BUILDING PHYSICS IN THE NORDIC COUNTRIES **NSB 2011** 9th Nordic Symposium on Building Physics

Effect of variable hygro-thermal conditions on chemical degradation of concrete structures due to alkali – silica reaction

Prof. D. Gawin, M.Sc. W. Grymin, Dr. M. Wyrzykowski

Department of Building Physics and Building Materials Technical University of Lodz – POLAND

Dr. F. Pesavento

Department of Structural and Transportation Engineering University of Padova – ITALY

This research was supported in part by the project POIG.01.01.02-10-106/09-00 funded by EU

Motivation

Building materials degradation caused by ASR

Damage due to the Alkali – Silica Reaction

Motivation

Building materials degradation caused by ASR

Damage due to the Alkali – Silica Reaction

NSB 2011, 9th Nordic Symposium on Building Physics, Tampere, Finland, 29 May – 2 June 2011.

Introduction

Modeling chemical degradation, leaching and ASR

Modeling chemical degradation

damage theory:

- ✓ Gerard 1996
- ✓ Pijaudier-Cabot, Gerard, Molez– 1998

chemo-poro-plasticity:

Ulm, Torrenti, Adenot - 1999

theory of reactive porous media:

✓ Kuhl, Bangert, Meschke - 2004

Modeling calcium leaching

- ✓ Adenot and Buil 1992
- ✓ Gerard 1996
- Ulm, Torrenti, Adenot 1999
- ✓ Kuhl, Bangert, Meschke 2004
- ✓ Gawin, Pesavento, Schrefler 2008, 2009

Modeling salt transport and precipitation (equil. & nonequil.)

- ✓ <u>Samson et al. 2007</u>
- ✓ Koniorczyk & Gawin –2008, 2011
- ✓ Koniorczyk 2009, 2010

ASR reaction

- ✓ Larive 1998
- ✓ Bazant, Steffens 2000
- ✓ Ulm, Coussy, Kefei, Larive 2000
- ✓ Poyet 2003
- ✓ Steffens, Li, Coussy 2003
- ✓ Bangert, Kuhl, Meschke 2004
- ✓ Multon et al. 2006, 2008
- ✓ Comi, Fedele, Perego 2009

Theoretical Model Transport Mechanisms

<u>Capillary water (free water):</u>

- ✓ advective flow (water pressure gradient)
- ✓ osmotic flow (salt concentration gradient)
 <u>Physically adsorbed water:</u>
- ✓ diffusive flow (water concentration gradient)

Water vapour:

- ✓ advective flow (gas pressure gradient)
- ✓ diffusive flow (water vapour concentration gradient)
 <u>Dry air:</u>
- ✓ advective flow (gas pressure gradient)
- ✓ diffusive flow (dry air concentration gradient)

Microscopic view of a three-phase porous material (concrete, rocks)

NSB 2011, 9th Nordic Symposium on Building Physics, Tampere, Finland, 29 May – 2 June 2011.

Theoretical Model Phase Changes & Chemical Reactions

- ✓ *Evaporation:* capillary water + energy \Rightarrow water vapour
- ✓ *Condensation:* water vapour \Rightarrow capillary water + energy
- ✓ *Desorption:* phys. adsorbed water + energy \Rightarrow water vapour
- ✓ *Adsorption:* water vapour \Rightarrow phys. adsorbed water + energy
- ✓ ASR reaction: Alkali (K⁺ & Na⁺ ions) + silica (aggregate) ⇒ expanding amorphous gel

Theoretical Model Micro- \Rightarrow macro-description

Balance equations:

local formulation (micro- scale)

Volume Averaging Theory by Hassanizadeh & Gray, 1979,1980

macroscopic formulation

(macro-scale)

Rational Thermodynamics

Model development:

> Lewis & Schrefler: "The FEM in the Static and Dynamic ...", Wiley, 1998

Sawin:" Modelling of coupled hygro-thermal phenomena in building materials ...", Hab. Thesis, Łódź, 2000

> 7/27

Theoretical Model

Macroscopic balance equations & evolution equations

- ✓ The dry air and skeleton mass balance
- \checkmark The water species and skeleton mass balance
- ✓ The multiphase medium enthalpy balance
- ✓ The multiphase medium momentum balance (mechanical equilibrium)
- \checkmark Evolution equation for mechanical damage
- ✓ Evolution equation for chemical damage (due to ASR)
- ✓ Evolution equation for chemical reaction (ASR)

