9th Nordic Symposium on Building Physics, Tampere, Finland

Computational modelling of the impact of climate change on the indoor environment of a historic building in the Netherlands

Zara Huijbregts Rick Kramer Jos van Schijndel Henk Schellen

TU

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Introduction (1)

Future climate change threatening cultural heritage in Europe until 2100:

- Increased risk of inland flash floods
- More frequent coastal flooding and increased erosion
- More frequent heat waves
- Shifting of climatic zones
- More frequent extreme weather events

Climate for Culture

Introduction (2)

Prediction of future climate change on regional scale:

UN IPCC Emission scenarios

Global climate models

Providing large-scale and initial boundary conditions

3D high resolution regional climate models

Similar to numerical weather forecasting models

Regional climate change models

change in total precipitation [%]: 2071 to 2100 - 1961 to 1990: REMO/A1B-3 0.44

Source: Max Planck Institute of Meteorology, Hamburg

Introduction (3)

Future climate change in Europe until 2100:

Annual near surface air temperature [°C] and total precipitation [mm/month] for the time period 2070-2100 compared to 1960-1990 (Jacob and Podzun, 2010)

e Technische Universiteit Eindhoven University of Technology

PAGE 3

31-5-2011

Case study

Amerongen Castle

- 17th century castle in The Netherlands
- Unheated and heated rooms

Hygrothermal modelling (1)

Hygrothermal building simulation

 Comparison HAMBase simulation and on-site measurements

PAGE 5

31-5-2011

Hygrothermal modelling (2)

Hygrothermal building simulation

Comparison HAMBase simulation and on-site measurements

Damage risk assessment (1)

Damage risk assessment (2)

Indoor climate measurements

Climate Evaluation Chart

Damage risk assessment (3)

Indoor climate measurements

Climate Evaluation Chart

Results (1)

Seasonal mean indoor temperature in an unheated room from 2000 until 2100

Results (2)

Seasonal mean indoor relative humidity in an unheated room from 2000 until 2100

Results (3)

Results (4)

Annual energy demand for heating and cooling in a heated room from 2000 until 2100

Conclusion

Preliminary results for this case study in The Netherlands:

Unheated rooms:

- Signifcantly increasing indoor temperature
- Slightly increasing relative humidity
- No major impact of climate change on hourly and daily fluctuations of temperature and relative humidity

Heated rooms:

- Considerable reduction of energy demand for heating
- Slight increase of energy demand for cooling

Recommendations

To achieve more general results:

- More case studies will investigated
- Outdoor climate scenarios will be varied for different greenhouse gas emissions scenarios
- Outdoor climate scenarios will be varied for different locations throughout Europe

Thank you for your attention

TU/e

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts