Simulation and Experimental Validation of
 Chaotic Behavior of the Airflow in a Ventilated Room

Jos van Schijndel

Introduction

Qechnische Universiteit $\begin{aligned} & \text { Tindhoven } \\ & \text { University of Technology }\end{aligned}$

Chaos theory and what should we learn from it?

- Can you solve this ? $\quad x_{n+1}=r x_{n}\left(1-x_{n}\right)$

Chaos theory and what should we learn from it?

- NO!

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

- Bifurcation diagram of the logistic map $x \rightarrow r x(1-x)$.
- Each vertical slice shows the attractor for a specific value of r.
- The diagram displays perioddoubling as r increases, eventually producing chaos
- Message:
- Seemingly simple systems can have very complex (chaotic) behaviors

Chaos theory and what should we learn from it?

- What about this ?
- These ODEs represent the simplified equations of convection rolls arising in the equations of the atmosphere.
- Fully deterministic
- i.e. a conceptual CFD model

$$
\begin{aligned}
& \frac{d x}{d t}=\sigma(y-x) \\
& \frac{d y}{d t}=x(\rho-z)-y
\end{aligned}
$$

$$
\frac{d z}{d t}=x y-\beta z
$$

Chaos theory and what should we learn from it?

- Solvable but:
- The Lorenz model has important implications for climate and weather prediction.
- The model is an explicit statement that atmospheres may exhibit a variety of quasi-periodic regimes that are, although fully deterministic, subject to abrupt and seemingly random change
- Message:
- Sensitive dependence on the initial condition and parameters

Problem statement A 'butterfly effect' inside Buildings?

Butterfly effect :
Extreme sensitivity leads to an unpredictable system

How sensitive is the airflow in a ventilated room for very small parameter changes?

Numerical case study

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=-\frac{\partial(u u)}{\partial x}-\frac{\partial(v u)}{\partial y}-\frac{\partial p}{\partial x}+\frac{1}{\operatorname{Re}} \nabla^{2} u \\
& \frac{\partial v}{\partial t}=-\frac{\partial(u v)}{\partial x}-\frac{\partial(v v)}{\partial y}-\frac{\partial p}{\partial y}+\frac{1}{\operatorname{Re}} \nabla^{2} v+\frac{G r}{\mathrm{Re}^{2}} T \\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& \frac{\partial T}{\partial t}=-\frac{\partial(u T)}{\partial x}-\frac{\partial(v T)}{\partial y}+\frac{1}{\operatorname{Re} \operatorname{Pr}} \nabla^{2} T
\end{aligned}
$$

Sinha et al. 2000 Energy and Buildings 32, pp121-129

Simulation using Comsol

$R e=50 ; G r=0$

$R e=1000 ; G r=0$

$R e=1000 ; G r=\sim 10^{7}$

Verification

Sinha et al. 2000

a) $\mathrm{Re}=50, \mathrm{Gr}=0$

b) $\mathrm{Re}=1000, \mathrm{Gr} \stackrel{\mathrm{x}}{=}$

c) $\mathrm{Re}=1000, \mathrm{Gr}=2.510^{7}$

Air supply sensitivity

Air supply = 1

Difference between top figures

Switching model Comsol/SimuLink

- Using SimuLink \& S-Functions

(Schijndel, A.W.M. van, 2005, Implementation of FemLab in S-Functions, $1^{\text {ST }}$ FemLab Conference Frankfurt, pp324-329)

Switching sensitivity without buoyancy

Switching: <0.30 hot air >0.50 cold air

Experimental case study: a scale model

Simulation of the scale model

FIG 9. Left: Right: Simulated surface temperature

FIG 10. Left: The temperature and velocity after 900 seconds; Right: The air circulation

Conclusions numerical work

2D Simulation with buoyancy

- Chaotic behavior is already observed by changing the supply air temperature from $22{ }^{\circ} \mathrm{C}$ into $21.9^{\circ} \mathrm{C}$.

2D Simulation without buoyancy \& switching

- Minor chaotic behavior is observed by a small change in the air supply control parameters

Future research

- Simulation with buoyancy with switching

Conclusions experimental work

Scale model with buoyancy

- Chaotic behavior still under investigation.

Scale model with buoyancy \& switching

- Future research, chaotic behavior is expected

Question

- What does this mean for the predictability of a full scale indoor climate?

Thank you!