Theoretical Model State variables & internal variables

- ✓ Gas pressure p^g
- ✓ Capillary pressure p^c
- ✓ Temperature T;
- ✓ Displacement vector $[u_x, u_y, u_z]$
- ✓ Mechanical damage degree d
- ✓ Chemical damage degree V
- ✓ Reaction degree (ASR Γ_{ASR})

Theoretical fundamentals and model development:

- > Gawin, Pesavento, Schrefler, CMAME 2003, Mat.&Struct. 2004, Comp.& Conc. 2005
- *Gawin, Pesavento, Schrefler*, *IJNME* 2006 (part 1, part2)
- > Koniorczyk, Gawin, J. Build. Phys. 2008, Transport in Porous Media 2010

> 9/27

Theoretical Model Strain decomposition

Total strain of concrete, ε_{tot} , can be split into :

- 1. strain due to ASR
- 2. free thermal strain
- 3. chemical strain
- 4. creep strain
- 5. mechanical strain (caused by mechanical load and shrinkage)

Strain decomposition

$$d\boldsymbol{\varepsilon}_{mech} = d\boldsymbol{\varepsilon}_{tot} - d\boldsymbol{\varepsilon}_{ASR} - d\boldsymbol{\varepsilon}_{c} - d\boldsymbol{\varepsilon}_{th} - d\boldsymbol{\varepsilon}_{ch}$$

Free thermal strain strain

$$d\mathbf{\varepsilon}_t = \beta_s \ dT \ \mathbf{I}$$

Thermo-chemical strain

$$d\mathbf{\varepsilon}_{ch} = \beta_{ch} \ d\Gamma_{hydr} \ \mathbf{I}$$

<u>Shrinkage strain</u>

$$d\boldsymbol{\varepsilon}_{sh} = -\frac{\alpha}{3K_T} \left(d\chi^{ws} p^c + \chi^{ws} dp^c \right) \mathbf{I}$$

> 10 / 27

Forces:

Theoretical Model Shrinkage strains of concrete

Capillary pressure & disjoining pressure

Theoretical Model

Shrinkage strains of concrete

Experimental data from:

> [Baroghel-Bouny, et al., Cem. Concr. Res. 29, 1999]

Mathematical model Model of Alkali – Silica Reaction evolution rate

$$\frac{\partial \Gamma_{ASR}}{\partial t} = \frac{1 - \Gamma_{ASR}}{t_r}$$

with
$$\Gamma_{ASR}(t) = \frac{m_{ASR}(t)}{m_{ASR,\infty}}$$

□ Ref.: Larive et al, J. of Engineering Mechanics 2000

where the reaction time is given by:

$$t_{r} = \tau_{r}(T, S_{w}) \cdot \lambda(T, S_{w}, \Gamma_{ASR}) \qquad \lambda(T, S_{w}, \Gamma_{ASR}) = \frac{1 + \exp(-\tau_{L} / \tau_{r})}{\Gamma_{ASR} + \exp(-\tau_{L} / \tau_{r})}$$

Latency time

Characteristic time

$$\tau_{L}\left(T | S_{w} \right) = \tau_{L0} \left[U_{L} \left(\frac{1}{T} - \frac{1}{T_{0}} \right) \right] \left(A_{L} | S_{w} + B_{L} \right)$$
 Influence of the saturation degree
$$\tau_{r} \left(T | S_{w} \right) = \tau_{r0} \left[U_{r} \left(\frac{1}{T} - \frac{1}{T_{0}} \right) \right] \left(A_{L} | S_{w} + B_{L} \right)$$
 $\tau_{L0}, \tau_{r0}, A_{L}, B_{L}$ - are material parameters

> 13/27

Mathematical model

Model of strains due to Alkali – Silica Reaction

Evolution of ASR strain Γ_{ASR} : final form

$$\frac{\partial \boldsymbol{\varepsilon}_{ASR}}{\partial t} = \tilde{\beta}_{ASR} \left(S_{w} \right) \cdot \left(1 - \Gamma_{ASR} \right)^{\tau_{r0}/\tau_{a0}} \cdot \frac{\partial \Gamma_{ASR}}{\partial t} \mathbf{I}$$

