

# Characterization of damageinduced evolution of building materials hygric properties

Simon Rouchier Monika Woloszyn Geneviève Foray Jean-Jacques Roux

JMR 5008

DES SCI

NSTITUT NATIONAL

Thermique de



## Motivation

- Progressive cracking of cementitious materials during their lifespan due to mechanical loading
- > Infiltration of carbon dioxide and chloride ions  $\rightarrow$  carbonation, corrosion
- Deterioration of hygric and thermal transport properties





- Implementation of damaged media in HAM simulation codes
- Measurements of damage-induced evolution of water vapour permeability





## Modelling hypotheses

Simplification of the transport equation for 1D transfer in a narrow humidity interval of the hygroscopic range

$$\frac{\xi}{p_{sat}} \frac{\partial w}{\partial t} = \delta_p \frac{\partial^2 w}{\partial x^2}$$

$$\delta_p \left( \nabla p_v \cdot \mathbf{n} \right) = h_p \left( p_{v,ext} - p_v \right)$$







#### Estimation of the transfer properties

• Resolution of the 1D transport equation under simplification hypotheses:

$$m = \int_0^L \left( w\left(x,t\right) - w_0 \right) \mathrm{d}x \quad \longleftrightarrow \quad \left\{ \begin{array}{l} m = L\xi \Delta \phi \left[ 1 - \sum_{k=1}^\infty \frac{2\sin^2 a_k}{a_k \left(a_k + \sin a_k \cos a_k\right)} \exp\left(-a_k^2 \frac{\delta_p}{\xi} \frac{p_{sat} t}{L^2}\right) \right] \\ \frac{\mathrm{Bi}_h}{a_k} = \tan a_k \end{array} \right.$$

• Application of a Levenberg-Marquardt algorithm for the correlation with experimental measurements

$$\begin{bmatrix} \mathbf{J}^{t} \mathbf{J} \end{bmatrix}_{n} \mathbf{u}_{n+1} = \mathbf{J}_{n}^{t} \begin{bmatrix} m_{exp,i} - m(\mathbf{u}_{n}, t_{i}) \end{bmatrix} \qquad \mathbf{u} = \left( \delta_{p}, \xi, h_{p} \right)$$
$$\mathbf{J}_{i,j} = \frac{\partial m(\mathbf{u}, t_{i})}{\partial u_{j}}$$

• Possibility of extrapolating all transfer properties from the mass uptake profile in this humidity range





## Material used in the study

Fibre reinforced mortar used for outer thermal insulation









## Mechanical characterization



Constant displacement speed of 2mm/mn Sample dimensions: 300x100x10 mm

The scalar damage value is defined as the relative decrease of elastic modulus after unloading of the sample (0 < D < 1)





#### Mechanical characterization



Digital Image Correlation used to visualise the strain field on the surface of the sample

> important local discontinuities before propagation of a macroscopic crack

 $\succ$  possible preferential paths for moisture uptake

lateis

![](_page_6_Picture_5.jpeg)

![](_page_6_Picture_6.jpeg)

## Mass uptake measurements during hygric cycles

![](_page_7_Figure_1.jpeg)

- The samples are placed on scales inside a climatic chamber
- Continual recording of the samples weight with up to 10<sup>-3</sup> g precision
- The samples are insulated on 5 faces as to ensure 1D moisture transfer

![](_page_7_Picture_5.jpeg)

![](_page_7_Picture_7.jpeg)

## Approximation of the mass uptake profile

![](_page_8_Figure_1.jpeg)

The Levenberg-Marquardt algorithm is used in 3 steps for the estimation of the permeability

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_5.jpeg)

## Approximation of the mass uptake profile

 $\left[\mathbf{J}^{t}\mathbf{J}\right]_{n}\mathbf{u}_{n+1}=\mathbf{J}_{n}^{t}\left[m_{exp,i}-m(\mathbf{u}_{n},t_{i})\right]$ 

1) Simultaneous approximation of all parameters :  $\mathbf{u} = (\delta_p, \xi, h_p)$ 

➤ inaccurate estimation of the moisture equilibrium content

2) Approximation of the permeability and surface transfer coefficient :  $\mathbf{u} = (\delta_p, h_p)$ 

| D                                                          | 0                     | 0.401                | 0.497                 | 0.689                | 0.697                 |
|------------------------------------------------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|
| $\delta_p [\text{kg.Pa}^{-1}.\text{m}^{-1}.\text{s}^{-1}]$ | $6.57\times10^{-13}$  | $10.7\times10^{-13}$ | $8.43\times10^{-13}$  | $7.87\times10^{-13}$ | $7.97\times10^{-13}$  |
| $h_p \ [\text{kg.Pa}^{-1}.\text{m}^{-2}.\text{s}^{-1}]$    | $7.94 \times 10^{-9}$ | $11.5\times10^{-9}$  | $9.10 \times 10^{-9}$ | $6.04\times10^{-9}$  | $7.03 \times 10^{-9}$ |

variation of the surface transfer coefficient

3) Approximation of the permeability with an averaged surface transfer coefficient :  $\mathbf{u} = \delta_p$ 

| D                                                          | 0                    | 0.401                | 0.497                | 0.689                | 0.697                |
|------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $\delta_p [\text{kg.Pa}^{-1}.\text{m}^{-1}.\text{s}^{-1}]$ | $6.55\times10^{-13}$ | $11.7\times10^{-13}$ | $8.51\times10^{-13}$ | $7.70\times10^{-13}$ | $7.80\times10^{-13}$ |

➢ increase of permeability with damage

![](_page_9_Picture_10.jpeg)

![](_page_9_Picture_13.jpeg)

#### Results and conclusion

![](_page_10_Figure_1.jpeg)

- Increasing values of the water vapour permeability with higher values of damage
- High uncertainty due to the coarse definition of the damage variable and the measurement precision

necessity of a finer characterization of the fracture network

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_7.jpeg)

#### Discussion

#### **∂hôn∈\lpes**

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_4.jpeg)