

KATHOLIEKE UNIVERSITEIT

Numerical Simulation of Building Components : Towards an Efficient Implementation of Air Convection in HAMmodels

Jelle Langmans, Ralf Klein, Staf Roels Division of Building Physics Departement of Civil Engineering K.U.Leuven, Belgium

Andreas Nicolai, John Grunewald Instituts für Bauklimatik, Technical University of Dresden, Germany

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

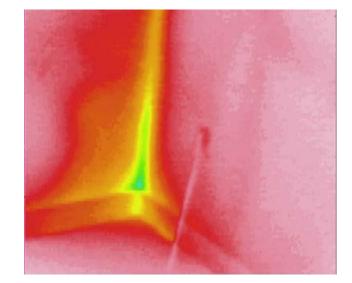
'Low energy building', built in 2009

Introduction

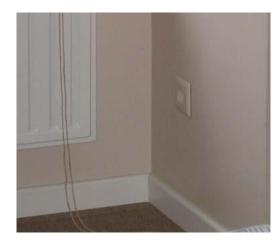
Content

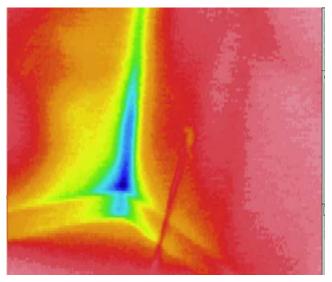
Model Equations

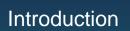
Previous attempts


Model

Validation


Conclusions

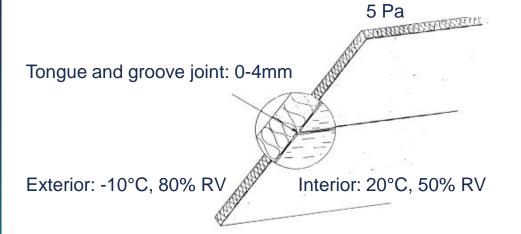




Under pressure

Content

Model Equations


Previous attempts

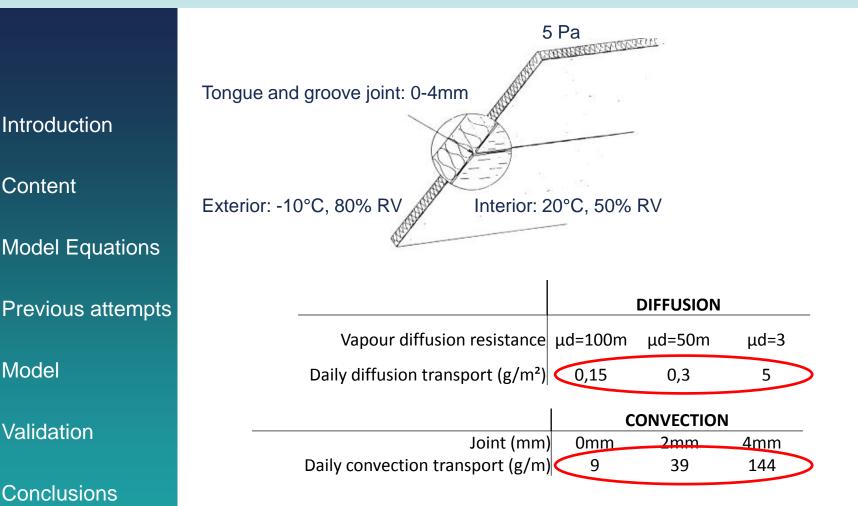
Model

Validation

Conclusions

CONVECTION VS DIFFUSION

Introduction


Content

Model

Validation

Conclusions

Introduction – problem statement

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

9th Nordic Symposium on Building Physics, Tampere, 2011

Photo: R. Borsch-Laaks, 2009

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

HAM-models including air transport are scare

Efficient implementation of air convection in HAM-models

Content

1 4			
Introd	Inction		
	uction		

Content

- **Model Equations**
- Previous attempts

Model

Validation

Conclusions

- Previous attempts
- Model
- Validation
- Conclusions

Introduction

Content

Model Equations

Η

Α

Μ

Previous attempts

Model

Validation

Conclusions

 $\frac{\partial u}{\partial t} = -\frac{\partial}{\partial x_k} \left[q_{cond} + h_v j_{diff}^v + h_w j^w \right]_k + \Sigma \dot{u}$