Influence of the S_w and T on the strain rate

$$\begin{split} \tilde{\beta}_{ASR}\left(S_{w}\right) &= \tilde{\beta}_{ASR0}\left(\tilde{A}_{ASR} \cdot S_{w} + \tilde{B}_{ARS}\right) & \text{linear formulation} \\ \tilde{\beta}_{ASR}\left(S_{w}\right) &= \tilde{\beta}_{ASR0}\left(S_{w}\right)^{\tilde{C}_{ASR}} & \text{power formulation} \\ \end{array} \\ \tilde{\beta}_{ASR}\left(S_{w}\right) &= \tilde{\beta}_{ASR0}\left(S_{w}\right)^{\tilde{C}_{ASR}} & \text{power formulation} \\ \tau_{L}(T, S_{w}) &= \tau_{L0} \cdot \exp\left[U_{L} \cdot \left(\frac{1}{T} - \frac{1}{T_{0}}\right)\right] \cdot (A_{L} \cdot S_{w} + B_{L}) \\ \tau_{r}(T, S_{w}) &= \tau_{r0} \cdot \exp\left[U_{r} \cdot \left(\frac{1}{T} - \frac{1}{T_{0}}\right)\right] \cdot (A_{r} \cdot S_{w} + B_{r}) \\ \end{array} \\ \begin{bmatrix} \Box \text{ Ref.: Steffens et al, Eng. Mech. 2003} \\ \Box \text{ Ref.: Bangert et al, IJNME 2004} \\ \end{bmatrix} \end{split}$$

> 14 / 27

Theoretical Model Strains at variable humidity

NSB 2011, 9th Nordic Symposium on Building Physics, Tampere, Finland, 29 May – 2 June 2011.

Theoretical Model

Mechanical material degradation

Non-local isotropic damage theory

[Mazars & Pijaudier-Cabot, 1989]

Constitutive relationships for the sorption isotherms

$$S_{w}(p^{c},\varepsilon_{ASR}^{vol}) = S_{w}(p^{c},0) + \frac{\varepsilon_{ASR}^{vol}}{\varepsilon_{ASR,\infty}^{vol}} \left[S_{w}(p^{c},\varepsilon_{ASR,\infty}^{vol}) - S_{w}(p^{c},0)\right]$$

Constitutive relationships for the intrinsic permeability

$$k = k_o \cdot 10^{A_k \left(\varepsilon_{ASR}^{vol} / \varepsilon_{ASR,\infty}^{vol} \right)}$$

Numerical Solution

Discretization and linearization the model equations

Governing equations of the model

Galerkin's (weighted residuum)

method

Variational (weak) formulation

FEM (in space)

FDM (in the time domain)

Discretized form (non-linear set of equations)

Numerical Solution

Discretization and linearization the model equations

Discretized form (nonlinear equations)

the Newton - Raphson method

Solution of the final, linear equation set

the frontal, monolithical solver

Computer code (COMES / HMTRA family)

PYŁ

Numerical Solution

Matrix form of the FEM-discretised governing equations

$$\mathbf{C}_{gg} \frac{\partial \overline{\mathbf{p}}^{g}}{\partial t} + \mathbf{C}_{gc} \frac{\partial \overline{\mathbf{p}}^{c}}{\partial t} + \mathbf{C}_{gt} \frac{\partial \overline{\mathbf{T}}}{\partial t} + \mathbf{C}_{gu} \frac{\partial \overline{\mathbf{u}}}{\partial t} + \mathbf{K}_{gg} \overline{\mathbf{p}}^{g} + \mathbf{K}_{gc} \overline{\mathbf{p}}^{c} + \mathbf{K}_{gt} \overline{\mathbf{T}} = \mathbf{f}_{g}$$

$$\mathbf{C}_{cc} \frac{\partial \overline{\mathbf{p}}^{c}}{\partial t} + \mathbf{C}_{ct} \frac{\partial \overline{\mathbf{T}}}{\partial t} + \mathbf{C}_{cu} \frac{\partial \overline{\mathbf{u}}}{\partial t} + \mathbf{K}_{cg} \overline{\mathbf{p}}^{g} + \mathbf{K}_{cc} \overline{\mathbf{p}}^{c} + \mathbf{K}_{ct} \overline{\mathbf{T}} = \mathbf{f}_{c}$$

