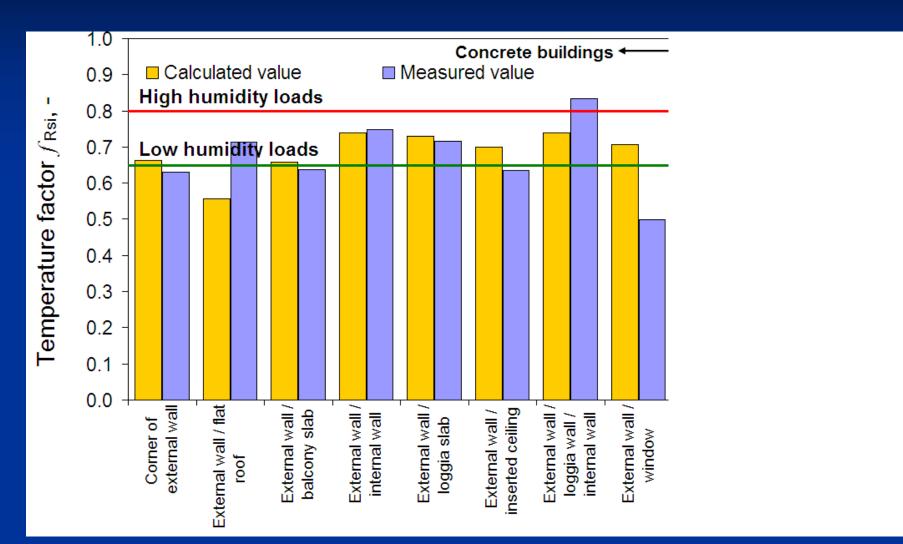
Results – concrete large-panel buildings

Main thermal bridges are:

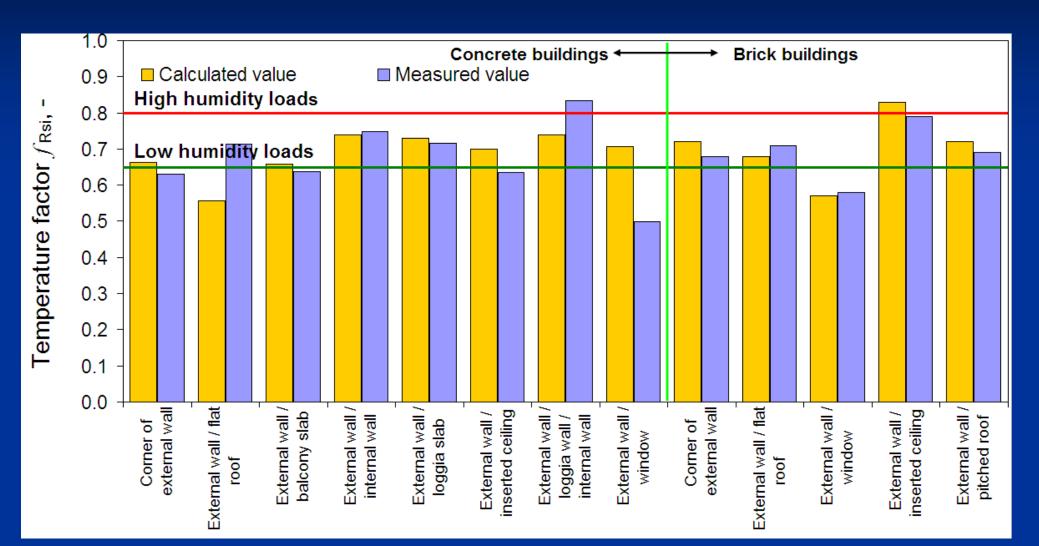
- horizontal and vertical joints between external wall panels
- junctions of the external wall and the balcony slab
- junctions of the external wall (especially end sides) and the flat roof
- bonds of panel`s internal and external layers of the external walls
- foundation wall panels
- perimeters of windows and doors



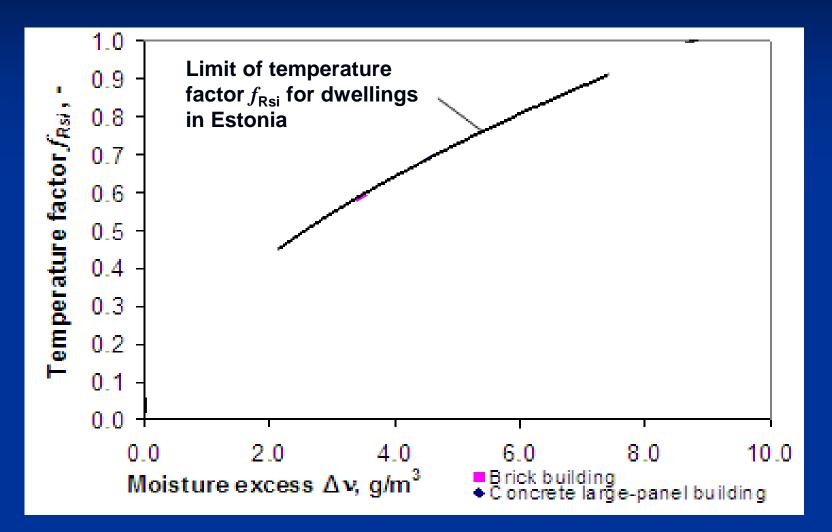
Results – brick buildings


Main thermal bridges are:

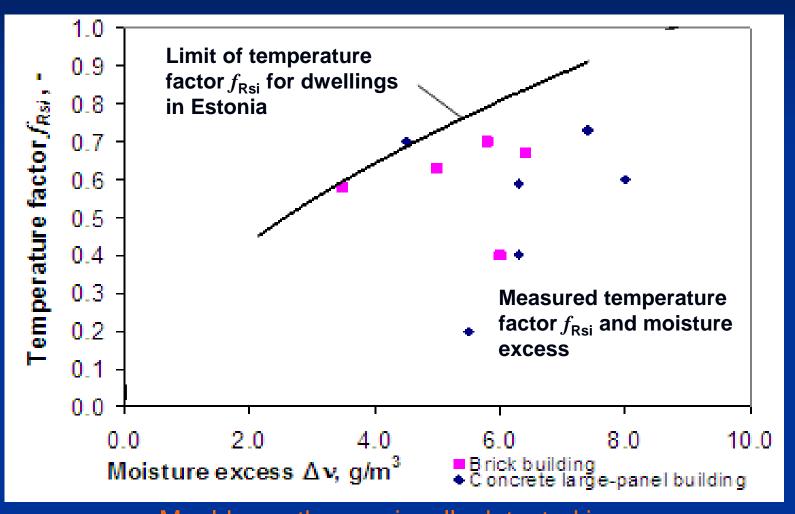
- junctions of the external wall and flat or pitched roof
- junctions of the external wall and the balcony or loggia slab
- perimeters of windows and doors
- junction between foundation wall panels and external wall
- bonding bricks



Results – temperature factors


92% of the temperature factors f_{Rsi} <0.8 ($\Delta v \sim 6 \text{ g/m}^3$)

Results – temperature factors



92% of the temperature factors f_{Rsi} <0.8 ($\Delta v \sim 6 \text{ g/m}^3$)

Results – mould growth

Results – mould growth on thermal bridges

Mould growth was visually detected in: 46% of concrete large-panel and in 33% of brick buildings

Temperature factor f_{Rsi} can be used as design value to avoid mould growth

Results – thermal conductances

Location of the thermal		Thermal con	ductance ψ , W/m·K
bridge	additionally insulated (mm)	Concrete	
	insulated (iiiii)		
	•	panels*	
Corner of external walls	Original	1.17	
	150	0.26	
External walls/internal	Original	1.03	
walls (without joint insul.)	150	0.08	
External walls /	Original	0.77	
inserted ceiling	150	0.05	
External wall /	Original	-	
pitched roof	150	-	
External walls /	Original	0.49	
flat roof	150	0.40	
External walls/ windows	Original	0.07	
(without insulated cheek)	150	0.14	
External walls and loggia/	Original	0.76	
balcony slab	150-200*2	0.49	

Thermal transmittance of a wall may increase up to 100%!

Results – thermal conductances

Location of the thermal	Original / additionally insulated (mm)	Thermal conductance ψ , W/m·K	
bridge		Concrete large- panels*	Calcium silicate or ceramic bricks
Corner of external walls	Original	1.17	0.23-0.29
	150	0.26	0.15
External walls/internal	Original	1.03	0.00
walls (without joint insul.)	150	0.08	0.00
External walls /	Original	0.77	0.01
inserted ceiling	150	0.05	0.00
External wall /	Original	-	0.410.58
pitched roof	150	-	0.420.49
External walls /	Original	0.49	0.330.48
flat 100f	150	0.40	0.21
External walls/ windows	Original	0.07	0.350.49
(without insulated cheek)	150	0.14	0.360.51
External walls and loggia/	Original	0.76	0.01
balcony slab	150-200*2	0.49	0.13

Thermal transmittance of a wall may increase up to 100%!

Conclusions

- Mould growth on the internal surfaces of thermal bridges is unavoidable without additional external insulation and/or lowering internal humidity loads
- Heat losses through thermal bridges and plane partitions are in a same scale
- Economically rational thickness of additional insulation (~150 mm) is larger than is needed to eliminate thermal bridges (~50-70 mm)
- Additional internal insulation is not acceptable since it lowers temperature on former internal surface in insulated apartment and also in neighboring apartment
- Additional external insulation rises temperature on internal surface, reduces heat losses, improves thermal comfort and in addition protects facade from climate loads