 $\frac{\partial \rho^{w+v}}{\partial t} = -\frac{\partial}{\partial x_{\star}} \left[j_{diff}^{v} + j^{w} \right]_{k}$

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

$$\begin{split} \mathbf{H} & \frac{\partial u}{\partial t} = -\frac{\partial}{\partial x_k} \Big[q_{cond} + h_v (j_{diff}^v + j_{conv}^v) + h_w j^w + h_a j^a \Big]_k + \Sigma \dot{u} \\ \mathbf{A} & \frac{\partial \rho^a}{\partial t} = -\frac{\partial}{\partial x_k} \Big[j^a \Big]_k \\ \mathbf{M} & \frac{\partial \rho^{w+v}}{\partial t} = -\frac{\partial}{\partial x_k} \Big[j_{diff}^v + j_{conv}^v + j^w \Big]_k \end{split}$$

Introduction

Content

Model Equations

Η

Α

Μ

Previous attempts

Model

Validation

Conclusions

$$\begin{aligned} \frac{\partial u}{\partial t} &= -\frac{\partial}{\partial x_k} \Big[q_{cond} + [h_v (j_{diff}^v + j_{conv}^v) + h_w j^w] + h_a j^a \Big]_k + \Sigma \dot{u} \\ \frac{\partial \rho^a}{\partial t} &= -\frac{\partial}{\partial x_k} \Big[j^a \Big]_k \\ \frac{\partial \rho^{w+v}}{\partial t} &= -\frac{\partial}{\partial x_k} \Big[j_{diff}^v + j_{conv}^v + j^w \Big]_k \end{aligned}$$

Introduction

Content

Model Equations

Η

Α

Previous attempts

Model

Validation

Conclusions

$$\frac{\partial u}{\partial t} = -\frac{\partial}{\partial x_k} \left[q_{cond} + h_a j^a \right]_k + \Sigma \dot{u}$$
$$\frac{\partial \rho^a}{\partial t} = -\frac{\partial}{\partial x_k} \left[j^a \right]_k$$
$$\int_{J^a} \int_{J^a} \left[j^a \right]_k + \rho_a g \cos \alpha$$

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

Previous attempts/approaches

Fully coupled approach (Delphin 4)

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

$$\frac{\partial \rho^{a}}{\partial t} = -\frac{\partial}{\partial x_{k}} \left[j^{a} \right]_{k}$$
$$\left(c_{m} \rho_{b} + c_{a} \rho_{a} \right) \frac{\partial T}{\partial t} = -\frac{\partial}{\partial x_{k}} \left[q_{cond} + h_{a} j^{a} \right]_{k} + \Sigma \dot{u}$$