$$\mathbf{C}_{sc} \frac{\partial \overline{\mathbf{p}}^{c}}{\partial t} + \mathbf{C}_{st} \frac{\partial \overline{\mathbf{T}}}{\partial t} + \mathbf{C}_{su} \frac{\partial \overline{\mathbf{u}}}{\partial t} + \mathbf{K}_{sg} \overline{\mathbf{p}}^{g} + \mathbf{K}_{sc} \overline{\mathbf{p}}^{c} + \mathbf{K}_{st} \overline{\mathbf{T}} = \mathbf{f}_{s}$$

$$\mathbf{C}_{ug} \frac{\partial \overline{\mathbf{p}}^{g}}{\partial t} + \mathbf{C}_{st} \frac{\partial \overline{\mathbf{T}}}{\partial t} + \mathbf{C}_{uc} \frac{\partial \overline{\mathbf{u}}}{\partial t} + \mathbf{K}_{sg} \overline{\mathbf{p}}^{g} + \mathbf{K}_{sc} \overline{\mathbf{p}}^{c} + \mathbf{K}_{st} \overline{\mathbf{T}} = \mathbf{f}_{s}$$

where \mathbf{K}_{ij} - related to the primary variables \mathbf{C}_{ij} - related to the time derivative of the primary variables \mathbf{f}_i - related to the other terms, eg. BCs (*i*,*j*=*g*,*c*,*t*,*s*,*u*)

> 20 / 27

Modelling Silica Alkali Reaction Validation of the model

✓ Material properties and size of the specimens as in:

Larive, C. Apports combinés de l'expérimentation et la modélisation à la compréhension de l'alcali-réaction et de ses effets mécaniques, Mono-graph LPC, 0A28, Laboratoire Central des Ponts et Chaussées, Paris, **1998**.

- ✓ Boundary conditions:
 - convective heat and mass exchange: sealed (adiabatic)
 - surface mechanical load: unloaded

✓ Thermo-hygral conditions during the experimental tests (constant): $T_0 = 23 \degree C$, 38°C, 60°C at $S_w = 87.5\%$; $S_w = 100\%$, 92.5%, 87.5%, 73% at T= 38°C;

Modelling Silica Alkali Reaction Validation of the model

> 22 / 27

Experimental - numerical results comparison

Poyet's tests at constant relative humidity

✓ Material properties as in:

S. Poyet, Etude de la dégradation des ouvrages en béton atteints de la réaction alcali–silice: approche expérimentale et modélisation numérique multi-échelle des dégradations dans un environnement hydrochemo–mécanique variable, PhD thesis, Univ. de Marne la Vallée, **2003**.

 \checkmark Size of the specimens:

Cylindrical specimens - radius=1cm, height=16cm

27

✓ <u>Boundary conditions:</u>

- convective heat and mass exchange:
- RH_{∞}=82%, and then 59%, 76%, 82%, 96% or 100% kept constant in time with β_c =0.002 m/s (drying cases) and β_c =0.002 m/s (swelling cases)
- T=60°C with α_c =5 W/Km²
 - surface mechanical load: unloaded

> 23/27

Modelling Silica Alkali Reaction Experimental - numerical results comparison

Poyet's tests at constant relative humidity

> 24 / 27

Experimental - numerical results comparison

Poyet's tests at variable relative humidity

✓ Material properties as in:

S. Poyet, Etude de la dégradation des ouvrages en béton atteints de la réaction alcali–silice: approche expérimentale et modélisation numérique multi-échelle des dégradations dans un environnement hydrochemo–mécanique variable, PhD thesis, Univ. de Marne la Vallée, **2003**.

