

Renovation of a detached single-family house into an energy efficient low energy house

9th Nordic Symposium on Building Physics Tampere, Finland, June 1, 2011

> Tine S. Larsen Assosiate professor Department of Civil Engineering Aalborg University tsl@civil.aau.dk

Outline

- Introduction
- Extensive renovation – how?
- Results

OF NMART

Introduction

- Danish Energy Strategy for 2050 (Feb. 2011)
- From coal, oil and gas to renewable energy, requires
 - Save 50% on the heat consumption in existing buildings
 - Save 75% (compared to 2009 level) on energy consumption in new buildings in 2020

Tine Steen Larsen • assosiate professor • Indoor

EnergiParcel – New energy for your home

- Energy renovation of four Single family homes in Tilst near Århus
- Measurements of Indoor Environment & Energy consumption before and after renovation
- 2008-2012
- Supported financially by

Realdania

IDVIKLER OG BEVARER

EnergiParcel – New energy for your home

Expected savings

The renovated house

New facades

- Constructions

- The outer part of the existing cavity wall was torn down
- New façade was constructed on the outside of the bearing inner wall

New facades

- Constructions

Construction and Windows	Before renovation		After renovation			
	U-value	Heat loss façade	U-value		Heat loss façade	Reduction in heat loss
	W/m²K	%	W/m²K		%	%
Outer wall	0.42	17%	0.117		10%	72%
Roof	0.31	14%	0.092		12%	61%
Existing Floor	0.3	9%	0.3	(21%	0%
Floor in bathrooms	0.3	1%	0.11		0%	63%
Windows (mean)	2.8	53%	0.96	(46%	62%
Skylights (mean)	2.8	6%	1.2		10%	23%
Mean/Total	0.72	100%	0.28		100%	55%

New facades

- Airtightness

• Test result with 50 Pa: 0.97 l/s per m²

Tine Steen Larsen • Assosiate professor • Indoor environment & Energy

Combined nat. & mech. ventilation

- Great challenge to install mechanical ventilation into an existing building
- Counter flow heat exchanger with a dry efficiency of approx. 90%
- Minimized pressure drop

Tine Steen Larsen • Assosiate professor • Indoor environment & Energy

Combined nat. & mech. ventilation

- Combined mechanical (winter) and natural (summer) ventilation
- "Solar chimney" is used with the natural ventilation

Results

- Energy consumption

Total energy consumption was reduced with 69%

Results - Indoor environment (based on CR1752)

Temperature - better CO₂ - better RH - unchanged

Before renovation:

After renovation:

Summer:

A: CO₂< 830 ppm; B: CO₂< 1030 ppm; C: CO₂< 1560 ppm; A: 23,5 – 25,5°C; B: 23,0 – 26,0°C; C: 22,0 – 27,0°C

Vinter:

A: 21,0 – 23,0°C; B: 20,0 – 24,0°C; C: 19,0 – 25,0°C

Discussions

- We need to have heavy reductions on the energy consumptions for domestic buildings
- The technology is there, but still it is too expensive to make these extensive renovations
- Further development of existing technologies, new technologies and optimized economical solutions for renovation are needed

