Table of contents for Industrial Mathematics:

Modeling in Industry, Science, and Government

Preface	ix	
Acknowledgments	xii	
Statistical Reasoning		1
Random Variables		1
Uniform Distributions		5
Gaussian Distributions		6
The Binomial Distributi	on	7
The Poisson Distribution	on	10
Taguchi Quality Contro	I	12
Exercises		16
The Monte Carlo Metho	bd	21
Computing Integrals		21
Mean Time Between F	ailures	23
Servicing Requests		24
The Newsboy Problem	(Reprise)	27
Exercises		28
Data Acquisition and M	anipulation	31
The z-Transform		31
Linear Recursions		34
Filters		36

Stability	39
Polar and Bode Plots	40
Aliasing	46
Closing the Loop	47
Why Decibels?	51
Exercises	53
The Discrete Fourier Transform	59
Real Time Processing	59
Properties of the DFT	61
Filter Design	63
The Fast Fourier Transform	66
Image Processing	70
Exercises	74
Linear Programming	77
Optimization	77
The Diet Problem	80
The Simplex Algorithm	81
Exercises	86
Regression	89
Best Fit to Discrete Data	89
Norms on Rn	93
Hilbert Space	94
Gram's Theorem on Regression	97
Exercises	101

Cost-Benefit Analysis	105
Present Value	105
Life-Cycle Savings	106
Exercises	108
Microeconomics	111
Supply and Demand	111
Revenue, Cost, and Profit	113
Elasticity of Demand	115
Duopolistic Competition	116
Theory of Production	118
Leontiev Input / Output	119
Exercises	121
Ordinary Differential Equations	123
Separation of Variables	123
Mechanics	127
Linear ODEs with Constant Coefficients	130
Systems	135
Exercises	142
Frequency-Domain Methods	149
The Frequency Domain	149
Generalized Signals	153
Plants in Cascade	157
Surge Impedance	159

Stability	161
Filters	164
Feedback and Root Locus	169
Nyquist Analysis	173
Control	179
Exercises	184
Partial Differential Equations	191
Lumped versus Distributed	191
The Big Six PDEs	192
Separation of Variables	194
Unbounded Spatial Domains	213
Periodic Steady State	215
Other Distributed Models	217
Exercises	223
Divided Differences	231
Euler's Method	231
Systems	234
PDEs	235
RungeKutta Method	240
Exercises	240
Galerkin's Method	243
Galerkin's Requirement	243
Eigenvalue Problems	247
Steady Problems	249

Transient Problems	250
Finite Elements	252
Why So Effective?	259
Exercises	262
Splines	265
Why Cubics?	265
m-Splines	267
Cubic Splines	269
Exercises	274
Report Writing	277
The formal Technical Report	277
The Memo	282
The Progress Report	284
The Executive Summary	284
The Problem Statement	285
Overhead Projector Presentations	286
Approaching a Writing Task	287
Style	287
Writer's checklist	291
References	293
Index	299