Size of the specimens: Cylindrical specimens – radius=1cm, height=16cm

✓ Boundary conditions:

- convective heat and mass exchange:
- RH_{∞} =59-96% variable in time with two different cycles:

short (14 days) and long (28 days)

 β_c =0.002 m/s (drying phases) and β_c =0.002 m/s (swelling phases)

• T=60°C with α_c =5 W/Km²

> 25/27

Experimental - numerical results comparison

Poyet's tests at variable relative humidity (long cycle)

> 26 / 27

Experimental-Numerical results comparison

Poyet's tests at variable relative humidity (short cycle)

> 27 / 27

Final Remarks & Conclusions

- A general model based on the mechanics of multiphase porous media for the analysis of thermo-hygral processes, as well as chemical and mechanical degradation of concrete has been presented.
- The model accounts for both variable water content (saturation) and temperature influence on the ASR reaction evolution and the strain development
- The rate type ASR model has been presented and compared to available experimental results

Future research:

- Extension the ASR model for taking into account the anisotropy and the dependence of ASR strain on load level.
- > Implementation of mechanical and chemical damage.
- 3-D computer code

Final Remarks & Conclusions

Modeling chemical reactions with a kinetic (rate)

approach allows for taking into account the effect

of variable temperature and moisture content

on the chemical degradation processes

Future research:

- Extension the ASR model for taking into account the anisotropy and the dependence of ASR strain on load level.
- > Implementation of mechanical and chemical damage.
- 3-D computer code

> 29/27

BUILDING PHYSICS IN THE NORDIC COUNTRIES **NSB 2011** 9th Nordic Symposium on Building Physics

Effect of variable hygro-thermal conditions on chemical degradation of concrete structures due to alkali – silica reaction

Thank you for your attention !

Questions P

Modelling Silica Alkali Reaction Multon's experimental tests

Description

✓ Material properties as in:

S. Multon, F. Tiutlemonde, Effect of applied stress on alkali-silica reaction-induced expansion, Cement and Concrete Research, 36, 912-920, 2006

- ✓ Material tested: reacted and unreacted material
- Size of the specimens: Cylindrical specimens – diameter=130 mm, height=240 mm
- ✓ Boundary conditions:
 - convective heat and mass exchange:
 - RH_{∞}=91% constant in time with β_c =0.000070 m/s
 - T=38°C with α_c =1 W/Km²
 - surface mechanical load: 0 MPa, 10 MPa, 20 MPa

Multon's experimental tests

Results for the unreacted material

Multon's experimental tests

Results for the reacted material

Theoretical Model Fundamental hypotheses

- □ Thermodynamical equilibrium state locally (slow phenomena)
- Concrete treated as a deformable, multiphase porous material
- Phase changes and chemical reactions (hydration, ASR) taken into account
- □ Full coupling: hygro-thermo-mechanical \Rightarrow chemical reaction (ASR and strain development)
- Various mechanisms of moisture- and energy- transport characteristic for the specific phases of concrete
- Evolution in time of material properties, e.g. densities, permeabilities, sorption isotherms, according to the reaction degree
- Non-linearity of material properties due to temperature, gas pressure, moisture content and material degradation

> 34/

Theoretical Model

Shrinkage strains of concrete

> 35/31

Layout

Introduction

- Existing models vs the model proposed
- General theoretical model
 - Mathematical model of concrete as multiphase porous material
- Modelling the alkali-silica reaction (ASR)
 - Chemical reaction evolution
 - Strain development
- Numerical solution of the model equations
- Validation of the model
 - Tests at various RH (constant temperature) (Larive et al.)
 - Tests at various temperatures (RH constant) (Larive et al.)
 - Tests at variabile relative humidity (Poyet et al.)
 - Tests at constant RH with various loads (Multon et al.)

Conclusions and final remarks

> 36 /

Theoretical Model

Chemical material degradation

$$V = 1 - \frac{E_0(\Gamma_{ASR})}{E_0(\Gamma_{ASR} = 0)}$$

Joint effect of mechanical and chemical damage

[Pijaudier-Cabot, Gerard, Molez – 1998]

$$D = 1 - \frac{E(\Gamma_{ASR})}{E_0(\Gamma_{ASR} = 0)} = 1 - \frac{E(\Gamma_{ASR})}{E_0(\Gamma_{ASR})} \frac{E_0(\Gamma_{ASR})}{E_0(\Gamma_{ASR} = 0)} = 1 - (1 - d)(1 - V)$$

$$\boldsymbol{\sigma} = (1-d)(1-V)\boldsymbol{\Lambda}_0 : \boldsymbol{\varepsilon}^e = (1-D)\boldsymbol{\Lambda}_0 : \boldsymbol{\varepsilon}^e$$