9th Nordic Symposium on Building Physics, Tampere, 2011

Fully coupled

Introduction

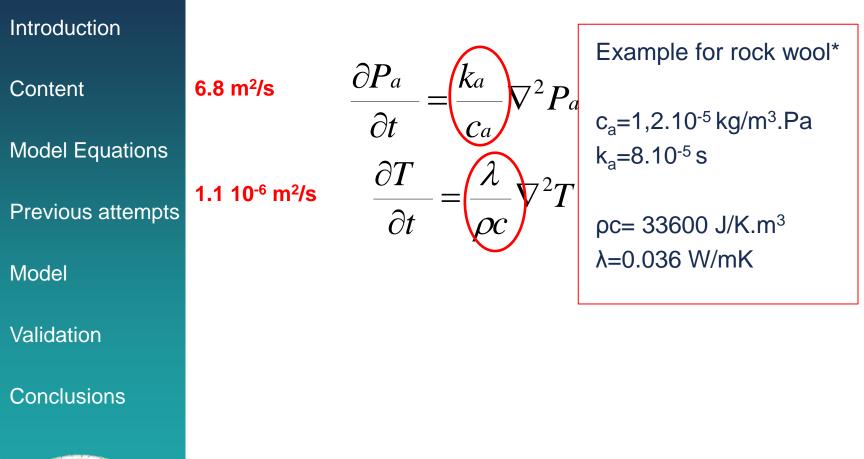
Content

Model Equations

Previous attempts

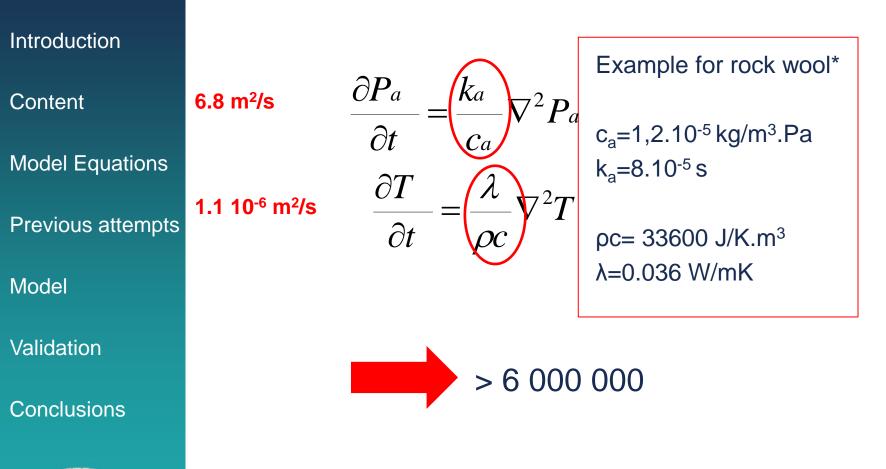
Model

Validation


Conclusions

 $\frac{\partial P_a}{\partial t} = \frac{k_a}{c_a} \nabla^2 P_a$ $\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \nabla^2 T$

Fully coupled



9th Nordic Symposium on Building Physics, Tampere, 2011

* H. Hens, Heat and Mass transport, 2003

Fully coupled

9th Nordic Symposium on Building Physics, Tampere, 2011

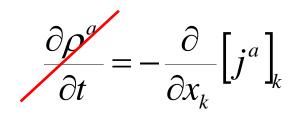
* H. Hens, Heat and Mass transport, 2003

Quasi steady state approach (Delphin 5)

Introduction

Content

Model Equations


Previous attempts

Model

Validation

Conclusions

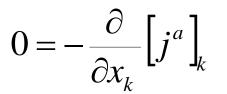
$$\left(c_{m}\rho_{b}+c_{a}\rho_{a}\right)\frac{\partial T}{\partial t}=-\frac{\partial}{\partial x_{k}}\left[q_{cond}+h_{a}j^{a}\right]_{k}+\Sigma\dot{u}$$

Quasi steady state approach

Introduction

Content

Model Equations


Previous attempts

Model

Validation

Conclusions

$$\left(c_{m}\rho_{b}+c_{a}\rho_{a}\right)\frac{\partial T}{\partial t}=-\frac{\partial}{\partial x_{k}}\left[q_{cond}+h_{a}j^{a}\right]_{k}+\Sigma\dot{u}$$

9th Nordic Symposium on Building Physics, Tampere, 2011

Quasi steady state approach

Model Equations

Introduction

Content

Previous attempts

Model

Validation

Conclusions

 $\mathsf{DAE} \underbrace{} \begin{array}{c} 0 = -\frac{\partial}{\partial x_{k}} \left[j^{a} \right]_{k} \\ \left(c_{m} \rho_{b} + c_{a} \rho_{a} \right) \frac{\partial T}{\partial t} = -\frac{\partial}{\partial x_{k}} \left[q_{cond} + h_{a} j^{a} \right]_{k} + \Sigma \dot{u} \end{array}$

Quasi steady state approach

Model Equations

Introduction

Content

Previous attempts

Model

Validation

Conclusions

$$\mathsf{DAE} = -\frac{\partial}{\partial x_{k}} [j^{a}]_{k}$$
$$(c_{m}\rho_{b} + c_{a}\rho_{a})\frac{\partial T}{\partial t} = -\frac{\partial}{\partial x_{k}} [q_{cond} + h_{a}j^{a}]_{k} + \Sigma \dot{u}$$

General form of the ODE integrator: $\dot{y} = f(t, y)$

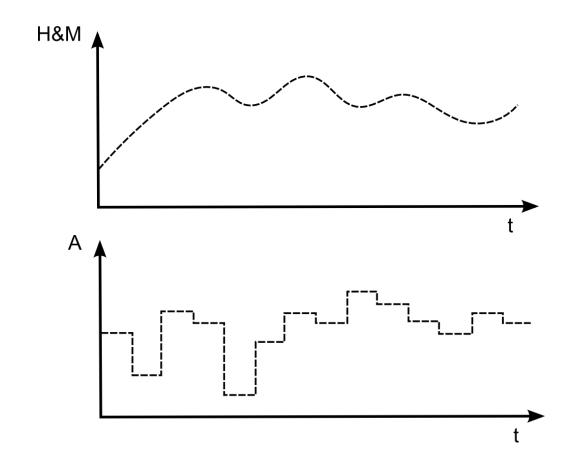
9th Nordic Symposium on Building Physics, Tampere, 2011

Introduction

Model Equations

Previous attempts

Content


Model

Validation

Conclusions

Previous attempts

Quasi steady state

9th Nordic Symposium on Building Physics, Tampere, 2011

Quasi steady state

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

- Good simulation performance
- Perfect solution for forced convection problems
- Might lead to numerical instability for buoyant dominated problems

Governing equations

$$0 = -\frac{\partial}{\partial x_k} \left[j^a \right]_k$$

$$\left(c_{m}\rho_{b}+c_{a}\rho_{a}\right)\frac{\partial T}{\partial t}=-\frac{\partial}{\partial x_{k}}\left[q_{cond}+h_{a}j^{a}\right]_{k}+\Sigma\dot{u}$$

Transport equations

$$j^{a} = -\rho_{a} \frac{k_{a}}{\eta} \left(\frac{\partial p_{a}}{\partial x_{k}} + \rho_{a} g \cos \alpha \right)$$
$$q_{cond} = -\lambda \frac{\partial T}{\partial x}$$

9th Nordic Symposium on Building Physics, Tampere, 2011

24

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

Numerical solution method

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

Finite Volume Method (FVM)

System PDE transformed to DAE

Discretization:

Diffusion terms: central-difference

$$(q_{cond})_{L,i} = -\lambda_{L,i} \frac{T_i - T_{i-1}}{0.5(\Delta x_{i-1} + \Delta x_i)}$$

Convective terms: upwind scheme

$$\left(h_a j^a \right)_{L,i} = \begin{cases} \left(h_a \right)_{i-1} j^a & j^a > 0 \\ \left(h_a \right)_i j^a & j^a \le 0 \end{cases}$$

9th Nordic Symposium on Building Physics, Tampere, 2011

Numerical solution method

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

 $F(t, y, \dot{y}) = 0$

 $y = [p_{a,0}, u_0, p_{a,1}, u_1, ..., p_{a,n}, u_n]^T$

Numerical solution method

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

 $F(t, y, \dot{y}) = 0$ $y = [p_{a,0}, u_0, p_{a,1}, u_1, ..., p_{a,n}, u_n]^T$

DAE-solver: IDA Sundials

	Natural convection in a porous media: vertical / horizontal layer Kohonen, 1985			
Introduction	Kononen, 1905	///////		
Content		H=2.2 m		
Model Equations		W=0.3 m		
Previous attempts	-20 °C		20 °C	
Model				
Validation				
Conclusions				

