

Proposal for a modified Glaser-Method for the risk assessment of flat timber roofs

Bernd Nusser, Thomas Bednar, Martin Teibinger

Full scale studies

Solar radiation

Air exfiltration

Potential leakages in prefabricated houses

Air flow through leakages

Building element airtightness classes

	Airtightness class					
	A+	Α	В	С		
Requirements	 prefabricated water vapour retarder membrane & sheeting prefabricated weather cover CE mark penetrations with air seal sleeves or totally enclosed 	 penetrations with air seal sleeves or totally enclosed leakage locating and fixing 	 penetrations with air seal sleeves or totally enclosed leakage locating and fixing 	- up to date airtight layer		
n ₅₀	not measured	< 1.5 h⁻¹	< 3.0 h ⁻¹	not measured		
(F _a)	8	4	2	1		
Airtightness factor Air flow rate: $Q=4e-6\times\Delta P^{2/3}\times F_a^{-1}$						

Simplest calculation model?

Quasi steady state 1D vs. transient 2D

Quasi steady state (monthly mean values)

Transient (hourly values) HAM3D-VIE (validated with full scale test data)

Quasi steady state 1D vs. transient 2D

Influence of solar absorption

Influence of air exfiltration

Conclusion

- Strong influence of solar absorption/shading
- Strong influence of air exfiltration
- Influencing factors should be considered in the ISO 13788 with proposed assessment method
- Modified Glaser-Method underestimates moisture change
- Proper decision criteria has to be defined to evaluate the suitability of the calculated building component

i selo

Planning Brochure

<u>PLAN</u>UNGSBROSCHÜRE Flachgeneigte Dächer aus Holz

HOLZ

FORSCHUNG

AUSTRIA

Attika Höhe in cm Höhe in cm Höhe in cm 0-50 50-80 > 80 OHNE zusätzliche MIT zusätzlicher Beschattungsanalyse Beschattungsanalyse des Attikabereichs des Attikabereichs Tabelle 48 S. 74 Luftdichtheitsklasse (LDK) A B A+ С vorohne vor- n₅₀ n₅₀ ohne gefertigt ≤1,5 1/h ≤3,0 1/h Prüfung Einzelnachweis feuchtetechnisch Foliendach ohne optimierte Version Anforderungen mit Zusatzdämmung Auflast nicht einzuhalten Sehr hohe Nicht nachweisfrei Feuchtelast Hohe Nicht Feuchtelast nachweisfrei Mittlere Tabelle 33 Feuchtelast S. 61 Tabelle 32 Niedrige Feuchtelast S. 60 Sehr hohe Nicht Feuchtelast nachweisfrei Hohe Tabelle 31 Feuchtelast S. 59 Mittlere Tabelle 30 Feuchtelast S. 59 Niedrige Tabelle 29 -Feuchtelast S. 58 Sehr hohe Tabelle 28 Feuchtelast S. 57 Hohe Tabelle 27 Feuchtelast S. 56 Mittlere Tabelle 26 Feuchtelast S. 56 Niedrige Tabelle 25 Feuchtelast S. 55 Tabelle 24 Sehr hohe Feuchtelast S. 54 Tabelle 23 Hohe Feuchtelast S. 54 Mittlere Tabelle 22 Feuchtelast S. 53 Niedrige Tabelle 21 Feuchtelast S. 53

Nicht

nachweisfrei

Tabelle 47

S. 72

Tabelle 46

S. 72

Tabelle 45

S. 71

Nicht

nachweisfrei

Tabelle 44

S. 70

Tabelle 43

S. 70

Tabelle 42

S. 69

Tabelle 41

S. 68

Tabelle 40

Tabelle 39

S. 67

Tabelle 38

S. 66

Tabelle 37

S. 65 Tabelle 36

S. 65

Tabelle 35

S. 64

Tabelle 34

S. 64

S. 67

Thank you for your Attention!

Bernd Nusser

b.nusser@holzforschung.at Tel. +43 (1) 798 26 23-71

Compared to WUFI® 5

HOLZ FORSCHUNG

Heat transport

$$q_i = c \cdot \dot{m} \cdot \left(T_i + \frac{T_i - T_{i+1}}{e^{P_H} - 1}\right)$$

nit
$$P_H = \frac{c \cdot \dot{m}}{\lambda_j / d_j}$$

'n

F

- Wärmestromdichte über die Schichtgrenze i in W/m²
- Spezifische Wärmekapazität der Luft = 1006 J/(kg.K)
- $T_{i,i+1}$ Temperatur an der Schichtgrenze i bzw. i+1 in K

Wärmeleitfähigkeit der Schicht j in W/(m.K)

Dicke der Schicht j in m

$$\dot{m} = \rho_{air} \cdot F \cdot Q$$

Luftmassenstrom in kg/(m².s)

 ρ_{air} Dichte der Luft = 1,2 kg/m³

Luftdichtheitsfaktor

Radiation

$$q_{surf,ex} = \alpha_c \cdot (T_{surf,ex} - T_{air,ex}) + \alpha_r \cdot (T_{surf,ex} - T_{sky})$$

$$-a \cdot (1-f_s) \cdot I_s$$

q _{surf,ex}	Wärmestron	ndichte	über	die		
-	Außenoberfläche in W/m ²					
$\alpha_{c,r}$	konvektiver	bzw.	ra	adiativer		
	Wärmeüberganskoeffizient in W/(m ² .K)					
$T_{surf,ex}$	Temperatur der Außenoberfläche in K					
T_{sky}	Himmelstemperatur in K					
a	solarer	Absorptionsko	effizient	der		
	Außenoberfläche					
f_s	Verschattung der Außenoberfläche (0-0,8)					
I_s	mittlere monatliche Solarstrahlung in W/m ²					

Mass transport

$$j_i = \frac{0,622}{p_0} \cdot \dot{m} \left(p_i + \frac{p_i - p_{i+1}}{e^{P_M} - 1} \right)$$

mit
$$P_M = \frac{\dot{m} \cdot 0.622/p_0}{\delta_0/(\mu_j \cdot d_j)}$$

- Massenstromdichte über die Schichtgrenze i in kg/(m².s)
- Luftdruck in Pa
- $p_{i,i+1}$ Wasserdampfpartialdruck an Schichtgrenze i bzw. i+1 in Pa
 - Wasserdampfdiffusions-Leitkoeffizient der Luft = 2E-10 kg/(m.s.Pa)
 - Wasserdampfdiffusion-Widerstandszahl der Schicht j

$$\dot{m} = \rho_{air} \cdot F \cdot Q$$

- Luftmassenstrom in kg/(m².s)
- ρ_{air} Dichte der Luft = 1,2 kg/m³
 - Luftdichtheitsfaktor

'n

F