

Experimental validation of two simplified thermal zone models

Pavel Kopecký CTU Prague Faculty of Civil Engineering Department of Building Structures pavel.kopecky@fsv.cvut.cz

Motivation

- Why to deal with simplified models?
- The more complex a system the less effective the model? (Lofti Zadeh: "As the complexity of a system increases, our ability to make precise and yet significant statements about its behavior diminishes until a threshold is reached beyond which precision and significance (or relevance) become almost mutually exclusive characteristics").
- Education: ability to explain main features of the problem (target audience – students of architecture)
- EN ISO 13790 simple hourly method

Scope

- To <u>research</u> suitable simplified description of heat transfer in ventilated zone
- To <u>test</u> if simplified models are capable to produce reliable results
- Simplified models should:
 - Exclude all factors with negligible influence (i.e. limit number of inputs)
 - Provide reasonable accuracy
 - Work with short time step
 - Be comprehensible for standard users
 - Be practical for design process

Problem of accuracy

Model uncertainty x deterministic criteria?

Process of simplification

How to change complex structures to simple?

Effective capacitance model

- Very helpful for education
- "Climate surfaces" Keller, Burmeister

Examination of models

- Goal: to confront EPDM and ECM with measurement
- Comparison with other models (Bestest)
- Comparison with measured data
 - Box on the university roof
 - Real occupied office

Box on the roof

- Room model (1:3)
- Very light structure
- Very good data about solar gains
- Comparison based on ten-day period

Office

Heavy structure with light envelope

9/10

Conclusions

- Two simplified thermal models of ventilated zone were comparable with measurement
- It seems they could be capable to predict
 - Heating need and cooling need
 - Thermal comfort

Building design

- Problems
 - How to upscale from one-zone analysis to whole building not to lose information about thermal comfort?
 - Dynamics based on longer (ground heat transfer, or castle) or much shorter fluctuation than one day (e.g. technical systems)

Thank you for your attention