Introduction

Content

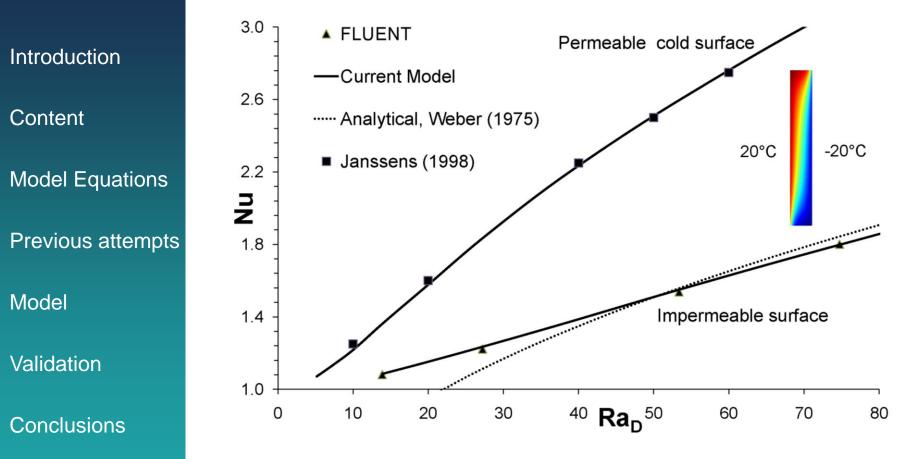
Model Equations

Previous attempts

Model

Validation

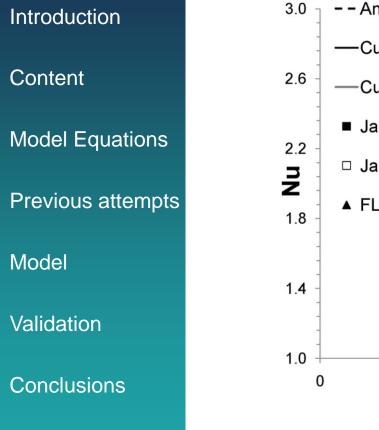
Conclusions



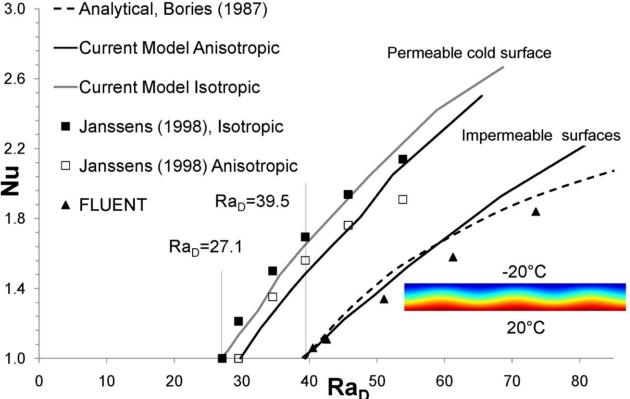
$$Nu = \frac{Q_{tot}}{Q_{cond}} = \frac{Q_{tot}}{H\Delta T \lambda_x / D}$$

$$Ra_{D} = g\beta D\Delta T \left(\frac{\rho c}{\nu}\right) \frac{k_{x}}{\lambda_{x}} \frac{4a_{k}}{\left(\sqrt{a_{\lambda}} + \sqrt{a_{k}}\right)^{2}}$$

Vertical Layer



6425


9th Nordic Symposium on Building Physics, Tampere, 2011

Horizontal Layer

Introduction

Content

Model Equations

Previous attempts

Model

Validation

Conclusions

- Implementation of air transport in Delphin HAM tool
- Previous approaches were discussed
- A new approaches using DAE solver
- Validation