Simulation and Experimental Validation of Chaotic Behavior of the Airflow in a Ventilated Room

Jos van Schijndel

Technische Universiteit **Eindhoven** University of Technology

Land R.

Where innovation starts

TU

Introduction

• Can you solve this ?
$$x_{n+1} = r x_n (1-x_n)$$
 .

• NO!

- Bifurcation diagram of the logistic map $x \rightarrow r x (1 x)$.
- Each vertical slice shows the attractor for a specific value of r.
- The diagram displays perioddoubling as r increases, eventually producing chaos

• Message:

 Seemingly simple systems can have very complex (chaotic) behaviors

$$x_{n+1} = rx_n(1 - x_n)$$

- What about this ?
 - These ODEs represent the simplified equations of convection rolls arising in the equations of the atmosphere.
 - Fully deterministic
 - i.e. a conceptual CFD model

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z$$

- Solvable but:
- The Lorenz model has important implications for climate and weather prediction.
- The model is an explicit statement that atmospheres may exhibit a variety of quasi-periodic regimes that are, although fully deterministic, subject to abrupt and seemingly random change
- Message:
- Sensitive dependence on the initial condition and parameters

Problem statement A 'butterfly effect' inside Buildings?

Butterfly effect : Extreme sensitivity leads to an unpredictable system How sensitive is the airflow in a ventilated room for very small parameter changes?

18-5-2011 PAGE 6

Numerical case study

Sinha et al. 2000 Energy and Buildings 32, pp121-129

18-5-2011 PAGE 7

Technische Universiteit **Eindhoven** University of Technology

Simulation using Comsol

Re = 50; Gr =0

Re = 1000; Gr =0

Re = 1000; Gr = $\sim 10^7$

18-5-2011

PAGE 8

Verification

Air supply sensitivity

18-5-2011 PAGE 10

Switching model Comsol/SimuLink

Using SimuLink & S-Functions

(Schijndel, A.W.M. van, 2005, Implementation of FemLab in S-Functions, 1ST FemLab Conference Frankfurt, pp324-329)

Switching sensitivity without buoyancy

Switching: <0.30 hot air >0.50 cold air

Difference between top figures

18-5-2011 PAGE 12

University of Technology

Eindhoven

Experimental case study: a scale model

Simulation of the scale model

FIG 9. Left: Right: Simulated surface temperature

FIG 10. Left: The temperature and velocity after 900 seconds; Right: The air circulation

TU/e Technische Universiteit Eindhoven University of Technology

Conclusions numerical work

2D Simulation with buoyancy

 Chaotic behavior is already observed by changing the supply air temperature from 22 °C into 21.9 °C.

2D Simulation without buoyancy & switching

 Minor chaotic behavior is observed by a small change in the air supply control parameters

Future research

Simulation with buoyancy with switching

Conclusions experimental work

Scale model with buoyancy
Chaotic behavior still under investigation.

Scale model with buoyancy & switching

Future research, chaotic behavior is expected

Question

• What does this mean for the predictability of a full scale indoor climate?

Thank you !

18-5-2011 PAGE 17